Home | History | Annotate | Download | only in common
      1 /*
      2 *******************************************************************************
      3 *
      4 *   Copyright (C) 2009-2010, International Business Machines
      5 *   Corporation and others.  All Rights Reserved.
      6 *
      7 *******************************************************************************
      8 *   file name:  normalizer2impl.cpp
      9 *   encoding:   US-ASCII
     10 *   tab size:   8 (not used)
     11 *   indentation:4
     12 *
     13 *   created on: 2009nov22
     14 *   created by: Markus W. Scherer
     15 */
     16 
     17 #include "unicode/utypes.h"
     18 
     19 #if !UCONFIG_NO_NORMALIZATION
     20 
     21 #include "unicode/normalizer2.h"
     22 #include "unicode/udata.h"
     23 #include "unicode/ustring.h"
     24 #include "cmemory.h"
     25 #include "mutex.h"
     26 #include "normalizer2impl.h"
     27 #include "uassert.h"
     28 #include "uhash.h"
     29 #include "uset_imp.h"
     30 #include "utrie2.h"
     31 #include "uvector.h"
     32 
     33 U_NAMESPACE_BEGIN
     34 
     35 // ReorderingBuffer -------------------------------------------------------- ***
     36 
     37 UBool ReorderingBuffer::init(int32_t destCapacity, UErrorCode &errorCode) {
     38     int32_t length=str.length();
     39     start=str.getBuffer(destCapacity);
     40     if(start==NULL) {
     41         // getBuffer() already did str.setToBogus()
     42         errorCode=U_MEMORY_ALLOCATION_ERROR;
     43         return FALSE;
     44     }
     45     limit=start+length;
     46     remainingCapacity=str.getCapacity()-length;
     47     reorderStart=start;
     48     if(start==limit) {
     49         lastCC=0;
     50     } else {
     51         setIterator();
     52         lastCC=previousCC();
     53         // Set reorderStart after the last code point with cc<=1 if there is one.
     54         if(lastCC>1) {
     55             while(previousCC()>1) {}
     56         }
     57         reorderStart=codePointLimit;
     58     }
     59     return TRUE;
     60 }
     61 
     62 UBool ReorderingBuffer::equals(const UChar *otherStart, const UChar *otherLimit) const {
     63     int32_t length=(int32_t)(limit-start);
     64     return
     65         length==(int32_t)(otherLimit-otherStart) &&
     66         0==u_memcmp(start, otherStart, length);
     67 }
     68 
     69 UBool ReorderingBuffer::appendSupplementary(UChar32 c, uint8_t cc, UErrorCode &errorCode) {
     70     if(remainingCapacity<2 && !resize(2, errorCode)) {
     71         return FALSE;
     72     }
     73     if(lastCC<=cc || cc==0) {
     74         limit[0]=U16_LEAD(c);
     75         limit[1]=U16_TRAIL(c);
     76         limit+=2;
     77         lastCC=cc;
     78         if(cc<=1) {
     79             reorderStart=limit;
     80         }
     81     } else {
     82         insert(c, cc);
     83     }
     84     remainingCapacity-=2;
     85     return TRUE;
     86 }
     87 
     88 UBool ReorderingBuffer::append(const UChar *s, int32_t length,
     89                                uint8_t leadCC, uint8_t trailCC,
     90                                UErrorCode &errorCode) {
     91     if(length==0) {
     92         return TRUE;
     93     }
     94     if(remainingCapacity<length && !resize(length, errorCode)) {
     95         return FALSE;
     96     }
     97     remainingCapacity-=length;
     98     if(lastCC<=leadCC || leadCC==0) {
     99         if(trailCC<=1) {
    100             reorderStart=limit+length;
    101         } else if(leadCC<=1) {
    102             reorderStart=limit+1;  // Ok if not a code point boundary.
    103         }
    104         const UChar *sLimit=s+length;
    105         do { *limit++=*s++; } while(s!=sLimit);
    106         lastCC=trailCC;
    107     } else {
    108         int32_t i=0;
    109         UChar32 c;
    110         U16_NEXT(s, i, length, c);
    111         insert(c, leadCC);  // insert first code point
    112         while(i<length) {
    113             U16_NEXT(s, i, length, c);
    114             if(i<length) {
    115                 // s must be in NFD, otherwise we need to use getCC().
    116                 leadCC=Normalizer2Impl::getCCFromYesOrMaybe(impl.getNorm16(c));
    117             } else {
    118                 leadCC=trailCC;
    119             }
    120             append(c, leadCC, errorCode);
    121         }
    122     }
    123     return TRUE;
    124 }
    125 
    126 UBool ReorderingBuffer::appendZeroCC(UChar32 c, UErrorCode &errorCode) {
    127     int32_t cpLength=U16_LENGTH(c);
    128     if(remainingCapacity<cpLength && !resize(cpLength, errorCode)) {
    129         return FALSE;
    130     }
    131     remainingCapacity-=cpLength;
    132     if(cpLength==1) {
    133         *limit++=(UChar)c;
    134     } else {
    135         limit[0]=U16_LEAD(c);
    136         limit[1]=U16_TRAIL(c);
    137         limit+=2;
    138     }
    139     lastCC=0;
    140     reorderStart=limit;
    141     return TRUE;
    142 }
    143 
    144 UBool ReorderingBuffer::appendZeroCC(const UChar *s, const UChar *sLimit, UErrorCode &errorCode) {
    145     if(s==sLimit) {
    146         return TRUE;
    147     }
    148     int32_t length=(int32_t)(sLimit-s);
    149     if(remainingCapacity<length && !resize(length, errorCode)) {
    150         return FALSE;
    151     }
    152     u_memcpy(limit, s, length);
    153     limit+=length;
    154     remainingCapacity-=length;
    155     lastCC=0;
    156     reorderStart=limit;
    157     return TRUE;
    158 }
    159 
    160 void ReorderingBuffer::remove() {
    161     reorderStart=limit=start;
    162     remainingCapacity=str.getCapacity();
    163     lastCC=0;
    164 }
    165 
    166 void ReorderingBuffer::removeSuffix(int32_t suffixLength) {
    167     if(suffixLength<(limit-start)) {
    168         limit-=suffixLength;
    169         remainingCapacity+=suffixLength;
    170     } else {
    171         limit=start;
    172         remainingCapacity=str.getCapacity();
    173     }
    174     lastCC=0;
    175     reorderStart=limit;
    176 }
    177 
    178 UBool ReorderingBuffer::resize(int32_t appendLength, UErrorCode &errorCode) {
    179     int32_t reorderStartIndex=(int32_t)(reorderStart-start);
    180     int32_t length=(int32_t)(limit-start);
    181     str.releaseBuffer(length);
    182     int32_t newCapacity=length+appendLength;
    183     int32_t doubleCapacity=2*str.getCapacity();
    184     if(newCapacity<doubleCapacity) {
    185         newCapacity=doubleCapacity;
    186     }
    187     if(newCapacity<256) {
    188         newCapacity=256;
    189     }
    190     start=str.getBuffer(newCapacity);
    191     if(start==NULL) {
    192         // getBuffer() already did str.setToBogus()
    193         errorCode=U_MEMORY_ALLOCATION_ERROR;
    194         return FALSE;
    195     }
    196     reorderStart=start+reorderStartIndex;
    197     limit=start+length;
    198     remainingCapacity=str.getCapacity()-length;
    199     return TRUE;
    200 }
    201 
    202 void ReorderingBuffer::skipPrevious() {
    203     codePointLimit=codePointStart;
    204     UChar c=*--codePointStart;
    205     if(U16_IS_TRAIL(c) && start<codePointStart && U16_IS_LEAD(*(codePointStart-1))) {
    206         --codePointStart;
    207     }
    208 }
    209 
    210 uint8_t ReorderingBuffer::previousCC() {
    211     codePointLimit=codePointStart;
    212     if(reorderStart>=codePointStart) {
    213         return 0;
    214     }
    215     UChar32 c=*--codePointStart;
    216     if(c<Normalizer2Impl::MIN_CCC_LCCC_CP) {
    217         return 0;
    218     }
    219 
    220     UChar c2;
    221     if(U16_IS_TRAIL(c) && start<codePointStart && U16_IS_LEAD(c2=*(codePointStart-1))) {
    222         --codePointStart;
    223         c=U16_GET_SUPPLEMENTARY(c2, c);
    224     }
    225     return Normalizer2Impl::getCCFromYesOrMaybe(impl.getNorm16(c));
    226 }
    227 
    228 // Inserts c somewhere before the last character.
    229 // Requires 0<cc<lastCC which implies reorderStart<limit.
    230 void ReorderingBuffer::insert(UChar32 c, uint8_t cc) {
    231     for(setIterator(), skipPrevious(); previousCC()>cc;) {}
    232     // insert c at codePointLimit, after the character with prevCC<=cc
    233     UChar *q=limit;
    234     UChar *r=limit+=U16_LENGTH(c);
    235     do {
    236         *--r=*--q;
    237     } while(codePointLimit!=q);
    238     writeCodePoint(q, c);
    239     if(cc<=1) {
    240         reorderStart=r;
    241     }
    242 }
    243 
    244 // Normalizer2Impl --------------------------------------------------------- ***
    245 
    246 struct CanonIterData : public UMemory {
    247     CanonIterData(UErrorCode &errorCode);
    248     ~CanonIterData();
    249     void addToStartSet(UChar32 origin, UChar32 decompLead, UErrorCode &errorCode);
    250     UTrie2 *trie;
    251     UVector canonStartSets;  // contains UnicodeSet *
    252 };
    253 
    254 Normalizer2Impl::~Normalizer2Impl() {
    255     udata_close(memory);
    256     utrie2_close(normTrie);
    257     UTrie2Singleton(fcdTrieSingleton).deleteInstance();
    258     delete (CanonIterData *)canonIterDataSingleton.fInstance;
    259 }
    260 
    261 UBool U_CALLCONV
    262 Normalizer2Impl::isAcceptable(void *context,
    263                               const char * /* type */, const char * /*name*/,
    264                               const UDataInfo *pInfo) {
    265     if(
    266         pInfo->size>=20 &&
    267         pInfo->isBigEndian==U_IS_BIG_ENDIAN &&
    268         pInfo->charsetFamily==U_CHARSET_FAMILY &&
    269         pInfo->dataFormat[0]==0x4e &&    /* dataFormat="Nrm2" */
    270         pInfo->dataFormat[1]==0x72 &&
    271         pInfo->dataFormat[2]==0x6d &&
    272         pInfo->dataFormat[3]==0x32 &&
    273         pInfo->formatVersion[0]==1
    274     ) {
    275         Normalizer2Impl *me=(Normalizer2Impl *)context;
    276         uprv_memcpy(me->dataVersion, pInfo->dataVersion, 4);
    277         return TRUE;
    278     } else {
    279         return FALSE;
    280     }
    281 }
    282 
    283 void
    284 Normalizer2Impl::load(const char *packageName, const char *name, UErrorCode &errorCode) {
    285     if(U_FAILURE(errorCode)) {
    286         return;
    287     }
    288     memory=udata_openChoice(packageName, "nrm", name, isAcceptable, this, &errorCode);
    289     if(U_FAILURE(errorCode)) {
    290         return;
    291     }
    292     const uint8_t *inBytes=(const uint8_t *)udata_getMemory(memory);
    293     const int32_t *inIndexes=(const int32_t *)inBytes;
    294     int32_t indexesLength=inIndexes[IX_NORM_TRIE_OFFSET]/4;
    295     if(indexesLength<=IX_MIN_MAYBE_YES) {
    296         errorCode=U_INVALID_FORMAT_ERROR;  // Not enough indexes.
    297         return;
    298     }
    299 
    300     minDecompNoCP=inIndexes[IX_MIN_DECOMP_NO_CP];
    301     minCompNoMaybeCP=inIndexes[IX_MIN_COMP_NO_MAYBE_CP];
    302 
    303     minYesNo=inIndexes[IX_MIN_YES_NO];
    304     minNoNo=inIndexes[IX_MIN_NO_NO];
    305     limitNoNo=inIndexes[IX_LIMIT_NO_NO];
    306     minMaybeYes=inIndexes[IX_MIN_MAYBE_YES];
    307 
    308     int32_t offset=inIndexes[IX_NORM_TRIE_OFFSET];
    309     int32_t nextOffset=inIndexes[IX_EXTRA_DATA_OFFSET];
    310     normTrie=utrie2_openFromSerialized(UTRIE2_16_VALUE_BITS,
    311                                        inBytes+offset, nextOffset-offset, NULL,
    312                                        &errorCode);
    313     if(U_FAILURE(errorCode)) {
    314         return;
    315     }
    316 
    317     offset=nextOffset;
    318     maybeYesCompositions=(const uint16_t *)(inBytes+offset);
    319     extraData=maybeYesCompositions+(MIN_NORMAL_MAYBE_YES-minMaybeYes);
    320 }
    321 
    322 uint8_t Normalizer2Impl::getTrailCCFromCompYesAndZeroCC(const UChar *cpStart, const UChar *cpLimit) const {
    323     UChar32 c;
    324     if(cpStart==(cpLimit-1)) {
    325         c=*cpStart;
    326     } else {
    327         c=U16_GET_SUPPLEMENTARY(cpStart[0], cpStart[1]);
    328     }
    329     uint16_t prevNorm16=getNorm16(c);
    330     if(prevNorm16<=minYesNo) {
    331         return 0;  // yesYes and Hangul LV/LVT have ccc=tccc=0
    332     } else {
    333         return (uint8_t)(*getMapping(prevNorm16)>>8);  // tccc from yesNo
    334     }
    335 }
    336 
    337 U_CDECL_BEGIN
    338 
    339 static UBool U_CALLCONV
    340 enumPropertyStartsRange(const void *context, UChar32 start, UChar32 /*end*/, uint32_t /*value*/) {
    341     /* add the start code point to the USet */
    342     const USetAdder *sa=(const USetAdder *)context;
    343     sa->add(sa->set, start);
    344     return TRUE;
    345 }
    346 
    347 static uint32_t U_CALLCONV
    348 segmentStarterMapper(const void * /*context*/, uint32_t value) {
    349     return value&CANON_NOT_SEGMENT_STARTER;
    350 }
    351 
    352 U_CDECL_END
    353 
    354 void
    355 Normalizer2Impl::addPropertyStarts(const USetAdder *sa, UErrorCode & /*errorCode*/) const {
    356     /* add the start code point of each same-value range of each trie */
    357     utrie2_enum(normTrie, NULL, enumPropertyStartsRange, sa);
    358 
    359     /* add Hangul LV syllables and LV+1 because of skippables */
    360     for(UChar c=Hangul::HANGUL_BASE; c<Hangul::HANGUL_LIMIT; c+=Hangul::JAMO_T_COUNT) {
    361         sa->add(sa->set, c);
    362         sa->add(sa->set, c+1);
    363     }
    364     sa->add(sa->set, Hangul::HANGUL_LIMIT); /* add Hangul+1 to continue with other properties */
    365 }
    366 
    367 void
    368 Normalizer2Impl::addCanonIterPropertyStarts(const USetAdder *sa, UErrorCode &errorCode) const {
    369     /* add the start code point of each same-value range of the canonical iterator data trie */
    370     if(ensureCanonIterData(errorCode)) {
    371         // currently only used for the SEGMENT_STARTER property
    372         utrie2_enum(((CanonIterData *)canonIterDataSingleton.fInstance)->trie,
    373                     segmentStarterMapper, enumPropertyStartsRange, sa);
    374     }
    375 }
    376 
    377 const UChar *
    378 Normalizer2Impl::copyLowPrefixFromNulTerminated(const UChar *src,
    379                                                 UChar32 minNeedDataCP,
    380                                                 ReorderingBuffer *buffer,
    381                                                 UErrorCode &errorCode) const {
    382     // Make some effort to support NUL-terminated strings reasonably.
    383     // Take the part of the fast quick check loop that does not look up
    384     // data and check the first part of the string.
    385     // After this prefix, determine the string length to simplify the rest
    386     // of the code.
    387     const UChar *prevSrc=src;
    388     UChar c;
    389     while((c=*src++)<minNeedDataCP && c!=0) {}
    390     // Back out the last character for full processing.
    391     // Copy this prefix.
    392     if(--src!=prevSrc) {
    393         if(buffer!=NULL) {
    394             buffer->appendZeroCC(prevSrc, src, errorCode);
    395         }
    396     }
    397     return src;
    398 }
    399 
    400 // Dual functionality:
    401 // buffer!=NULL: normalize
    402 // buffer==NULL: isNormalized/spanQuickCheckYes
    403 const UChar *
    404 Normalizer2Impl::decompose(const UChar *src, const UChar *limit,
    405                            ReorderingBuffer *buffer,
    406                            UErrorCode &errorCode) const {
    407     UChar32 minNoCP=minDecompNoCP;
    408     if(limit==NULL) {
    409         src=copyLowPrefixFromNulTerminated(src, minNoCP, buffer, errorCode);
    410         if(U_FAILURE(errorCode)) {
    411             return src;
    412         }
    413         limit=u_strchr(src, 0);
    414     }
    415 
    416     const UChar *prevSrc;
    417     UChar32 c=0;
    418     uint16_t norm16=0;
    419 
    420     // only for quick check
    421     const UChar *prevBoundary=src;
    422     uint8_t prevCC=0;
    423 
    424     for(;;) {
    425         // count code units below the minimum or with irrelevant data for the quick check
    426         for(prevSrc=src; src!=limit;) {
    427             if( (c=*src)<minNoCP ||
    428                 isMostDecompYesAndZeroCC(norm16=UTRIE2_GET16_FROM_U16_SINGLE_LEAD(normTrie, c))
    429             ) {
    430                 ++src;
    431             } else if(!U16_IS_SURROGATE(c)) {
    432                 break;
    433             } else {
    434                 UChar c2;
    435                 if(U16_IS_SURROGATE_LEAD(c)) {
    436                     if((src+1)!=limit && U16_IS_TRAIL(c2=src[1])) {
    437                         c=U16_GET_SUPPLEMENTARY(c, c2);
    438                     }
    439                 } else /* trail surrogate */ {
    440                     if(prevSrc<src && U16_IS_LEAD(c2=*(src-1))) {
    441                         --src;
    442                         c=U16_GET_SUPPLEMENTARY(c2, c);
    443                     }
    444                 }
    445                 if(isMostDecompYesAndZeroCC(norm16=getNorm16(c))) {
    446                     src+=U16_LENGTH(c);
    447                 } else {
    448                     break;
    449                 }
    450             }
    451         }
    452         // copy these code units all at once
    453         if(src!=prevSrc) {
    454             if(buffer!=NULL) {
    455                 if(!buffer->appendZeroCC(prevSrc, src, errorCode)) {
    456                     break;
    457                 }
    458             } else {
    459                 prevCC=0;
    460                 prevBoundary=src;
    461             }
    462         }
    463         if(src==limit) {
    464             break;
    465         }
    466 
    467         // Check one above-minimum, relevant code point.
    468         src+=U16_LENGTH(c);
    469         if(buffer!=NULL) {
    470             if(!decompose(c, norm16, *buffer, errorCode)) {
    471                 break;
    472             }
    473         } else {
    474             if(isDecompYes(norm16)) {
    475                 uint8_t cc=getCCFromYesOrMaybe(norm16);
    476                 if(prevCC<=cc || cc==0) {
    477                     prevCC=cc;
    478                     if(cc<=1) {
    479                         prevBoundary=src;
    480                     }
    481                     continue;
    482                 }
    483             }
    484             return prevBoundary;  // "no" or cc out of order
    485         }
    486     }
    487     return src;
    488 }
    489 
    490 // Decompose a short piece of text which is likely to contain characters that
    491 // fail the quick check loop and/or where the quick check loop's overhead
    492 // is unlikely to be amortized.
    493 // Called by the compose() and makeFCD() implementations.
    494 UBool Normalizer2Impl::decomposeShort(const UChar *src, const UChar *limit,
    495                                       ReorderingBuffer &buffer,
    496                                       UErrorCode &errorCode) const {
    497     while(src<limit) {
    498         UChar32 c;
    499         uint16_t norm16;
    500         UTRIE2_U16_NEXT16(normTrie, src, limit, c, norm16);
    501         if(!decompose(c, norm16, buffer, errorCode)) {
    502             return FALSE;
    503         }
    504     }
    505     return TRUE;
    506 }
    507 
    508 UBool Normalizer2Impl::decompose(UChar32 c, uint16_t norm16,
    509                                  ReorderingBuffer &buffer,
    510                                  UErrorCode &errorCode) const {
    511     // Only loops for 1:1 algorithmic mappings.
    512     for(;;) {
    513         // get the decomposition and the lead and trail cc's
    514         if(isDecompYes(norm16)) {
    515             // c does not decompose
    516             return buffer.append(c, getCCFromYesOrMaybe(norm16), errorCode);
    517         } else if(isHangul(norm16)) {
    518             // Hangul syllable: decompose algorithmically
    519             UChar jamos[3];
    520             return buffer.appendZeroCC(jamos, jamos+Hangul::decompose(c, jamos), errorCode);
    521         } else if(isDecompNoAlgorithmic(norm16)) {
    522             c=mapAlgorithmic(c, norm16);
    523             norm16=getNorm16(c);
    524         } else {
    525             // c decomposes, get everything from the variable-length extra data
    526             const uint16_t *mapping=getMapping(norm16);
    527             uint16_t firstUnit=*mapping++;
    528             int32_t length=firstUnit&MAPPING_LENGTH_MASK;
    529             uint8_t leadCC, trailCC;
    530             trailCC=(uint8_t)(firstUnit>>8);
    531             if(firstUnit&MAPPING_HAS_CCC_LCCC_WORD) {
    532                 leadCC=(uint8_t)(*mapping++>>8);
    533             } else {
    534                 leadCC=0;
    535             }
    536             return buffer.append((const UChar *)mapping, length, leadCC, trailCC, errorCode);
    537         }
    538     }
    539 }
    540 
    541 const UChar *
    542 Normalizer2Impl::getDecomposition(UChar32 c, UChar buffer[4], int32_t &length) const {
    543     const UChar *decomp=NULL;
    544     uint16_t norm16;
    545     for(;;) {
    546         if(c<minDecompNoCP || isDecompYes(norm16=getNorm16(c))) {
    547             // c does not decompose
    548             return decomp;
    549         } else if(isHangul(norm16)) {
    550             // Hangul syllable: decompose algorithmically
    551             length=Hangul::decompose(c, buffer);
    552             return buffer;
    553         } else if(isDecompNoAlgorithmic(norm16)) {
    554             c=mapAlgorithmic(c, norm16);
    555             decomp=buffer;
    556             length=0;
    557             U16_APPEND_UNSAFE(buffer, length, c);
    558         } else {
    559             // c decomposes, get everything from the variable-length extra data
    560             const uint16_t *mapping=getMapping(norm16);
    561             uint16_t firstUnit=*mapping++;
    562             length=firstUnit&MAPPING_LENGTH_MASK;
    563             if(firstUnit&MAPPING_HAS_CCC_LCCC_WORD) {
    564                 ++mapping;
    565             }
    566             return (const UChar *)mapping;
    567         }
    568     }
    569 }
    570 
    571 void Normalizer2Impl::decomposeAndAppend(const UChar *src, const UChar *limit,
    572                                          UBool doDecompose,
    573                                          ReorderingBuffer &buffer,
    574                                          UErrorCode &errorCode) const {
    575     if(doDecompose) {
    576         decompose(src, limit, &buffer, errorCode);
    577         return;
    578     }
    579     // Just merge the strings at the boundary.
    580     ForwardUTrie2StringIterator iter(normTrie, src, limit);
    581     uint8_t firstCC, prevCC, cc;
    582     firstCC=prevCC=cc=getCC(iter.next16());
    583     while(cc!=0) {
    584         prevCC=cc;
    585         cc=getCC(iter.next16());
    586     };
    587     buffer.append(src, (int32_t)(iter.codePointStart-src), firstCC, prevCC, errorCode) &&
    588         buffer.appendZeroCC(iter.codePointStart, limit, errorCode);
    589 }
    590 
    591 // Note: hasDecompBoundary() could be implemented as aliases to
    592 // hasFCDBoundaryBefore() and hasFCDBoundaryAfter()
    593 // at the cost of building the FCD trie for a decomposition normalizer.
    594 UBool Normalizer2Impl::hasDecompBoundary(UChar32 c, UBool before) const {
    595     for(;;) {
    596         if(c<minDecompNoCP) {
    597             return TRUE;
    598         }
    599         uint16_t norm16=getNorm16(c);
    600         if(isHangul(norm16) || isDecompYesAndZeroCC(norm16)) {
    601             return TRUE;
    602         } else if(norm16>MIN_NORMAL_MAYBE_YES) {
    603             return FALSE;  // ccc!=0
    604         } else if(isDecompNoAlgorithmic(norm16)) {
    605             c=mapAlgorithmic(c, norm16);
    606         } else {
    607             // c decomposes, get everything from the variable-length extra data
    608             const uint16_t *mapping=getMapping(norm16);
    609             uint16_t firstUnit=*mapping++;
    610             if((firstUnit&MAPPING_LENGTH_MASK)==0) {
    611                 return FALSE;
    612             }
    613             if(!before) {
    614                 // decomp after-boundary: same as hasFCDBoundaryAfter(),
    615                 // fcd16<=1 || trailCC==0
    616                 if(firstUnit>0x1ff) {
    617                     return FALSE;  // trailCC>1
    618                 }
    619                 if(firstUnit<=0xff) {
    620                     return TRUE;  // trailCC==0
    621                 }
    622                 // if(trailCC==1) test leadCC==0, same as checking for before-boundary
    623             }
    624             // TRUE if leadCC==0 (hasFCDBoundaryBefore())
    625             return (firstUnit&MAPPING_HAS_CCC_LCCC_WORD)==0 || (*mapping&0xff00)==0;
    626         }
    627     }
    628 }
    629 
    630 /*
    631  * Finds the recomposition result for
    632  * a forward-combining "lead" character,
    633  * specified with a pointer to its compositions list,
    634  * and a backward-combining "trail" character.
    635  *
    636  * If the lead and trail characters combine, then this function returns
    637  * the following "compositeAndFwd" value:
    638  * Bits 21..1  composite character
    639  * Bit      0  set if the composite is a forward-combining starter
    640  * otherwise it returns -1.
    641  *
    642  * The compositions list has (trail, compositeAndFwd) pair entries,
    643  * encoded as either pairs or triples of 16-bit units.
    644  * The last entry has the high bit of its first unit set.
    645  *
    646  * The list is sorted by ascending trail characters (there are no duplicates).
    647  * A linear search is used.
    648  *
    649  * See normalizer2impl.h for a more detailed description
    650  * of the compositions list format.
    651  */
    652 int32_t Normalizer2Impl::combine(const uint16_t *list, UChar32 trail) {
    653     uint16_t key1, firstUnit;
    654     if(trail<COMP_1_TRAIL_LIMIT) {
    655         // trail character is 0..33FF
    656         // result entry may have 2 or 3 units
    657         key1=(uint16_t)(trail<<1);
    658         while(key1>(firstUnit=*list)) {
    659             list+=2+(firstUnit&COMP_1_TRIPLE);
    660         }
    661         if(key1==(firstUnit&COMP_1_TRAIL_MASK)) {
    662             if(firstUnit&COMP_1_TRIPLE) {
    663                 return ((int32_t)list[1]<<16)|list[2];
    664             } else {
    665                 return list[1];
    666             }
    667         }
    668     } else {
    669         // trail character is 3400..10FFFF
    670         // result entry has 3 units
    671         key1=(uint16_t)(COMP_1_TRAIL_LIMIT+
    672                         (((trail>>COMP_1_TRAIL_SHIFT))&
    673                           ~COMP_1_TRIPLE));
    674         uint16_t key2=(uint16_t)(trail<<COMP_2_TRAIL_SHIFT);
    675         uint16_t secondUnit;
    676         for(;;) {
    677             if(key1>(firstUnit=*list)) {
    678                 list+=2+(firstUnit&COMP_1_TRIPLE);
    679             } else if(key1==(firstUnit&COMP_1_TRAIL_MASK)) {
    680                 if(key2>(secondUnit=list[1])) {
    681                     if(firstUnit&COMP_1_LAST_TUPLE) {
    682                         break;
    683                     } else {
    684                         list+=3;
    685                     }
    686                 } else if(key2==(secondUnit&COMP_2_TRAIL_MASK)) {
    687                     return ((int32_t)(secondUnit&~COMP_2_TRAIL_MASK)<<16)|list[2];
    688                 } else {
    689                     break;
    690                 }
    691             } else {
    692                 break;
    693             }
    694         }
    695     }
    696     return -1;
    697 }
    698 
    699 /**
    700   * @param list some character's compositions list
    701   * @param set recursively receives the composites from these compositions
    702   */
    703 void Normalizer2Impl::addComposites(const uint16_t *list, UnicodeSet &set) const {
    704     uint16_t firstUnit;
    705     int32_t compositeAndFwd;
    706     do {
    707         firstUnit=*list;
    708         if((firstUnit&COMP_1_TRIPLE)==0) {
    709             compositeAndFwd=list[1];
    710             list+=2;
    711         } else {
    712             compositeAndFwd=(((int32_t)list[1]&~COMP_2_TRAIL_MASK)<<16)|list[2];
    713             list+=3;
    714         }
    715         UChar32 composite=compositeAndFwd>>1;
    716         if((compositeAndFwd&1)!=0) {
    717             addComposites(getCompositionsListForComposite(getNorm16(composite)), set);
    718         }
    719         set.add(composite);
    720     } while((firstUnit&COMP_1_LAST_TUPLE)==0);
    721 }
    722 
    723 /*
    724  * Recomposes the buffer text starting at recomposeStartIndex
    725  * (which is in NFD - decomposed and canonically ordered),
    726  * and truncates the buffer contents.
    727  *
    728  * Note that recomposition never lengthens the text:
    729  * Any character consists of either one or two code units;
    730  * a composition may contain at most one more code unit than the original starter,
    731  * while the combining mark that is removed has at least one code unit.
    732  */
    733 void Normalizer2Impl::recompose(ReorderingBuffer &buffer, int32_t recomposeStartIndex,
    734                                 UBool onlyContiguous) const {
    735     UChar *p=buffer.getStart()+recomposeStartIndex;
    736     UChar *limit=buffer.getLimit();
    737     if(p==limit) {
    738         return;
    739     }
    740 
    741     UChar *starter, *pRemove, *q, *r;
    742     const uint16_t *compositionsList;
    743     UChar32 c, compositeAndFwd;
    744     uint16_t norm16;
    745     uint8_t cc, prevCC;
    746     UBool starterIsSupplementary;
    747 
    748     // Some of the following variables are not used until we have a forward-combining starter
    749     // and are only initialized now to avoid compiler warnings.
    750     compositionsList=NULL;  // used as indicator for whether we have a forward-combining starter
    751     starter=NULL;
    752     starterIsSupplementary=FALSE;
    753     prevCC=0;
    754 
    755     for(;;) {
    756         UTRIE2_U16_NEXT16(normTrie, p, limit, c, norm16);
    757         cc=getCCFromYesOrMaybe(norm16);
    758         if( // this character combines backward and
    759             isMaybe(norm16) &&
    760             // we have seen a starter that combines forward and
    761             compositionsList!=NULL &&
    762             // the backward-combining character is not blocked
    763             (prevCC<cc || prevCC==0)
    764         ) {
    765             if(isJamoVT(norm16)) {
    766                 // c is a Jamo V/T, see if we can compose it with the previous character.
    767                 if(c<Hangul::JAMO_T_BASE) {
    768                     // c is a Jamo Vowel, compose with previous Jamo L and following Jamo T.
    769                     UChar prev=(UChar)(*starter-Hangul::JAMO_L_BASE);
    770                     if(prev<Hangul::JAMO_L_COUNT) {
    771                         pRemove=p-1;
    772                         UChar syllable=(UChar)
    773                             (Hangul::HANGUL_BASE+
    774                              (prev*Hangul::JAMO_V_COUNT+(c-Hangul::JAMO_V_BASE))*
    775                              Hangul::JAMO_T_COUNT);
    776                         UChar t;
    777                         if(p!=limit && (t=(UChar)(*p-Hangul::JAMO_T_BASE))<Hangul::JAMO_T_COUNT) {
    778                             ++p;
    779                             syllable+=t;  // The next character was a Jamo T.
    780                         }
    781                         *starter=syllable;
    782                         // remove the Jamo V/T
    783                         q=pRemove;
    784                         r=p;
    785                         while(r<limit) {
    786                             *q++=*r++;
    787                         }
    788                         limit=q;
    789                         p=pRemove;
    790                     }
    791                 }
    792                 /*
    793                  * No "else" for Jamo T:
    794                  * Since the input is in NFD, there are no Hangul LV syllables that
    795                  * a Jamo T could combine with.
    796                  * All Jamo Ts are combined above when handling Jamo Vs.
    797                  */
    798                 if(p==limit) {
    799                     break;
    800                 }
    801                 compositionsList=NULL;
    802                 continue;
    803             } else if((compositeAndFwd=combine(compositionsList, c))>=0) {
    804                 // The starter and the combining mark (c) do combine.
    805                 UChar32 composite=compositeAndFwd>>1;
    806 
    807                 // Replace the starter with the composite, remove the combining mark.
    808                 pRemove=p-U16_LENGTH(c);  // pRemove & p: start & limit of the combining mark
    809                 if(starterIsSupplementary) {
    810                     if(U_IS_SUPPLEMENTARY(composite)) {
    811                         // both are supplementary
    812                         starter[0]=U16_LEAD(composite);
    813                         starter[1]=U16_TRAIL(composite);
    814                     } else {
    815                         *starter=(UChar)composite;
    816                         // The composite is shorter than the starter,
    817                         // move the intermediate characters forward one.
    818                         starterIsSupplementary=FALSE;
    819                         q=starter+1;
    820                         r=q+1;
    821                         while(r<pRemove) {
    822                             *q++=*r++;
    823                         }
    824                         --pRemove;
    825                     }
    826                 } else if(U_IS_SUPPLEMENTARY(composite)) {
    827                     // The composite is longer than the starter,
    828                     // move the intermediate characters back one.
    829                     starterIsSupplementary=TRUE;
    830                     ++starter;  // temporarily increment for the loop boundary
    831                     q=pRemove;
    832                     r=++pRemove;
    833                     while(starter<q) {
    834                         *--r=*--q;
    835                     }
    836                     *starter=U16_TRAIL(composite);
    837                     *--starter=U16_LEAD(composite);  // undo the temporary increment
    838                 } else {
    839                     // both are on the BMP
    840                     *starter=(UChar)composite;
    841                 }
    842 
    843                 /* remove the combining mark by moving the following text over it */
    844                 if(pRemove<p) {
    845                     q=pRemove;
    846                     r=p;
    847                     while(r<limit) {
    848                         *q++=*r++;
    849                     }
    850                     limit=q;
    851                     p=pRemove;
    852                 }
    853                 // Keep prevCC because we removed the combining mark.
    854 
    855                 if(p==limit) {
    856                     break;
    857                 }
    858                 // Is the composite a starter that combines forward?
    859                 if(compositeAndFwd&1) {
    860                     compositionsList=
    861                         getCompositionsListForComposite(getNorm16(composite));
    862                 } else {
    863                     compositionsList=NULL;
    864                 }
    865 
    866                 // We combined; continue with looking for compositions.
    867                 continue;
    868             }
    869         }
    870 
    871         // no combination this time
    872         prevCC=cc;
    873         if(p==limit) {
    874             break;
    875         }
    876 
    877         // If c did not combine, then check if it is a starter.
    878         if(cc==0) {
    879             // Found a new starter.
    880             if((compositionsList=getCompositionsListForDecompYes(norm16))!=NULL) {
    881                 // It may combine with something, prepare for it.
    882                 if(U_IS_BMP(c)) {
    883                     starterIsSupplementary=FALSE;
    884                     starter=p-1;
    885                 } else {
    886                     starterIsSupplementary=TRUE;
    887                     starter=p-2;
    888                 }
    889             }
    890         } else if(onlyContiguous) {
    891             // FCC: no discontiguous compositions; any intervening character blocks.
    892             compositionsList=NULL;
    893         }
    894     }
    895     buffer.setReorderingLimit(limit);
    896 }
    897 
    898 // Very similar to composeQuickCheck(): Make the same changes in both places if relevant.
    899 // doCompose: normalize
    900 // !doCompose: isNormalized (buffer must be empty and initialized)
    901 UBool
    902 Normalizer2Impl::compose(const UChar *src, const UChar *limit,
    903                          UBool onlyContiguous,
    904                          UBool doCompose,
    905                          ReorderingBuffer &buffer,
    906                          UErrorCode &errorCode) const {
    907     /*
    908      * prevBoundary points to the last character before the current one
    909      * that has a composition boundary before it with ccc==0 and quick check "yes".
    910      * Keeping track of prevBoundary saves us looking for a composition boundary
    911      * when we find a "no" or "maybe".
    912      *
    913      * When we back out from prevSrc back to prevBoundary,
    914      * then we also remove those same characters (which had been simply copied
    915      * or canonically-order-inserted) from the ReorderingBuffer.
    916      * Therefore, at all times, the [prevBoundary..prevSrc[ source units
    917      * must correspond 1:1 to destination units at the end of the destination buffer.
    918      */
    919     const UChar *prevBoundary=src;
    920     UChar32 minNoMaybeCP=minCompNoMaybeCP;
    921     if(limit==NULL) {
    922         src=copyLowPrefixFromNulTerminated(src, minNoMaybeCP,
    923                                            doCompose ? &buffer : NULL,
    924                                            errorCode);
    925         if(U_FAILURE(errorCode)) {
    926             return FALSE;
    927         }
    928         if(prevBoundary<src) {
    929             // Set prevBoundary to the last character in the prefix.
    930             prevBoundary=src-1;
    931         }
    932         limit=u_strchr(src, 0);
    933     }
    934 
    935     const UChar *prevSrc;
    936     UChar32 c=0;
    937     uint16_t norm16=0;
    938 
    939     // only for isNormalized
    940     uint8_t prevCC=0;
    941 
    942     for(;;) {
    943         // count code units below the minimum or with irrelevant data for the quick check
    944         for(prevSrc=src; src!=limit;) {
    945             if( (c=*src)<minNoMaybeCP ||
    946                 isCompYesAndZeroCC(norm16=UTRIE2_GET16_FROM_U16_SINGLE_LEAD(normTrie, c))
    947             ) {
    948                 ++src;
    949             } else if(!U16_IS_SURROGATE(c)) {
    950                 break;
    951             } else {
    952                 UChar c2;
    953                 if(U16_IS_SURROGATE_LEAD(c)) {
    954                     if((src+1)!=limit && U16_IS_TRAIL(c2=src[1])) {
    955                         c=U16_GET_SUPPLEMENTARY(c, c2);
    956                     }
    957                 } else /* trail surrogate */ {
    958                     if(prevSrc<src && U16_IS_LEAD(c2=*(src-1))) {
    959                         --src;
    960                         c=U16_GET_SUPPLEMENTARY(c2, c);
    961                     }
    962                 }
    963                 if(isCompYesAndZeroCC(norm16=getNorm16(c))) {
    964                     src+=U16_LENGTH(c);
    965                 } else {
    966                     break;
    967                 }
    968             }
    969         }
    970         // copy these code units all at once
    971         if(src!=prevSrc) {
    972             if(doCompose) {
    973                 if(!buffer.appendZeroCC(prevSrc, src, errorCode)) {
    974                     break;
    975                 }
    976             } else {
    977                 prevCC=0;
    978             }
    979             if(src==limit) {
    980                 break;
    981             }
    982             // Set prevBoundary to the last character in the quick check loop.
    983             prevBoundary=src-1;
    984             if( U16_IS_TRAIL(*prevBoundary) && prevSrc<prevBoundary &&
    985                 U16_IS_LEAD(*(prevBoundary-1))
    986             ) {
    987                 --prevBoundary;
    988             }
    989             // The start of the current character (c).
    990             prevSrc=src;
    991         } else if(src==limit) {
    992             break;
    993         }
    994 
    995         src+=U16_LENGTH(c);
    996         /*
    997          * isCompYesAndZeroCC(norm16) is false, that is, norm16>=minNoNo.
    998          * c is either a "noNo" (has a mapping) or a "maybeYes" (combines backward)
    999          * or has ccc!=0.
   1000          * Check for Jamo V/T, then for regular characters.
   1001          * c is not a Hangul syllable or Jamo L because those have "yes" properties.
   1002          */
   1003         if(isJamoVT(norm16) && prevBoundary!=prevSrc) {
   1004             UChar prev=*(prevSrc-1);
   1005             UBool needToDecompose=FALSE;
   1006             if(c<Hangul::JAMO_T_BASE) {
   1007                 // c is a Jamo Vowel, compose with previous Jamo L and following Jamo T.
   1008                 prev=(UChar)(prev-Hangul::JAMO_L_BASE);
   1009                 if(prev<Hangul::JAMO_L_COUNT) {
   1010                     if(!doCompose) {
   1011                         return FALSE;
   1012                     }
   1013                     UChar syllable=(UChar)
   1014                         (Hangul::HANGUL_BASE+
   1015                          (prev*Hangul::JAMO_V_COUNT+(c-Hangul::JAMO_V_BASE))*
   1016                          Hangul::JAMO_T_COUNT);
   1017                     UChar t;
   1018                     if(src!=limit && (t=(UChar)(*src-Hangul::JAMO_T_BASE))<Hangul::JAMO_T_COUNT) {
   1019                         ++src;
   1020                         syllable+=t;  // The next character was a Jamo T.
   1021                         prevBoundary=src;
   1022                         buffer.setLastChar(syllable);
   1023                         continue;
   1024                     }
   1025                     // If we see L+V+x where x!=T then we drop to the slow path,
   1026                     // decompose and recompose.
   1027                     // This is to deal with NFKC finding normal L and V but a
   1028                     // compatibility variant of a T. We need to either fully compose that
   1029                     // combination here (which would complicate the code and may not work
   1030                     // with strange custom data) or use the slow path -- or else our replacing
   1031                     // two input characters (L+V) with one output character (LV syllable)
   1032                     // would violate the invariant that [prevBoundary..prevSrc[ has the same
   1033                     // length as what we appended to the buffer since prevBoundary.
   1034                     needToDecompose=TRUE;
   1035                 }
   1036             } else if(Hangul::isHangulWithoutJamoT(prev)) {
   1037                 // c is a Jamo Trailing consonant,
   1038                 // compose with previous Hangul LV that does not contain a Jamo T.
   1039                 if(!doCompose) {
   1040                     return FALSE;
   1041                 }
   1042                 buffer.setLastChar((UChar)(prev+c-Hangul::JAMO_T_BASE));
   1043                 prevBoundary=src;
   1044                 continue;
   1045             }
   1046             if(!needToDecompose) {
   1047                 // The Jamo V/T did not compose into a Hangul syllable.
   1048                 if(doCompose) {
   1049                     if(!buffer.appendBMP((UChar)c, 0, errorCode)) {
   1050                         break;
   1051                     }
   1052                 } else {
   1053                     prevCC=0;
   1054                 }
   1055                 continue;
   1056             }
   1057         }
   1058         /*
   1059          * Source buffer pointers:
   1060          *
   1061          *  all done      quick check   current char  not yet
   1062          *                "yes" but     (c)           processed
   1063          *                may combine
   1064          *                forward
   1065          * [-------------[-------------[-------------[-------------[
   1066          * |             |             |             |             |
   1067          * orig. src     prevBoundary  prevSrc       src           limit
   1068          *
   1069          *
   1070          * Destination buffer pointers inside the ReorderingBuffer:
   1071          *
   1072          *  all done      might take    not filled yet
   1073          *                characters for
   1074          *                reordering
   1075          * [-------------[-------------[-------------[
   1076          * |             |             |             |
   1077          * start         reorderStart  limit         |
   1078          *                             +remainingCap.+
   1079          */
   1080         if(norm16>=MIN_YES_YES_WITH_CC) {
   1081             uint8_t cc=(uint8_t)norm16;  // cc!=0
   1082             if( onlyContiguous &&  // FCC
   1083                 (doCompose ? buffer.getLastCC() : prevCC)==0 &&
   1084                 prevBoundary<prevSrc &&
   1085                 // buffer.getLastCC()==0 && prevBoundary<prevSrc tell us that
   1086                 // [prevBoundary..prevSrc[ (which is exactly one character under these conditions)
   1087                 // passed the quick check "yes && ccc==0" test.
   1088                 // Check whether the last character was a "yesYes" or a "yesNo".
   1089                 // If a "yesNo", then we get its trailing ccc from its
   1090                 // mapping and check for canonical order.
   1091                 // All other cases are ok.
   1092                 getTrailCCFromCompYesAndZeroCC(prevBoundary, prevSrc)>cc
   1093             ) {
   1094                 // Fails FCD test, need to decompose and contiguously recompose.
   1095                 if(!doCompose) {
   1096                     return FALSE;
   1097                 }
   1098             } else if(doCompose) {
   1099                 if(!buffer.append(c, cc, errorCode)) {
   1100                     break;
   1101                 }
   1102                 continue;
   1103             } else if(prevCC<=cc) {
   1104                 prevCC=cc;
   1105                 continue;
   1106             } else {
   1107                 return FALSE;
   1108             }
   1109         } else if(!doCompose && !isMaybeOrNonZeroCC(norm16)) {
   1110             return FALSE;
   1111         }
   1112 
   1113         /*
   1114          * Find appropriate boundaries around this character,
   1115          * decompose the source text from between the boundaries,
   1116          * and recompose it.
   1117          *
   1118          * We may need to remove the last few characters from the ReorderingBuffer
   1119          * to account for source text that was copied or appended
   1120          * but needs to take part in the recomposition.
   1121          */
   1122 
   1123         /*
   1124          * Find the last composition boundary in [prevBoundary..src[.
   1125          * It is either the decomposition of the current character (at prevSrc),
   1126          * or prevBoundary.
   1127          */
   1128         if(hasCompBoundaryBefore(c, norm16)) {
   1129             prevBoundary=prevSrc;
   1130         } else if(doCompose) {
   1131             buffer.removeSuffix((int32_t)(prevSrc-prevBoundary));
   1132         }
   1133 
   1134         // Find the next composition boundary in [src..limit[ -
   1135         // modifies src to point to the next starter.
   1136         src=(UChar *)findNextCompBoundary(src, limit);
   1137 
   1138         // Decompose [prevBoundary..src[ into the buffer and then recompose that part of it.
   1139         int32_t recomposeStartIndex=buffer.length();
   1140         if(!decomposeShort(prevBoundary, src, buffer, errorCode)) {
   1141             break;
   1142         }
   1143         recompose(buffer, recomposeStartIndex, onlyContiguous);
   1144         if(!doCompose) {
   1145             if(!buffer.equals(prevBoundary, src)) {
   1146                 return FALSE;
   1147             }
   1148             buffer.remove();
   1149             prevCC=0;
   1150         }
   1151 
   1152         // Move to the next starter. We never need to look back before this point again.
   1153         prevBoundary=src;
   1154     }
   1155     return TRUE;
   1156 }
   1157 
   1158 // Very similar to compose(): Make the same changes in both places if relevant.
   1159 // pQCResult==NULL: spanQuickCheckYes
   1160 // pQCResult!=NULL: quickCheck (*pQCResult must be UNORM_YES)
   1161 const UChar *
   1162 Normalizer2Impl::composeQuickCheck(const UChar *src, const UChar *limit,
   1163                                    UBool onlyContiguous,
   1164                                    UNormalizationCheckResult *pQCResult) const {
   1165     /*
   1166      * prevBoundary points to the last character before the current one
   1167      * that has a composition boundary before it with ccc==0 and quick check "yes".
   1168      */
   1169     const UChar *prevBoundary=src;
   1170     UChar32 minNoMaybeCP=minCompNoMaybeCP;
   1171     if(limit==NULL) {
   1172         UErrorCode errorCode=U_ZERO_ERROR;
   1173         src=copyLowPrefixFromNulTerminated(src, minNoMaybeCP, NULL, errorCode);
   1174         if(prevBoundary<src) {
   1175             // Set prevBoundary to the last character in the prefix.
   1176             prevBoundary=src-1;
   1177         }
   1178         limit=u_strchr(src, 0);
   1179     }
   1180 
   1181     const UChar *prevSrc;
   1182     UChar32 c=0;
   1183     uint16_t norm16=0;
   1184     uint8_t prevCC=0;
   1185 
   1186     for(;;) {
   1187         // count code units below the minimum or with irrelevant data for the quick check
   1188         for(prevSrc=src;;) {
   1189             if(src==limit) {
   1190                 return src;
   1191             }
   1192             if( (c=*src)<minNoMaybeCP ||
   1193                 isCompYesAndZeroCC(norm16=UTRIE2_GET16_FROM_U16_SINGLE_LEAD(normTrie, c))
   1194             ) {
   1195                 ++src;
   1196             } else if(!U16_IS_SURROGATE(c)) {
   1197                 break;
   1198             } else {
   1199                 UChar c2;
   1200                 if(U16_IS_SURROGATE_LEAD(c)) {
   1201                     if((src+1)!=limit && U16_IS_TRAIL(c2=src[1])) {
   1202                         c=U16_GET_SUPPLEMENTARY(c, c2);
   1203                     }
   1204                 } else /* trail surrogate */ {
   1205                     if(prevSrc<src && U16_IS_LEAD(c2=*(src-1))) {
   1206                         --src;
   1207                         c=U16_GET_SUPPLEMENTARY(c2, c);
   1208                     }
   1209                 }
   1210                 if(isCompYesAndZeroCC(norm16=getNorm16(c))) {
   1211                     src+=U16_LENGTH(c);
   1212                 } else {
   1213                     break;
   1214                 }
   1215             }
   1216         }
   1217         if(src!=prevSrc) {
   1218             // Set prevBoundary to the last character in the quick check loop.
   1219             prevBoundary=src-1;
   1220             if( U16_IS_TRAIL(*prevBoundary) && prevSrc<prevBoundary &&
   1221                 U16_IS_LEAD(*(prevBoundary-1))
   1222             ) {
   1223                 --prevBoundary;
   1224             }
   1225             prevCC=0;
   1226             // The start of the current character (c).
   1227             prevSrc=src;
   1228         }
   1229 
   1230         src+=U16_LENGTH(c);
   1231         /*
   1232          * isCompYesAndZeroCC(norm16) is false, that is, norm16>=minNoNo.
   1233          * c is either a "noNo" (has a mapping) or a "maybeYes" (combines backward)
   1234          * or has ccc!=0.
   1235          */
   1236         if(isMaybeOrNonZeroCC(norm16)) {
   1237             uint8_t cc=getCCFromYesOrMaybe(norm16);
   1238             if( onlyContiguous &&  // FCC
   1239                 cc!=0 &&
   1240                 prevCC==0 &&
   1241                 prevBoundary<prevSrc &&
   1242                 // prevCC==0 && prevBoundary<prevSrc tell us that
   1243                 // [prevBoundary..prevSrc[ (which is exactly one character under these conditions)
   1244                 // passed the quick check "yes && ccc==0" test.
   1245                 // Check whether the last character was a "yesYes" or a "yesNo".
   1246                 // If a "yesNo", then we get its trailing ccc from its
   1247                 // mapping and check for canonical order.
   1248                 // All other cases are ok.
   1249                 getTrailCCFromCompYesAndZeroCC(prevBoundary, prevSrc)>cc
   1250             ) {
   1251                 // Fails FCD test.
   1252             } else if(prevCC<=cc || cc==0) {
   1253                 prevCC=cc;
   1254                 if(norm16<MIN_YES_YES_WITH_CC) {
   1255                     if(pQCResult!=NULL) {
   1256                         *pQCResult=UNORM_MAYBE;
   1257                     } else {
   1258                         return prevBoundary;
   1259                     }
   1260                 }
   1261                 continue;
   1262             }
   1263         }
   1264         if(pQCResult!=NULL) {
   1265             *pQCResult=UNORM_NO;
   1266         }
   1267         return prevBoundary;
   1268     }
   1269 }
   1270 
   1271 void Normalizer2Impl::composeAndAppend(const UChar *src, const UChar *limit,
   1272                                        UBool doCompose,
   1273                                        UBool onlyContiguous,
   1274                                        ReorderingBuffer &buffer,
   1275                                        UErrorCode &errorCode) const {
   1276     if(!buffer.isEmpty()) {
   1277         const UChar *firstStarterInSrc=findNextCompBoundary(src, limit);
   1278         if(src!=firstStarterInSrc) {
   1279             const UChar *lastStarterInDest=findPreviousCompBoundary(buffer.getStart(),
   1280                                                                     buffer.getLimit());
   1281             UnicodeString middle(lastStarterInDest,
   1282                                  (int32_t)(buffer.getLimit()-lastStarterInDest));
   1283             buffer.removeSuffix((int32_t)(buffer.getLimit()-lastStarterInDest));
   1284             middle.append(src, (int32_t)(firstStarterInSrc-src));
   1285             const UChar *middleStart=middle.getBuffer();
   1286             compose(middleStart, middleStart+middle.length(), onlyContiguous,
   1287                     TRUE, buffer, errorCode);
   1288             if(U_FAILURE(errorCode)) {
   1289                 return;
   1290             }
   1291             src=firstStarterInSrc;
   1292         }
   1293     }
   1294     if(doCompose) {
   1295         compose(src, limit, onlyContiguous, TRUE, buffer, errorCode);
   1296     } else {
   1297         buffer.appendZeroCC(src, limit, errorCode);
   1298     }
   1299 }
   1300 
   1301 /**
   1302  * Does c have a composition boundary before it?
   1303  * True if its decomposition begins with a character that has
   1304  * ccc=0 && NFC_QC=Yes (isCompYesAndZeroCC()).
   1305  * As a shortcut, this is true if c itself has ccc=0 && NFC_QC=Yes
   1306  * (isCompYesAndZeroCC()) so we need not decompose.
   1307  */
   1308 UBool Normalizer2Impl::hasCompBoundaryBefore(UChar32 c, uint16_t norm16) const {
   1309     for(;;) {
   1310         if(isCompYesAndZeroCC(norm16)) {
   1311             return TRUE;
   1312         } else if(isMaybeOrNonZeroCC(norm16)) {
   1313             return FALSE;
   1314         } else if(isDecompNoAlgorithmic(norm16)) {
   1315             c=mapAlgorithmic(c, norm16);
   1316             norm16=getNorm16(c);
   1317         } else {
   1318             // c decomposes, get everything from the variable-length extra data
   1319             const uint16_t *mapping=getMapping(norm16);
   1320             uint16_t firstUnit=*mapping++;
   1321             if((firstUnit&MAPPING_LENGTH_MASK)==0) {
   1322                 return FALSE;
   1323             }
   1324             if((firstUnit&MAPPING_HAS_CCC_LCCC_WORD) && (*mapping++&0xff00)) {
   1325                 return FALSE;  // non-zero leadCC
   1326             }
   1327             int32_t i=0;
   1328             UChar32 c;
   1329             U16_NEXT_UNSAFE(mapping, i, c);
   1330             return isCompYesAndZeroCC(getNorm16(c));
   1331         }
   1332     }
   1333 }
   1334 
   1335 UBool Normalizer2Impl::hasCompBoundaryAfter(UChar32 c, UBool onlyContiguous, UBool testInert) const {
   1336     for(;;) {
   1337         uint16_t norm16=getNorm16(c);
   1338         if(isInert(norm16)) {
   1339             return TRUE;
   1340         } else if(norm16<=minYesNo) {
   1341             // Hangul LVT (==minYesNo) has a boundary after it.
   1342             // Hangul LV and non-inert yesYes characters combine forward.
   1343             return isHangul(norm16) && !Hangul::isHangulWithoutJamoT((UChar)c);
   1344         } else if(norm16>= (testInert ? minNoNo : minMaybeYes)) {
   1345             return FALSE;
   1346         } else if(isDecompNoAlgorithmic(norm16)) {
   1347             c=mapAlgorithmic(c, norm16);
   1348         } else {
   1349             // c decomposes, get everything from the variable-length extra data.
   1350             // If testInert, then c must be a yesNo character which has lccc=0,
   1351             // otherwise it could be a noNo.
   1352             const uint16_t *mapping=getMapping(norm16);
   1353             uint16_t firstUnit=*mapping;
   1354             // TRUE if
   1355             //      c is not deleted, and
   1356             //      it and its decomposition do not combine forward, and it has a starter, and
   1357             //      if FCC then trailCC<=1
   1358             return
   1359                 (firstUnit&MAPPING_LENGTH_MASK)!=0 &&
   1360                 (firstUnit&(MAPPING_PLUS_COMPOSITION_LIST|MAPPING_NO_COMP_BOUNDARY_AFTER))==0 &&
   1361                 (!onlyContiguous || firstUnit<=0x1ff);
   1362         }
   1363     }
   1364 }
   1365 
   1366 const UChar *Normalizer2Impl::findPreviousCompBoundary(const UChar *start, const UChar *p) const {
   1367     BackwardUTrie2StringIterator iter(normTrie, start, p);
   1368     uint16_t norm16;
   1369     do {
   1370         norm16=iter.previous16();
   1371     } while(!hasCompBoundaryBefore(iter.codePoint, norm16));
   1372     // We could also test hasCompBoundaryAfter() and return iter.codePointLimit,
   1373     // but that's probably not worth the extra cost.
   1374     return iter.codePointStart;
   1375 }
   1376 
   1377 const UChar *Normalizer2Impl::findNextCompBoundary(const UChar *p, const UChar *limit) const {
   1378     ForwardUTrie2StringIterator iter(normTrie, p, limit);
   1379     uint16_t norm16;
   1380     do {
   1381         norm16=iter.next16();
   1382     } while(!hasCompBoundaryBefore(iter.codePoint, norm16));
   1383     return iter.codePointStart;
   1384 }
   1385 
   1386 class FCDTrieSingleton : public UTrie2Singleton {
   1387 public:
   1388     FCDTrieSingleton(SimpleSingleton &s, Normalizer2Impl &ni, UErrorCode &ec) :
   1389         UTrie2Singleton(s), impl(ni), errorCode(ec) {}
   1390     UTrie2 *getInstance(UErrorCode &errorCode) {
   1391         return UTrie2Singleton::getInstance(createInstance, this, errorCode);
   1392     }
   1393     static void *createInstance(const void *context, UErrorCode &errorCode);
   1394     UBool rangeHandler(UChar32 start, UChar32 end, uint32_t value) {
   1395         if(value!=0) {
   1396             impl.setFCD16FromNorm16(start, end, (uint16_t)value, newFCDTrie, errorCode);
   1397         }
   1398         return U_SUCCESS(errorCode);
   1399     }
   1400 
   1401     Normalizer2Impl &impl;
   1402     UTrie2 *newFCDTrie;
   1403     UErrorCode &errorCode;
   1404 };
   1405 
   1406 U_CDECL_BEGIN
   1407 
   1408 // Set the FCD value for a range of same-norm16 characters.
   1409 static UBool U_CALLCONV
   1410 enumRangeHandler(const void *context, UChar32 start, UChar32 end, uint32_t value) {
   1411     return ((FCDTrieSingleton *)context)->rangeHandler(start, end, value);
   1412 }
   1413 
   1414 // Collect (OR together) the FCD values for a range of supplementary characters,
   1415 // for their lead surrogate code unit.
   1416 static UBool U_CALLCONV
   1417 enumRangeOrValue(const void *context, UChar32 /*start*/, UChar32 /*end*/, uint32_t value) {
   1418     *((uint32_t *)context)|=value;
   1419     return TRUE;
   1420 }
   1421 
   1422 U_CDECL_END
   1423 
   1424 void *FCDTrieSingleton::createInstance(const void *context, UErrorCode &errorCode) {
   1425     FCDTrieSingleton *me=(FCDTrieSingleton *)context;
   1426     me->newFCDTrie=utrie2_open(0, 0, &errorCode);
   1427     if(U_SUCCESS(errorCode)) {
   1428         utrie2_enum(me->impl.getNormTrie(), NULL, enumRangeHandler, me);
   1429         for(UChar lead=0xd800; lead<0xdc00; ++lead) {
   1430             uint32_t oredValue=utrie2_get32(me->newFCDTrie, lead);
   1431             utrie2_enumForLeadSurrogate(me->newFCDTrie, lead, NULL, enumRangeOrValue, &oredValue);
   1432             if(oredValue!=0) {
   1433                 // Set a "bad" value for makeFCD() to break the quick check loop
   1434                 // and look up the value for the supplementary code point.
   1435                 // If there is any lccc, then set the worst-case lccc of 1.
   1436                 // The ORed-together value's tccc is already the worst case.
   1437                 if(oredValue>0xff) {
   1438                     oredValue=0x100|(oredValue&0xff);
   1439                 }
   1440                 utrie2_set32ForLeadSurrogateCodeUnit(me->newFCDTrie, lead, oredValue, &errorCode);
   1441             }
   1442         }
   1443         utrie2_freeze(me->newFCDTrie, UTRIE2_16_VALUE_BITS, &errorCode);
   1444         if(U_SUCCESS(errorCode)) {
   1445             return me->newFCDTrie;
   1446         }
   1447     }
   1448     utrie2_close(me->newFCDTrie);
   1449     return NULL;
   1450 }
   1451 
   1452 void Normalizer2Impl::setFCD16FromNorm16(UChar32 start, UChar32 end, uint16_t norm16,
   1453                                          UTrie2 *newFCDTrie, UErrorCode &errorCode) const {
   1454     // Only loops for 1:1 algorithmic mappings.
   1455     for(;;) {
   1456         if(norm16>=MIN_NORMAL_MAYBE_YES) {
   1457             norm16&=0xff;
   1458             norm16|=norm16<<8;
   1459         } else if(norm16<=minYesNo || minMaybeYes<=norm16) {
   1460             // no decomposition or Hangul syllable, all zeros
   1461             break;
   1462         } else if(limitNoNo<=norm16) {
   1463             int32_t delta=norm16-(minMaybeYes-MAX_DELTA-1);
   1464             if(start==end) {
   1465                 start+=delta;
   1466                 norm16=getNorm16(start);
   1467             } else {
   1468                 // the same delta leads from different original characters to different mappings
   1469                 do {
   1470                     UChar32 c=start+delta;
   1471                     setFCD16FromNorm16(c, c, getNorm16(c), newFCDTrie, errorCode);
   1472                 } while(++start<=end);
   1473                 break;
   1474             }
   1475         } else {
   1476             // c decomposes, get everything from the variable-length extra data
   1477             const uint16_t *mapping=getMapping(norm16);
   1478             uint16_t firstUnit=*mapping;
   1479             if((firstUnit&MAPPING_LENGTH_MASK)==0) {
   1480                 // A character that is deleted (maps to an empty string) must
   1481                 // get the worst-case lccc and tccc values because arbitrary
   1482                 // characters on both sides will become adjacent.
   1483                 norm16=0x1ff;
   1484             } else {
   1485                 if(firstUnit&MAPPING_HAS_CCC_LCCC_WORD) {
   1486                     norm16=mapping[1]&0xff00;  // lccc
   1487                 } else {
   1488                     norm16=0;
   1489                 }
   1490                 norm16|=firstUnit>>8;  // tccc
   1491             }
   1492         }
   1493         utrie2_setRange32(newFCDTrie, start, end, norm16, TRUE, &errorCode);
   1494         break;
   1495     }
   1496 }
   1497 
   1498 const UTrie2 *Normalizer2Impl::getFCDTrie(UErrorCode &errorCode) const {
   1499     // Logically const: Synchronized instantiation.
   1500     Normalizer2Impl *me=const_cast<Normalizer2Impl *>(this);
   1501     return FCDTrieSingleton(me->fcdTrieSingleton, *me, errorCode).getInstance(errorCode);
   1502 }
   1503 
   1504 // Dual functionality:
   1505 // buffer!=NULL: normalize
   1506 // buffer==NULL: isNormalized/quickCheck/spanQuickCheckYes
   1507 const UChar *
   1508 Normalizer2Impl::makeFCD(const UChar *src, const UChar *limit,
   1509                          ReorderingBuffer *buffer,
   1510                          UErrorCode &errorCode) const {
   1511     // Tracks the last FCD-safe boundary, before lccc=0 or after properly-ordered tccc<=1.
   1512     // Similar to the prevBoundary in the compose() implementation.
   1513     const UChar *prevBoundary=src;
   1514     int32_t prevFCD16=0;
   1515     if(limit==NULL) {
   1516         src=copyLowPrefixFromNulTerminated(src, MIN_CCC_LCCC_CP, buffer, errorCode);
   1517         if(U_FAILURE(errorCode)) {
   1518             return src;
   1519         }
   1520         if(prevBoundary<src) {
   1521             prevBoundary=src;
   1522             // We know that the previous character's lccc==0.
   1523             // Fetching the fcd16 value was deferred for this below-U+0300 code point.
   1524             prevFCD16=getFCD16FromSingleLead(*(src-1));
   1525             if(prevFCD16>1) {
   1526                 --prevBoundary;
   1527             }
   1528         }
   1529         limit=u_strchr(src, 0);
   1530     }
   1531 
   1532     // Note: In this function we use buffer->appendZeroCC() because we track
   1533     // the lead and trail combining classes here, rather than leaving it to
   1534     // the ReorderingBuffer.
   1535     // The exception is the call to decomposeShort() which uses the buffer
   1536     // in the normal way.
   1537 
   1538     const UTrie2 *trie=fcdTrie();
   1539 
   1540     const UChar *prevSrc;
   1541     UChar32 c=0;
   1542     uint16_t fcd16=0;
   1543 
   1544     for(;;) {
   1545         // count code units with lccc==0
   1546         for(prevSrc=src; src!=limit;) {
   1547             if((c=*src)<MIN_CCC_LCCC_CP) {
   1548                 prevFCD16=~c;
   1549                 ++src;
   1550             } else if((fcd16=UTRIE2_GET16_FROM_U16_SINGLE_LEAD(trie, c))<=0xff) {
   1551                 prevFCD16=fcd16;
   1552                 ++src;
   1553             } else if(!U16_IS_SURROGATE(c)) {
   1554                 break;
   1555             } else {
   1556                 UChar c2;
   1557                 if(U16_IS_SURROGATE_LEAD(c)) {
   1558                     if((src+1)!=limit && U16_IS_TRAIL(c2=src[1])) {
   1559                         c=U16_GET_SUPPLEMENTARY(c, c2);
   1560                     }
   1561                 } else /* trail surrogate */ {
   1562                     if(prevSrc<src && U16_IS_LEAD(c2=*(src-1))) {
   1563                         --src;
   1564                         c=U16_GET_SUPPLEMENTARY(c2, c);
   1565                     }
   1566                 }
   1567                 if((fcd16=getFCD16(c))<=0xff) {
   1568                     prevFCD16=fcd16;
   1569                     src+=U16_LENGTH(c);
   1570                 } else {
   1571                     break;
   1572                 }
   1573             }
   1574         }
   1575         // copy these code units all at once
   1576         if(src!=prevSrc) {
   1577             if(buffer!=NULL && !buffer->appendZeroCC(prevSrc, src, errorCode)) {
   1578                 break;
   1579             }
   1580             if(src==limit) {
   1581                 break;
   1582             }
   1583             prevBoundary=src;
   1584             // We know that the previous character's lccc==0.
   1585             if(prevFCD16<0) {
   1586                 // Fetching the fcd16 value was deferred for this below-U+0300 code point.
   1587                 prevFCD16=getFCD16FromSingleLead((UChar)~prevFCD16);
   1588                 if(prevFCD16>1) {
   1589                     --prevBoundary;
   1590                 }
   1591             } else {
   1592                 const UChar *p=src-1;
   1593                 if(U16_IS_TRAIL(*p) && prevSrc<p && U16_IS_LEAD(*(p-1))) {
   1594                     --p;
   1595                     // Need to fetch the previous character's FCD value because
   1596                     // prevFCD16 was just for the trail surrogate code point.
   1597                     prevFCD16=getFCD16FromSurrogatePair(p[0], p[1]);
   1598                     // Still known to have lccc==0 because its lead surrogate unit had lccc==0.
   1599                 }
   1600                 if(prevFCD16>1) {
   1601                     prevBoundary=p;
   1602                 }
   1603             }
   1604             // The start of the current character (c).
   1605             prevSrc=src;
   1606         } else if(src==limit) {
   1607             break;
   1608         }
   1609 
   1610         src+=U16_LENGTH(c);
   1611         // The current character (c) at [prevSrc..src[ has a non-zero lead combining class.
   1612         // Check for proper order, and decompose locally if necessary.
   1613         if((prevFCD16&0xff)<=(fcd16>>8)) {
   1614             // proper order: prev tccc <= current lccc
   1615             if((fcd16&0xff)<=1) {
   1616                 prevBoundary=src;
   1617             }
   1618             if(buffer!=NULL && !buffer->appendZeroCC(c, errorCode)) {
   1619                 break;
   1620             }
   1621             prevFCD16=fcd16;
   1622             continue;
   1623         } else if(buffer==NULL) {
   1624             return prevBoundary;  // quick check "no"
   1625         } else {
   1626             /*
   1627              * Back out the part of the source that we copied or appended
   1628              * already but is now going to be decomposed.
   1629              * prevSrc is set to after what was copied/appended.
   1630              */
   1631             buffer->removeSuffix((int32_t)(prevSrc-prevBoundary));
   1632             /*
   1633              * Find the part of the source that needs to be decomposed,
   1634              * up to the next safe boundary.
   1635              */
   1636             src=findNextFCDBoundary(src, limit);
   1637             /*
   1638              * The source text does not fulfill the conditions for FCD.
   1639              * Decompose and reorder a limited piece of the text.
   1640              */
   1641             if(!decomposeShort(prevBoundary, src, *buffer, errorCode)) {
   1642                 break;
   1643             }
   1644             prevBoundary=src;
   1645             prevFCD16=0;
   1646         }
   1647     }
   1648     return src;
   1649 }
   1650 
   1651 void Normalizer2Impl::makeFCDAndAppend(const UChar *src, const UChar *limit,
   1652                                        UBool doMakeFCD,
   1653                                        ReorderingBuffer &buffer,
   1654                                        UErrorCode &errorCode) const {
   1655     if(!buffer.isEmpty()) {
   1656         const UChar *firstBoundaryInSrc=findNextFCDBoundary(src, limit);
   1657         if(src!=firstBoundaryInSrc) {
   1658             const UChar *lastBoundaryInDest=findPreviousFCDBoundary(buffer.getStart(),
   1659                                                                     buffer.getLimit());
   1660             UnicodeString middle(lastBoundaryInDest,
   1661                                  (int32_t)(buffer.getLimit()-lastBoundaryInDest));
   1662             buffer.removeSuffix((int32_t)(buffer.getLimit()-lastBoundaryInDest));
   1663             middle.append(src, (int32_t)(firstBoundaryInSrc-src));
   1664             const UChar *middleStart=middle.getBuffer();
   1665             makeFCD(middleStart, middleStart+middle.length(), &buffer, errorCode);
   1666             if(U_FAILURE(errorCode)) {
   1667                 return;
   1668             }
   1669             src=firstBoundaryInSrc;
   1670         }
   1671     }
   1672     if(doMakeFCD) {
   1673         makeFCD(src, limit, &buffer, errorCode);
   1674     } else {
   1675         buffer.appendZeroCC(src, limit, errorCode);
   1676     }
   1677 }
   1678 
   1679 const UChar *Normalizer2Impl::findPreviousFCDBoundary(const UChar *start, const UChar *p) const {
   1680     BackwardUTrie2StringIterator iter(fcdTrie(), start, p);
   1681     uint16_t fcd16;
   1682     do {
   1683         fcd16=iter.previous16();
   1684     } while(fcd16>0xff);
   1685     return iter.codePointStart;
   1686 }
   1687 
   1688 const UChar *Normalizer2Impl::findNextFCDBoundary(const UChar *p, const UChar *limit) const {
   1689     ForwardUTrie2StringIterator iter(fcdTrie(), p, limit);
   1690     uint16_t fcd16;
   1691     do {
   1692         fcd16=iter.next16();
   1693     } while(fcd16>0xff);
   1694     return iter.codePointStart;
   1695 }
   1696 
   1697 // CanonicalIterator data -------------------------------------------------- ***
   1698 
   1699 CanonIterData::CanonIterData(UErrorCode &errorCode) :
   1700         trie(utrie2_open(0, 0, &errorCode)),
   1701         canonStartSets(uhash_deleteUObject, NULL, errorCode) {}
   1702 
   1703 CanonIterData::~CanonIterData() {
   1704     utrie2_close(trie);
   1705 }
   1706 
   1707 void CanonIterData::addToStartSet(UChar32 origin, UChar32 decompLead, UErrorCode &errorCode) {
   1708     uint32_t canonValue=utrie2_get32(trie, decompLead);
   1709     if((canonValue&(CANON_HAS_SET|CANON_VALUE_MASK))==0 && origin!=0) {
   1710         // origin is the first character whose decomposition starts with
   1711         // the character for which we are setting the value.
   1712         utrie2_set32(trie, decompLead, canonValue|origin, &errorCode);
   1713     } else {
   1714         // origin is not the first character, or it is U+0000.
   1715         UnicodeSet *set;
   1716         if((canonValue&CANON_HAS_SET)==0) {
   1717             set=new UnicodeSet;
   1718             if(set==NULL) {
   1719                 errorCode=U_MEMORY_ALLOCATION_ERROR;
   1720                 return;
   1721             }
   1722             UChar32 firstOrigin=(UChar32)(canonValue&CANON_VALUE_MASK);
   1723             canonValue=(canonValue&~CANON_VALUE_MASK)|CANON_HAS_SET|(uint32_t)canonStartSets.size();
   1724             utrie2_set32(trie, decompLead, canonValue, &errorCode);
   1725             canonStartSets.addElement(set, errorCode);
   1726             if(firstOrigin!=0) {
   1727                 set->add(firstOrigin);
   1728             }
   1729         } else {
   1730             set=(UnicodeSet *)canonStartSets[(int32_t)(canonValue&CANON_VALUE_MASK)];
   1731         }
   1732         set->add(origin);
   1733     }
   1734 }
   1735 
   1736 class CanonIterDataSingleton {
   1737 public:
   1738     CanonIterDataSingleton(SimpleSingleton &s, Normalizer2Impl &ni, UErrorCode &ec) :
   1739         singleton(s), impl(ni), errorCode(ec) {}
   1740     CanonIterData *getInstance(UErrorCode &errorCode) {
   1741         void *duplicate;
   1742         CanonIterData *instance=
   1743             (CanonIterData *)singleton.getInstance(createInstance, this, duplicate, errorCode);
   1744         delete (CanonIterData *)duplicate;
   1745         return instance;
   1746     }
   1747     static void *createInstance(const void *context, UErrorCode &errorCode);
   1748     UBool rangeHandler(UChar32 start, UChar32 end, uint32_t value) {
   1749         if(value!=0) {
   1750             impl.makeCanonIterDataFromNorm16(start, end, (uint16_t)value, *newData, errorCode);
   1751         }
   1752         return U_SUCCESS(errorCode);
   1753     }
   1754 
   1755 private:
   1756     SimpleSingleton &singleton;
   1757     Normalizer2Impl &impl;
   1758     CanonIterData *newData;
   1759     UErrorCode &errorCode;
   1760 };
   1761 
   1762 U_CDECL_BEGIN
   1763 
   1764 // Call Normalizer2Impl::makeCanonIterDataFromNorm16() for a range of same-norm16 characters.
   1765 static UBool U_CALLCONV
   1766 enumCIDRangeHandler(const void *context, UChar32 start, UChar32 end, uint32_t value) {
   1767     return ((CanonIterDataSingleton *)context)->rangeHandler(start, end, value);
   1768 }
   1769 
   1770 U_CDECL_END
   1771 
   1772 void *CanonIterDataSingleton::createInstance(const void *context, UErrorCode &errorCode) {
   1773     CanonIterDataSingleton *me=(CanonIterDataSingleton *)context;
   1774     me->newData=new CanonIterData(errorCode);
   1775     if(me->newData==NULL) {
   1776         errorCode=U_MEMORY_ALLOCATION_ERROR;
   1777         return NULL;
   1778     }
   1779     if(U_SUCCESS(errorCode)) {
   1780         utrie2_enum(me->impl.getNormTrie(), NULL, enumCIDRangeHandler, me);
   1781         utrie2_freeze(me->newData->trie, UTRIE2_32_VALUE_BITS, &errorCode);
   1782         if(U_SUCCESS(errorCode)) {
   1783             return me->newData;
   1784         }
   1785     }
   1786     delete me->newData;
   1787     return NULL;
   1788 }
   1789 
   1790 void Normalizer2Impl::makeCanonIterDataFromNorm16(UChar32 start, UChar32 end, uint16_t norm16,
   1791                                                   CanonIterData &newData,
   1792                                                   UErrorCode &errorCode) const {
   1793     if(norm16==0 || (minYesNo<=norm16 && norm16<minNoNo)) {
   1794         // Inert, or 2-way mapping (including Hangul syllable).
   1795         // We do not write a canonStartSet for any yesNo character.
   1796         // Composites from 2-way mappings are added at runtime from the
   1797         // starter's compositions list, and the other characters in
   1798         // 2-way mappings get CANON_NOT_SEGMENT_STARTER set because they are
   1799         // "maybe" characters.
   1800         return;
   1801     }
   1802     for(UChar32 c=start; c<=end; ++c) {
   1803         uint32_t oldValue=utrie2_get32(newData.trie, c);
   1804         uint32_t newValue=oldValue;
   1805         if(norm16>=minMaybeYes) {
   1806             // not a segment starter if it occurs in a decomposition or has cc!=0
   1807             newValue|=CANON_NOT_SEGMENT_STARTER;
   1808             if(norm16<MIN_NORMAL_MAYBE_YES) {
   1809                 newValue|=CANON_HAS_COMPOSITIONS;
   1810             }
   1811         } else if(norm16<minYesNo) {
   1812             newValue|=CANON_HAS_COMPOSITIONS;
   1813         } else {
   1814             // c has a one-way decomposition
   1815             UChar32 c2=c;
   1816             uint16_t norm16_2=norm16;
   1817             while(limitNoNo<=norm16_2 && norm16_2<minMaybeYes) {
   1818                 c2=mapAlgorithmic(c2, norm16_2);
   1819                 norm16_2=getNorm16(c2);
   1820             }
   1821             if(minYesNo<=norm16_2 && norm16_2<limitNoNo) {
   1822                 // c decomposes, get everything from the variable-length extra data
   1823                 const uint16_t *mapping=getMapping(norm16_2);
   1824                 uint16_t firstUnit=*mapping++;
   1825                 int32_t length=firstUnit&MAPPING_LENGTH_MASK;
   1826                 if((firstUnit&MAPPING_HAS_CCC_LCCC_WORD)!=0) {
   1827                     if(c==c2 && (*mapping&0xff)!=0) {
   1828                         newValue|=CANON_NOT_SEGMENT_STARTER;  // original c has cc!=0
   1829                     }
   1830                     ++mapping;
   1831                 }
   1832                 // Skip empty mappings (no characters in the decomposition).
   1833                 if(length!=0) {
   1834                     // add c to first code point's start set
   1835                     int32_t i=0;
   1836                     U16_NEXT_UNSAFE(mapping, i, c2);
   1837                     newData.addToStartSet(c, c2, errorCode);
   1838                     // Set CANON_NOT_SEGMENT_STARTER for each remaining code point of a
   1839                     // one-way mapping. A 2-way mapping is possible here after
   1840                     // intermediate algorithmic mapping.
   1841                     if(norm16_2>=minNoNo) {
   1842                         while(i<length) {
   1843                             U16_NEXT_UNSAFE(mapping, i, c2);
   1844                             uint32_t c2Value=utrie2_get32(newData.trie, c2);
   1845                             if((c2Value&CANON_NOT_SEGMENT_STARTER)==0) {
   1846                                 utrie2_set32(newData.trie, c2, c2Value|CANON_NOT_SEGMENT_STARTER,
   1847                                              &errorCode);
   1848                             }
   1849                         }
   1850                     }
   1851                 }
   1852             } else {
   1853                 // c decomposed to c2 algorithmically; c has cc==0
   1854                 newData.addToStartSet(c, c2, errorCode);
   1855             }
   1856         }
   1857         if(newValue!=oldValue) {
   1858             utrie2_set32(newData.trie, c, newValue, &errorCode);
   1859         }
   1860     }
   1861 }
   1862 
   1863 UBool Normalizer2Impl::ensureCanonIterData(UErrorCode &errorCode) const {
   1864     // Logically const: Synchronized instantiation.
   1865     Normalizer2Impl *me=const_cast<Normalizer2Impl *>(this);
   1866     CanonIterDataSingleton(me->canonIterDataSingleton, *me, errorCode).getInstance(errorCode);
   1867     return U_SUCCESS(errorCode);
   1868 }
   1869 
   1870 int32_t Normalizer2Impl::getCanonValue(UChar32 c) const {
   1871     return (int32_t)utrie2_get32(((CanonIterData *)canonIterDataSingleton.fInstance)->trie, c);
   1872 }
   1873 
   1874 const UnicodeSet &Normalizer2Impl::getCanonStartSet(int32_t n) const {
   1875     return *(const UnicodeSet *)(
   1876         ((CanonIterData *)canonIterDataSingleton.fInstance)->canonStartSets[n]);
   1877 }
   1878 
   1879 UBool Normalizer2Impl::isCanonSegmentStarter(UChar32 c) const {
   1880     return getCanonValue(c)>=0;
   1881 }
   1882 
   1883 UBool Normalizer2Impl::getCanonStartSet(UChar32 c, UnicodeSet &set) const {
   1884     int32_t canonValue=getCanonValue(c)&~CANON_NOT_SEGMENT_STARTER;
   1885     if(canonValue==0) {
   1886         return FALSE;
   1887     }
   1888     set.clear();
   1889     int32_t value=canonValue&CANON_VALUE_MASK;
   1890     if((canonValue&CANON_HAS_SET)!=0) {
   1891         set.addAll(getCanonStartSet(value));
   1892     } else if(value!=0) {
   1893         set.add(value);
   1894     }
   1895     if((canonValue&CANON_HAS_COMPOSITIONS)!=0) {
   1896         uint16_t norm16=getNorm16(c);
   1897         if(norm16==JAMO_L) {
   1898             UChar32 syllable=
   1899                 (UChar32)(Hangul::HANGUL_BASE+(c-Hangul::JAMO_L_BASE)*Hangul::JAMO_VT_COUNT);
   1900             set.add(syllable, syllable+Hangul::JAMO_VT_COUNT-1);
   1901         } else {
   1902             addComposites(getCompositionsList(norm16), set);
   1903         }
   1904     }
   1905     return TRUE;
   1906 }
   1907 
   1908 U_NAMESPACE_END
   1909 
   1910 // Normalizer2 data swapping ----------------------------------------------- ***
   1911 
   1912 U_NAMESPACE_USE
   1913 
   1914 U_CAPI int32_t U_EXPORT2
   1915 unorm2_swap(const UDataSwapper *ds,
   1916             const void *inData, int32_t length, void *outData,
   1917             UErrorCode *pErrorCode) {
   1918     const UDataInfo *pInfo;
   1919     int32_t headerSize;
   1920 
   1921     const uint8_t *inBytes;
   1922     uint8_t *outBytes;
   1923 
   1924     const int32_t *inIndexes;
   1925     int32_t indexes[Normalizer2Impl::IX_MIN_MAYBE_YES+1];
   1926 
   1927     int32_t i, offset, nextOffset, size;
   1928 
   1929     /* udata_swapDataHeader checks the arguments */
   1930     headerSize=udata_swapDataHeader(ds, inData, length, outData, pErrorCode);
   1931     if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) {
   1932         return 0;
   1933     }
   1934 
   1935     /* check data format and format version */
   1936     pInfo=(const UDataInfo *)((const char *)inData+4);
   1937     if(!(
   1938         pInfo->dataFormat[0]==0x4e &&   /* dataFormat="Nrm2" */
   1939         pInfo->dataFormat[1]==0x72 &&
   1940         pInfo->dataFormat[2]==0x6d &&
   1941         pInfo->dataFormat[3]==0x32 &&
   1942         pInfo->formatVersion[0]==1
   1943     )) {
   1944         udata_printError(ds, "unorm2_swap(): data format %02x.%02x.%02x.%02x (format version %02x) is not recognized as Normalizer2 data\n",
   1945                          pInfo->dataFormat[0], pInfo->dataFormat[1],
   1946                          pInfo->dataFormat[2], pInfo->dataFormat[3],
   1947                          pInfo->formatVersion[0]);
   1948         *pErrorCode=U_UNSUPPORTED_ERROR;
   1949         return 0;
   1950     }
   1951 
   1952     inBytes=(const uint8_t *)inData+headerSize;
   1953     outBytes=(uint8_t *)outData+headerSize;
   1954 
   1955     inIndexes=(const int32_t *)inBytes;
   1956 
   1957     if(length>=0) {
   1958         length-=headerSize;
   1959         if(length<(int32_t)sizeof(indexes)) {
   1960             udata_printError(ds, "unorm2_swap(): too few bytes (%d after header) for Normalizer2 data\n",
   1961                              length);
   1962             *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR;
   1963             return 0;
   1964         }
   1965     }
   1966 
   1967     /* read the first few indexes */
   1968     for(i=0; i<=Normalizer2Impl::IX_MIN_MAYBE_YES; ++i) {
   1969         indexes[i]=udata_readInt32(ds, inIndexes[i]);
   1970     }
   1971 
   1972     /* get the total length of the data */
   1973     size=indexes[Normalizer2Impl::IX_TOTAL_SIZE];
   1974 
   1975     if(length>=0) {
   1976         if(length<size) {
   1977             udata_printError(ds, "unorm2_swap(): too few bytes (%d after header) for all of Normalizer2 data\n",
   1978                              length);
   1979             *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR;
   1980             return 0;
   1981         }
   1982 
   1983         /* copy the data for inaccessible bytes */
   1984         if(inBytes!=outBytes) {
   1985             uprv_memcpy(outBytes, inBytes, size);
   1986         }
   1987 
   1988         offset=0;
   1989 
   1990         /* swap the int32_t indexes[] */
   1991         nextOffset=indexes[Normalizer2Impl::IX_NORM_TRIE_OFFSET];
   1992         ds->swapArray32(ds, inBytes, nextOffset-offset, outBytes, pErrorCode);
   1993         offset=nextOffset;
   1994 
   1995         /* swap the UTrie2 */
   1996         nextOffset=indexes[Normalizer2Impl::IX_EXTRA_DATA_OFFSET];
   1997         utrie2_swap(ds, inBytes+offset, nextOffset-offset, outBytes+offset, pErrorCode);
   1998         offset=nextOffset;
   1999 
   2000         /* swap the uint16_t extraData[] */
   2001         nextOffset=indexes[Normalizer2Impl::IX_EXTRA_DATA_OFFSET+1];
   2002         ds->swapArray16(ds, inBytes+offset, nextOffset-offset, outBytes+offset, pErrorCode);
   2003         offset=nextOffset;
   2004 
   2005         U_ASSERT(offset==size);
   2006     }
   2007 
   2008     return headerSize+size;
   2009 }
   2010 
   2011 #endif  // !UCONFIG_NO_NORMALIZATION
   2012