1 // Copyright 2011 the V8 project authors. All rights reserved. 2 // Redistribution and use in source and binary forms, with or without 3 // modification, are permitted provided that the following conditions are 4 // met: 5 // 6 // * Redistributions of source code must retain the above copyright 7 // notice, this list of conditions and the following disclaimer. 8 // * Redistributions in binary form must reproduce the above 9 // copyright notice, this list of conditions and the following 10 // disclaimer in the documentation and/or other materials provided 11 // with the distribution. 12 // * Neither the name of Google Inc. nor the names of its 13 // contributors may be used to endorse or promote products derived 14 // from this software without specific prior written permission. 15 // 16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 28 #include "v8.h" 29 30 #if defined(V8_TARGET_ARCH_IA32) 31 32 #include "bootstrapper.h" 33 #include "codegen.h" 34 #include "debug.h" 35 #include "runtime.h" 36 #include "serialize.h" 37 38 namespace v8 { 39 namespace internal { 40 41 // ------------------------------------------------------------------------- 42 // MacroAssembler implementation. 43 44 MacroAssembler::MacroAssembler(Isolate* arg_isolate, void* buffer, int size) 45 : Assembler(arg_isolate, buffer, size), 46 generating_stub_(false), 47 allow_stub_calls_(true) { 48 if (isolate() != NULL) { 49 code_object_ = Handle<Object>(isolate()->heap()->undefined_value(), 50 isolate()); 51 } 52 } 53 54 55 void MacroAssembler::RecordWriteHelper(Register object, 56 Register addr, 57 Register scratch) { 58 if (emit_debug_code()) { 59 // Check that the object is not in new space. 60 Label not_in_new_space; 61 InNewSpace(object, scratch, not_equal, ¬_in_new_space); 62 Abort("new-space object passed to RecordWriteHelper"); 63 bind(¬_in_new_space); 64 } 65 66 // Compute the page start address from the heap object pointer, and reuse 67 // the 'object' register for it. 68 and_(object, ~Page::kPageAlignmentMask); 69 70 // Compute number of region covering addr. See Page::GetRegionNumberForAddress 71 // method for more details. 72 and_(addr, Page::kPageAlignmentMask); 73 shr(addr, Page::kRegionSizeLog2); 74 75 // Set dirty mark for region. 76 bts(Operand(object, Page::kDirtyFlagOffset), addr); 77 } 78 79 80 void MacroAssembler::RecordWrite(Register object, 81 int offset, 82 Register value, 83 Register scratch) { 84 // First, check if a write barrier is even needed. The tests below 85 // catch stores of Smis and stores into young gen. 86 NearLabel done; 87 88 // Skip barrier if writing a smi. 89 ASSERT_EQ(0, kSmiTag); 90 test(value, Immediate(kSmiTagMask)); 91 j(zero, &done); 92 93 InNewSpace(object, value, equal, &done); 94 95 // The offset is relative to a tagged or untagged HeapObject pointer, 96 // so either offset or offset + kHeapObjectTag must be a 97 // multiple of kPointerSize. 98 ASSERT(IsAligned(offset, kPointerSize) || 99 IsAligned(offset + kHeapObjectTag, kPointerSize)); 100 101 Register dst = scratch; 102 if (offset != 0) { 103 lea(dst, Operand(object, offset)); 104 } else { 105 // Array access: calculate the destination address in the same manner as 106 // KeyedStoreIC::GenerateGeneric. Multiply a smi by 2 to get an offset 107 // into an array of words. 108 ASSERT_EQ(1, kSmiTagSize); 109 ASSERT_EQ(0, kSmiTag); 110 lea(dst, Operand(object, dst, times_half_pointer_size, 111 FixedArray::kHeaderSize - kHeapObjectTag)); 112 } 113 RecordWriteHelper(object, dst, value); 114 115 bind(&done); 116 117 // Clobber all input registers when running with the debug-code flag 118 // turned on to provoke errors. 119 if (emit_debug_code()) { 120 mov(object, Immediate(BitCast<int32_t>(kZapValue))); 121 mov(value, Immediate(BitCast<int32_t>(kZapValue))); 122 mov(scratch, Immediate(BitCast<int32_t>(kZapValue))); 123 } 124 } 125 126 127 void MacroAssembler::RecordWrite(Register object, 128 Register address, 129 Register value) { 130 // First, check if a write barrier is even needed. The tests below 131 // catch stores of Smis and stores into young gen. 132 Label done; 133 134 // Skip barrier if writing a smi. 135 ASSERT_EQ(0, kSmiTag); 136 test(value, Immediate(kSmiTagMask)); 137 j(zero, &done); 138 139 InNewSpace(object, value, equal, &done); 140 141 RecordWriteHelper(object, address, value); 142 143 bind(&done); 144 145 // Clobber all input registers when running with the debug-code flag 146 // turned on to provoke errors. 147 if (emit_debug_code()) { 148 mov(object, Immediate(BitCast<int32_t>(kZapValue))); 149 mov(address, Immediate(BitCast<int32_t>(kZapValue))); 150 mov(value, Immediate(BitCast<int32_t>(kZapValue))); 151 } 152 } 153 154 155 #ifdef ENABLE_DEBUGGER_SUPPORT 156 void MacroAssembler::DebugBreak() { 157 Set(eax, Immediate(0)); 158 mov(ebx, Immediate(ExternalReference(Runtime::kDebugBreak, isolate()))); 159 CEntryStub ces(1); 160 call(ces.GetCode(), RelocInfo::DEBUG_BREAK); 161 } 162 #endif 163 164 165 void MacroAssembler::Set(Register dst, const Immediate& x) { 166 if (x.is_zero()) { 167 xor_(dst, Operand(dst)); // Shorter than mov. 168 } else { 169 mov(dst, x); 170 } 171 } 172 173 174 void MacroAssembler::Set(const Operand& dst, const Immediate& x) { 175 mov(dst, x); 176 } 177 178 179 bool MacroAssembler::IsUnsafeImmediate(const Immediate& x) { 180 static const int kMaxImmediateBits = 17; 181 if (x.rmode_ != RelocInfo::NONE) return false; 182 return !is_intn(x.x_, kMaxImmediateBits); 183 } 184 185 186 void MacroAssembler::SafeSet(Register dst, const Immediate& x) { 187 if (IsUnsafeImmediate(x) && jit_cookie() != 0) { 188 Set(dst, Immediate(x.x_ ^ jit_cookie())); 189 xor_(dst, jit_cookie()); 190 } else { 191 Set(dst, x); 192 } 193 } 194 195 196 void MacroAssembler::SafePush(const Immediate& x) { 197 if (IsUnsafeImmediate(x) && jit_cookie() != 0) { 198 push(Immediate(x.x_ ^ jit_cookie())); 199 xor_(Operand(esp, 0), Immediate(jit_cookie())); 200 } else { 201 push(x); 202 } 203 } 204 205 206 void MacroAssembler::CmpObjectType(Register heap_object, 207 InstanceType type, 208 Register map) { 209 mov(map, FieldOperand(heap_object, HeapObject::kMapOffset)); 210 CmpInstanceType(map, type); 211 } 212 213 214 void MacroAssembler::CmpInstanceType(Register map, InstanceType type) { 215 cmpb(FieldOperand(map, Map::kInstanceTypeOffset), 216 static_cast<int8_t>(type)); 217 } 218 219 220 void MacroAssembler::CheckMap(Register obj, 221 Handle<Map> map, 222 Label* fail, 223 bool is_heap_object) { 224 if (!is_heap_object) { 225 test(obj, Immediate(kSmiTagMask)); 226 j(zero, fail); 227 } 228 cmp(FieldOperand(obj, HeapObject::kMapOffset), Immediate(map)); 229 j(not_equal, fail); 230 } 231 232 233 Condition MacroAssembler::IsObjectStringType(Register heap_object, 234 Register map, 235 Register instance_type) { 236 mov(map, FieldOperand(heap_object, HeapObject::kMapOffset)); 237 movzx_b(instance_type, FieldOperand(map, Map::kInstanceTypeOffset)); 238 ASSERT(kNotStringTag != 0); 239 test(instance_type, Immediate(kIsNotStringMask)); 240 return zero; 241 } 242 243 244 void MacroAssembler::IsObjectJSObjectType(Register heap_object, 245 Register map, 246 Register scratch, 247 Label* fail) { 248 mov(map, FieldOperand(heap_object, HeapObject::kMapOffset)); 249 IsInstanceJSObjectType(map, scratch, fail); 250 } 251 252 253 void MacroAssembler::IsInstanceJSObjectType(Register map, 254 Register scratch, 255 Label* fail) { 256 movzx_b(scratch, FieldOperand(map, Map::kInstanceTypeOffset)); 257 sub(Operand(scratch), Immediate(FIRST_JS_OBJECT_TYPE)); 258 cmp(scratch, LAST_JS_OBJECT_TYPE - FIRST_JS_OBJECT_TYPE); 259 j(above, fail); 260 } 261 262 263 void MacroAssembler::FCmp() { 264 if (CpuFeatures::IsSupported(CMOV)) { 265 fucomip(); 266 ffree(0); 267 fincstp(); 268 } else { 269 fucompp(); 270 push(eax); 271 fnstsw_ax(); 272 sahf(); 273 pop(eax); 274 } 275 } 276 277 278 void MacroAssembler::AbortIfNotNumber(Register object) { 279 Label ok; 280 test(object, Immediate(kSmiTagMask)); 281 j(zero, &ok); 282 cmp(FieldOperand(object, HeapObject::kMapOffset), 283 isolate()->factory()->heap_number_map()); 284 Assert(equal, "Operand not a number"); 285 bind(&ok); 286 } 287 288 289 void MacroAssembler::AbortIfNotSmi(Register object) { 290 test(object, Immediate(kSmiTagMask)); 291 Assert(equal, "Operand is not a smi"); 292 } 293 294 295 void MacroAssembler::AbortIfNotString(Register object) { 296 test(object, Immediate(kSmiTagMask)); 297 Assert(not_equal, "Operand is not a string"); 298 push(object); 299 mov(object, FieldOperand(object, HeapObject::kMapOffset)); 300 CmpInstanceType(object, FIRST_NONSTRING_TYPE); 301 pop(object); 302 Assert(below, "Operand is not a string"); 303 } 304 305 306 void MacroAssembler::AbortIfSmi(Register object) { 307 test(object, Immediate(kSmiTagMask)); 308 Assert(not_equal, "Operand is a smi"); 309 } 310 311 312 void MacroAssembler::EnterFrame(StackFrame::Type type) { 313 push(ebp); 314 mov(ebp, Operand(esp)); 315 push(esi); 316 push(Immediate(Smi::FromInt(type))); 317 push(Immediate(CodeObject())); 318 if (emit_debug_code()) { 319 cmp(Operand(esp, 0), Immediate(isolate()->factory()->undefined_value())); 320 Check(not_equal, "code object not properly patched"); 321 } 322 } 323 324 325 void MacroAssembler::LeaveFrame(StackFrame::Type type) { 326 if (emit_debug_code()) { 327 cmp(Operand(ebp, StandardFrameConstants::kMarkerOffset), 328 Immediate(Smi::FromInt(type))); 329 Check(equal, "stack frame types must match"); 330 } 331 leave(); 332 } 333 334 335 void MacroAssembler::EnterExitFramePrologue() { 336 // Setup the frame structure on the stack. 337 ASSERT(ExitFrameConstants::kCallerSPDisplacement == +2 * kPointerSize); 338 ASSERT(ExitFrameConstants::kCallerPCOffset == +1 * kPointerSize); 339 ASSERT(ExitFrameConstants::kCallerFPOffset == 0 * kPointerSize); 340 push(ebp); 341 mov(ebp, Operand(esp)); 342 343 // Reserve room for entry stack pointer and push the code object. 344 ASSERT(ExitFrameConstants::kSPOffset == -1 * kPointerSize); 345 push(Immediate(0)); // Saved entry sp, patched before call. 346 push(Immediate(CodeObject())); // Accessed from ExitFrame::code_slot. 347 348 // Save the frame pointer and the context in top. 349 ExternalReference c_entry_fp_address(Isolate::k_c_entry_fp_address, 350 isolate()); 351 ExternalReference context_address(Isolate::k_context_address, 352 isolate()); 353 mov(Operand::StaticVariable(c_entry_fp_address), ebp); 354 mov(Operand::StaticVariable(context_address), esi); 355 } 356 357 358 void MacroAssembler::EnterExitFrameEpilogue(int argc, bool save_doubles) { 359 // Optionally save all XMM registers. 360 if (save_doubles) { 361 CpuFeatures::Scope scope(SSE2); 362 int space = XMMRegister::kNumRegisters * kDoubleSize + argc * kPointerSize; 363 sub(Operand(esp), Immediate(space)); 364 const int offset = -2 * kPointerSize; 365 for (int i = 0; i < XMMRegister::kNumRegisters; i++) { 366 XMMRegister reg = XMMRegister::from_code(i); 367 movdbl(Operand(ebp, offset - ((i + 1) * kDoubleSize)), reg); 368 } 369 } else { 370 sub(Operand(esp), Immediate(argc * kPointerSize)); 371 } 372 373 // Get the required frame alignment for the OS. 374 const int kFrameAlignment = OS::ActivationFrameAlignment(); 375 if (kFrameAlignment > 0) { 376 ASSERT(IsPowerOf2(kFrameAlignment)); 377 and_(esp, -kFrameAlignment); 378 } 379 380 // Patch the saved entry sp. 381 mov(Operand(ebp, ExitFrameConstants::kSPOffset), esp); 382 } 383 384 385 void MacroAssembler::EnterExitFrame(bool save_doubles) { 386 EnterExitFramePrologue(); 387 388 // Setup argc and argv in callee-saved registers. 389 int offset = StandardFrameConstants::kCallerSPOffset - kPointerSize; 390 mov(edi, Operand(eax)); 391 lea(esi, Operand(ebp, eax, times_4, offset)); 392 393 // Reserve space for argc, argv and isolate. 394 EnterExitFrameEpilogue(3, save_doubles); 395 } 396 397 398 void MacroAssembler::EnterApiExitFrame(int argc) { 399 EnterExitFramePrologue(); 400 EnterExitFrameEpilogue(argc, false); 401 } 402 403 404 void MacroAssembler::LeaveExitFrame(bool save_doubles) { 405 // Optionally restore all XMM registers. 406 if (save_doubles) { 407 CpuFeatures::Scope scope(SSE2); 408 const int offset = -2 * kPointerSize; 409 for (int i = 0; i < XMMRegister::kNumRegisters; i++) { 410 XMMRegister reg = XMMRegister::from_code(i); 411 movdbl(reg, Operand(ebp, offset - ((i + 1) * kDoubleSize))); 412 } 413 } 414 415 // Get the return address from the stack and restore the frame pointer. 416 mov(ecx, Operand(ebp, 1 * kPointerSize)); 417 mov(ebp, Operand(ebp, 0 * kPointerSize)); 418 419 // Pop the arguments and the receiver from the caller stack. 420 lea(esp, Operand(esi, 1 * kPointerSize)); 421 422 // Push the return address to get ready to return. 423 push(ecx); 424 425 LeaveExitFrameEpilogue(); 426 } 427 428 void MacroAssembler::LeaveExitFrameEpilogue() { 429 // Restore current context from top and clear it in debug mode. 430 ExternalReference context_address(Isolate::k_context_address, isolate()); 431 mov(esi, Operand::StaticVariable(context_address)); 432 #ifdef DEBUG 433 mov(Operand::StaticVariable(context_address), Immediate(0)); 434 #endif 435 436 // Clear the top frame. 437 ExternalReference c_entry_fp_address(Isolate::k_c_entry_fp_address, 438 isolate()); 439 mov(Operand::StaticVariable(c_entry_fp_address), Immediate(0)); 440 } 441 442 443 void MacroAssembler::LeaveApiExitFrame() { 444 mov(esp, Operand(ebp)); 445 pop(ebp); 446 447 LeaveExitFrameEpilogue(); 448 } 449 450 451 void MacroAssembler::PushTryHandler(CodeLocation try_location, 452 HandlerType type) { 453 // Adjust this code if not the case. 454 ASSERT(StackHandlerConstants::kSize == 4 * kPointerSize); 455 // The pc (return address) is already on TOS. 456 if (try_location == IN_JAVASCRIPT) { 457 if (type == TRY_CATCH_HANDLER) { 458 push(Immediate(StackHandler::TRY_CATCH)); 459 } else { 460 push(Immediate(StackHandler::TRY_FINALLY)); 461 } 462 push(ebp); 463 } else { 464 ASSERT(try_location == IN_JS_ENTRY); 465 // The frame pointer does not point to a JS frame so we save NULL 466 // for ebp. We expect the code throwing an exception to check ebp 467 // before dereferencing it to restore the context. 468 push(Immediate(StackHandler::ENTRY)); 469 push(Immediate(0)); // NULL frame pointer. 470 } 471 // Save the current handler as the next handler. 472 push(Operand::StaticVariable(ExternalReference(Isolate::k_handler_address, 473 isolate()))); 474 // Link this handler as the new current one. 475 mov(Operand::StaticVariable(ExternalReference(Isolate::k_handler_address, 476 isolate())), 477 esp); 478 } 479 480 481 void MacroAssembler::PopTryHandler() { 482 ASSERT_EQ(0, StackHandlerConstants::kNextOffset); 483 pop(Operand::StaticVariable(ExternalReference(Isolate::k_handler_address, 484 isolate()))); 485 add(Operand(esp), Immediate(StackHandlerConstants::kSize - kPointerSize)); 486 } 487 488 489 void MacroAssembler::Throw(Register value) { 490 // Adjust this code if not the case. 491 STATIC_ASSERT(StackHandlerConstants::kSize == 4 * kPointerSize); 492 493 // eax must hold the exception. 494 if (!value.is(eax)) { 495 mov(eax, value); 496 } 497 498 // Drop the sp to the top of the handler. 499 ExternalReference handler_address(Isolate::k_handler_address, 500 isolate()); 501 mov(esp, Operand::StaticVariable(handler_address)); 502 503 // Restore next handler and frame pointer, discard handler state. 504 STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0); 505 pop(Operand::StaticVariable(handler_address)); 506 STATIC_ASSERT(StackHandlerConstants::kFPOffset == 1 * kPointerSize); 507 pop(ebp); 508 pop(edx); // Remove state. 509 510 // Before returning we restore the context from the frame pointer if 511 // not NULL. The frame pointer is NULL in the exception handler of 512 // a JS entry frame. 513 Set(esi, Immediate(0)); // Tentatively set context pointer to NULL. 514 NearLabel skip; 515 cmp(ebp, 0); 516 j(equal, &skip, not_taken); 517 mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset)); 518 bind(&skip); 519 520 STATIC_ASSERT(StackHandlerConstants::kPCOffset == 3 * kPointerSize); 521 ret(0); 522 } 523 524 525 void MacroAssembler::ThrowUncatchable(UncatchableExceptionType type, 526 Register value) { 527 // Adjust this code if not the case. 528 STATIC_ASSERT(StackHandlerConstants::kSize == 4 * kPointerSize); 529 530 // eax must hold the exception. 531 if (!value.is(eax)) { 532 mov(eax, value); 533 } 534 535 // Drop sp to the top stack handler. 536 ExternalReference handler_address(Isolate::k_handler_address, 537 isolate()); 538 mov(esp, Operand::StaticVariable(handler_address)); 539 540 // Unwind the handlers until the ENTRY handler is found. 541 NearLabel loop, done; 542 bind(&loop); 543 // Load the type of the current stack handler. 544 const int kStateOffset = StackHandlerConstants::kStateOffset; 545 cmp(Operand(esp, kStateOffset), Immediate(StackHandler::ENTRY)); 546 j(equal, &done); 547 // Fetch the next handler in the list. 548 const int kNextOffset = StackHandlerConstants::kNextOffset; 549 mov(esp, Operand(esp, kNextOffset)); 550 jmp(&loop); 551 bind(&done); 552 553 // Set the top handler address to next handler past the current ENTRY handler. 554 STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0); 555 pop(Operand::StaticVariable(handler_address)); 556 557 if (type == OUT_OF_MEMORY) { 558 // Set external caught exception to false. 559 ExternalReference external_caught( 560 Isolate::k_external_caught_exception_address, 561 isolate()); 562 mov(eax, false); 563 mov(Operand::StaticVariable(external_caught), eax); 564 565 // Set pending exception and eax to out of memory exception. 566 ExternalReference pending_exception(Isolate::k_pending_exception_address, 567 isolate()); 568 mov(eax, reinterpret_cast<int32_t>(Failure::OutOfMemoryException())); 569 mov(Operand::StaticVariable(pending_exception), eax); 570 } 571 572 // Clear the context pointer. 573 Set(esi, Immediate(0)); 574 575 // Restore fp from handler and discard handler state. 576 STATIC_ASSERT(StackHandlerConstants::kFPOffset == 1 * kPointerSize); 577 pop(ebp); 578 pop(edx); // State. 579 580 STATIC_ASSERT(StackHandlerConstants::kPCOffset == 3 * kPointerSize); 581 ret(0); 582 } 583 584 585 void MacroAssembler::CheckAccessGlobalProxy(Register holder_reg, 586 Register scratch, 587 Label* miss) { 588 Label same_contexts; 589 590 ASSERT(!holder_reg.is(scratch)); 591 592 // Load current lexical context from the stack frame. 593 mov(scratch, Operand(ebp, StandardFrameConstants::kContextOffset)); 594 595 // When generating debug code, make sure the lexical context is set. 596 if (emit_debug_code()) { 597 cmp(Operand(scratch), Immediate(0)); 598 Check(not_equal, "we should not have an empty lexical context"); 599 } 600 // Load the global context of the current context. 601 int offset = Context::kHeaderSize + Context::GLOBAL_INDEX * kPointerSize; 602 mov(scratch, FieldOperand(scratch, offset)); 603 mov(scratch, FieldOperand(scratch, GlobalObject::kGlobalContextOffset)); 604 605 // Check the context is a global context. 606 if (emit_debug_code()) { 607 push(scratch); 608 // Read the first word and compare to global_context_map. 609 mov(scratch, FieldOperand(scratch, HeapObject::kMapOffset)); 610 cmp(scratch, isolate()->factory()->global_context_map()); 611 Check(equal, "JSGlobalObject::global_context should be a global context."); 612 pop(scratch); 613 } 614 615 // Check if both contexts are the same. 616 cmp(scratch, FieldOperand(holder_reg, JSGlobalProxy::kContextOffset)); 617 j(equal, &same_contexts, taken); 618 619 // Compare security tokens, save holder_reg on the stack so we can use it 620 // as a temporary register. 621 // 622 // TODO(119): avoid push(holder_reg)/pop(holder_reg) 623 push(holder_reg); 624 // Check that the security token in the calling global object is 625 // compatible with the security token in the receiving global 626 // object. 627 mov(holder_reg, FieldOperand(holder_reg, JSGlobalProxy::kContextOffset)); 628 629 // Check the context is a global context. 630 if (emit_debug_code()) { 631 cmp(holder_reg, isolate()->factory()->null_value()); 632 Check(not_equal, "JSGlobalProxy::context() should not be null."); 633 634 push(holder_reg); 635 // Read the first word and compare to global_context_map(), 636 mov(holder_reg, FieldOperand(holder_reg, HeapObject::kMapOffset)); 637 cmp(holder_reg, isolate()->factory()->global_context_map()); 638 Check(equal, "JSGlobalObject::global_context should be a global context."); 639 pop(holder_reg); 640 } 641 642 int token_offset = Context::kHeaderSize + 643 Context::SECURITY_TOKEN_INDEX * kPointerSize; 644 mov(scratch, FieldOperand(scratch, token_offset)); 645 cmp(scratch, FieldOperand(holder_reg, token_offset)); 646 pop(holder_reg); 647 j(not_equal, miss, not_taken); 648 649 bind(&same_contexts); 650 } 651 652 653 void MacroAssembler::LoadAllocationTopHelper(Register result, 654 Register scratch, 655 AllocationFlags flags) { 656 ExternalReference new_space_allocation_top = 657 ExternalReference::new_space_allocation_top_address(isolate()); 658 659 // Just return if allocation top is already known. 660 if ((flags & RESULT_CONTAINS_TOP) != 0) { 661 // No use of scratch if allocation top is provided. 662 ASSERT(scratch.is(no_reg)); 663 #ifdef DEBUG 664 // Assert that result actually contains top on entry. 665 cmp(result, Operand::StaticVariable(new_space_allocation_top)); 666 Check(equal, "Unexpected allocation top"); 667 #endif 668 return; 669 } 670 671 // Move address of new object to result. Use scratch register if available. 672 if (scratch.is(no_reg)) { 673 mov(result, Operand::StaticVariable(new_space_allocation_top)); 674 } else { 675 mov(Operand(scratch), Immediate(new_space_allocation_top)); 676 mov(result, Operand(scratch, 0)); 677 } 678 } 679 680 681 void MacroAssembler::UpdateAllocationTopHelper(Register result_end, 682 Register scratch) { 683 if (emit_debug_code()) { 684 test(result_end, Immediate(kObjectAlignmentMask)); 685 Check(zero, "Unaligned allocation in new space"); 686 } 687 688 ExternalReference new_space_allocation_top = 689 ExternalReference::new_space_allocation_top_address(isolate()); 690 691 // Update new top. Use scratch if available. 692 if (scratch.is(no_reg)) { 693 mov(Operand::StaticVariable(new_space_allocation_top), result_end); 694 } else { 695 mov(Operand(scratch, 0), result_end); 696 } 697 } 698 699 700 void MacroAssembler::AllocateInNewSpace(int object_size, 701 Register result, 702 Register result_end, 703 Register scratch, 704 Label* gc_required, 705 AllocationFlags flags) { 706 if (!FLAG_inline_new) { 707 if (emit_debug_code()) { 708 // Trash the registers to simulate an allocation failure. 709 mov(result, Immediate(0x7091)); 710 if (result_end.is_valid()) { 711 mov(result_end, Immediate(0x7191)); 712 } 713 if (scratch.is_valid()) { 714 mov(scratch, Immediate(0x7291)); 715 } 716 } 717 jmp(gc_required); 718 return; 719 } 720 ASSERT(!result.is(result_end)); 721 722 // Load address of new object into result. 723 LoadAllocationTopHelper(result, scratch, flags); 724 725 Register top_reg = result_end.is_valid() ? result_end : result; 726 727 // Calculate new top and bail out if new space is exhausted. 728 ExternalReference new_space_allocation_limit = 729 ExternalReference::new_space_allocation_limit_address(isolate()); 730 731 if (!top_reg.is(result)) { 732 mov(top_reg, result); 733 } 734 add(Operand(top_reg), Immediate(object_size)); 735 j(carry, gc_required, not_taken); 736 cmp(top_reg, Operand::StaticVariable(new_space_allocation_limit)); 737 j(above, gc_required, not_taken); 738 739 // Update allocation top. 740 UpdateAllocationTopHelper(top_reg, scratch); 741 742 // Tag result if requested. 743 if (top_reg.is(result)) { 744 if ((flags & TAG_OBJECT) != 0) { 745 sub(Operand(result), Immediate(object_size - kHeapObjectTag)); 746 } else { 747 sub(Operand(result), Immediate(object_size)); 748 } 749 } else if ((flags & TAG_OBJECT) != 0) { 750 add(Operand(result), Immediate(kHeapObjectTag)); 751 } 752 } 753 754 755 void MacroAssembler::AllocateInNewSpace(int header_size, 756 ScaleFactor element_size, 757 Register element_count, 758 Register result, 759 Register result_end, 760 Register scratch, 761 Label* gc_required, 762 AllocationFlags flags) { 763 if (!FLAG_inline_new) { 764 if (emit_debug_code()) { 765 // Trash the registers to simulate an allocation failure. 766 mov(result, Immediate(0x7091)); 767 mov(result_end, Immediate(0x7191)); 768 if (scratch.is_valid()) { 769 mov(scratch, Immediate(0x7291)); 770 } 771 // Register element_count is not modified by the function. 772 } 773 jmp(gc_required); 774 return; 775 } 776 ASSERT(!result.is(result_end)); 777 778 // Load address of new object into result. 779 LoadAllocationTopHelper(result, scratch, flags); 780 781 // Calculate new top and bail out if new space is exhausted. 782 ExternalReference new_space_allocation_limit = 783 ExternalReference::new_space_allocation_limit_address(isolate()); 784 785 // We assume that element_count*element_size + header_size does not 786 // overflow. 787 lea(result_end, Operand(element_count, element_size, header_size)); 788 add(result_end, Operand(result)); 789 j(carry, gc_required); 790 cmp(result_end, Operand::StaticVariable(new_space_allocation_limit)); 791 j(above, gc_required); 792 793 // Tag result if requested. 794 if ((flags & TAG_OBJECT) != 0) { 795 lea(result, Operand(result, kHeapObjectTag)); 796 } 797 798 // Update allocation top. 799 UpdateAllocationTopHelper(result_end, scratch); 800 } 801 802 803 void MacroAssembler::AllocateInNewSpace(Register object_size, 804 Register result, 805 Register result_end, 806 Register scratch, 807 Label* gc_required, 808 AllocationFlags flags) { 809 if (!FLAG_inline_new) { 810 if (emit_debug_code()) { 811 // Trash the registers to simulate an allocation failure. 812 mov(result, Immediate(0x7091)); 813 mov(result_end, Immediate(0x7191)); 814 if (scratch.is_valid()) { 815 mov(scratch, Immediate(0x7291)); 816 } 817 // object_size is left unchanged by this function. 818 } 819 jmp(gc_required); 820 return; 821 } 822 ASSERT(!result.is(result_end)); 823 824 // Load address of new object into result. 825 LoadAllocationTopHelper(result, scratch, flags); 826 827 // Calculate new top and bail out if new space is exhausted. 828 ExternalReference new_space_allocation_limit = 829 ExternalReference::new_space_allocation_limit_address(isolate()); 830 if (!object_size.is(result_end)) { 831 mov(result_end, object_size); 832 } 833 add(result_end, Operand(result)); 834 j(carry, gc_required, not_taken); 835 cmp(result_end, Operand::StaticVariable(new_space_allocation_limit)); 836 j(above, gc_required, not_taken); 837 838 // Tag result if requested. 839 if ((flags & TAG_OBJECT) != 0) { 840 lea(result, Operand(result, kHeapObjectTag)); 841 } 842 843 // Update allocation top. 844 UpdateAllocationTopHelper(result_end, scratch); 845 } 846 847 848 void MacroAssembler::UndoAllocationInNewSpace(Register object) { 849 ExternalReference new_space_allocation_top = 850 ExternalReference::new_space_allocation_top_address(isolate()); 851 852 // Make sure the object has no tag before resetting top. 853 and_(Operand(object), Immediate(~kHeapObjectTagMask)); 854 #ifdef DEBUG 855 cmp(object, Operand::StaticVariable(new_space_allocation_top)); 856 Check(below, "Undo allocation of non allocated memory"); 857 #endif 858 mov(Operand::StaticVariable(new_space_allocation_top), object); 859 } 860 861 862 void MacroAssembler::AllocateHeapNumber(Register result, 863 Register scratch1, 864 Register scratch2, 865 Label* gc_required) { 866 // Allocate heap number in new space. 867 AllocateInNewSpace(HeapNumber::kSize, 868 result, 869 scratch1, 870 scratch2, 871 gc_required, 872 TAG_OBJECT); 873 874 // Set the map. 875 mov(FieldOperand(result, HeapObject::kMapOffset), 876 Immediate(isolate()->factory()->heap_number_map())); 877 } 878 879 880 void MacroAssembler::AllocateTwoByteString(Register result, 881 Register length, 882 Register scratch1, 883 Register scratch2, 884 Register scratch3, 885 Label* gc_required) { 886 // Calculate the number of bytes needed for the characters in the string while 887 // observing object alignment. 888 ASSERT((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0); 889 ASSERT(kShortSize == 2); 890 // scratch1 = length * 2 + kObjectAlignmentMask. 891 lea(scratch1, Operand(length, length, times_1, kObjectAlignmentMask)); 892 and_(Operand(scratch1), Immediate(~kObjectAlignmentMask)); 893 894 // Allocate two byte string in new space. 895 AllocateInNewSpace(SeqTwoByteString::kHeaderSize, 896 times_1, 897 scratch1, 898 result, 899 scratch2, 900 scratch3, 901 gc_required, 902 TAG_OBJECT); 903 904 // Set the map, length and hash field. 905 mov(FieldOperand(result, HeapObject::kMapOffset), 906 Immediate(isolate()->factory()->string_map())); 907 mov(scratch1, length); 908 SmiTag(scratch1); 909 mov(FieldOperand(result, String::kLengthOffset), scratch1); 910 mov(FieldOperand(result, String::kHashFieldOffset), 911 Immediate(String::kEmptyHashField)); 912 } 913 914 915 void MacroAssembler::AllocateAsciiString(Register result, 916 Register length, 917 Register scratch1, 918 Register scratch2, 919 Register scratch3, 920 Label* gc_required) { 921 // Calculate the number of bytes needed for the characters in the string while 922 // observing object alignment. 923 ASSERT((SeqAsciiString::kHeaderSize & kObjectAlignmentMask) == 0); 924 mov(scratch1, length); 925 ASSERT(kCharSize == 1); 926 add(Operand(scratch1), Immediate(kObjectAlignmentMask)); 927 and_(Operand(scratch1), Immediate(~kObjectAlignmentMask)); 928 929 // Allocate ascii string in new space. 930 AllocateInNewSpace(SeqAsciiString::kHeaderSize, 931 times_1, 932 scratch1, 933 result, 934 scratch2, 935 scratch3, 936 gc_required, 937 TAG_OBJECT); 938 939 // Set the map, length and hash field. 940 mov(FieldOperand(result, HeapObject::kMapOffset), 941 Immediate(isolate()->factory()->ascii_string_map())); 942 mov(scratch1, length); 943 SmiTag(scratch1); 944 mov(FieldOperand(result, String::kLengthOffset), scratch1); 945 mov(FieldOperand(result, String::kHashFieldOffset), 946 Immediate(String::kEmptyHashField)); 947 } 948 949 950 void MacroAssembler::AllocateAsciiString(Register result, 951 int length, 952 Register scratch1, 953 Register scratch2, 954 Label* gc_required) { 955 ASSERT(length > 0); 956 957 // Allocate ascii string in new space. 958 AllocateInNewSpace(SeqAsciiString::SizeFor(length), 959 result, 960 scratch1, 961 scratch2, 962 gc_required, 963 TAG_OBJECT); 964 965 // Set the map, length and hash field. 966 mov(FieldOperand(result, HeapObject::kMapOffset), 967 Immediate(isolate()->factory()->ascii_string_map())); 968 mov(FieldOperand(result, String::kLengthOffset), 969 Immediate(Smi::FromInt(length))); 970 mov(FieldOperand(result, String::kHashFieldOffset), 971 Immediate(String::kEmptyHashField)); 972 } 973 974 975 void MacroAssembler::AllocateConsString(Register result, 976 Register scratch1, 977 Register scratch2, 978 Label* gc_required) { 979 // Allocate heap number in new space. 980 AllocateInNewSpace(ConsString::kSize, 981 result, 982 scratch1, 983 scratch2, 984 gc_required, 985 TAG_OBJECT); 986 987 // Set the map. The other fields are left uninitialized. 988 mov(FieldOperand(result, HeapObject::kMapOffset), 989 Immediate(isolate()->factory()->cons_string_map())); 990 } 991 992 993 void MacroAssembler::AllocateAsciiConsString(Register result, 994 Register scratch1, 995 Register scratch2, 996 Label* gc_required) { 997 // Allocate heap number in new space. 998 AllocateInNewSpace(ConsString::kSize, 999 result, 1000 scratch1, 1001 scratch2, 1002 gc_required, 1003 TAG_OBJECT); 1004 1005 // Set the map. The other fields are left uninitialized. 1006 mov(FieldOperand(result, HeapObject::kMapOffset), 1007 Immediate(isolate()->factory()->cons_ascii_string_map())); 1008 } 1009 1010 1011 // Copy memory, byte-by-byte, from source to destination. Not optimized for 1012 // long or aligned copies. The contents of scratch and length are destroyed. 1013 // Source and destination are incremented by length. 1014 // Many variants of movsb, loop unrolling, word moves, and indexed operands 1015 // have been tried here already, and this is fastest. 1016 // A simpler loop is faster on small copies, but 30% slower on large ones. 1017 // The cld() instruction must have been emitted, to set the direction flag(), 1018 // before calling this function. 1019 void MacroAssembler::CopyBytes(Register source, 1020 Register destination, 1021 Register length, 1022 Register scratch) { 1023 Label loop, done, short_string, short_loop; 1024 // Experimentation shows that the short string loop is faster if length < 10. 1025 cmp(Operand(length), Immediate(10)); 1026 j(less_equal, &short_string); 1027 1028 ASSERT(source.is(esi)); 1029 ASSERT(destination.is(edi)); 1030 ASSERT(length.is(ecx)); 1031 1032 // Because source is 4-byte aligned in our uses of this function, 1033 // we keep source aligned for the rep_movs call by copying the odd bytes 1034 // at the end of the ranges. 1035 mov(scratch, Operand(source, length, times_1, -4)); 1036 mov(Operand(destination, length, times_1, -4), scratch); 1037 mov(scratch, ecx); 1038 shr(ecx, 2); 1039 rep_movs(); 1040 and_(Operand(scratch), Immediate(0x3)); 1041 add(destination, Operand(scratch)); 1042 jmp(&done); 1043 1044 bind(&short_string); 1045 test(length, Operand(length)); 1046 j(zero, &done); 1047 1048 bind(&short_loop); 1049 mov_b(scratch, Operand(source, 0)); 1050 mov_b(Operand(destination, 0), scratch); 1051 inc(source); 1052 inc(destination); 1053 dec(length); 1054 j(not_zero, &short_loop); 1055 1056 bind(&done); 1057 } 1058 1059 1060 void MacroAssembler::NegativeZeroTest(Register result, 1061 Register op, 1062 Label* then_label) { 1063 Label ok; 1064 test(result, Operand(result)); 1065 j(not_zero, &ok, taken); 1066 test(op, Operand(op)); 1067 j(sign, then_label, not_taken); 1068 bind(&ok); 1069 } 1070 1071 1072 void MacroAssembler::NegativeZeroTest(Register result, 1073 Register op1, 1074 Register op2, 1075 Register scratch, 1076 Label* then_label) { 1077 Label ok; 1078 test(result, Operand(result)); 1079 j(not_zero, &ok, taken); 1080 mov(scratch, Operand(op1)); 1081 or_(scratch, Operand(op2)); 1082 j(sign, then_label, not_taken); 1083 bind(&ok); 1084 } 1085 1086 1087 void MacroAssembler::TryGetFunctionPrototype(Register function, 1088 Register result, 1089 Register scratch, 1090 Label* miss) { 1091 // Check that the receiver isn't a smi. 1092 test(function, Immediate(kSmiTagMask)); 1093 j(zero, miss, not_taken); 1094 1095 // Check that the function really is a function. 1096 CmpObjectType(function, JS_FUNCTION_TYPE, result); 1097 j(not_equal, miss, not_taken); 1098 1099 // Make sure that the function has an instance prototype. 1100 Label non_instance; 1101 movzx_b(scratch, FieldOperand(result, Map::kBitFieldOffset)); 1102 test(scratch, Immediate(1 << Map::kHasNonInstancePrototype)); 1103 j(not_zero, &non_instance, not_taken); 1104 1105 // Get the prototype or initial map from the function. 1106 mov(result, 1107 FieldOperand(function, JSFunction::kPrototypeOrInitialMapOffset)); 1108 1109 // If the prototype or initial map is the hole, don't return it and 1110 // simply miss the cache instead. This will allow us to allocate a 1111 // prototype object on-demand in the runtime system. 1112 cmp(Operand(result), Immediate(isolate()->factory()->the_hole_value())); 1113 j(equal, miss, not_taken); 1114 1115 // If the function does not have an initial map, we're done. 1116 Label done; 1117 CmpObjectType(result, MAP_TYPE, scratch); 1118 j(not_equal, &done); 1119 1120 // Get the prototype from the initial map. 1121 mov(result, FieldOperand(result, Map::kPrototypeOffset)); 1122 jmp(&done); 1123 1124 // Non-instance prototype: Fetch prototype from constructor field 1125 // in initial map. 1126 bind(&non_instance); 1127 mov(result, FieldOperand(result, Map::kConstructorOffset)); 1128 1129 // All done. 1130 bind(&done); 1131 } 1132 1133 1134 void MacroAssembler::CallStub(CodeStub* stub) { 1135 ASSERT(allow_stub_calls()); // Calls are not allowed in some stubs. 1136 call(stub->GetCode(), RelocInfo::CODE_TARGET); 1137 } 1138 1139 1140 MaybeObject* MacroAssembler::TryCallStub(CodeStub* stub) { 1141 ASSERT(allow_stub_calls()); // Calls are not allowed in some stubs. 1142 Object* result; 1143 { MaybeObject* maybe_result = stub->TryGetCode(); 1144 if (!maybe_result->ToObject(&result)) return maybe_result; 1145 } 1146 call(Handle<Code>(Code::cast(result)), RelocInfo::CODE_TARGET); 1147 return result; 1148 } 1149 1150 1151 void MacroAssembler::TailCallStub(CodeStub* stub) { 1152 ASSERT(allow_stub_calls()); // Calls are not allowed in some stubs. 1153 jmp(stub->GetCode(), RelocInfo::CODE_TARGET); 1154 } 1155 1156 1157 MaybeObject* MacroAssembler::TryTailCallStub(CodeStub* stub) { 1158 ASSERT(allow_stub_calls()); // Calls are not allowed in some stubs. 1159 Object* result; 1160 { MaybeObject* maybe_result = stub->TryGetCode(); 1161 if (!maybe_result->ToObject(&result)) return maybe_result; 1162 } 1163 jmp(Handle<Code>(Code::cast(result)), RelocInfo::CODE_TARGET); 1164 return result; 1165 } 1166 1167 1168 void MacroAssembler::StubReturn(int argc) { 1169 ASSERT(argc >= 1 && generating_stub()); 1170 ret((argc - 1) * kPointerSize); 1171 } 1172 1173 1174 void MacroAssembler::IllegalOperation(int num_arguments) { 1175 if (num_arguments > 0) { 1176 add(Operand(esp), Immediate(num_arguments * kPointerSize)); 1177 } 1178 mov(eax, Immediate(isolate()->factory()->undefined_value())); 1179 } 1180 1181 1182 void MacroAssembler::IndexFromHash(Register hash, Register index) { 1183 // The assert checks that the constants for the maximum number of digits 1184 // for an array index cached in the hash field and the number of bits 1185 // reserved for it does not conflict. 1186 ASSERT(TenToThe(String::kMaxCachedArrayIndexLength) < 1187 (1 << String::kArrayIndexValueBits)); 1188 // We want the smi-tagged index in key. kArrayIndexValueMask has zeros in 1189 // the low kHashShift bits. 1190 and_(hash, String::kArrayIndexValueMask); 1191 STATIC_ASSERT(String::kHashShift >= kSmiTagSize && kSmiTag == 0); 1192 if (String::kHashShift > kSmiTagSize) { 1193 shr(hash, String::kHashShift - kSmiTagSize); 1194 } 1195 if (!index.is(hash)) { 1196 mov(index, hash); 1197 } 1198 } 1199 1200 1201 void MacroAssembler::CallRuntime(Runtime::FunctionId id, int num_arguments) { 1202 CallRuntime(Runtime::FunctionForId(id), num_arguments); 1203 } 1204 1205 1206 void MacroAssembler::CallRuntimeSaveDoubles(Runtime::FunctionId id) { 1207 const Runtime::Function* function = Runtime::FunctionForId(id); 1208 Set(eax, Immediate(function->nargs)); 1209 mov(ebx, Immediate(ExternalReference(function, isolate()))); 1210 CEntryStub ces(1); 1211 ces.SaveDoubles(); 1212 CallStub(&ces); 1213 } 1214 1215 1216 MaybeObject* MacroAssembler::TryCallRuntime(Runtime::FunctionId id, 1217 int num_arguments) { 1218 return TryCallRuntime(Runtime::FunctionForId(id), num_arguments); 1219 } 1220 1221 1222 void MacroAssembler::CallRuntime(const Runtime::Function* f, 1223 int num_arguments) { 1224 // If the expected number of arguments of the runtime function is 1225 // constant, we check that the actual number of arguments match the 1226 // expectation. 1227 if (f->nargs >= 0 && f->nargs != num_arguments) { 1228 IllegalOperation(num_arguments); 1229 return; 1230 } 1231 1232 // TODO(1236192): Most runtime routines don't need the number of 1233 // arguments passed in because it is constant. At some point we 1234 // should remove this need and make the runtime routine entry code 1235 // smarter. 1236 Set(eax, Immediate(num_arguments)); 1237 mov(ebx, Immediate(ExternalReference(f, isolate()))); 1238 CEntryStub ces(1); 1239 CallStub(&ces); 1240 } 1241 1242 1243 MaybeObject* MacroAssembler::TryCallRuntime(const Runtime::Function* f, 1244 int num_arguments) { 1245 if (f->nargs >= 0 && f->nargs != num_arguments) { 1246 IllegalOperation(num_arguments); 1247 // Since we did not call the stub, there was no allocation failure. 1248 // Return some non-failure object. 1249 return isolate()->heap()->undefined_value(); 1250 } 1251 1252 // TODO(1236192): Most runtime routines don't need the number of 1253 // arguments passed in because it is constant. At some point we 1254 // should remove this need and make the runtime routine entry code 1255 // smarter. 1256 Set(eax, Immediate(num_arguments)); 1257 mov(ebx, Immediate(ExternalReference(f, isolate()))); 1258 CEntryStub ces(1); 1259 return TryCallStub(&ces); 1260 } 1261 1262 1263 void MacroAssembler::CallExternalReference(ExternalReference ref, 1264 int num_arguments) { 1265 mov(eax, Immediate(num_arguments)); 1266 mov(ebx, Immediate(ref)); 1267 1268 CEntryStub stub(1); 1269 CallStub(&stub); 1270 } 1271 1272 1273 void MacroAssembler::TailCallExternalReference(const ExternalReference& ext, 1274 int num_arguments, 1275 int result_size) { 1276 // TODO(1236192): Most runtime routines don't need the number of 1277 // arguments passed in because it is constant. At some point we 1278 // should remove this need and make the runtime routine entry code 1279 // smarter. 1280 Set(eax, Immediate(num_arguments)); 1281 JumpToExternalReference(ext); 1282 } 1283 1284 1285 MaybeObject* MacroAssembler::TryTailCallExternalReference( 1286 const ExternalReference& ext, int num_arguments, int result_size) { 1287 // TODO(1236192): Most runtime routines don't need the number of 1288 // arguments passed in because it is constant. At some point we 1289 // should remove this need and make the runtime routine entry code 1290 // smarter. 1291 Set(eax, Immediate(num_arguments)); 1292 return TryJumpToExternalReference(ext); 1293 } 1294 1295 1296 void MacroAssembler::TailCallRuntime(Runtime::FunctionId fid, 1297 int num_arguments, 1298 int result_size) { 1299 TailCallExternalReference(ExternalReference(fid, isolate()), 1300 num_arguments, 1301 result_size); 1302 } 1303 1304 1305 MaybeObject* MacroAssembler::TryTailCallRuntime(Runtime::FunctionId fid, 1306 int num_arguments, 1307 int result_size) { 1308 return TryTailCallExternalReference( 1309 ExternalReference(fid, isolate()), num_arguments, result_size); 1310 } 1311 1312 1313 // If true, a Handle<T> returned by value from a function with cdecl calling 1314 // convention will be returned directly as a value of location_ field in a 1315 // register eax. 1316 // If false, it is returned as a pointer to a preallocated by caller memory 1317 // region. Pointer to this region should be passed to a function as an 1318 // implicit first argument. 1319 #if defined(USING_BSD_ABI) || defined(__MINGW32__) || defined(__CYGWIN__) 1320 static const bool kReturnHandlesDirectly = true; 1321 #else 1322 static const bool kReturnHandlesDirectly = false; 1323 #endif 1324 1325 1326 Operand ApiParameterOperand(int index) { 1327 return Operand( 1328 esp, (index + (kReturnHandlesDirectly ? 0 : 1)) * kPointerSize); 1329 } 1330 1331 1332 void MacroAssembler::PrepareCallApiFunction(int argc, Register scratch) { 1333 if (kReturnHandlesDirectly) { 1334 EnterApiExitFrame(argc); 1335 // When handles are returned directly we don't have to allocate extra 1336 // space for and pass an out parameter. 1337 } else { 1338 // We allocate two additional slots: return value and pointer to it. 1339 EnterApiExitFrame(argc + 2); 1340 1341 // The argument slots are filled as follows: 1342 // 1343 // n + 1: output cell 1344 // n: arg n 1345 // ... 1346 // 1: arg1 1347 // 0: pointer to the output cell 1348 // 1349 // Note that this is one more "argument" than the function expects 1350 // so the out cell will have to be popped explicitly after returning 1351 // from the function. The out cell contains Handle. 1352 1353 // pointer to out cell. 1354 lea(scratch, Operand(esp, (argc + 1) * kPointerSize)); 1355 mov(Operand(esp, 0 * kPointerSize), scratch); // output. 1356 if (emit_debug_code()) { 1357 mov(Operand(esp, (argc + 1) * kPointerSize), Immediate(0)); // out cell. 1358 } 1359 } 1360 } 1361 1362 1363 MaybeObject* MacroAssembler::TryCallApiFunctionAndReturn(ApiFunction* function, 1364 int stack_space) { 1365 ExternalReference next_address = 1366 ExternalReference::handle_scope_next_address(); 1367 ExternalReference limit_address = 1368 ExternalReference::handle_scope_limit_address(); 1369 ExternalReference level_address = 1370 ExternalReference::handle_scope_level_address(); 1371 1372 // Allocate HandleScope in callee-save registers. 1373 mov(ebx, Operand::StaticVariable(next_address)); 1374 mov(edi, Operand::StaticVariable(limit_address)); 1375 add(Operand::StaticVariable(level_address), Immediate(1)); 1376 1377 // Call the api function! 1378 call(function->address(), RelocInfo::RUNTIME_ENTRY); 1379 1380 if (!kReturnHandlesDirectly) { 1381 // The returned value is a pointer to the handle holding the result. 1382 // Dereference this to get to the location. 1383 mov(eax, Operand(eax, 0)); 1384 } 1385 1386 Label empty_handle; 1387 Label prologue; 1388 Label promote_scheduled_exception; 1389 Label delete_allocated_handles; 1390 Label leave_exit_frame; 1391 1392 // Check if the result handle holds 0. 1393 test(eax, Operand(eax)); 1394 j(zero, &empty_handle, not_taken); 1395 // It was non-zero. Dereference to get the result value. 1396 mov(eax, Operand(eax, 0)); 1397 bind(&prologue); 1398 // No more valid handles (the result handle was the last one). Restore 1399 // previous handle scope. 1400 mov(Operand::StaticVariable(next_address), ebx); 1401 sub(Operand::StaticVariable(level_address), Immediate(1)); 1402 Assert(above_equal, "Invalid HandleScope level"); 1403 cmp(edi, Operand::StaticVariable(limit_address)); 1404 j(not_equal, &delete_allocated_handles, not_taken); 1405 bind(&leave_exit_frame); 1406 1407 // Check if the function scheduled an exception. 1408 ExternalReference scheduled_exception_address = 1409 ExternalReference::scheduled_exception_address(isolate()); 1410 cmp(Operand::StaticVariable(scheduled_exception_address), 1411 Immediate(isolate()->factory()->the_hole_value())); 1412 j(not_equal, &promote_scheduled_exception, not_taken); 1413 LeaveApiExitFrame(); 1414 ret(stack_space * kPointerSize); 1415 bind(&promote_scheduled_exception); 1416 MaybeObject* result = 1417 TryTailCallRuntime(Runtime::kPromoteScheduledException, 0, 1); 1418 if (result->IsFailure()) { 1419 return result; 1420 } 1421 bind(&empty_handle); 1422 // It was zero; the result is undefined. 1423 mov(eax, isolate()->factory()->undefined_value()); 1424 jmp(&prologue); 1425 1426 // HandleScope limit has changed. Delete allocated extensions. 1427 ExternalReference delete_extensions = 1428 ExternalReference::delete_handle_scope_extensions(isolate()); 1429 bind(&delete_allocated_handles); 1430 mov(Operand::StaticVariable(limit_address), edi); 1431 mov(edi, eax); 1432 mov(Operand(esp, 0), Immediate(ExternalReference::isolate_address())); 1433 mov(eax, Immediate(delete_extensions)); 1434 call(Operand(eax)); 1435 mov(eax, edi); 1436 jmp(&leave_exit_frame); 1437 1438 return result; 1439 } 1440 1441 1442 void MacroAssembler::JumpToExternalReference(const ExternalReference& ext) { 1443 // Set the entry point and jump to the C entry runtime stub. 1444 mov(ebx, Immediate(ext)); 1445 CEntryStub ces(1); 1446 jmp(ces.GetCode(), RelocInfo::CODE_TARGET); 1447 } 1448 1449 1450 MaybeObject* MacroAssembler::TryJumpToExternalReference( 1451 const ExternalReference& ext) { 1452 // Set the entry point and jump to the C entry runtime stub. 1453 mov(ebx, Immediate(ext)); 1454 CEntryStub ces(1); 1455 return TryTailCallStub(&ces); 1456 } 1457 1458 1459 void MacroAssembler::InvokePrologue(const ParameterCount& expected, 1460 const ParameterCount& actual, 1461 Handle<Code> code_constant, 1462 const Operand& code_operand, 1463 NearLabel* done, 1464 InvokeFlag flag, 1465 PostCallGenerator* post_call_generator) { 1466 bool definitely_matches = false; 1467 Label invoke; 1468 if (expected.is_immediate()) { 1469 ASSERT(actual.is_immediate()); 1470 if (expected.immediate() == actual.immediate()) { 1471 definitely_matches = true; 1472 } else { 1473 mov(eax, actual.immediate()); 1474 const int sentinel = SharedFunctionInfo::kDontAdaptArgumentsSentinel; 1475 if (expected.immediate() == sentinel) { 1476 // Don't worry about adapting arguments for builtins that 1477 // don't want that done. Skip adaption code by making it look 1478 // like we have a match between expected and actual number of 1479 // arguments. 1480 definitely_matches = true; 1481 } else { 1482 mov(ebx, expected.immediate()); 1483 } 1484 } 1485 } else { 1486 if (actual.is_immediate()) { 1487 // Expected is in register, actual is immediate. This is the 1488 // case when we invoke function values without going through the 1489 // IC mechanism. 1490 cmp(expected.reg(), actual.immediate()); 1491 j(equal, &invoke); 1492 ASSERT(expected.reg().is(ebx)); 1493 mov(eax, actual.immediate()); 1494 } else if (!expected.reg().is(actual.reg())) { 1495 // Both expected and actual are in (different) registers. This 1496 // is the case when we invoke functions using call and apply. 1497 cmp(expected.reg(), Operand(actual.reg())); 1498 j(equal, &invoke); 1499 ASSERT(actual.reg().is(eax)); 1500 ASSERT(expected.reg().is(ebx)); 1501 } 1502 } 1503 1504 if (!definitely_matches) { 1505 Handle<Code> adaptor = 1506 isolate()->builtins()->ArgumentsAdaptorTrampoline(); 1507 if (!code_constant.is_null()) { 1508 mov(edx, Immediate(code_constant)); 1509 add(Operand(edx), Immediate(Code::kHeaderSize - kHeapObjectTag)); 1510 } else if (!code_operand.is_reg(edx)) { 1511 mov(edx, code_operand); 1512 } 1513 1514 if (flag == CALL_FUNCTION) { 1515 call(adaptor, RelocInfo::CODE_TARGET); 1516 if (post_call_generator != NULL) post_call_generator->Generate(); 1517 jmp(done); 1518 } else { 1519 jmp(adaptor, RelocInfo::CODE_TARGET); 1520 } 1521 bind(&invoke); 1522 } 1523 } 1524 1525 1526 void MacroAssembler::InvokeCode(const Operand& code, 1527 const ParameterCount& expected, 1528 const ParameterCount& actual, 1529 InvokeFlag flag, 1530 PostCallGenerator* post_call_generator) { 1531 NearLabel done; 1532 InvokePrologue(expected, actual, Handle<Code>::null(), code, 1533 &done, flag, post_call_generator); 1534 if (flag == CALL_FUNCTION) { 1535 call(code); 1536 if (post_call_generator != NULL) post_call_generator->Generate(); 1537 } else { 1538 ASSERT(flag == JUMP_FUNCTION); 1539 jmp(code); 1540 } 1541 bind(&done); 1542 } 1543 1544 1545 void MacroAssembler::InvokeCode(Handle<Code> code, 1546 const ParameterCount& expected, 1547 const ParameterCount& actual, 1548 RelocInfo::Mode rmode, 1549 InvokeFlag flag, 1550 PostCallGenerator* post_call_generator) { 1551 NearLabel done; 1552 Operand dummy(eax); 1553 InvokePrologue(expected, actual, code, dummy, &done, 1554 flag, post_call_generator); 1555 if (flag == CALL_FUNCTION) { 1556 call(code, rmode); 1557 if (post_call_generator != NULL) post_call_generator->Generate(); 1558 } else { 1559 ASSERT(flag == JUMP_FUNCTION); 1560 jmp(code, rmode); 1561 } 1562 bind(&done); 1563 } 1564 1565 1566 void MacroAssembler::InvokeFunction(Register fun, 1567 const ParameterCount& actual, 1568 InvokeFlag flag, 1569 PostCallGenerator* post_call_generator) { 1570 ASSERT(fun.is(edi)); 1571 mov(edx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset)); 1572 mov(esi, FieldOperand(edi, JSFunction::kContextOffset)); 1573 mov(ebx, FieldOperand(edx, SharedFunctionInfo::kFormalParameterCountOffset)); 1574 SmiUntag(ebx); 1575 1576 ParameterCount expected(ebx); 1577 InvokeCode(FieldOperand(edi, JSFunction::kCodeEntryOffset), 1578 expected, actual, flag, post_call_generator); 1579 } 1580 1581 1582 void MacroAssembler::InvokeFunction(JSFunction* function, 1583 const ParameterCount& actual, 1584 InvokeFlag flag, 1585 PostCallGenerator* post_call_generator) { 1586 ASSERT(function->is_compiled()); 1587 // Get the function and setup the context. 1588 mov(edi, Immediate(Handle<JSFunction>(function))); 1589 mov(esi, FieldOperand(edi, JSFunction::kContextOffset)); 1590 1591 ParameterCount expected(function->shared()->formal_parameter_count()); 1592 if (V8::UseCrankshaft()) { 1593 // TODO(kasperl): For now, we always call indirectly through the 1594 // code field in the function to allow recompilation to take effect 1595 // without changing any of the call sites. 1596 InvokeCode(FieldOperand(edi, JSFunction::kCodeEntryOffset), 1597 expected, actual, flag, post_call_generator); 1598 } else { 1599 Handle<Code> code(function->code()); 1600 InvokeCode(code, expected, actual, RelocInfo::CODE_TARGET, 1601 flag, post_call_generator); 1602 } 1603 } 1604 1605 1606 void MacroAssembler::InvokeBuiltin(Builtins::JavaScript id, 1607 InvokeFlag flag, 1608 PostCallGenerator* post_call_generator) { 1609 // Calls are not allowed in some stubs. 1610 ASSERT(flag == JUMP_FUNCTION || allow_stub_calls()); 1611 1612 // Rely on the assertion to check that the number of provided 1613 // arguments match the expected number of arguments. Fake a 1614 // parameter count to avoid emitting code to do the check. 1615 ParameterCount expected(0); 1616 GetBuiltinFunction(edi, id); 1617 InvokeCode(FieldOperand(edi, JSFunction::kCodeEntryOffset), 1618 expected, expected, flag, post_call_generator); 1619 } 1620 1621 void MacroAssembler::GetBuiltinFunction(Register target, 1622 Builtins::JavaScript id) { 1623 // Load the JavaScript builtin function from the builtins object. 1624 mov(target, Operand(esi, Context::SlotOffset(Context::GLOBAL_INDEX))); 1625 mov(target, FieldOperand(target, GlobalObject::kBuiltinsOffset)); 1626 mov(target, FieldOperand(target, 1627 JSBuiltinsObject::OffsetOfFunctionWithId(id))); 1628 } 1629 1630 void MacroAssembler::GetBuiltinEntry(Register target, Builtins::JavaScript id) { 1631 ASSERT(!target.is(edi)); 1632 // Load the JavaScript builtin function from the builtins object. 1633 GetBuiltinFunction(edi, id); 1634 // Load the code entry point from the function into the target register. 1635 mov(target, FieldOperand(edi, JSFunction::kCodeEntryOffset)); 1636 } 1637 1638 1639 void MacroAssembler::LoadContext(Register dst, int context_chain_length) { 1640 if (context_chain_length > 0) { 1641 // Move up the chain of contexts to the context containing the slot. 1642 mov(dst, Operand(esi, Context::SlotOffset(Context::CLOSURE_INDEX))); 1643 // Load the function context (which is the incoming, outer context). 1644 mov(dst, FieldOperand(dst, JSFunction::kContextOffset)); 1645 for (int i = 1; i < context_chain_length; i++) { 1646 mov(dst, Operand(dst, Context::SlotOffset(Context::CLOSURE_INDEX))); 1647 mov(dst, FieldOperand(dst, JSFunction::kContextOffset)); 1648 } 1649 } else { 1650 // Slot is in the current function context. Move it into the 1651 // destination register in case we store into it (the write barrier 1652 // cannot be allowed to destroy the context in esi). 1653 mov(dst, esi); 1654 } 1655 1656 // We should not have found a 'with' context by walking the context chain 1657 // (i.e., the static scope chain and runtime context chain do not agree). 1658 // A variable occurring in such a scope should have slot type LOOKUP and 1659 // not CONTEXT. 1660 if (emit_debug_code()) { 1661 cmp(dst, Operand(dst, Context::SlotOffset(Context::FCONTEXT_INDEX))); 1662 Check(equal, "Yo dawg, I heard you liked function contexts " 1663 "so I put function contexts in all your contexts"); 1664 } 1665 } 1666 1667 1668 void MacroAssembler::LoadGlobalFunction(int index, Register function) { 1669 // Load the global or builtins object from the current context. 1670 mov(function, Operand(esi, Context::SlotOffset(Context::GLOBAL_INDEX))); 1671 // Load the global context from the global or builtins object. 1672 mov(function, FieldOperand(function, GlobalObject::kGlobalContextOffset)); 1673 // Load the function from the global context. 1674 mov(function, Operand(function, Context::SlotOffset(index))); 1675 } 1676 1677 1678 void MacroAssembler::LoadGlobalFunctionInitialMap(Register function, 1679 Register map) { 1680 // Load the initial map. The global functions all have initial maps. 1681 mov(map, FieldOperand(function, JSFunction::kPrototypeOrInitialMapOffset)); 1682 if (emit_debug_code()) { 1683 Label ok, fail; 1684 CheckMap(map, isolate()->factory()->meta_map(), &fail, false); 1685 jmp(&ok); 1686 bind(&fail); 1687 Abort("Global functions must have initial map"); 1688 bind(&ok); 1689 } 1690 } 1691 1692 1693 // Store the value in register src in the safepoint register stack 1694 // slot for register dst. 1695 void MacroAssembler::StoreToSafepointRegisterSlot(Register dst, Register src) { 1696 mov(SafepointRegisterSlot(dst), src); 1697 } 1698 1699 1700 void MacroAssembler::StoreToSafepointRegisterSlot(Register dst, Immediate src) { 1701 mov(SafepointRegisterSlot(dst), src); 1702 } 1703 1704 1705 void MacroAssembler::LoadFromSafepointRegisterSlot(Register dst, Register src) { 1706 mov(dst, SafepointRegisterSlot(src)); 1707 } 1708 1709 1710 Operand MacroAssembler::SafepointRegisterSlot(Register reg) { 1711 return Operand(esp, SafepointRegisterStackIndex(reg.code()) * kPointerSize); 1712 } 1713 1714 1715 int MacroAssembler::SafepointRegisterStackIndex(int reg_code) { 1716 // The registers are pushed starting with the lowest encoding, 1717 // which means that lowest encodings are furthest away from 1718 // the stack pointer. 1719 ASSERT(reg_code >= 0 && reg_code < kNumSafepointRegisters); 1720 return kNumSafepointRegisters - reg_code - 1; 1721 } 1722 1723 1724 void MacroAssembler::Ret() { 1725 ret(0); 1726 } 1727 1728 1729 void MacroAssembler::Ret(int bytes_dropped, Register scratch) { 1730 if (is_uint16(bytes_dropped)) { 1731 ret(bytes_dropped); 1732 } else { 1733 pop(scratch); 1734 add(Operand(esp), Immediate(bytes_dropped)); 1735 push(scratch); 1736 ret(0); 1737 } 1738 } 1739 1740 1741 1742 1743 void MacroAssembler::Drop(int stack_elements) { 1744 if (stack_elements > 0) { 1745 add(Operand(esp), Immediate(stack_elements * kPointerSize)); 1746 } 1747 } 1748 1749 1750 void MacroAssembler::Move(Register dst, Register src) { 1751 if (!dst.is(src)) { 1752 mov(dst, src); 1753 } 1754 } 1755 1756 1757 void MacroAssembler::Move(Register dst, Handle<Object> value) { 1758 mov(dst, value); 1759 } 1760 1761 1762 void MacroAssembler::SetCounter(StatsCounter* counter, int value) { 1763 if (FLAG_native_code_counters && counter->Enabled()) { 1764 mov(Operand::StaticVariable(ExternalReference(counter)), Immediate(value)); 1765 } 1766 } 1767 1768 1769 void MacroAssembler::IncrementCounter(StatsCounter* counter, int value) { 1770 ASSERT(value > 0); 1771 if (FLAG_native_code_counters && counter->Enabled()) { 1772 Operand operand = Operand::StaticVariable(ExternalReference(counter)); 1773 if (value == 1) { 1774 inc(operand); 1775 } else { 1776 add(operand, Immediate(value)); 1777 } 1778 } 1779 } 1780 1781 1782 void MacroAssembler::DecrementCounter(StatsCounter* counter, int value) { 1783 ASSERT(value > 0); 1784 if (FLAG_native_code_counters && counter->Enabled()) { 1785 Operand operand = Operand::StaticVariable(ExternalReference(counter)); 1786 if (value == 1) { 1787 dec(operand); 1788 } else { 1789 sub(operand, Immediate(value)); 1790 } 1791 } 1792 } 1793 1794 1795 void MacroAssembler::IncrementCounter(Condition cc, 1796 StatsCounter* counter, 1797 int value) { 1798 ASSERT(value > 0); 1799 if (FLAG_native_code_counters && counter->Enabled()) { 1800 Label skip; 1801 j(NegateCondition(cc), &skip); 1802 pushfd(); 1803 IncrementCounter(counter, value); 1804 popfd(); 1805 bind(&skip); 1806 } 1807 } 1808 1809 1810 void MacroAssembler::DecrementCounter(Condition cc, 1811 StatsCounter* counter, 1812 int value) { 1813 ASSERT(value > 0); 1814 if (FLAG_native_code_counters && counter->Enabled()) { 1815 Label skip; 1816 j(NegateCondition(cc), &skip); 1817 pushfd(); 1818 DecrementCounter(counter, value); 1819 popfd(); 1820 bind(&skip); 1821 } 1822 } 1823 1824 1825 void MacroAssembler::Assert(Condition cc, const char* msg) { 1826 if (emit_debug_code()) Check(cc, msg); 1827 } 1828 1829 1830 void MacroAssembler::AssertFastElements(Register elements) { 1831 if (emit_debug_code()) { 1832 Factory* factory = isolate()->factory(); 1833 Label ok; 1834 cmp(FieldOperand(elements, HeapObject::kMapOffset), 1835 Immediate(factory->fixed_array_map())); 1836 j(equal, &ok); 1837 cmp(FieldOperand(elements, HeapObject::kMapOffset), 1838 Immediate(factory->fixed_cow_array_map())); 1839 j(equal, &ok); 1840 Abort("JSObject with fast elements map has slow elements"); 1841 bind(&ok); 1842 } 1843 } 1844 1845 1846 void MacroAssembler::Check(Condition cc, const char* msg) { 1847 Label L; 1848 j(cc, &L, taken); 1849 Abort(msg); 1850 // will not return here 1851 bind(&L); 1852 } 1853 1854 1855 void MacroAssembler::CheckStackAlignment() { 1856 int frame_alignment = OS::ActivationFrameAlignment(); 1857 int frame_alignment_mask = frame_alignment - 1; 1858 if (frame_alignment > kPointerSize) { 1859 ASSERT(IsPowerOf2(frame_alignment)); 1860 Label alignment_as_expected; 1861 test(esp, Immediate(frame_alignment_mask)); 1862 j(zero, &alignment_as_expected); 1863 // Abort if stack is not aligned. 1864 int3(); 1865 bind(&alignment_as_expected); 1866 } 1867 } 1868 1869 1870 void MacroAssembler::Abort(const char* msg) { 1871 // We want to pass the msg string like a smi to avoid GC 1872 // problems, however msg is not guaranteed to be aligned 1873 // properly. Instead, we pass an aligned pointer that is 1874 // a proper v8 smi, but also pass the alignment difference 1875 // from the real pointer as a smi. 1876 intptr_t p1 = reinterpret_cast<intptr_t>(msg); 1877 intptr_t p0 = (p1 & ~kSmiTagMask) + kSmiTag; 1878 ASSERT(reinterpret_cast<Object*>(p0)->IsSmi()); 1879 #ifdef DEBUG 1880 if (msg != NULL) { 1881 RecordComment("Abort message: "); 1882 RecordComment(msg); 1883 } 1884 #endif 1885 // Disable stub call restrictions to always allow calls to abort. 1886 AllowStubCallsScope allow_scope(this, true); 1887 1888 push(eax); 1889 push(Immediate(p0)); 1890 push(Immediate(reinterpret_cast<intptr_t>(Smi::FromInt(p1 - p0)))); 1891 CallRuntime(Runtime::kAbort, 2); 1892 // will not return here 1893 int3(); 1894 } 1895 1896 1897 void MacroAssembler::JumpIfNotNumber(Register reg, 1898 TypeInfo info, 1899 Label* on_not_number) { 1900 if (emit_debug_code()) AbortIfSmi(reg); 1901 if (!info.IsNumber()) { 1902 cmp(FieldOperand(reg, HeapObject::kMapOffset), 1903 isolate()->factory()->heap_number_map()); 1904 j(not_equal, on_not_number); 1905 } 1906 } 1907 1908 1909 void MacroAssembler::ConvertToInt32(Register dst, 1910 Register source, 1911 Register scratch, 1912 TypeInfo info, 1913 Label* on_not_int32) { 1914 if (emit_debug_code()) { 1915 AbortIfSmi(source); 1916 AbortIfNotNumber(source); 1917 } 1918 if (info.IsInteger32()) { 1919 cvttsd2si(dst, FieldOperand(source, HeapNumber::kValueOffset)); 1920 } else { 1921 Label done; 1922 bool push_pop = (scratch.is(no_reg) && dst.is(source)); 1923 ASSERT(!scratch.is(source)); 1924 if (push_pop) { 1925 push(dst); 1926 scratch = dst; 1927 } 1928 if (scratch.is(no_reg)) scratch = dst; 1929 cvttsd2si(scratch, FieldOperand(source, HeapNumber::kValueOffset)); 1930 cmp(scratch, 0x80000000u); 1931 if (push_pop) { 1932 j(not_equal, &done); 1933 pop(dst); 1934 jmp(on_not_int32); 1935 } else { 1936 j(equal, on_not_int32); 1937 } 1938 1939 bind(&done); 1940 if (push_pop) { 1941 add(Operand(esp), Immediate(kPointerSize)); // Pop. 1942 } 1943 if (!scratch.is(dst)) { 1944 mov(dst, scratch); 1945 } 1946 } 1947 } 1948 1949 1950 void MacroAssembler::LoadPowerOf2(XMMRegister dst, 1951 Register scratch, 1952 int power) { 1953 ASSERT(is_uintn(power + HeapNumber::kExponentBias, 1954 HeapNumber::kExponentBits)); 1955 mov(scratch, Immediate(power + HeapNumber::kExponentBias)); 1956 movd(dst, Operand(scratch)); 1957 psllq(dst, HeapNumber::kMantissaBits); 1958 } 1959 1960 1961 void MacroAssembler::JumpIfInstanceTypeIsNotSequentialAscii( 1962 Register instance_type, 1963 Register scratch, 1964 Label* failure) { 1965 if (!scratch.is(instance_type)) { 1966 mov(scratch, instance_type); 1967 } 1968 and_(scratch, 1969 kIsNotStringMask | kStringRepresentationMask | kStringEncodingMask); 1970 cmp(scratch, kStringTag | kSeqStringTag | kAsciiStringTag); 1971 j(not_equal, failure); 1972 } 1973 1974 1975 void MacroAssembler::JumpIfNotBothSequentialAsciiStrings(Register object1, 1976 Register object2, 1977 Register scratch1, 1978 Register scratch2, 1979 Label* failure) { 1980 // Check that both objects are not smis. 1981 ASSERT_EQ(0, kSmiTag); 1982 mov(scratch1, Operand(object1)); 1983 and_(scratch1, Operand(object2)); 1984 test(scratch1, Immediate(kSmiTagMask)); 1985 j(zero, failure); 1986 1987 // Load instance type for both strings. 1988 mov(scratch1, FieldOperand(object1, HeapObject::kMapOffset)); 1989 mov(scratch2, FieldOperand(object2, HeapObject::kMapOffset)); 1990 movzx_b(scratch1, FieldOperand(scratch1, Map::kInstanceTypeOffset)); 1991 movzx_b(scratch2, FieldOperand(scratch2, Map::kInstanceTypeOffset)); 1992 1993 // Check that both are flat ascii strings. 1994 const int kFlatAsciiStringMask = 1995 kIsNotStringMask | kStringRepresentationMask | kStringEncodingMask; 1996 const int kFlatAsciiStringTag = ASCII_STRING_TYPE; 1997 // Interleave bits from both instance types and compare them in one check. 1998 ASSERT_EQ(0, kFlatAsciiStringMask & (kFlatAsciiStringMask << 3)); 1999 and_(scratch1, kFlatAsciiStringMask); 2000 and_(scratch2, kFlatAsciiStringMask); 2001 lea(scratch1, Operand(scratch1, scratch2, times_8, 0)); 2002 cmp(scratch1, kFlatAsciiStringTag | (kFlatAsciiStringTag << 3)); 2003 j(not_equal, failure); 2004 } 2005 2006 2007 void MacroAssembler::PrepareCallCFunction(int num_arguments, Register scratch) { 2008 int frame_alignment = OS::ActivationFrameAlignment(); 2009 if (frame_alignment != 0) { 2010 // Make stack end at alignment and make room for num_arguments words 2011 // and the original value of esp. 2012 mov(scratch, esp); 2013 sub(Operand(esp), Immediate((num_arguments + 1) * kPointerSize)); 2014 ASSERT(IsPowerOf2(frame_alignment)); 2015 and_(esp, -frame_alignment); 2016 mov(Operand(esp, num_arguments * kPointerSize), scratch); 2017 } else { 2018 sub(Operand(esp), Immediate(num_arguments * kPointerSize)); 2019 } 2020 } 2021 2022 2023 void MacroAssembler::CallCFunction(ExternalReference function, 2024 int num_arguments) { 2025 // Trashing eax is ok as it will be the return value. 2026 mov(Operand(eax), Immediate(function)); 2027 CallCFunction(eax, num_arguments); 2028 } 2029 2030 2031 void MacroAssembler::CallCFunction(Register function, 2032 int num_arguments) { 2033 // Check stack alignment. 2034 if (emit_debug_code()) { 2035 CheckStackAlignment(); 2036 } 2037 2038 call(Operand(function)); 2039 if (OS::ActivationFrameAlignment() != 0) { 2040 mov(esp, Operand(esp, num_arguments * kPointerSize)); 2041 } else { 2042 add(Operand(esp), Immediate(num_arguments * kPointerSize)); 2043 } 2044 } 2045 2046 2047 CodePatcher::CodePatcher(byte* address, int size) 2048 : address_(address), 2049 size_(size), 2050 masm_(Isolate::Current(), address, size + Assembler::kGap) { 2051 // Create a new macro assembler pointing to the address of the code to patch. 2052 // The size is adjusted with kGap on order for the assembler to generate size 2053 // bytes of instructions without failing with buffer size constraints. 2054 ASSERT(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap); 2055 } 2056 2057 2058 CodePatcher::~CodePatcher() { 2059 // Indicate that code has changed. 2060 CPU::FlushICache(address_, size_); 2061 2062 // Check that the code was patched as expected. 2063 ASSERT(masm_.pc_ == address_ + size_); 2064 ASSERT(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap); 2065 } 2066 2067 2068 } } // namespace v8::internal 2069 2070 #endif // V8_TARGET_ARCH_IA32 2071