1 //===-- AsmWriter.cpp - Printing LLVM as an assembly file -----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This library implements the functionality defined in llvm/Assembly/Writer.h 11 // 12 // Note that these routines must be extremely tolerant of various errors in the 13 // LLVM code, because it can be used for debugging transformations. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/Assembly/Writer.h" 18 #include "llvm/Assembly/PrintModulePass.h" 19 #include "llvm/Assembly/AssemblyAnnotationWriter.h" 20 #include "llvm/LLVMContext.h" 21 #include "llvm/CallingConv.h" 22 #include "llvm/Constants.h" 23 #include "llvm/DerivedTypes.h" 24 #include "llvm/InlineAsm.h" 25 #include "llvm/IntrinsicInst.h" 26 #include "llvm/Operator.h" 27 #include "llvm/Module.h" 28 #include "llvm/ValueSymbolTable.h" 29 #include "llvm/ADT/DenseMap.h" 30 #include "llvm/ADT/SmallString.h" 31 #include "llvm/ADT/StringExtras.h" 32 #include "llvm/ADT/STLExtras.h" 33 #include "llvm/Support/CFG.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/Dwarf.h" 36 #include "llvm/Support/ErrorHandling.h" 37 #include "llvm/Support/MathExtras.h" 38 #include "llvm/Support/FormattedStream.h" 39 #include <algorithm> 40 #include <cctype> 41 using namespace llvm; 42 43 // Make virtual table appear in this compilation unit. 44 AssemblyAnnotationWriter::~AssemblyAnnotationWriter() {} 45 46 //===----------------------------------------------------------------------===// 47 // Helper Functions 48 //===----------------------------------------------------------------------===// 49 50 static const Module *getModuleFromVal(const Value *V) { 51 if (const Argument *MA = dyn_cast<Argument>(V)) 52 return MA->getParent() ? MA->getParent()->getParent() : 0; 53 54 if (const BasicBlock *BB = dyn_cast<BasicBlock>(V)) 55 return BB->getParent() ? BB->getParent()->getParent() : 0; 56 57 if (const Instruction *I = dyn_cast<Instruction>(V)) { 58 const Function *M = I->getParent() ? I->getParent()->getParent() : 0; 59 return M ? M->getParent() : 0; 60 } 61 62 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) 63 return GV->getParent(); 64 return 0; 65 } 66 67 // PrintEscapedString - Print each character of the specified string, escaping 68 // it if it is not printable or if it is an escape char. 69 static void PrintEscapedString(StringRef Name, raw_ostream &Out) { 70 for (unsigned i = 0, e = Name.size(); i != e; ++i) { 71 unsigned char C = Name[i]; 72 if (isprint(C) && C != '\\' && C != '"') 73 Out << C; 74 else 75 Out << '\\' << hexdigit(C >> 4) << hexdigit(C & 0x0F); 76 } 77 } 78 79 enum PrefixType { 80 GlobalPrefix, 81 LabelPrefix, 82 LocalPrefix, 83 NoPrefix 84 }; 85 86 /// PrintLLVMName - Turn the specified name into an 'LLVM name', which is either 87 /// prefixed with % (if the string only contains simple characters) or is 88 /// surrounded with ""'s (if it has special chars in it). Print it out. 89 static void PrintLLVMName(raw_ostream &OS, StringRef Name, PrefixType Prefix) { 90 assert(!Name.empty() && "Cannot get empty name!"); 91 switch (Prefix) { 92 default: llvm_unreachable("Bad prefix!"); 93 case NoPrefix: break; 94 case GlobalPrefix: OS << '@'; break; 95 case LabelPrefix: break; 96 case LocalPrefix: OS << '%'; break; 97 } 98 99 // Scan the name to see if it needs quotes first. 100 bool NeedsQuotes = isdigit(Name[0]); 101 if (!NeedsQuotes) { 102 for (unsigned i = 0, e = Name.size(); i != e; ++i) { 103 char C = Name[i]; 104 if (!isalnum(C) && C != '-' && C != '.' && C != '_') { 105 NeedsQuotes = true; 106 break; 107 } 108 } 109 } 110 111 // If we didn't need any quotes, just write out the name in one blast. 112 if (!NeedsQuotes) { 113 OS << Name; 114 return; 115 } 116 117 // Okay, we need quotes. Output the quotes and escape any scary characters as 118 // needed. 119 OS << '"'; 120 PrintEscapedString(Name, OS); 121 OS << '"'; 122 } 123 124 /// PrintLLVMName - Turn the specified name into an 'LLVM name', which is either 125 /// prefixed with % (if the string only contains simple characters) or is 126 /// surrounded with ""'s (if it has special chars in it). Print it out. 127 static void PrintLLVMName(raw_ostream &OS, const Value *V) { 128 PrintLLVMName(OS, V->getName(), 129 isa<GlobalValue>(V) ? GlobalPrefix : LocalPrefix); 130 } 131 132 //===----------------------------------------------------------------------===// 133 // TypePrinting Class: Type printing machinery 134 //===----------------------------------------------------------------------===// 135 136 /// TypePrinting - Type printing machinery. 137 namespace { 138 class TypePrinting { 139 TypePrinting(const TypePrinting &); // DO NOT IMPLEMENT 140 void operator=(const TypePrinting&); // DO NOT IMPLEMENT 141 public: 142 143 /// NamedTypes - The named types that are used by the current module. 144 std::vector<StructType*> NamedTypes; 145 146 /// NumberedTypes - The numbered types, along with their value. 147 DenseMap<StructType*, unsigned> NumberedTypes; 148 149 150 TypePrinting() {} 151 ~TypePrinting() {} 152 153 void incorporateTypes(const Module &M); 154 155 void print(Type *Ty, raw_ostream &OS); 156 157 void printStructBody(StructType *Ty, raw_ostream &OS); 158 }; 159 } // end anonymous namespace. 160 161 162 void TypePrinting::incorporateTypes(const Module &M) { 163 M.findUsedStructTypes(NamedTypes); 164 165 // The list of struct types we got back includes all the struct types, split 166 // the unnamed ones out to a numbering and remove the anonymous structs. 167 unsigned NextNumber = 0; 168 169 std::vector<StructType*>::iterator NextToUse = NamedTypes.begin(), I, E; 170 for (I = NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) { 171 StructType *STy = *I; 172 173 // Ignore anonymous types. 174 if (STy->isAnonymous()) 175 continue; 176 177 if (STy->getName().empty()) 178 NumberedTypes[STy] = NextNumber++; 179 else 180 *NextToUse++ = STy; 181 } 182 183 NamedTypes.erase(NextToUse, NamedTypes.end()); 184 } 185 186 187 /// CalcTypeName - Write the specified type to the specified raw_ostream, making 188 /// use of type names or up references to shorten the type name where possible. 189 void TypePrinting::print(Type *Ty, raw_ostream &OS) { 190 switch (Ty->getTypeID()) { 191 case Type::VoidTyID: OS << "void"; break; 192 case Type::FloatTyID: OS << "float"; break; 193 case Type::DoubleTyID: OS << "double"; break; 194 case Type::X86_FP80TyID: OS << "x86_fp80"; break; 195 case Type::FP128TyID: OS << "fp128"; break; 196 case Type::PPC_FP128TyID: OS << "ppc_fp128"; break; 197 case Type::LabelTyID: OS << "label"; break; 198 case Type::MetadataTyID: OS << "metadata"; break; 199 case Type::X86_MMXTyID: OS << "x86_mmx"; break; 200 case Type::IntegerTyID: 201 OS << 'i' << cast<IntegerType>(Ty)->getBitWidth(); 202 return; 203 204 case Type::FunctionTyID: { 205 FunctionType *FTy = cast<FunctionType>(Ty); 206 print(FTy->getReturnType(), OS); 207 OS << " ("; 208 for (FunctionType::param_iterator I = FTy->param_begin(), 209 E = FTy->param_end(); I != E; ++I) { 210 if (I != FTy->param_begin()) 211 OS << ", "; 212 print(*I, OS); 213 } 214 if (FTy->isVarArg()) { 215 if (FTy->getNumParams()) OS << ", "; 216 OS << "..."; 217 } 218 OS << ')'; 219 return; 220 } 221 case Type::StructTyID: { 222 StructType *STy = cast<StructType>(Ty); 223 224 if (STy->isAnonymous()) 225 return printStructBody(STy, OS); 226 227 if (!STy->getName().empty()) 228 return PrintLLVMName(OS, STy->getName(), LocalPrefix); 229 230 DenseMap<StructType*, unsigned>::iterator I = NumberedTypes.find(STy); 231 if (I != NumberedTypes.end()) 232 OS << '%' << I->second; 233 else // Not enumerated, print the hex address. 234 OS << "%\"type 0x" << STy << '\"'; 235 return; 236 } 237 case Type::PointerTyID: { 238 PointerType *PTy = cast<PointerType>(Ty); 239 print(PTy->getElementType(), OS); 240 if (unsigned AddressSpace = PTy->getAddressSpace()) 241 OS << " addrspace(" << AddressSpace << ')'; 242 OS << '*'; 243 return; 244 } 245 case Type::ArrayTyID: { 246 ArrayType *ATy = cast<ArrayType>(Ty); 247 OS << '[' << ATy->getNumElements() << " x "; 248 print(ATy->getElementType(), OS); 249 OS << ']'; 250 return; 251 } 252 case Type::VectorTyID: { 253 VectorType *PTy = cast<VectorType>(Ty); 254 OS << "<" << PTy->getNumElements() << " x "; 255 print(PTy->getElementType(), OS); 256 OS << '>'; 257 return; 258 } 259 default: 260 OS << "<unrecognized-type>"; 261 return; 262 } 263 } 264 265 void TypePrinting::printStructBody(StructType *STy, raw_ostream &OS) { 266 if (STy->isOpaque()) { 267 OS << "opaque"; 268 return; 269 } 270 271 if (STy->isPacked()) 272 OS << '<'; 273 274 if (STy->getNumElements() == 0) { 275 OS << "{}"; 276 } else { 277 StructType::element_iterator I = STy->element_begin(); 278 OS << "{ "; 279 print(*I++, OS); 280 for (StructType::element_iterator E = STy->element_end(); I != E; ++I) { 281 OS << ", "; 282 print(*I, OS); 283 } 284 285 OS << " }"; 286 } 287 if (STy->isPacked()) 288 OS << '>'; 289 } 290 291 292 293 //===----------------------------------------------------------------------===// 294 // SlotTracker Class: Enumerate slot numbers for unnamed values 295 //===----------------------------------------------------------------------===// 296 297 namespace { 298 299 /// This class provides computation of slot numbers for LLVM Assembly writing. 300 /// 301 class SlotTracker { 302 public: 303 /// ValueMap - A mapping of Values to slot numbers. 304 typedef DenseMap<const Value*, unsigned> ValueMap; 305 306 private: 307 /// TheModule - The module for which we are holding slot numbers. 308 const Module* TheModule; 309 310 /// TheFunction - The function for which we are holding slot numbers. 311 const Function* TheFunction; 312 bool FunctionProcessed; 313 314 /// mMap - The slot map for the module level data. 315 ValueMap mMap; 316 unsigned mNext; 317 318 /// fMap - The slot map for the function level data. 319 ValueMap fMap; 320 unsigned fNext; 321 322 /// mdnMap - Map for MDNodes. 323 DenseMap<const MDNode*, unsigned> mdnMap; 324 unsigned mdnNext; 325 public: 326 /// Construct from a module 327 explicit SlotTracker(const Module *M); 328 /// Construct from a function, starting out in incorp state. 329 explicit SlotTracker(const Function *F); 330 331 /// Return the slot number of the specified value in it's type 332 /// plane. If something is not in the SlotTracker, return -1. 333 int getLocalSlot(const Value *V); 334 int getGlobalSlot(const GlobalValue *V); 335 int getMetadataSlot(const MDNode *N); 336 337 /// If you'd like to deal with a function instead of just a module, use 338 /// this method to get its data into the SlotTracker. 339 void incorporateFunction(const Function *F) { 340 TheFunction = F; 341 FunctionProcessed = false; 342 } 343 344 /// After calling incorporateFunction, use this method to remove the 345 /// most recently incorporated function from the SlotTracker. This 346 /// will reset the state of the machine back to just the module contents. 347 void purgeFunction(); 348 349 /// MDNode map iterators. 350 typedef DenseMap<const MDNode*, unsigned>::iterator mdn_iterator; 351 mdn_iterator mdn_begin() { return mdnMap.begin(); } 352 mdn_iterator mdn_end() { return mdnMap.end(); } 353 unsigned mdn_size() const { return mdnMap.size(); } 354 bool mdn_empty() const { return mdnMap.empty(); } 355 356 /// This function does the actual initialization. 357 inline void initialize(); 358 359 // Implementation Details 360 private: 361 /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table. 362 void CreateModuleSlot(const GlobalValue *V); 363 364 /// CreateMetadataSlot - Insert the specified MDNode* into the slot table. 365 void CreateMetadataSlot(const MDNode *N); 366 367 /// CreateFunctionSlot - Insert the specified Value* into the slot table. 368 void CreateFunctionSlot(const Value *V); 369 370 /// Add all of the module level global variables (and their initializers) 371 /// and function declarations, but not the contents of those functions. 372 void processModule(); 373 374 /// Add all of the functions arguments, basic blocks, and instructions. 375 void processFunction(); 376 377 SlotTracker(const SlotTracker &); // DO NOT IMPLEMENT 378 void operator=(const SlotTracker &); // DO NOT IMPLEMENT 379 }; 380 381 } // end anonymous namespace 382 383 384 static SlotTracker *createSlotTracker(const Value *V) { 385 if (const Argument *FA = dyn_cast<Argument>(V)) 386 return new SlotTracker(FA->getParent()); 387 388 if (const Instruction *I = dyn_cast<Instruction>(V)) 389 return new SlotTracker(I->getParent()->getParent()); 390 391 if (const BasicBlock *BB = dyn_cast<BasicBlock>(V)) 392 return new SlotTracker(BB->getParent()); 393 394 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) 395 return new SlotTracker(GV->getParent()); 396 397 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 398 return new SlotTracker(GA->getParent()); 399 400 if (const Function *Func = dyn_cast<Function>(V)) 401 return new SlotTracker(Func); 402 403 if (const MDNode *MD = dyn_cast<MDNode>(V)) { 404 if (!MD->isFunctionLocal()) 405 return new SlotTracker(MD->getFunction()); 406 407 return new SlotTracker((Function *)0); 408 } 409 410 return 0; 411 } 412 413 #if 0 414 #define ST_DEBUG(X) dbgs() << X 415 #else 416 #define ST_DEBUG(X) 417 #endif 418 419 // Module level constructor. Causes the contents of the Module (sans functions) 420 // to be added to the slot table. 421 SlotTracker::SlotTracker(const Module *M) 422 : TheModule(M), TheFunction(0), FunctionProcessed(false), 423 mNext(0), fNext(0), mdnNext(0) { 424 } 425 426 // Function level constructor. Causes the contents of the Module and the one 427 // function provided to be added to the slot table. 428 SlotTracker::SlotTracker(const Function *F) 429 : TheModule(F ? F->getParent() : 0), TheFunction(F), FunctionProcessed(false), 430 mNext(0), fNext(0), mdnNext(0) { 431 } 432 433 inline void SlotTracker::initialize() { 434 if (TheModule) { 435 processModule(); 436 TheModule = 0; ///< Prevent re-processing next time we're called. 437 } 438 439 if (TheFunction && !FunctionProcessed) 440 processFunction(); 441 } 442 443 // Iterate through all the global variables, functions, and global 444 // variable initializers and create slots for them. 445 void SlotTracker::processModule() { 446 ST_DEBUG("begin processModule!\n"); 447 448 // Add all of the unnamed global variables to the value table. 449 for (Module::const_global_iterator I = TheModule->global_begin(), 450 E = TheModule->global_end(); I != E; ++I) { 451 if (!I->hasName()) 452 CreateModuleSlot(I); 453 } 454 455 // Add metadata used by named metadata. 456 for (Module::const_named_metadata_iterator 457 I = TheModule->named_metadata_begin(), 458 E = TheModule->named_metadata_end(); I != E; ++I) { 459 const NamedMDNode *NMD = I; 460 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) 461 CreateMetadataSlot(NMD->getOperand(i)); 462 } 463 464 // Add all the unnamed functions to the table. 465 for (Module::const_iterator I = TheModule->begin(), E = TheModule->end(); 466 I != E; ++I) 467 if (!I->hasName()) 468 CreateModuleSlot(I); 469 470 ST_DEBUG("end processModule!\n"); 471 } 472 473 // Process the arguments, basic blocks, and instructions of a function. 474 void SlotTracker::processFunction() { 475 ST_DEBUG("begin processFunction!\n"); 476 fNext = 0; 477 478 // Add all the function arguments with no names. 479 for(Function::const_arg_iterator AI = TheFunction->arg_begin(), 480 AE = TheFunction->arg_end(); AI != AE; ++AI) 481 if (!AI->hasName()) 482 CreateFunctionSlot(AI); 483 484 ST_DEBUG("Inserting Instructions:\n"); 485 486 SmallVector<std::pair<unsigned, MDNode*>, 4> MDForInst; 487 488 // Add all of the basic blocks and instructions with no names. 489 for (Function::const_iterator BB = TheFunction->begin(), 490 E = TheFunction->end(); BB != E; ++BB) { 491 if (!BB->hasName()) 492 CreateFunctionSlot(BB); 493 494 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; 495 ++I) { 496 if (!I->getType()->isVoidTy() && !I->hasName()) 497 CreateFunctionSlot(I); 498 499 // Intrinsics can directly use metadata. We allow direct calls to any 500 // llvm.foo function here, because the target may not be linked into the 501 // optimizer. 502 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 503 if (Function *F = CI->getCalledFunction()) 504 if (F->getName().startswith("llvm.")) 505 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) 506 if (MDNode *N = dyn_cast_or_null<MDNode>(I->getOperand(i))) 507 CreateMetadataSlot(N); 508 } 509 510 // Process metadata attached with this instruction. 511 I->getAllMetadata(MDForInst); 512 for (unsigned i = 0, e = MDForInst.size(); i != e; ++i) 513 CreateMetadataSlot(MDForInst[i].second); 514 MDForInst.clear(); 515 } 516 } 517 518 FunctionProcessed = true; 519 520 ST_DEBUG("end processFunction!\n"); 521 } 522 523 /// Clean up after incorporating a function. This is the only way to get out of 524 /// the function incorporation state that affects get*Slot/Create*Slot. Function 525 /// incorporation state is indicated by TheFunction != 0. 526 void SlotTracker::purgeFunction() { 527 ST_DEBUG("begin purgeFunction!\n"); 528 fMap.clear(); // Simply discard the function level map 529 TheFunction = 0; 530 FunctionProcessed = false; 531 ST_DEBUG("end purgeFunction!\n"); 532 } 533 534 /// getGlobalSlot - Get the slot number of a global value. 535 int SlotTracker::getGlobalSlot(const GlobalValue *V) { 536 // Check for uninitialized state and do lazy initialization. 537 initialize(); 538 539 // Find the value in the module map 540 ValueMap::iterator MI = mMap.find(V); 541 return MI == mMap.end() ? -1 : (int)MI->second; 542 } 543 544 /// getMetadataSlot - Get the slot number of a MDNode. 545 int SlotTracker::getMetadataSlot(const MDNode *N) { 546 // Check for uninitialized state and do lazy initialization. 547 initialize(); 548 549 // Find the MDNode in the module map 550 mdn_iterator MI = mdnMap.find(N); 551 return MI == mdnMap.end() ? -1 : (int)MI->second; 552 } 553 554 555 /// getLocalSlot - Get the slot number for a value that is local to a function. 556 int SlotTracker::getLocalSlot(const Value *V) { 557 assert(!isa<Constant>(V) && "Can't get a constant or global slot with this!"); 558 559 // Check for uninitialized state and do lazy initialization. 560 initialize(); 561 562 ValueMap::iterator FI = fMap.find(V); 563 return FI == fMap.end() ? -1 : (int)FI->second; 564 } 565 566 567 /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table. 568 void SlotTracker::CreateModuleSlot(const GlobalValue *V) { 569 assert(V && "Can't insert a null Value into SlotTracker!"); 570 assert(!V->getType()->isVoidTy() && "Doesn't need a slot!"); 571 assert(!V->hasName() && "Doesn't need a slot!"); 572 573 unsigned DestSlot = mNext++; 574 mMap[V] = DestSlot; 575 576 ST_DEBUG(" Inserting value [" << V->getType() << "] = " << V << " slot=" << 577 DestSlot << " ["); 578 // G = Global, F = Function, A = Alias, o = other 579 ST_DEBUG((isa<GlobalVariable>(V) ? 'G' : 580 (isa<Function>(V) ? 'F' : 581 (isa<GlobalAlias>(V) ? 'A' : 'o'))) << "]\n"); 582 } 583 584 /// CreateSlot - Create a new slot for the specified value if it has no name. 585 void SlotTracker::CreateFunctionSlot(const Value *V) { 586 assert(!V->getType()->isVoidTy() && !V->hasName() && "Doesn't need a slot!"); 587 588 unsigned DestSlot = fNext++; 589 fMap[V] = DestSlot; 590 591 // G = Global, F = Function, o = other 592 ST_DEBUG(" Inserting value [" << V->getType() << "] = " << V << " slot=" << 593 DestSlot << " [o]\n"); 594 } 595 596 /// CreateModuleSlot - Insert the specified MDNode* into the slot table. 597 void SlotTracker::CreateMetadataSlot(const MDNode *N) { 598 assert(N && "Can't insert a null Value into SlotTracker!"); 599 600 // Don't insert if N is a function-local metadata, these are always printed 601 // inline. 602 if (!N->isFunctionLocal()) { 603 mdn_iterator I = mdnMap.find(N); 604 if (I != mdnMap.end()) 605 return; 606 607 unsigned DestSlot = mdnNext++; 608 mdnMap[N] = DestSlot; 609 } 610 611 // Recursively add any MDNodes referenced by operands. 612 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) 613 if (const MDNode *Op = dyn_cast_or_null<MDNode>(N->getOperand(i))) 614 CreateMetadataSlot(Op); 615 } 616 617 //===----------------------------------------------------------------------===// 618 // AsmWriter Implementation 619 //===----------------------------------------------------------------------===// 620 621 static void WriteAsOperandInternal(raw_ostream &Out, const Value *V, 622 TypePrinting *TypePrinter, 623 SlotTracker *Machine, 624 const Module *Context); 625 626 627 628 static const char *getPredicateText(unsigned predicate) { 629 const char * pred = "unknown"; 630 switch (predicate) { 631 case FCmpInst::FCMP_FALSE: pred = "false"; break; 632 case FCmpInst::FCMP_OEQ: pred = "oeq"; break; 633 case FCmpInst::FCMP_OGT: pred = "ogt"; break; 634 case FCmpInst::FCMP_OGE: pred = "oge"; break; 635 case FCmpInst::FCMP_OLT: pred = "olt"; break; 636 case FCmpInst::FCMP_OLE: pred = "ole"; break; 637 case FCmpInst::FCMP_ONE: pred = "one"; break; 638 case FCmpInst::FCMP_ORD: pred = "ord"; break; 639 case FCmpInst::FCMP_UNO: pred = "uno"; break; 640 case FCmpInst::FCMP_UEQ: pred = "ueq"; break; 641 case FCmpInst::FCMP_UGT: pred = "ugt"; break; 642 case FCmpInst::FCMP_UGE: pred = "uge"; break; 643 case FCmpInst::FCMP_ULT: pred = "ult"; break; 644 case FCmpInst::FCMP_ULE: pred = "ule"; break; 645 case FCmpInst::FCMP_UNE: pred = "une"; break; 646 case FCmpInst::FCMP_TRUE: pred = "true"; break; 647 case ICmpInst::ICMP_EQ: pred = "eq"; break; 648 case ICmpInst::ICMP_NE: pred = "ne"; break; 649 case ICmpInst::ICMP_SGT: pred = "sgt"; break; 650 case ICmpInst::ICMP_SGE: pred = "sge"; break; 651 case ICmpInst::ICMP_SLT: pred = "slt"; break; 652 case ICmpInst::ICMP_SLE: pred = "sle"; break; 653 case ICmpInst::ICMP_UGT: pred = "ugt"; break; 654 case ICmpInst::ICMP_UGE: pred = "uge"; break; 655 case ICmpInst::ICMP_ULT: pred = "ult"; break; 656 case ICmpInst::ICMP_ULE: pred = "ule"; break; 657 } 658 return pred; 659 } 660 661 662 static void WriteOptimizationInfo(raw_ostream &Out, const User *U) { 663 if (const OverflowingBinaryOperator *OBO = 664 dyn_cast<OverflowingBinaryOperator>(U)) { 665 if (OBO->hasNoUnsignedWrap()) 666 Out << " nuw"; 667 if (OBO->hasNoSignedWrap()) 668 Out << " nsw"; 669 } else if (const PossiblyExactOperator *Div = 670 dyn_cast<PossiblyExactOperator>(U)) { 671 if (Div->isExact()) 672 Out << " exact"; 673 } else if (const GEPOperator *GEP = dyn_cast<GEPOperator>(U)) { 674 if (GEP->isInBounds()) 675 Out << " inbounds"; 676 } 677 } 678 679 static void WriteConstantInternal(raw_ostream &Out, const Constant *CV, 680 TypePrinting &TypePrinter, 681 SlotTracker *Machine, 682 const Module *Context) { 683 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 684 if (CI->getType()->isIntegerTy(1)) { 685 Out << (CI->getZExtValue() ? "true" : "false"); 686 return; 687 } 688 Out << CI->getValue(); 689 return; 690 } 691 692 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) { 693 if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEdouble || 694 &CFP->getValueAPF().getSemantics() == &APFloat::IEEEsingle) { 695 // We would like to output the FP constant value in exponential notation, 696 // but we cannot do this if doing so will lose precision. Check here to 697 // make sure that we only output it in exponential format if we can parse 698 // the value back and get the same value. 699 // 700 bool ignored; 701 bool isDouble = &CFP->getValueAPF().getSemantics()==&APFloat::IEEEdouble; 702 double Val = isDouble ? CFP->getValueAPF().convertToDouble() : 703 CFP->getValueAPF().convertToFloat(); 704 SmallString<128> StrVal; 705 raw_svector_ostream(StrVal) << Val; 706 707 // Check to make sure that the stringized number is not some string like 708 // "Inf" or NaN, that atof will accept, but the lexer will not. Check 709 // that the string matches the "[-+]?[0-9]" regex. 710 // 711 if ((StrVal[0] >= '0' && StrVal[0] <= '9') || 712 ((StrVal[0] == '-' || StrVal[0] == '+') && 713 (StrVal[1] >= '0' && StrVal[1] <= '9'))) { 714 // Reparse stringized version! 715 if (atof(StrVal.c_str()) == Val) { 716 Out << StrVal.str(); 717 return; 718 } 719 } 720 // Otherwise we could not reparse it to exactly the same value, so we must 721 // output the string in hexadecimal format! Note that loading and storing 722 // floating point types changes the bits of NaNs on some hosts, notably 723 // x86, so we must not use these types. 724 assert(sizeof(double) == sizeof(uint64_t) && 725 "assuming that double is 64 bits!"); 726 char Buffer[40]; 727 APFloat apf = CFP->getValueAPF(); 728 // Floats are represented in ASCII IR as double, convert. 729 if (!isDouble) 730 apf.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, 731 &ignored); 732 Out << "0x" << 733 utohex_buffer(uint64_t(apf.bitcastToAPInt().getZExtValue()), 734 Buffer+40); 735 return; 736 } 737 738 // Some form of long double. These appear as a magic letter identifying 739 // the type, then a fixed number of hex digits. 740 Out << "0x"; 741 if (&CFP->getValueAPF().getSemantics() == &APFloat::x87DoubleExtended) { 742 Out << 'K'; 743 // api needed to prevent premature destruction 744 APInt api = CFP->getValueAPF().bitcastToAPInt(); 745 const uint64_t* p = api.getRawData(); 746 uint64_t word = p[1]; 747 int shiftcount=12; 748 int width = api.getBitWidth(); 749 for (int j=0; j<width; j+=4, shiftcount-=4) { 750 unsigned int nibble = (word>>shiftcount) & 15; 751 if (nibble < 10) 752 Out << (unsigned char)(nibble + '0'); 753 else 754 Out << (unsigned char)(nibble - 10 + 'A'); 755 if (shiftcount == 0 && j+4 < width) { 756 word = *p; 757 shiftcount = 64; 758 if (width-j-4 < 64) 759 shiftcount = width-j-4; 760 } 761 } 762 return; 763 } else if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEquad) 764 Out << 'L'; 765 else if (&CFP->getValueAPF().getSemantics() == &APFloat::PPCDoubleDouble) 766 Out << 'M'; 767 else 768 llvm_unreachable("Unsupported floating point type"); 769 // api needed to prevent premature destruction 770 APInt api = CFP->getValueAPF().bitcastToAPInt(); 771 const uint64_t* p = api.getRawData(); 772 uint64_t word = *p; 773 int shiftcount=60; 774 int width = api.getBitWidth(); 775 for (int j=0; j<width; j+=4, shiftcount-=4) { 776 unsigned int nibble = (word>>shiftcount) & 15; 777 if (nibble < 10) 778 Out << (unsigned char)(nibble + '0'); 779 else 780 Out << (unsigned char)(nibble - 10 + 'A'); 781 if (shiftcount == 0 && j+4 < width) { 782 word = *(++p); 783 shiftcount = 64; 784 if (width-j-4 < 64) 785 shiftcount = width-j-4; 786 } 787 } 788 return; 789 } 790 791 if (isa<ConstantAggregateZero>(CV)) { 792 Out << "zeroinitializer"; 793 return; 794 } 795 796 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) { 797 Out << "blockaddress("; 798 WriteAsOperandInternal(Out, BA->getFunction(), &TypePrinter, Machine, 799 Context); 800 Out << ", "; 801 WriteAsOperandInternal(Out, BA->getBasicBlock(), &TypePrinter, Machine, 802 Context); 803 Out << ")"; 804 return; 805 } 806 807 if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) { 808 // As a special case, print the array as a string if it is an array of 809 // i8 with ConstantInt values. 810 // 811 Type *ETy = CA->getType()->getElementType(); 812 if (CA->isString()) { 813 Out << "c\""; 814 PrintEscapedString(CA->getAsString(), Out); 815 Out << '"'; 816 } else { // Cannot output in string format... 817 Out << '['; 818 if (CA->getNumOperands()) { 819 TypePrinter.print(ETy, Out); 820 Out << ' '; 821 WriteAsOperandInternal(Out, CA->getOperand(0), 822 &TypePrinter, Machine, 823 Context); 824 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) { 825 Out << ", "; 826 TypePrinter.print(ETy, Out); 827 Out << ' '; 828 WriteAsOperandInternal(Out, CA->getOperand(i), &TypePrinter, Machine, 829 Context); 830 } 831 } 832 Out << ']'; 833 } 834 return; 835 } 836 837 if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) { 838 if (CS->getType()->isPacked()) 839 Out << '<'; 840 Out << '{'; 841 unsigned N = CS->getNumOperands(); 842 if (N) { 843 Out << ' '; 844 TypePrinter.print(CS->getOperand(0)->getType(), Out); 845 Out << ' '; 846 847 WriteAsOperandInternal(Out, CS->getOperand(0), &TypePrinter, Machine, 848 Context); 849 850 for (unsigned i = 1; i < N; i++) { 851 Out << ", "; 852 TypePrinter.print(CS->getOperand(i)->getType(), Out); 853 Out << ' '; 854 855 WriteAsOperandInternal(Out, CS->getOperand(i), &TypePrinter, Machine, 856 Context); 857 } 858 Out << ' '; 859 } 860 861 Out << '}'; 862 if (CS->getType()->isPacked()) 863 Out << '>'; 864 return; 865 } 866 867 if (const ConstantVector *CP = dyn_cast<ConstantVector>(CV)) { 868 Type *ETy = CP->getType()->getElementType(); 869 assert(CP->getNumOperands() > 0 && 870 "Number of operands for a PackedConst must be > 0"); 871 Out << '<'; 872 TypePrinter.print(ETy, Out); 873 Out << ' '; 874 WriteAsOperandInternal(Out, CP->getOperand(0), &TypePrinter, Machine, 875 Context); 876 for (unsigned i = 1, e = CP->getNumOperands(); i != e; ++i) { 877 Out << ", "; 878 TypePrinter.print(ETy, Out); 879 Out << ' '; 880 WriteAsOperandInternal(Out, CP->getOperand(i), &TypePrinter, Machine, 881 Context); 882 } 883 Out << '>'; 884 return; 885 } 886 887 if (isa<ConstantPointerNull>(CV)) { 888 Out << "null"; 889 return; 890 } 891 892 if (isa<UndefValue>(CV)) { 893 Out << "undef"; 894 return; 895 } 896 897 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { 898 Out << CE->getOpcodeName(); 899 WriteOptimizationInfo(Out, CE); 900 if (CE->isCompare()) 901 Out << ' ' << getPredicateText(CE->getPredicate()); 902 Out << " ("; 903 904 for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) { 905 TypePrinter.print((*OI)->getType(), Out); 906 Out << ' '; 907 WriteAsOperandInternal(Out, *OI, &TypePrinter, Machine, Context); 908 if (OI+1 != CE->op_end()) 909 Out << ", "; 910 } 911 912 if (CE->hasIndices()) { 913 ArrayRef<unsigned> Indices = CE->getIndices(); 914 for (unsigned i = 0, e = Indices.size(); i != e; ++i) 915 Out << ", " << Indices[i]; 916 } 917 918 if (CE->isCast()) { 919 Out << " to "; 920 TypePrinter.print(CE->getType(), Out); 921 } 922 923 Out << ')'; 924 return; 925 } 926 927 Out << "<placeholder or erroneous Constant>"; 928 } 929 930 static void WriteMDNodeBodyInternal(raw_ostream &Out, const MDNode *Node, 931 TypePrinting *TypePrinter, 932 SlotTracker *Machine, 933 const Module *Context) { 934 Out << "!{"; 935 for (unsigned mi = 0, me = Node->getNumOperands(); mi != me; ++mi) { 936 const Value *V = Node->getOperand(mi); 937 if (V == 0) 938 Out << "null"; 939 else { 940 TypePrinter->print(V->getType(), Out); 941 Out << ' '; 942 WriteAsOperandInternal(Out, Node->getOperand(mi), 943 TypePrinter, Machine, Context); 944 } 945 if (mi + 1 != me) 946 Out << ", "; 947 } 948 949 Out << "}"; 950 } 951 952 953 /// WriteAsOperand - Write the name of the specified value out to the specified 954 /// ostream. This can be useful when you just want to print int %reg126, not 955 /// the whole instruction that generated it. 956 /// 957 static void WriteAsOperandInternal(raw_ostream &Out, const Value *V, 958 TypePrinting *TypePrinter, 959 SlotTracker *Machine, 960 const Module *Context) { 961 if (V->hasName()) { 962 PrintLLVMName(Out, V); 963 return; 964 } 965 966 const Constant *CV = dyn_cast<Constant>(V); 967 if (CV && !isa<GlobalValue>(CV)) { 968 assert(TypePrinter && "Constants require TypePrinting!"); 969 WriteConstantInternal(Out, CV, *TypePrinter, Machine, Context); 970 return; 971 } 972 973 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 974 Out << "asm "; 975 if (IA->hasSideEffects()) 976 Out << "sideeffect "; 977 if (IA->isAlignStack()) 978 Out << "alignstack "; 979 Out << '"'; 980 PrintEscapedString(IA->getAsmString(), Out); 981 Out << "\", \""; 982 PrintEscapedString(IA->getConstraintString(), Out); 983 Out << '"'; 984 return; 985 } 986 987 if (const MDNode *N = dyn_cast<MDNode>(V)) { 988 if (N->isFunctionLocal()) { 989 // Print metadata inline, not via slot reference number. 990 WriteMDNodeBodyInternal(Out, N, TypePrinter, Machine, Context); 991 return; 992 } 993 994 if (!Machine) { 995 if (N->isFunctionLocal()) 996 Machine = new SlotTracker(N->getFunction()); 997 else 998 Machine = new SlotTracker(Context); 999 } 1000 int Slot = Machine->getMetadataSlot(N); 1001 if (Slot == -1) 1002 Out << "<badref>"; 1003 else 1004 Out << '!' << Slot; 1005 return; 1006 } 1007 1008 if (const MDString *MDS = dyn_cast<MDString>(V)) { 1009 Out << "!\""; 1010 PrintEscapedString(MDS->getString(), Out); 1011 Out << '"'; 1012 return; 1013 } 1014 1015 if (V->getValueID() == Value::PseudoSourceValueVal || 1016 V->getValueID() == Value::FixedStackPseudoSourceValueVal) { 1017 V->print(Out); 1018 return; 1019 } 1020 1021 char Prefix = '%'; 1022 int Slot; 1023 if (Machine) { 1024 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 1025 Slot = Machine->getGlobalSlot(GV); 1026 Prefix = '@'; 1027 } else { 1028 Slot = Machine->getLocalSlot(V); 1029 } 1030 } else { 1031 Machine = createSlotTracker(V); 1032 if (Machine) { 1033 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 1034 Slot = Machine->getGlobalSlot(GV); 1035 Prefix = '@'; 1036 } else { 1037 Slot = Machine->getLocalSlot(V); 1038 } 1039 delete Machine; 1040 } else { 1041 Slot = -1; 1042 } 1043 } 1044 1045 if (Slot != -1) 1046 Out << Prefix << Slot; 1047 else 1048 Out << "<badref>"; 1049 } 1050 1051 void llvm::WriteAsOperand(raw_ostream &Out, const Value *V, 1052 bool PrintType, const Module *Context) { 1053 1054 // Fast path: Don't construct and populate a TypePrinting object if we 1055 // won't be needing any types printed. 1056 if (!PrintType && 1057 ((!isa<Constant>(V) && !isa<MDNode>(V)) || 1058 V->hasName() || isa<GlobalValue>(V))) { 1059 WriteAsOperandInternal(Out, V, 0, 0, Context); 1060 return; 1061 } 1062 1063 if (Context == 0) Context = getModuleFromVal(V); 1064 1065 TypePrinting TypePrinter; 1066 if (Context) 1067 TypePrinter.incorporateTypes(*Context); 1068 if (PrintType) { 1069 TypePrinter.print(V->getType(), Out); 1070 Out << ' '; 1071 } 1072 1073 WriteAsOperandInternal(Out, V, &TypePrinter, 0, Context); 1074 } 1075 1076 namespace { 1077 1078 class AssemblyWriter { 1079 formatted_raw_ostream &Out; 1080 SlotTracker &Machine; 1081 const Module *TheModule; 1082 TypePrinting TypePrinter; 1083 AssemblyAnnotationWriter *AnnotationWriter; 1084 1085 public: 1086 inline AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac, 1087 const Module *M, 1088 AssemblyAnnotationWriter *AAW) 1089 : Out(o), Machine(Mac), TheModule(M), AnnotationWriter(AAW) { 1090 if (M) 1091 TypePrinter.incorporateTypes(*M); 1092 } 1093 1094 void printMDNodeBody(const MDNode *MD); 1095 void printNamedMDNode(const NamedMDNode *NMD); 1096 1097 void printModule(const Module *M); 1098 1099 void writeOperand(const Value *Op, bool PrintType); 1100 void writeParamOperand(const Value *Operand, Attributes Attrs); 1101 1102 void writeAllMDNodes(); 1103 1104 void printTypeIdentities(); 1105 void printGlobal(const GlobalVariable *GV); 1106 void printAlias(const GlobalAlias *GV); 1107 void printFunction(const Function *F); 1108 void printArgument(const Argument *FA, Attributes Attrs); 1109 void printBasicBlock(const BasicBlock *BB); 1110 void printInstruction(const Instruction &I); 1111 1112 private: 1113 // printInfoComment - Print a little comment after the instruction indicating 1114 // which slot it occupies. 1115 void printInfoComment(const Value &V); 1116 }; 1117 } // end of anonymous namespace 1118 1119 void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType) { 1120 if (Operand == 0) { 1121 Out << "<null operand!>"; 1122 return; 1123 } 1124 if (PrintType) { 1125 TypePrinter.print(Operand->getType(), Out); 1126 Out << ' '; 1127 } 1128 WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine, TheModule); 1129 } 1130 1131 void AssemblyWriter::writeParamOperand(const Value *Operand, 1132 Attributes Attrs) { 1133 if (Operand == 0) { 1134 Out << "<null operand!>"; 1135 return; 1136 } 1137 1138 // Print the type 1139 TypePrinter.print(Operand->getType(), Out); 1140 // Print parameter attributes list 1141 if (Attrs != Attribute::None) 1142 Out << ' ' << Attribute::getAsString(Attrs); 1143 Out << ' '; 1144 // Print the operand 1145 WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine, TheModule); 1146 } 1147 1148 void AssemblyWriter::printModule(const Module *M) { 1149 if (!M->getModuleIdentifier().empty() && 1150 // Don't print the ID if it will start a new line (which would 1151 // require a comment char before it). 1152 M->getModuleIdentifier().find('\n') == std::string::npos) 1153 Out << "; ModuleID = '" << M->getModuleIdentifier() << "'\n"; 1154 1155 if (!M->getDataLayout().empty()) 1156 Out << "target datalayout = \"" << M->getDataLayout() << "\"\n"; 1157 if (!M->getTargetTriple().empty()) 1158 Out << "target triple = \"" << M->getTargetTriple() << "\"\n"; 1159 1160 if (!M->getModuleInlineAsm().empty()) { 1161 // Split the string into lines, to make it easier to read the .ll file. 1162 std::string Asm = M->getModuleInlineAsm(); 1163 size_t CurPos = 0; 1164 size_t NewLine = Asm.find_first_of('\n', CurPos); 1165 Out << '\n'; 1166 while (NewLine != std::string::npos) { 1167 // We found a newline, print the portion of the asm string from the 1168 // last newline up to this newline. 1169 Out << "module asm \""; 1170 PrintEscapedString(std::string(Asm.begin()+CurPos, Asm.begin()+NewLine), 1171 Out); 1172 Out << "\"\n"; 1173 CurPos = NewLine+1; 1174 NewLine = Asm.find_first_of('\n', CurPos); 1175 } 1176 std::string rest(Asm.begin()+CurPos, Asm.end()); 1177 if (!rest.empty()) { 1178 Out << "module asm \""; 1179 PrintEscapedString(rest, Out); 1180 Out << "\"\n"; 1181 } 1182 } 1183 1184 // Loop over the dependent libraries and emit them. 1185 Module::lib_iterator LI = M->lib_begin(); 1186 Module::lib_iterator LE = M->lib_end(); 1187 if (LI != LE) { 1188 Out << '\n'; 1189 Out << "deplibs = [ "; 1190 while (LI != LE) { 1191 Out << '"' << *LI << '"'; 1192 ++LI; 1193 if (LI != LE) 1194 Out << ", "; 1195 } 1196 Out << " ]"; 1197 } 1198 1199 printTypeIdentities(); 1200 1201 // Output all globals. 1202 if (!M->global_empty()) Out << '\n'; 1203 for (Module::const_global_iterator I = M->global_begin(), E = M->global_end(); 1204 I != E; ++I) 1205 printGlobal(I); 1206 1207 // Output all aliases. 1208 if (!M->alias_empty()) Out << "\n"; 1209 for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end(); 1210 I != E; ++I) 1211 printAlias(I); 1212 1213 // Output all of the functions. 1214 for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I) 1215 printFunction(I); 1216 1217 // Output named metadata. 1218 if (!M->named_metadata_empty()) Out << '\n'; 1219 1220 for (Module::const_named_metadata_iterator I = M->named_metadata_begin(), 1221 E = M->named_metadata_end(); I != E; ++I) 1222 printNamedMDNode(I); 1223 1224 // Output metadata. 1225 if (!Machine.mdn_empty()) { 1226 Out << '\n'; 1227 writeAllMDNodes(); 1228 } 1229 } 1230 1231 void AssemblyWriter::printNamedMDNode(const NamedMDNode *NMD) { 1232 Out << '!'; 1233 StringRef Name = NMD->getName(); 1234 if (Name.empty()) { 1235 Out << "<empty name> "; 1236 } else { 1237 if (isalpha(Name[0]) || Name[0] == '-' || Name[0] == '$' || 1238 Name[0] == '.' || Name[0] == '_') 1239 Out << Name[0]; 1240 else 1241 Out << '\\' << hexdigit(Name[0] >> 4) << hexdigit(Name[0] & 0x0F); 1242 for (unsigned i = 1, e = Name.size(); i != e; ++i) { 1243 unsigned char C = Name[i]; 1244 if (isalnum(C) || C == '-' || C == '$' || C == '.' || C == '_') 1245 Out << C; 1246 else 1247 Out << '\\' << hexdigit(C >> 4) << hexdigit(C & 0x0F); 1248 } 1249 } 1250 Out << " = !{"; 1251 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 1252 if (i) Out << ", "; 1253 int Slot = Machine.getMetadataSlot(NMD->getOperand(i)); 1254 if (Slot == -1) 1255 Out << "<badref>"; 1256 else 1257 Out << '!' << Slot; 1258 } 1259 Out << "}\n"; 1260 } 1261 1262 1263 static void PrintLinkage(GlobalValue::LinkageTypes LT, 1264 formatted_raw_ostream &Out) { 1265 switch (LT) { 1266 case GlobalValue::ExternalLinkage: break; 1267 case GlobalValue::PrivateLinkage: Out << "private "; break; 1268 case GlobalValue::LinkerPrivateLinkage: Out << "linker_private "; break; 1269 case GlobalValue::LinkerPrivateWeakLinkage: 1270 Out << "linker_private_weak "; 1271 break; 1272 case GlobalValue::LinkerPrivateWeakDefAutoLinkage: 1273 Out << "linker_private_weak_def_auto "; 1274 break; 1275 case GlobalValue::InternalLinkage: Out << "internal "; break; 1276 case GlobalValue::LinkOnceAnyLinkage: Out << "linkonce "; break; 1277 case GlobalValue::LinkOnceODRLinkage: Out << "linkonce_odr "; break; 1278 case GlobalValue::WeakAnyLinkage: Out << "weak "; break; 1279 case GlobalValue::WeakODRLinkage: Out << "weak_odr "; break; 1280 case GlobalValue::CommonLinkage: Out << "common "; break; 1281 case GlobalValue::AppendingLinkage: Out << "appending "; break; 1282 case GlobalValue::DLLImportLinkage: Out << "dllimport "; break; 1283 case GlobalValue::DLLExportLinkage: Out << "dllexport "; break; 1284 case GlobalValue::ExternalWeakLinkage: Out << "extern_weak "; break; 1285 case GlobalValue::AvailableExternallyLinkage: 1286 Out << "available_externally "; 1287 break; 1288 } 1289 } 1290 1291 1292 static void PrintVisibility(GlobalValue::VisibilityTypes Vis, 1293 formatted_raw_ostream &Out) { 1294 switch (Vis) { 1295 case GlobalValue::DefaultVisibility: break; 1296 case GlobalValue::HiddenVisibility: Out << "hidden "; break; 1297 case GlobalValue::ProtectedVisibility: Out << "protected "; break; 1298 } 1299 } 1300 1301 void AssemblyWriter::printGlobal(const GlobalVariable *GV) { 1302 if (GV->isMaterializable()) 1303 Out << "; Materializable\n"; 1304 1305 WriteAsOperandInternal(Out, GV, &TypePrinter, &Machine, GV->getParent()); 1306 Out << " = "; 1307 1308 if (!GV->hasInitializer() && GV->hasExternalLinkage()) 1309 Out << "external "; 1310 1311 PrintLinkage(GV->getLinkage(), Out); 1312 PrintVisibility(GV->getVisibility(), Out); 1313 1314 if (GV->isThreadLocal()) Out << "thread_local "; 1315 if (unsigned AddressSpace = GV->getType()->getAddressSpace()) 1316 Out << "addrspace(" << AddressSpace << ") "; 1317 if (GV->hasUnnamedAddr()) Out << "unnamed_addr "; 1318 Out << (GV->isConstant() ? "constant " : "global "); 1319 TypePrinter.print(GV->getType()->getElementType(), Out); 1320 1321 if (GV->hasInitializer()) { 1322 Out << ' '; 1323 writeOperand(GV->getInitializer(), false); 1324 } 1325 1326 if (GV->hasSection()) { 1327 Out << ", section \""; 1328 PrintEscapedString(GV->getSection(), Out); 1329 Out << '"'; 1330 } 1331 if (GV->getAlignment()) 1332 Out << ", align " << GV->getAlignment(); 1333 1334 printInfoComment(*GV); 1335 Out << '\n'; 1336 } 1337 1338 void AssemblyWriter::printAlias(const GlobalAlias *GA) { 1339 if (GA->isMaterializable()) 1340 Out << "; Materializable\n"; 1341 1342 // Don't crash when dumping partially built GA 1343 if (!GA->hasName()) 1344 Out << "<<nameless>> = "; 1345 else { 1346 PrintLLVMName(Out, GA); 1347 Out << " = "; 1348 } 1349 PrintVisibility(GA->getVisibility(), Out); 1350 1351 Out << "alias "; 1352 1353 PrintLinkage(GA->getLinkage(), Out); 1354 1355 const Constant *Aliasee = GA->getAliasee(); 1356 1357 if (Aliasee == 0) { 1358 TypePrinter.print(GA->getType(), Out); 1359 Out << " <<NULL ALIASEE>>"; 1360 } else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(Aliasee)) { 1361 TypePrinter.print(GV->getType(), Out); 1362 Out << ' '; 1363 PrintLLVMName(Out, GV); 1364 } else if (const Function *F = dyn_cast<Function>(Aliasee)) { 1365 TypePrinter.print(F->getFunctionType(), Out); 1366 Out << "* "; 1367 1368 WriteAsOperandInternal(Out, F, &TypePrinter, &Machine, F->getParent()); 1369 } else if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(Aliasee)) { 1370 TypePrinter.print(GA->getType(), Out); 1371 Out << ' '; 1372 PrintLLVMName(Out, GA); 1373 } else { 1374 const ConstantExpr *CE = cast<ConstantExpr>(Aliasee); 1375 // The only valid GEP is an all zero GEP. 1376 assert((CE->getOpcode() == Instruction::BitCast || 1377 CE->getOpcode() == Instruction::GetElementPtr) && 1378 "Unsupported aliasee"); 1379 writeOperand(CE, false); 1380 } 1381 1382 printInfoComment(*GA); 1383 Out << '\n'; 1384 } 1385 1386 void AssemblyWriter::printTypeIdentities() { 1387 if (TypePrinter.NumberedTypes.empty() && 1388 TypePrinter.NamedTypes.empty()) 1389 return; 1390 1391 Out << '\n'; 1392 1393 // We know all the numbers that each type is used and we know that it is a 1394 // dense assignment. Convert the map to an index table. 1395 std::vector<StructType*> NumberedTypes(TypePrinter.NumberedTypes.size()); 1396 for (DenseMap<StructType*, unsigned>::iterator I = 1397 TypePrinter.NumberedTypes.begin(), E = TypePrinter.NumberedTypes.end(); 1398 I != E; ++I) { 1399 assert(I->second < NumberedTypes.size() && "Didn't get a dense numbering?"); 1400 NumberedTypes[I->second] = I->first; 1401 } 1402 1403 // Emit all numbered types. 1404 for (unsigned i = 0, e = NumberedTypes.size(); i != e; ++i) { 1405 Out << '%' << i << " = type "; 1406 1407 // Make sure we print out at least one level of the type structure, so 1408 // that we do not get %2 = type %2 1409 TypePrinter.printStructBody(NumberedTypes[i], Out); 1410 Out << '\n'; 1411 } 1412 1413 for (unsigned i = 0, e = TypePrinter.NamedTypes.size(); i != e; ++i) { 1414 PrintLLVMName(Out, TypePrinter.NamedTypes[i]->getName(), LocalPrefix); 1415 Out << " = type "; 1416 1417 // Make sure we print out at least one level of the type structure, so 1418 // that we do not get %FILE = type %FILE 1419 TypePrinter.printStructBody(TypePrinter.NamedTypes[i], Out); 1420 Out << '\n'; 1421 } 1422 } 1423 1424 /// printFunction - Print all aspects of a function. 1425 /// 1426 void AssemblyWriter::printFunction(const Function *F) { 1427 // Print out the return type and name. 1428 Out << '\n'; 1429 1430 if (AnnotationWriter) AnnotationWriter->emitFunctionAnnot(F, Out); 1431 1432 if (F->isMaterializable()) 1433 Out << "; Materializable\n"; 1434 1435 if (F->isDeclaration()) 1436 Out << "declare "; 1437 else 1438 Out << "define "; 1439 1440 PrintLinkage(F->getLinkage(), Out); 1441 PrintVisibility(F->getVisibility(), Out); 1442 1443 // Print the calling convention. 1444 switch (F->getCallingConv()) { 1445 case CallingConv::C: break; // default 1446 case CallingConv::Fast: Out << "fastcc "; break; 1447 case CallingConv::Cold: Out << "coldcc "; break; 1448 case CallingConv::X86_StdCall: Out << "x86_stdcallcc "; break; 1449 case CallingConv::X86_FastCall: Out << "x86_fastcallcc "; break; 1450 case CallingConv::X86_ThisCall: Out << "x86_thiscallcc "; break; 1451 case CallingConv::ARM_APCS: Out << "arm_apcscc "; break; 1452 case CallingConv::ARM_AAPCS: Out << "arm_aapcscc "; break; 1453 case CallingConv::ARM_AAPCS_VFP:Out << "arm_aapcs_vfpcc "; break; 1454 case CallingConv::MSP430_INTR: Out << "msp430_intrcc "; break; 1455 case CallingConv::PTX_Kernel: Out << "ptx_kernel "; break; 1456 case CallingConv::PTX_Device: Out << "ptx_device "; break; 1457 default: Out << "cc" << F->getCallingConv() << " "; break; 1458 } 1459 1460 FunctionType *FT = F->getFunctionType(); 1461 const AttrListPtr &Attrs = F->getAttributes(); 1462 Attributes RetAttrs = Attrs.getRetAttributes(); 1463 if (RetAttrs != Attribute::None) 1464 Out << Attribute::getAsString(Attrs.getRetAttributes()) << ' '; 1465 TypePrinter.print(F->getReturnType(), Out); 1466 Out << ' '; 1467 WriteAsOperandInternal(Out, F, &TypePrinter, &Machine, F->getParent()); 1468 Out << '('; 1469 Machine.incorporateFunction(F); 1470 1471 // Loop over the arguments, printing them... 1472 1473 unsigned Idx = 1; 1474 if (!F->isDeclaration()) { 1475 // If this isn't a declaration, print the argument names as well. 1476 for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end(); 1477 I != E; ++I) { 1478 // Insert commas as we go... the first arg doesn't get a comma 1479 if (I != F->arg_begin()) Out << ", "; 1480 printArgument(I, Attrs.getParamAttributes(Idx)); 1481 Idx++; 1482 } 1483 } else { 1484 // Otherwise, print the types from the function type. 1485 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) { 1486 // Insert commas as we go... the first arg doesn't get a comma 1487 if (i) Out << ", "; 1488 1489 // Output type... 1490 TypePrinter.print(FT->getParamType(i), Out); 1491 1492 Attributes ArgAttrs = Attrs.getParamAttributes(i+1); 1493 if (ArgAttrs != Attribute::None) 1494 Out << ' ' << Attribute::getAsString(ArgAttrs); 1495 } 1496 } 1497 1498 // Finish printing arguments... 1499 if (FT->isVarArg()) { 1500 if (FT->getNumParams()) Out << ", "; 1501 Out << "..."; // Output varargs portion of signature! 1502 } 1503 Out << ')'; 1504 if (F->hasUnnamedAddr()) 1505 Out << " unnamed_addr"; 1506 Attributes FnAttrs = Attrs.getFnAttributes(); 1507 if (FnAttrs != Attribute::None) 1508 Out << ' ' << Attribute::getAsString(Attrs.getFnAttributes()); 1509 if (F->hasSection()) { 1510 Out << " section \""; 1511 PrintEscapedString(F->getSection(), Out); 1512 Out << '"'; 1513 } 1514 if (F->getAlignment()) 1515 Out << " align " << F->getAlignment(); 1516 if (F->hasGC()) 1517 Out << " gc \"" << F->getGC() << '"'; 1518 if (F->isDeclaration()) { 1519 Out << '\n'; 1520 } else { 1521 Out << " {"; 1522 // Output all of the function's basic blocks. 1523 for (Function::const_iterator I = F->begin(), E = F->end(); I != E; ++I) 1524 printBasicBlock(I); 1525 1526 Out << "}\n"; 1527 } 1528 1529 Machine.purgeFunction(); 1530 } 1531 1532 /// printArgument - This member is called for every argument that is passed into 1533 /// the function. Simply print it out 1534 /// 1535 void AssemblyWriter::printArgument(const Argument *Arg, 1536 Attributes Attrs) { 1537 // Output type... 1538 TypePrinter.print(Arg->getType(), Out); 1539 1540 // Output parameter attributes list 1541 if (Attrs != Attribute::None) 1542 Out << ' ' << Attribute::getAsString(Attrs); 1543 1544 // Output name, if available... 1545 if (Arg->hasName()) { 1546 Out << ' '; 1547 PrintLLVMName(Out, Arg); 1548 } 1549 } 1550 1551 /// printBasicBlock - This member is called for each basic block in a method. 1552 /// 1553 void AssemblyWriter::printBasicBlock(const BasicBlock *BB) { 1554 if (BB->hasName()) { // Print out the label if it exists... 1555 Out << "\n"; 1556 PrintLLVMName(Out, BB->getName(), LabelPrefix); 1557 Out << ':'; 1558 } else if (!BB->use_empty()) { // Don't print block # of no uses... 1559 Out << "\n; <label>:"; 1560 int Slot = Machine.getLocalSlot(BB); 1561 if (Slot != -1) 1562 Out << Slot; 1563 else 1564 Out << "<badref>"; 1565 } 1566 1567 if (BB->getParent() == 0) { 1568 Out.PadToColumn(50); 1569 Out << "; Error: Block without parent!"; 1570 } else if (BB != &BB->getParent()->getEntryBlock()) { // Not the entry block? 1571 // Output predecessors for the block. 1572 Out.PadToColumn(50); 1573 Out << ";"; 1574 const_pred_iterator PI = pred_begin(BB), PE = pred_end(BB); 1575 1576 if (PI == PE) { 1577 Out << " No predecessors!"; 1578 } else { 1579 Out << " preds = "; 1580 writeOperand(*PI, false); 1581 for (++PI; PI != PE; ++PI) { 1582 Out << ", "; 1583 writeOperand(*PI, false); 1584 } 1585 } 1586 } 1587 1588 Out << "\n"; 1589 1590 if (AnnotationWriter) AnnotationWriter->emitBasicBlockStartAnnot(BB, Out); 1591 1592 // Output all of the instructions in the basic block... 1593 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 1594 printInstruction(*I); 1595 Out << '\n'; 1596 } 1597 1598 if (AnnotationWriter) AnnotationWriter->emitBasicBlockEndAnnot(BB, Out); 1599 } 1600 1601 /// printInfoComment - Print a little comment after the instruction indicating 1602 /// which slot it occupies. 1603 /// 1604 void AssemblyWriter::printInfoComment(const Value &V) { 1605 if (AnnotationWriter) { 1606 AnnotationWriter->printInfoComment(V, Out); 1607 return; 1608 } 1609 } 1610 1611 // This member is called for each Instruction in a function.. 1612 void AssemblyWriter::printInstruction(const Instruction &I) { 1613 if (AnnotationWriter) AnnotationWriter->emitInstructionAnnot(&I, Out); 1614 1615 // Print out indentation for an instruction. 1616 Out << " "; 1617 1618 // Print out name if it exists... 1619 if (I.hasName()) { 1620 PrintLLVMName(Out, &I); 1621 Out << " = "; 1622 } else if (!I.getType()->isVoidTy()) { 1623 // Print out the def slot taken. 1624 int SlotNum = Machine.getLocalSlot(&I); 1625 if (SlotNum == -1) 1626 Out << "<badref> = "; 1627 else 1628 Out << '%' << SlotNum << " = "; 1629 } 1630 1631 // If this is a volatile load or store, print out the volatile marker. 1632 if ((isa<LoadInst>(I) && cast<LoadInst>(I).isVolatile()) || 1633 (isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile())) { 1634 Out << "volatile "; 1635 } else if (isa<CallInst>(I) && cast<CallInst>(I).isTailCall()) { 1636 // If this is a call, check if it's a tail call. 1637 Out << "tail "; 1638 } 1639 1640 // Print out the opcode... 1641 Out << I.getOpcodeName(); 1642 1643 // Print out optimization information. 1644 WriteOptimizationInfo(Out, &I); 1645 1646 // Print out the compare instruction predicates 1647 if (const CmpInst *CI = dyn_cast<CmpInst>(&I)) 1648 Out << ' ' << getPredicateText(CI->getPredicate()); 1649 1650 // Print out the type of the operands... 1651 const Value *Operand = I.getNumOperands() ? I.getOperand(0) : 0; 1652 1653 // Special case conditional branches to swizzle the condition out to the front 1654 if (isa<BranchInst>(I) && cast<BranchInst>(I).isConditional()) { 1655 BranchInst &BI(cast<BranchInst>(I)); 1656 Out << ' '; 1657 writeOperand(BI.getCondition(), true); 1658 Out << ", "; 1659 writeOperand(BI.getSuccessor(0), true); 1660 Out << ", "; 1661 writeOperand(BI.getSuccessor(1), true); 1662 1663 } else if (isa<SwitchInst>(I)) { 1664 // Special case switch instruction to get formatting nice and correct. 1665 Out << ' '; 1666 writeOperand(Operand , true); 1667 Out << ", "; 1668 writeOperand(I.getOperand(1), true); 1669 Out << " ["; 1670 1671 for (unsigned op = 2, Eop = I.getNumOperands(); op < Eop; op += 2) { 1672 Out << "\n "; 1673 writeOperand(I.getOperand(op ), true); 1674 Out << ", "; 1675 writeOperand(I.getOperand(op+1), true); 1676 } 1677 Out << "\n ]"; 1678 } else if (isa<IndirectBrInst>(I)) { 1679 // Special case indirectbr instruction to get formatting nice and correct. 1680 Out << ' '; 1681 writeOperand(Operand, true); 1682 Out << ", ["; 1683 1684 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) { 1685 if (i != 1) 1686 Out << ", "; 1687 writeOperand(I.getOperand(i), true); 1688 } 1689 Out << ']'; 1690 } else if (const PHINode *PN = dyn_cast<PHINode>(&I)) { 1691 Out << ' '; 1692 TypePrinter.print(I.getType(), Out); 1693 Out << ' '; 1694 1695 for (unsigned op = 0, Eop = PN->getNumIncomingValues(); op < Eop; ++op) { 1696 if (op) Out << ", "; 1697 Out << "[ "; 1698 writeOperand(PN->getIncomingValue(op), false); Out << ", "; 1699 writeOperand(PN->getIncomingBlock(op), false); Out << " ]"; 1700 } 1701 } else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&I)) { 1702 Out << ' '; 1703 writeOperand(I.getOperand(0), true); 1704 for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i) 1705 Out << ", " << *i; 1706 } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&I)) { 1707 Out << ' '; 1708 writeOperand(I.getOperand(0), true); Out << ", "; 1709 writeOperand(I.getOperand(1), true); 1710 for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i) 1711 Out << ", " << *i; 1712 } else if (isa<ReturnInst>(I) && !Operand) { 1713 Out << " void"; 1714 } else if (const CallInst *CI = dyn_cast<CallInst>(&I)) { 1715 // Print the calling convention being used. 1716 switch (CI->getCallingConv()) { 1717 case CallingConv::C: break; // default 1718 case CallingConv::Fast: Out << " fastcc"; break; 1719 case CallingConv::Cold: Out << " coldcc"; break; 1720 case CallingConv::X86_StdCall: Out << " x86_stdcallcc"; break; 1721 case CallingConv::X86_FastCall: Out << " x86_fastcallcc"; break; 1722 case CallingConv::X86_ThisCall: Out << " x86_thiscallcc"; break; 1723 case CallingConv::ARM_APCS: Out << " arm_apcscc "; break; 1724 case CallingConv::ARM_AAPCS: Out << " arm_aapcscc "; break; 1725 case CallingConv::ARM_AAPCS_VFP:Out << " arm_aapcs_vfpcc "; break; 1726 case CallingConv::MSP430_INTR: Out << " msp430_intrcc "; break; 1727 case CallingConv::PTX_Kernel: Out << " ptx_kernel"; break; 1728 case CallingConv::PTX_Device: Out << " ptx_device"; break; 1729 default: Out << " cc" << CI->getCallingConv(); break; 1730 } 1731 1732 Operand = CI->getCalledValue(); 1733 PointerType *PTy = cast<PointerType>(Operand->getType()); 1734 FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 1735 Type *RetTy = FTy->getReturnType(); 1736 const AttrListPtr &PAL = CI->getAttributes(); 1737 1738 if (PAL.getRetAttributes() != Attribute::None) 1739 Out << ' ' << Attribute::getAsString(PAL.getRetAttributes()); 1740 1741 // If possible, print out the short form of the call instruction. We can 1742 // only do this if the first argument is a pointer to a nonvararg function, 1743 // and if the return type is not a pointer to a function. 1744 // 1745 Out << ' '; 1746 if (!FTy->isVarArg() && 1747 (!RetTy->isPointerTy() || 1748 !cast<PointerType>(RetTy)->getElementType()->isFunctionTy())) { 1749 TypePrinter.print(RetTy, Out); 1750 Out << ' '; 1751 writeOperand(Operand, false); 1752 } else { 1753 writeOperand(Operand, true); 1754 } 1755 Out << '('; 1756 for (unsigned op = 0, Eop = CI->getNumArgOperands(); op < Eop; ++op) { 1757 if (op > 0) 1758 Out << ", "; 1759 writeParamOperand(CI->getArgOperand(op), PAL.getParamAttributes(op + 1)); 1760 } 1761 Out << ')'; 1762 if (PAL.getFnAttributes() != Attribute::None) 1763 Out << ' ' << Attribute::getAsString(PAL.getFnAttributes()); 1764 } else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) { 1765 Operand = II->getCalledValue(); 1766 PointerType *PTy = cast<PointerType>(Operand->getType()); 1767 FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 1768 Type *RetTy = FTy->getReturnType(); 1769 const AttrListPtr &PAL = II->getAttributes(); 1770 1771 // Print the calling convention being used. 1772 switch (II->getCallingConv()) { 1773 case CallingConv::C: break; // default 1774 case CallingConv::Fast: Out << " fastcc"; break; 1775 case CallingConv::Cold: Out << " coldcc"; break; 1776 case CallingConv::X86_StdCall: Out << " x86_stdcallcc"; break; 1777 case CallingConv::X86_FastCall: Out << " x86_fastcallcc"; break; 1778 case CallingConv::X86_ThisCall: Out << " x86_thiscallcc"; break; 1779 case CallingConv::ARM_APCS: Out << " arm_apcscc "; break; 1780 case CallingConv::ARM_AAPCS: Out << " arm_aapcscc "; break; 1781 case CallingConv::ARM_AAPCS_VFP:Out << " arm_aapcs_vfpcc "; break; 1782 case CallingConv::MSP430_INTR: Out << " msp430_intrcc "; break; 1783 case CallingConv::PTX_Kernel: Out << " ptx_kernel"; break; 1784 case CallingConv::PTX_Device: Out << " ptx_device"; break; 1785 default: Out << " cc" << II->getCallingConv(); break; 1786 } 1787 1788 if (PAL.getRetAttributes() != Attribute::None) 1789 Out << ' ' << Attribute::getAsString(PAL.getRetAttributes()); 1790 1791 // If possible, print out the short form of the invoke instruction. We can 1792 // only do this if the first argument is a pointer to a nonvararg function, 1793 // and if the return type is not a pointer to a function. 1794 // 1795 Out << ' '; 1796 if (!FTy->isVarArg() && 1797 (!RetTy->isPointerTy() || 1798 !cast<PointerType>(RetTy)->getElementType()->isFunctionTy())) { 1799 TypePrinter.print(RetTy, Out); 1800 Out << ' '; 1801 writeOperand(Operand, false); 1802 } else { 1803 writeOperand(Operand, true); 1804 } 1805 Out << '('; 1806 for (unsigned op = 0, Eop = II->getNumArgOperands(); op < Eop; ++op) { 1807 if (op) 1808 Out << ", "; 1809 writeParamOperand(II->getArgOperand(op), PAL.getParamAttributes(op + 1)); 1810 } 1811 1812 Out << ')'; 1813 if (PAL.getFnAttributes() != Attribute::None) 1814 Out << ' ' << Attribute::getAsString(PAL.getFnAttributes()); 1815 1816 Out << "\n to "; 1817 writeOperand(II->getNormalDest(), true); 1818 Out << " unwind "; 1819 writeOperand(II->getUnwindDest(), true); 1820 1821 } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) { 1822 Out << ' '; 1823 TypePrinter.print(AI->getType()->getElementType(), Out); 1824 if (!AI->getArraySize() || AI->isArrayAllocation()) { 1825 Out << ", "; 1826 writeOperand(AI->getArraySize(), true); 1827 } 1828 if (AI->getAlignment()) { 1829 Out << ", align " << AI->getAlignment(); 1830 } 1831 } else if (isa<CastInst>(I)) { 1832 if (Operand) { 1833 Out << ' '; 1834 writeOperand(Operand, true); // Work with broken code 1835 } 1836 Out << " to "; 1837 TypePrinter.print(I.getType(), Out); 1838 } else if (isa<VAArgInst>(I)) { 1839 if (Operand) { 1840 Out << ' '; 1841 writeOperand(Operand, true); // Work with broken code 1842 } 1843 Out << ", "; 1844 TypePrinter.print(I.getType(), Out); 1845 } else if (Operand) { // Print the normal way. 1846 1847 // PrintAllTypes - Instructions who have operands of all the same type 1848 // omit the type from all but the first operand. If the instruction has 1849 // different type operands (for example br), then they are all printed. 1850 bool PrintAllTypes = false; 1851 Type *TheType = Operand->getType(); 1852 1853 // Select, Store and ShuffleVector always print all types. 1854 if (isa<SelectInst>(I) || isa<StoreInst>(I) || isa<ShuffleVectorInst>(I) 1855 || isa<ReturnInst>(I)) { 1856 PrintAllTypes = true; 1857 } else { 1858 for (unsigned i = 1, E = I.getNumOperands(); i != E; ++i) { 1859 Operand = I.getOperand(i); 1860 // note that Operand shouldn't be null, but the test helps make dump() 1861 // more tolerant of malformed IR 1862 if (Operand && Operand->getType() != TheType) { 1863 PrintAllTypes = true; // We have differing types! Print them all! 1864 break; 1865 } 1866 } 1867 } 1868 1869 if (!PrintAllTypes) { 1870 Out << ' '; 1871 TypePrinter.print(TheType, Out); 1872 } 1873 1874 Out << ' '; 1875 for (unsigned i = 0, E = I.getNumOperands(); i != E; ++i) { 1876 if (i) Out << ", "; 1877 writeOperand(I.getOperand(i), PrintAllTypes); 1878 } 1879 } 1880 1881 // Print post operand alignment for load/store. 1882 if (isa<LoadInst>(I) && cast<LoadInst>(I).getAlignment()) { 1883 Out << ", align " << cast<LoadInst>(I).getAlignment(); 1884 } else if (isa<StoreInst>(I) && cast<StoreInst>(I).getAlignment()) { 1885 Out << ", align " << cast<StoreInst>(I).getAlignment(); 1886 } 1887 1888 // Print Metadata info. 1889 SmallVector<std::pair<unsigned, MDNode*>, 4> InstMD; 1890 I.getAllMetadata(InstMD); 1891 if (!InstMD.empty()) { 1892 SmallVector<StringRef, 8> MDNames; 1893 I.getType()->getContext().getMDKindNames(MDNames); 1894 for (unsigned i = 0, e = InstMD.size(); i != e; ++i) { 1895 unsigned Kind = InstMD[i].first; 1896 if (Kind < MDNames.size()) { 1897 Out << ", !" << MDNames[Kind]; 1898 } else { 1899 Out << ", !<unknown kind #" << Kind << ">"; 1900 } 1901 Out << ' '; 1902 WriteAsOperandInternal(Out, InstMD[i].second, &TypePrinter, &Machine, 1903 TheModule); 1904 } 1905 } 1906 printInfoComment(I); 1907 } 1908 1909 static void WriteMDNodeComment(const MDNode *Node, 1910 formatted_raw_ostream &Out) { 1911 if (Node->getNumOperands() < 1) 1912 return; 1913 ConstantInt *CI = dyn_cast_or_null<ConstantInt>(Node->getOperand(0)); 1914 if (!CI) return; 1915 APInt Val = CI->getValue(); 1916 APInt Tag = Val & ~APInt(Val.getBitWidth(), LLVMDebugVersionMask); 1917 if (Val.ult(LLVMDebugVersion)) 1918 return; 1919 1920 Out.PadToColumn(50); 1921 if (Tag == dwarf::DW_TAG_user_base) 1922 Out << "; [ DW_TAG_user_base ]"; 1923 else if (Tag.isIntN(32)) { 1924 if (const char *TagName = dwarf::TagString(Tag.getZExtValue())) 1925 Out << "; [ " << TagName << " ]"; 1926 } 1927 } 1928 1929 void AssemblyWriter::writeAllMDNodes() { 1930 SmallVector<const MDNode *, 16> Nodes; 1931 Nodes.resize(Machine.mdn_size()); 1932 for (SlotTracker::mdn_iterator I = Machine.mdn_begin(), E = Machine.mdn_end(); 1933 I != E; ++I) 1934 Nodes[I->second] = cast<MDNode>(I->first); 1935 1936 for (unsigned i = 0, e = Nodes.size(); i != e; ++i) { 1937 Out << '!' << i << " = metadata "; 1938 printMDNodeBody(Nodes[i]); 1939 } 1940 } 1941 1942 void AssemblyWriter::printMDNodeBody(const MDNode *Node) { 1943 WriteMDNodeBodyInternal(Out, Node, &TypePrinter, &Machine, TheModule); 1944 WriteMDNodeComment(Node, Out); 1945 Out << "\n"; 1946 } 1947 1948 //===----------------------------------------------------------------------===// 1949 // External Interface declarations 1950 //===----------------------------------------------------------------------===// 1951 1952 void Module::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW) const { 1953 SlotTracker SlotTable(this); 1954 formatted_raw_ostream OS(ROS); 1955 AssemblyWriter W(OS, SlotTable, this, AAW); 1956 W.printModule(this); 1957 } 1958 1959 void NamedMDNode::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW) const { 1960 SlotTracker SlotTable(getParent()); 1961 formatted_raw_ostream OS(ROS); 1962 AssemblyWriter W(OS, SlotTable, getParent(), AAW); 1963 W.printNamedMDNode(this); 1964 } 1965 1966 void Type::print(raw_ostream &OS) const { 1967 if (this == 0) { 1968 OS << "<null Type>"; 1969 return; 1970 } 1971 TypePrinting TP; 1972 TP.print(const_cast<Type*>(this), OS); 1973 1974 // If the type is a named struct type, print the body as well. 1975 if (StructType *STy = dyn_cast<StructType>(const_cast<Type*>(this))) 1976 if (!STy->isAnonymous()) { 1977 OS << " = type "; 1978 TP.printStructBody(STy, OS); 1979 } 1980 } 1981 1982 void Value::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW) const { 1983 if (this == 0) { 1984 ROS << "printing a <null> value\n"; 1985 return; 1986 } 1987 formatted_raw_ostream OS(ROS); 1988 if (const Instruction *I = dyn_cast<Instruction>(this)) { 1989 const Function *F = I->getParent() ? I->getParent()->getParent() : 0; 1990 SlotTracker SlotTable(F); 1991 AssemblyWriter W(OS, SlotTable, getModuleFromVal(I), AAW); 1992 W.printInstruction(*I); 1993 } else if (const BasicBlock *BB = dyn_cast<BasicBlock>(this)) { 1994 SlotTracker SlotTable(BB->getParent()); 1995 AssemblyWriter W(OS, SlotTable, getModuleFromVal(BB), AAW); 1996 W.printBasicBlock(BB); 1997 } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) { 1998 SlotTracker SlotTable(GV->getParent()); 1999 AssemblyWriter W(OS, SlotTable, GV->getParent(), AAW); 2000 if (const GlobalVariable *V = dyn_cast<GlobalVariable>(GV)) 2001 W.printGlobal(V); 2002 else if (const Function *F = dyn_cast<Function>(GV)) 2003 W.printFunction(F); 2004 else 2005 W.printAlias(cast<GlobalAlias>(GV)); 2006 } else if (const MDNode *N = dyn_cast<MDNode>(this)) { 2007 const Function *F = N->getFunction(); 2008 SlotTracker SlotTable(F); 2009 AssemblyWriter W(OS, SlotTable, F ? F->getParent() : 0, AAW); 2010 W.printMDNodeBody(N); 2011 } else if (const Constant *C = dyn_cast<Constant>(this)) { 2012 TypePrinting TypePrinter; 2013 TypePrinter.print(C->getType(), OS); 2014 OS << ' '; 2015 WriteConstantInternal(OS, C, TypePrinter, 0, 0); 2016 } else if (isa<InlineAsm>(this) || isa<MDString>(this) || 2017 isa<Argument>(this)) { 2018 WriteAsOperand(OS, this, true, 0); 2019 } else { 2020 // Otherwise we don't know what it is. Call the virtual function to 2021 // allow a subclass to print itself. 2022 printCustom(OS); 2023 } 2024 } 2025 2026 // Value::printCustom - subclasses should override this to implement printing. 2027 void Value::printCustom(raw_ostream &OS) const { 2028 llvm_unreachable("Unknown value to print out!"); 2029 } 2030 2031 // Value::dump - allow easy printing of Values from the debugger. 2032 void Value::dump() const { print(dbgs()); dbgs() << '\n'; } 2033 2034 // Type::dump - allow easy printing of Types from the debugger. 2035 void Type::dump() const { print(dbgs()); } 2036 2037 // Module::dump() - Allow printing of Modules from the debugger. 2038 void Module::dump() const { print(dbgs(), 0); } 2039