1 /* GLIB sliced memory - fast threaded memory chunk allocator 2 * Copyright (C) 2005 Tim Janik 3 * 4 * This library is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU Lesser General Public 6 * License as published by the Free Software Foundation; either 7 * version 2 of the License, or (at your option) any later version. 8 * 9 * This library is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 12 * Lesser General Public License for more details. 13 * 14 * You should have received a copy of the GNU Lesser General Public 15 * License along with this library; if not, write to the 16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 17 * Boston, MA 02111-1307, USA. 18 */ 19 #include <glib.h> 20 21 #include <stdio.h> 22 #include <string.h> 23 24 #define quick_rand32() (rand_accu = 1664525 * rand_accu + 1013904223, rand_accu) 25 static guint prime_size = 1021; // 769; // 509 26 static gboolean clean_memchunks = FALSE; 27 static guint number_of_blocks = 10000; /* total number of blocks allocated */ 28 static guint number_of_repetitions = 10000; /* number of alloc+free repetitions */ 29 static gboolean want_corruption = FALSE; 30 31 /* --- old memchunk prototypes (memchunks.c) --- */ 32 void old_mem_chunks_init (void); 33 GMemChunk* old_mem_chunk_new (const gchar *name, 34 gint atom_size, 35 gulong area_size, 36 gint type); 37 void old_mem_chunk_destroy (GMemChunk *mem_chunk); 38 gpointer old_mem_chunk_alloc (GMemChunk *mem_chunk); 39 gpointer old_mem_chunk_alloc0 (GMemChunk *mem_chunk); 40 void old_mem_chunk_free (GMemChunk *mem_chunk, 41 gpointer mem); 42 void old_mem_chunk_clean (GMemChunk *mem_chunk); 43 void old_mem_chunk_reset (GMemChunk *mem_chunk); 44 void old_mem_chunk_print (GMemChunk *mem_chunk); 45 void old_mem_chunk_info (void); 46 #ifndef G_ALLOC_AND_FREE 47 #define G_ALLOC_AND_FREE 2 48 #endif 49 50 /* --- functions --- */ 51 static inline int 52 corruption (void) 53 { 54 if (G_UNLIKELY (want_corruption)) 55 { 56 /* corruption per call likelyness is about 1:4000000 */ 57 guint32 r = g_random_int() % 8000009; 58 return r == 277 ? +1 : r == 281 ? -1 : 0; 59 } 60 return 0; 61 } 62 63 static inline gpointer 64 memchunk_alloc (GMemChunk **memchunkp, 65 guint size) 66 { 67 size = MAX (size, 1); 68 if (G_UNLIKELY (!*memchunkp)) 69 *memchunkp = old_mem_chunk_new ("", size, 4096, G_ALLOC_AND_FREE); 70 return old_mem_chunk_alloc (*memchunkp); 71 } 72 73 static inline void 74 memchunk_free (GMemChunk *memchunk, 75 gpointer chunk) 76 { 77 old_mem_chunk_free (memchunk, chunk); 78 if (clean_memchunks) 79 old_mem_chunk_clean (memchunk); 80 } 81 82 static gpointer 83 test_memchunk_thread (gpointer data) 84 { 85 GMemChunk **memchunks; 86 guint i, j; 87 guint8 **ps; 88 guint *ss; 89 guint32 rand_accu = 2147483563; 90 /* initialize random numbers */ 91 if (data) 92 rand_accu = *(guint32*) data; 93 else 94 { 95 GTimeVal rand_tv; 96 g_get_current_time (&rand_tv); 97 rand_accu = rand_tv.tv_usec + (rand_tv.tv_sec << 16); 98 } 99 100 /* prepare for memchunk creation */ 101 memchunks = g_alloca (sizeof (memchunks[0]) * prime_size); 102 memset (memchunks, 0, sizeof (memchunks[0]) * prime_size); 103 104 ps = g_new (guint8*, number_of_blocks); 105 ss = g_new (guint, number_of_blocks); 106 /* create number_of_blocks random sizes */ 107 for (i = 0; i < number_of_blocks; i++) 108 ss[i] = quick_rand32() % prime_size; 109 /* allocate number_of_blocks blocks */ 110 for (i = 0; i < number_of_blocks; i++) 111 ps[i] = memchunk_alloc (&memchunks[ss[i]], ss[i]); 112 for (j = 0; j < number_of_repetitions; j++) 113 { 114 /* free number_of_blocks/2 blocks */ 115 for (i = 0; i < number_of_blocks; i += 2) 116 memchunk_free (memchunks[ss[i]], ps[i]); 117 /* allocate number_of_blocks/2 blocks with new sizes */ 118 for (i = 0; i < number_of_blocks; i += 2) 119 { 120 ss[i] = quick_rand32() % prime_size; 121 ps[i] = memchunk_alloc (&memchunks[ss[i]], ss[i]); 122 } 123 } 124 /* free number_of_blocks blocks */ 125 for (i = 0; i < number_of_blocks; i++) 126 memchunk_free (memchunks[ss[i]], ps[i]); 127 /* alloc and free many equally sized chunks in a row */ 128 for (i = 0; i < number_of_repetitions; i++) 129 { 130 guint sz = quick_rand32() % prime_size; 131 guint k = number_of_blocks / 100; 132 for (j = 0; j < k; j++) 133 ps[j] = memchunk_alloc (&memchunks[sz], sz); 134 for (j = 0; j < k; j++) 135 memchunk_free (memchunks[sz], ps[j]); 136 } 137 /* cleanout memchunks */ 138 for (i = 0; i < prime_size; i++) 139 if (memchunks[i]) 140 old_mem_chunk_destroy (memchunks[i]); 141 g_free (ps); 142 g_free (ss); 143 144 return NULL; 145 } 146 147 static gpointer 148 test_sliced_mem_thread (gpointer data) 149 { 150 guint32 rand_accu = 2147483563; 151 guint i, j; 152 guint8 **ps; 153 guint *ss; 154 155 /* initialize random numbers */ 156 if (data) 157 rand_accu = *(guint32*) data; 158 else 159 { 160 GTimeVal rand_tv; 161 g_get_current_time (&rand_tv); 162 rand_accu = rand_tv.tv_usec + (rand_tv.tv_sec << 16); 163 } 164 165 ps = g_new (guint8*, number_of_blocks); 166 ss = g_new (guint, number_of_blocks); 167 /* create number_of_blocks random sizes */ 168 for (i = 0; i < number_of_blocks; i++) 169 ss[i] = quick_rand32() % prime_size; 170 /* allocate number_of_blocks blocks */ 171 for (i = 0; i < number_of_blocks; i++) 172 ps[i] = g_slice_alloc (ss[i] + corruption()); 173 for (j = 0; j < number_of_repetitions; j++) 174 { 175 /* free number_of_blocks/2 blocks */ 176 for (i = 0; i < number_of_blocks; i += 2) 177 g_slice_free1 (ss[i] + corruption(), ps[i] + corruption()); 178 /* allocate number_of_blocks/2 blocks with new sizes */ 179 for (i = 0; i < number_of_blocks; i += 2) 180 { 181 ss[i] = quick_rand32() % prime_size; 182 ps[i] = g_slice_alloc (ss[i] + corruption()); 183 } 184 } 185 /* free number_of_blocks blocks */ 186 for (i = 0; i < number_of_blocks; i++) 187 g_slice_free1 (ss[i] + corruption(), ps[i] + corruption()); 188 /* alloc and free many equally sized chunks in a row */ 189 for (i = 0; i < number_of_repetitions; i++) 190 { 191 guint sz = quick_rand32() % prime_size; 192 guint k = number_of_blocks / 100; 193 for (j = 0; j < k; j++) 194 ps[j] = g_slice_alloc (sz + corruption()); 195 for (j = 0; j < k; j++) 196 g_slice_free1 (sz + corruption(), ps[j] + corruption()); 197 } 198 g_free (ps); 199 g_free (ss); 200 201 return NULL; 202 } 203 204 static void 205 usage (void) 206 { 207 g_print ("Usage: slice-test [n_threads] [G|S|M|O][f][c][~] [maxblocksize] [seed]\n"); 208 } 209 210 int 211 main (int argc, 212 char *argv[]) 213 { 214 guint seed32, *seedp = NULL; 215 gboolean ccounters = FALSE, use_memchunks = FALSE; 216 guint n_threads = 1; 217 const gchar *mode = "slab allocator + magazine cache", *emode = " "; 218 if (argc > 1) 219 n_threads = g_ascii_strtoull (argv[1], NULL, 10); 220 if (argc > 2) 221 { 222 guint i, l = strlen (argv[2]); 223 for (i = 0; i < l; i++) 224 switch (argv[2][i]) 225 { 226 case 'G': /* GLib mode */ 227 g_slice_set_config (G_SLICE_CONFIG_ALWAYS_MALLOC, FALSE); 228 g_slice_set_config (G_SLICE_CONFIG_BYPASS_MAGAZINES, FALSE); 229 mode = "slab allocator + magazine cache"; 230 break; 231 case 'S': /* slab mode */ 232 g_slice_set_config (G_SLICE_CONFIG_ALWAYS_MALLOC, FALSE); 233 g_slice_set_config (G_SLICE_CONFIG_BYPASS_MAGAZINES, TRUE); 234 mode = "slab allocator"; 235 break; 236 case 'M': /* malloc mode */ 237 g_slice_set_config (G_SLICE_CONFIG_ALWAYS_MALLOC, TRUE); 238 mode = "system malloc"; 239 break; 240 case 'O': /* old memchunks */ 241 use_memchunks = TRUE; 242 mode = "old memchunks"; 243 break; 244 case 'f': /* eager freeing */ 245 g_slice_set_config (G_SLICE_CONFIG_WORKING_SET_MSECS, 0); 246 clean_memchunks = TRUE; 247 emode = " with eager freeing"; 248 break; 249 case 'c': /* print contention counters */ 250 ccounters = TRUE; 251 break; 252 case '~': 253 want_corruption = TRUE; /* force occasional corruption */ 254 break; 255 default: 256 usage(); 257 return 1; 258 } 259 } 260 if (argc > 3) 261 prime_size = g_ascii_strtoull (argv[3], NULL, 10); 262 if (argc > 4) 263 { 264 seed32 = g_ascii_strtoull (argv[4], NULL, 10); 265 seedp = &seed32; 266 } 267 268 g_thread_init (NULL); 269 270 if (argc <= 1) 271 usage(); 272 273 { 274 gchar strseed[64] = "<random>"; 275 GThread **threads; 276 guint i; 277 278 if (seedp) 279 g_snprintf (strseed, 64, "%u", *seedp); 280 g_print ("Starting %d threads allocating random blocks <= %u bytes with seed=%s using %s%s\n", n_threads, prime_size, strseed, mode, emode); 281 282 threads = g_alloca (sizeof(GThread*) * n_threads); 283 if (!use_memchunks) 284 for (i = 0; i < n_threads; i++) 285 threads[i] = g_thread_create_full (test_sliced_mem_thread, seedp, 0, TRUE, FALSE, 0, NULL); 286 else 287 { 288 old_mem_chunks_init(); 289 for (i = 0; i < n_threads; i++) 290 threads[i] = g_thread_create_full (test_memchunk_thread, seedp, 0, TRUE, FALSE, 0, NULL); 291 } 292 for (i = 0; i < n_threads; i++) 293 g_thread_join (threads[i]); 294 295 if (ccounters) 296 { 297 guint n, n_chunks = g_slice_get_config (G_SLICE_CONFIG_CHUNK_SIZES); 298 g_print (" ChunkSize | MagazineSize | Contention\n"); 299 for (i = 0; i < n_chunks; i++) 300 { 301 gint64 *vals = g_slice_get_config_state (G_SLICE_CONFIG_CONTENTION_COUNTER, i, &n); 302 g_print (" %9llu | %9llu | %9llu\n", vals[0], vals[2], vals[1]); 303 g_free (vals); 304 } 305 } 306 else 307 g_print ("Done.\n"); 308 return 0; 309 } 310 } 311