1 //===--- Expr.cpp - Expression AST Node Implementation --------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Expr class and subclasses. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/AST/Expr.h" 15 #include "clang/AST/ExprCXX.h" 16 #include "clang/AST/APValue.h" 17 #include "clang/AST/ASTContext.h" 18 #include "clang/AST/DeclObjC.h" 19 #include "clang/AST/DeclCXX.h" 20 #include "clang/AST/DeclTemplate.h" 21 #include "clang/AST/RecordLayout.h" 22 #include "clang/AST/StmtVisitor.h" 23 #include "clang/Lex/LiteralSupport.h" 24 #include "clang/Lex/Lexer.h" 25 #include "clang/Sema/SemaDiagnostic.h" 26 #include "clang/Basic/Builtins.h" 27 #include "clang/Basic/SourceManager.h" 28 #include "clang/Basic/TargetInfo.h" 29 #include "llvm/Support/ErrorHandling.h" 30 #include "llvm/Support/raw_ostream.h" 31 #include <algorithm> 32 using namespace clang; 33 34 /// isKnownToHaveBooleanValue - Return true if this is an integer expression 35 /// that is known to return 0 or 1. This happens for _Bool/bool expressions 36 /// but also int expressions which are produced by things like comparisons in 37 /// C. 38 bool Expr::isKnownToHaveBooleanValue() const { 39 const Expr *E = IgnoreParens(); 40 41 // If this value has _Bool type, it is obvious 0/1. 42 if (E->getType()->isBooleanType()) return true; 43 // If this is a non-scalar-integer type, we don't care enough to try. 44 if (!E->getType()->isIntegralOrEnumerationType()) return false; 45 46 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 47 switch (UO->getOpcode()) { 48 case UO_Plus: 49 return UO->getSubExpr()->isKnownToHaveBooleanValue(); 50 default: 51 return false; 52 } 53 } 54 55 // Only look through implicit casts. If the user writes 56 // '(int) (a && b)' treat it as an arbitrary int. 57 if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) 58 return CE->getSubExpr()->isKnownToHaveBooleanValue(); 59 60 if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 61 switch (BO->getOpcode()) { 62 default: return false; 63 case BO_LT: // Relational operators. 64 case BO_GT: 65 case BO_LE: 66 case BO_GE: 67 case BO_EQ: // Equality operators. 68 case BO_NE: 69 case BO_LAnd: // AND operator. 70 case BO_LOr: // Logical OR operator. 71 return true; 72 73 case BO_And: // Bitwise AND operator. 74 case BO_Xor: // Bitwise XOR operator. 75 case BO_Or: // Bitwise OR operator. 76 // Handle things like (x==2)|(y==12). 77 return BO->getLHS()->isKnownToHaveBooleanValue() && 78 BO->getRHS()->isKnownToHaveBooleanValue(); 79 80 case BO_Comma: 81 case BO_Assign: 82 return BO->getRHS()->isKnownToHaveBooleanValue(); 83 } 84 } 85 86 if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) 87 return CO->getTrueExpr()->isKnownToHaveBooleanValue() && 88 CO->getFalseExpr()->isKnownToHaveBooleanValue(); 89 90 return false; 91 } 92 93 // Amusing macro metaprogramming hack: check whether a class provides 94 // a more specific implementation of getExprLoc(). 95 namespace { 96 /// This implementation is used when a class provides a custom 97 /// implementation of getExprLoc. 98 template <class E, class T> 99 SourceLocation getExprLocImpl(const Expr *expr, 100 SourceLocation (T::*v)() const) { 101 return static_cast<const E*>(expr)->getExprLoc(); 102 } 103 104 /// This implementation is used when a class doesn't provide 105 /// a custom implementation of getExprLoc. Overload resolution 106 /// should pick it over the implementation above because it's 107 /// more specialized according to function template partial ordering. 108 template <class E> 109 SourceLocation getExprLocImpl(const Expr *expr, 110 SourceLocation (Expr::*v)() const) { 111 return static_cast<const E*>(expr)->getSourceRange().getBegin(); 112 } 113 } 114 115 SourceLocation Expr::getExprLoc() const { 116 switch (getStmtClass()) { 117 case Stmt::NoStmtClass: llvm_unreachable("statement without class"); 118 #define ABSTRACT_STMT(type) 119 #define STMT(type, base) \ 120 case Stmt::type##Class: llvm_unreachable(#type " is not an Expr"); break; 121 #define EXPR(type, base) \ 122 case Stmt::type##Class: return getExprLocImpl<type>(this, &type::getExprLoc); 123 #include "clang/AST/StmtNodes.inc" 124 } 125 llvm_unreachable("unknown statement kind"); 126 return SourceLocation(); 127 } 128 129 //===----------------------------------------------------------------------===// 130 // Primary Expressions. 131 //===----------------------------------------------------------------------===// 132 133 void ExplicitTemplateArgumentList::initializeFrom( 134 const TemplateArgumentListInfo &Info) { 135 LAngleLoc = Info.getLAngleLoc(); 136 RAngleLoc = Info.getRAngleLoc(); 137 NumTemplateArgs = Info.size(); 138 139 TemplateArgumentLoc *ArgBuffer = getTemplateArgs(); 140 for (unsigned i = 0; i != NumTemplateArgs; ++i) 141 new (&ArgBuffer[i]) TemplateArgumentLoc(Info[i]); 142 } 143 144 void ExplicitTemplateArgumentList::initializeFrom( 145 const TemplateArgumentListInfo &Info, 146 bool &Dependent, 147 bool &InstantiationDependent, 148 bool &ContainsUnexpandedParameterPack) { 149 LAngleLoc = Info.getLAngleLoc(); 150 RAngleLoc = Info.getRAngleLoc(); 151 NumTemplateArgs = Info.size(); 152 153 TemplateArgumentLoc *ArgBuffer = getTemplateArgs(); 154 for (unsigned i = 0; i != NumTemplateArgs; ++i) { 155 Dependent = Dependent || Info[i].getArgument().isDependent(); 156 InstantiationDependent = InstantiationDependent || 157 Info[i].getArgument().isInstantiationDependent(); 158 ContainsUnexpandedParameterPack 159 = ContainsUnexpandedParameterPack || 160 Info[i].getArgument().containsUnexpandedParameterPack(); 161 162 new (&ArgBuffer[i]) TemplateArgumentLoc(Info[i]); 163 } 164 } 165 166 void ExplicitTemplateArgumentList::copyInto( 167 TemplateArgumentListInfo &Info) const { 168 Info.setLAngleLoc(LAngleLoc); 169 Info.setRAngleLoc(RAngleLoc); 170 for (unsigned I = 0; I != NumTemplateArgs; ++I) 171 Info.addArgument(getTemplateArgs()[I]); 172 } 173 174 std::size_t ExplicitTemplateArgumentList::sizeFor(unsigned NumTemplateArgs) { 175 return sizeof(ExplicitTemplateArgumentList) + 176 sizeof(TemplateArgumentLoc) * NumTemplateArgs; 177 } 178 179 std::size_t ExplicitTemplateArgumentList::sizeFor( 180 const TemplateArgumentListInfo &Info) { 181 return sizeFor(Info.size()); 182 } 183 184 /// \brief Compute the type-, value-, and instantiation-dependence of a 185 /// declaration reference 186 /// based on the declaration being referenced. 187 static void computeDeclRefDependence(NamedDecl *D, QualType T, 188 bool &TypeDependent, 189 bool &ValueDependent, 190 bool &InstantiationDependent) { 191 TypeDependent = false; 192 ValueDependent = false; 193 InstantiationDependent = false; 194 195 // (TD) C++ [temp.dep.expr]p3: 196 // An id-expression is type-dependent if it contains: 197 // 198 // and 199 // 200 // (VD) C++ [temp.dep.constexpr]p2: 201 // An identifier is value-dependent if it is: 202 203 // (TD) - an identifier that was declared with dependent type 204 // (VD) - a name declared with a dependent type, 205 if (T->isDependentType()) { 206 TypeDependent = true; 207 ValueDependent = true; 208 InstantiationDependent = true; 209 return; 210 } else if (T->isInstantiationDependentType()) { 211 InstantiationDependent = true; 212 } 213 214 // (TD) - a conversion-function-id that specifies a dependent type 215 if (D->getDeclName().getNameKind() 216 == DeclarationName::CXXConversionFunctionName) { 217 QualType T = D->getDeclName().getCXXNameType(); 218 if (T->isDependentType()) { 219 TypeDependent = true; 220 ValueDependent = true; 221 InstantiationDependent = true; 222 return; 223 } 224 225 if (T->isInstantiationDependentType()) 226 InstantiationDependent = true; 227 } 228 229 // (VD) - the name of a non-type template parameter, 230 if (isa<NonTypeTemplateParmDecl>(D)) { 231 ValueDependent = true; 232 InstantiationDependent = true; 233 return; 234 } 235 236 // (VD) - a constant with integral or enumeration type and is 237 // initialized with an expression that is value-dependent. 238 if (VarDecl *Var = dyn_cast<VarDecl>(D)) { 239 if (Var->getType()->isIntegralOrEnumerationType() && 240 Var->getType().getCVRQualifiers() == Qualifiers::Const) { 241 if (const Expr *Init = Var->getAnyInitializer()) 242 if (Init->isValueDependent()) { 243 ValueDependent = true; 244 InstantiationDependent = true; 245 } 246 } 247 248 // (VD) - FIXME: Missing from the standard: 249 // - a member function or a static data member of the current 250 // instantiation 251 else if (Var->isStaticDataMember() && 252 Var->getDeclContext()->isDependentContext()) { 253 ValueDependent = true; 254 InstantiationDependent = true; 255 } 256 257 return; 258 } 259 260 // (VD) - FIXME: Missing from the standard: 261 // - a member function or a static data member of the current 262 // instantiation 263 if (isa<CXXMethodDecl>(D) && D->getDeclContext()->isDependentContext()) { 264 ValueDependent = true; 265 InstantiationDependent = true; 266 return; 267 } 268 } 269 270 void DeclRefExpr::computeDependence() { 271 bool TypeDependent = false; 272 bool ValueDependent = false; 273 bool InstantiationDependent = false; 274 computeDeclRefDependence(getDecl(), getType(), TypeDependent, ValueDependent, 275 InstantiationDependent); 276 277 // (TD) C++ [temp.dep.expr]p3: 278 // An id-expression is type-dependent if it contains: 279 // 280 // and 281 // 282 // (VD) C++ [temp.dep.constexpr]p2: 283 // An identifier is value-dependent if it is: 284 if (!TypeDependent && !ValueDependent && 285 hasExplicitTemplateArgs() && 286 TemplateSpecializationType::anyDependentTemplateArguments( 287 getTemplateArgs(), 288 getNumTemplateArgs(), 289 InstantiationDependent)) { 290 TypeDependent = true; 291 ValueDependent = true; 292 InstantiationDependent = true; 293 } 294 295 ExprBits.TypeDependent = TypeDependent; 296 ExprBits.ValueDependent = ValueDependent; 297 ExprBits.InstantiationDependent = InstantiationDependent; 298 299 // Is the declaration a parameter pack? 300 if (getDecl()->isParameterPack()) 301 ExprBits.ContainsUnexpandedParameterPack = true; 302 } 303 304 DeclRefExpr::DeclRefExpr(NestedNameSpecifierLoc QualifierLoc, 305 ValueDecl *D, const DeclarationNameInfo &NameInfo, 306 NamedDecl *FoundD, 307 const TemplateArgumentListInfo *TemplateArgs, 308 QualType T, ExprValueKind VK) 309 : Expr(DeclRefExprClass, T, VK, OK_Ordinary, false, false, false, false), 310 D(D), Loc(NameInfo.getLoc()), DNLoc(NameInfo.getInfo()) { 311 DeclRefExprBits.HasQualifier = QualifierLoc ? 1 : 0; 312 if (QualifierLoc) 313 getInternalQualifierLoc() = QualifierLoc; 314 DeclRefExprBits.HasFoundDecl = FoundD ? 1 : 0; 315 if (FoundD) 316 getInternalFoundDecl() = FoundD; 317 DeclRefExprBits.HasExplicitTemplateArgs = TemplateArgs ? 1 : 0; 318 if (TemplateArgs) { 319 bool Dependent = false; 320 bool InstantiationDependent = false; 321 bool ContainsUnexpandedParameterPack = false; 322 getExplicitTemplateArgs().initializeFrom(*TemplateArgs, Dependent, 323 InstantiationDependent, 324 ContainsUnexpandedParameterPack); 325 if (InstantiationDependent) 326 setInstantiationDependent(true); 327 } 328 329 computeDependence(); 330 } 331 332 DeclRefExpr *DeclRefExpr::Create(ASTContext &Context, 333 NestedNameSpecifierLoc QualifierLoc, 334 ValueDecl *D, 335 SourceLocation NameLoc, 336 QualType T, 337 ExprValueKind VK, 338 NamedDecl *FoundD, 339 const TemplateArgumentListInfo *TemplateArgs) { 340 return Create(Context, QualifierLoc, D, 341 DeclarationNameInfo(D->getDeclName(), NameLoc), 342 T, VK, FoundD, TemplateArgs); 343 } 344 345 DeclRefExpr *DeclRefExpr::Create(ASTContext &Context, 346 NestedNameSpecifierLoc QualifierLoc, 347 ValueDecl *D, 348 const DeclarationNameInfo &NameInfo, 349 QualType T, 350 ExprValueKind VK, 351 NamedDecl *FoundD, 352 const TemplateArgumentListInfo *TemplateArgs) { 353 // Filter out cases where the found Decl is the same as the value refenenced. 354 if (D == FoundD) 355 FoundD = 0; 356 357 std::size_t Size = sizeof(DeclRefExpr); 358 if (QualifierLoc != 0) 359 Size += sizeof(NestedNameSpecifierLoc); 360 if (FoundD) 361 Size += sizeof(NamedDecl *); 362 if (TemplateArgs) 363 Size += ExplicitTemplateArgumentList::sizeFor(*TemplateArgs); 364 365 void *Mem = Context.Allocate(Size, llvm::alignOf<DeclRefExpr>()); 366 return new (Mem) DeclRefExpr(QualifierLoc, D, NameInfo, FoundD, TemplateArgs, 367 T, VK); 368 } 369 370 DeclRefExpr *DeclRefExpr::CreateEmpty(ASTContext &Context, 371 bool HasQualifier, 372 bool HasFoundDecl, 373 bool HasExplicitTemplateArgs, 374 unsigned NumTemplateArgs) { 375 std::size_t Size = sizeof(DeclRefExpr); 376 if (HasQualifier) 377 Size += sizeof(NestedNameSpecifierLoc); 378 if (HasFoundDecl) 379 Size += sizeof(NamedDecl *); 380 if (HasExplicitTemplateArgs) 381 Size += ExplicitTemplateArgumentList::sizeFor(NumTemplateArgs); 382 383 void *Mem = Context.Allocate(Size, llvm::alignOf<DeclRefExpr>()); 384 return new (Mem) DeclRefExpr(EmptyShell()); 385 } 386 387 SourceRange DeclRefExpr::getSourceRange() const { 388 SourceRange R = getNameInfo().getSourceRange(); 389 if (hasQualifier()) 390 R.setBegin(getQualifierLoc().getBeginLoc()); 391 if (hasExplicitTemplateArgs()) 392 R.setEnd(getRAngleLoc()); 393 return R; 394 } 395 396 // FIXME: Maybe this should use DeclPrinter with a special "print predefined 397 // expr" policy instead. 398 std::string PredefinedExpr::ComputeName(IdentType IT, const Decl *CurrentDecl) { 399 ASTContext &Context = CurrentDecl->getASTContext(); 400 401 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CurrentDecl)) { 402 if (IT != PrettyFunction && IT != PrettyFunctionNoVirtual) 403 return FD->getNameAsString(); 404 405 llvm::SmallString<256> Name; 406 llvm::raw_svector_ostream Out(Name); 407 408 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 409 if (MD->isVirtual() && IT != PrettyFunctionNoVirtual) 410 Out << "virtual "; 411 if (MD->isStatic()) 412 Out << "static "; 413 } 414 415 PrintingPolicy Policy(Context.getLangOptions()); 416 417 std::string Proto = FD->getQualifiedNameAsString(Policy); 418 419 const FunctionType *AFT = FD->getType()->getAs<FunctionType>(); 420 const FunctionProtoType *FT = 0; 421 if (FD->hasWrittenPrototype()) 422 FT = dyn_cast<FunctionProtoType>(AFT); 423 424 Proto += "("; 425 if (FT) { 426 llvm::raw_string_ostream POut(Proto); 427 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 428 if (i) POut << ", "; 429 std::string Param; 430 FD->getParamDecl(i)->getType().getAsStringInternal(Param, Policy); 431 POut << Param; 432 } 433 434 if (FT->isVariadic()) { 435 if (FD->getNumParams()) POut << ", "; 436 POut << "..."; 437 } 438 } 439 Proto += ")"; 440 441 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 442 Qualifiers ThisQuals = Qualifiers::fromCVRMask(MD->getTypeQualifiers()); 443 if (ThisQuals.hasConst()) 444 Proto += " const"; 445 if (ThisQuals.hasVolatile()) 446 Proto += " volatile"; 447 } 448 449 if (!isa<CXXConstructorDecl>(FD) && !isa<CXXDestructorDecl>(FD)) 450 AFT->getResultType().getAsStringInternal(Proto, Policy); 451 452 Out << Proto; 453 454 Out.flush(); 455 return Name.str().str(); 456 } 457 if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurrentDecl)) { 458 llvm::SmallString<256> Name; 459 llvm::raw_svector_ostream Out(Name); 460 Out << (MD->isInstanceMethod() ? '-' : '+'); 461 Out << '['; 462 463 // For incorrect code, there might not be an ObjCInterfaceDecl. Do 464 // a null check to avoid a crash. 465 if (const ObjCInterfaceDecl *ID = MD->getClassInterface()) 466 Out << ID; 467 468 if (const ObjCCategoryImplDecl *CID = 469 dyn_cast<ObjCCategoryImplDecl>(MD->getDeclContext())) 470 Out << '(' << CID << ')'; 471 472 Out << ' '; 473 Out << MD->getSelector().getAsString(); 474 Out << ']'; 475 476 Out.flush(); 477 return Name.str().str(); 478 } 479 if (isa<TranslationUnitDecl>(CurrentDecl) && IT == PrettyFunction) { 480 // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string. 481 return "top level"; 482 } 483 return ""; 484 } 485 486 void APNumericStorage::setIntValue(ASTContext &C, const llvm::APInt &Val) { 487 if (hasAllocation()) 488 C.Deallocate(pVal); 489 490 BitWidth = Val.getBitWidth(); 491 unsigned NumWords = Val.getNumWords(); 492 const uint64_t* Words = Val.getRawData(); 493 if (NumWords > 1) { 494 pVal = new (C) uint64_t[NumWords]; 495 std::copy(Words, Words + NumWords, pVal); 496 } else if (NumWords == 1) 497 VAL = Words[0]; 498 else 499 VAL = 0; 500 } 501 502 IntegerLiteral * 503 IntegerLiteral::Create(ASTContext &C, const llvm::APInt &V, 504 QualType type, SourceLocation l) { 505 return new (C) IntegerLiteral(C, V, type, l); 506 } 507 508 IntegerLiteral * 509 IntegerLiteral::Create(ASTContext &C, EmptyShell Empty) { 510 return new (C) IntegerLiteral(Empty); 511 } 512 513 FloatingLiteral * 514 FloatingLiteral::Create(ASTContext &C, const llvm::APFloat &V, 515 bool isexact, QualType Type, SourceLocation L) { 516 return new (C) FloatingLiteral(C, V, isexact, Type, L); 517 } 518 519 FloatingLiteral * 520 FloatingLiteral::Create(ASTContext &C, EmptyShell Empty) { 521 return new (C) FloatingLiteral(Empty); 522 } 523 524 /// getValueAsApproximateDouble - This returns the value as an inaccurate 525 /// double. Note that this may cause loss of precision, but is useful for 526 /// debugging dumps, etc. 527 double FloatingLiteral::getValueAsApproximateDouble() const { 528 llvm::APFloat V = getValue(); 529 bool ignored; 530 V.convert(llvm::APFloat::IEEEdouble, llvm::APFloat::rmNearestTiesToEven, 531 &ignored); 532 return V.convertToDouble(); 533 } 534 535 StringLiteral *StringLiteral::Create(ASTContext &C, llvm::StringRef Str, 536 bool Wide, 537 bool Pascal, QualType Ty, 538 const SourceLocation *Loc, 539 unsigned NumStrs) { 540 // Allocate enough space for the StringLiteral plus an array of locations for 541 // any concatenated string tokens. 542 void *Mem = C.Allocate(sizeof(StringLiteral)+ 543 sizeof(SourceLocation)*(NumStrs-1), 544 llvm::alignOf<StringLiteral>()); 545 StringLiteral *SL = new (Mem) StringLiteral(Ty); 546 547 // OPTIMIZE: could allocate this appended to the StringLiteral. 548 char *AStrData = new (C, 1) char[Str.size()]; 549 memcpy(AStrData, Str.data(), Str.size()); 550 SL->StrData = AStrData; 551 SL->ByteLength = Str.size(); 552 SL->IsWide = Wide; 553 SL->IsPascal = Pascal; 554 SL->TokLocs[0] = Loc[0]; 555 SL->NumConcatenated = NumStrs; 556 557 if (NumStrs != 1) 558 memcpy(&SL->TokLocs[1], Loc+1, sizeof(SourceLocation)*(NumStrs-1)); 559 return SL; 560 } 561 562 StringLiteral *StringLiteral::CreateEmpty(ASTContext &C, unsigned NumStrs) { 563 void *Mem = C.Allocate(sizeof(StringLiteral)+ 564 sizeof(SourceLocation)*(NumStrs-1), 565 llvm::alignOf<StringLiteral>()); 566 StringLiteral *SL = new (Mem) StringLiteral(QualType()); 567 SL->StrData = 0; 568 SL->ByteLength = 0; 569 SL->NumConcatenated = NumStrs; 570 return SL; 571 } 572 573 void StringLiteral::setString(ASTContext &C, llvm::StringRef Str) { 574 char *AStrData = new (C, 1) char[Str.size()]; 575 memcpy(AStrData, Str.data(), Str.size()); 576 StrData = AStrData; 577 ByteLength = Str.size(); 578 } 579 580 /// getLocationOfByte - Return a source location that points to the specified 581 /// byte of this string literal. 582 /// 583 /// Strings are amazingly complex. They can be formed from multiple tokens and 584 /// can have escape sequences in them in addition to the usual trigraph and 585 /// escaped newline business. This routine handles this complexity. 586 /// 587 SourceLocation StringLiteral:: 588 getLocationOfByte(unsigned ByteNo, const SourceManager &SM, 589 const LangOptions &Features, const TargetInfo &Target) const { 590 assert(!isWide() && "This doesn't work for wide strings yet"); 591 592 // Loop over all of the tokens in this string until we find the one that 593 // contains the byte we're looking for. 594 unsigned TokNo = 0; 595 while (1) { 596 assert(TokNo < getNumConcatenated() && "Invalid byte number!"); 597 SourceLocation StrTokLoc = getStrTokenLoc(TokNo); 598 599 // Get the spelling of the string so that we can get the data that makes up 600 // the string literal, not the identifier for the macro it is potentially 601 // expanded through. 602 SourceLocation StrTokSpellingLoc = SM.getSpellingLoc(StrTokLoc); 603 604 // Re-lex the token to get its length and original spelling. 605 std::pair<FileID, unsigned> LocInfo =SM.getDecomposedLoc(StrTokSpellingLoc); 606 bool Invalid = false; 607 llvm::StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid); 608 if (Invalid) 609 return StrTokSpellingLoc; 610 611 const char *StrData = Buffer.data()+LocInfo.second; 612 613 // Create a langops struct and enable trigraphs. This is sufficient for 614 // relexing tokens. 615 LangOptions LangOpts; 616 LangOpts.Trigraphs = true; 617 618 // Create a lexer starting at the beginning of this token. 619 Lexer TheLexer(StrTokSpellingLoc, Features, Buffer.begin(), StrData, 620 Buffer.end()); 621 Token TheTok; 622 TheLexer.LexFromRawLexer(TheTok); 623 624 // Use the StringLiteralParser to compute the length of the string in bytes. 625 StringLiteralParser SLP(&TheTok, 1, SM, Features, Target); 626 unsigned TokNumBytes = SLP.GetStringLength(); 627 628 // If the byte is in this token, return the location of the byte. 629 if (ByteNo < TokNumBytes || 630 (ByteNo == TokNumBytes && TokNo == getNumConcatenated() - 1)) { 631 unsigned Offset = SLP.getOffsetOfStringByte(TheTok, ByteNo); 632 633 // Now that we know the offset of the token in the spelling, use the 634 // preprocessor to get the offset in the original source. 635 return Lexer::AdvanceToTokenCharacter(StrTokLoc, Offset, SM, Features); 636 } 637 638 // Move to the next string token. 639 ++TokNo; 640 ByteNo -= TokNumBytes; 641 } 642 } 643 644 645 646 /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it 647 /// corresponds to, e.g. "sizeof" or "[pre]++". 648 const char *UnaryOperator::getOpcodeStr(Opcode Op) { 649 switch (Op) { 650 default: assert(0 && "Unknown unary operator"); 651 case UO_PostInc: return "++"; 652 case UO_PostDec: return "--"; 653 case UO_PreInc: return "++"; 654 case UO_PreDec: return "--"; 655 case UO_AddrOf: return "&"; 656 case UO_Deref: return "*"; 657 case UO_Plus: return "+"; 658 case UO_Minus: return "-"; 659 case UO_Not: return "~"; 660 case UO_LNot: return "!"; 661 case UO_Real: return "__real"; 662 case UO_Imag: return "__imag"; 663 case UO_Extension: return "__extension__"; 664 } 665 } 666 667 UnaryOperatorKind 668 UnaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix) { 669 switch (OO) { 670 default: assert(false && "No unary operator for overloaded function"); 671 case OO_PlusPlus: return Postfix ? UO_PostInc : UO_PreInc; 672 case OO_MinusMinus: return Postfix ? UO_PostDec : UO_PreDec; 673 case OO_Amp: return UO_AddrOf; 674 case OO_Star: return UO_Deref; 675 case OO_Plus: return UO_Plus; 676 case OO_Minus: return UO_Minus; 677 case OO_Tilde: return UO_Not; 678 case OO_Exclaim: return UO_LNot; 679 } 680 } 681 682 OverloadedOperatorKind UnaryOperator::getOverloadedOperator(Opcode Opc) { 683 switch (Opc) { 684 case UO_PostInc: case UO_PreInc: return OO_PlusPlus; 685 case UO_PostDec: case UO_PreDec: return OO_MinusMinus; 686 case UO_AddrOf: return OO_Amp; 687 case UO_Deref: return OO_Star; 688 case UO_Plus: return OO_Plus; 689 case UO_Minus: return OO_Minus; 690 case UO_Not: return OO_Tilde; 691 case UO_LNot: return OO_Exclaim; 692 default: return OO_None; 693 } 694 } 695 696 697 //===----------------------------------------------------------------------===// 698 // Postfix Operators. 699 //===----------------------------------------------------------------------===// 700 701 CallExpr::CallExpr(ASTContext& C, StmtClass SC, Expr *fn, unsigned NumPreArgs, 702 Expr **args, unsigned numargs, QualType t, ExprValueKind VK, 703 SourceLocation rparenloc) 704 : Expr(SC, t, VK, OK_Ordinary, 705 fn->isTypeDependent(), 706 fn->isValueDependent(), 707 fn->isInstantiationDependent(), 708 fn->containsUnexpandedParameterPack()), 709 NumArgs(numargs) { 710 711 SubExprs = new (C) Stmt*[numargs+PREARGS_START+NumPreArgs]; 712 SubExprs[FN] = fn; 713 for (unsigned i = 0; i != numargs; ++i) { 714 if (args[i]->isTypeDependent()) 715 ExprBits.TypeDependent = true; 716 if (args[i]->isValueDependent()) 717 ExprBits.ValueDependent = true; 718 if (args[i]->isInstantiationDependent()) 719 ExprBits.InstantiationDependent = true; 720 if (args[i]->containsUnexpandedParameterPack()) 721 ExprBits.ContainsUnexpandedParameterPack = true; 722 723 SubExprs[i+PREARGS_START+NumPreArgs] = args[i]; 724 } 725 726 CallExprBits.NumPreArgs = NumPreArgs; 727 RParenLoc = rparenloc; 728 } 729 730 CallExpr::CallExpr(ASTContext& C, Expr *fn, Expr **args, unsigned numargs, 731 QualType t, ExprValueKind VK, SourceLocation rparenloc) 732 : Expr(CallExprClass, t, VK, OK_Ordinary, 733 fn->isTypeDependent(), 734 fn->isValueDependent(), 735 fn->isInstantiationDependent(), 736 fn->containsUnexpandedParameterPack()), 737 NumArgs(numargs) { 738 739 SubExprs = new (C) Stmt*[numargs+PREARGS_START]; 740 SubExprs[FN] = fn; 741 for (unsigned i = 0; i != numargs; ++i) { 742 if (args[i]->isTypeDependent()) 743 ExprBits.TypeDependent = true; 744 if (args[i]->isValueDependent()) 745 ExprBits.ValueDependent = true; 746 if (args[i]->isInstantiationDependent()) 747 ExprBits.InstantiationDependent = true; 748 if (args[i]->containsUnexpandedParameterPack()) 749 ExprBits.ContainsUnexpandedParameterPack = true; 750 751 SubExprs[i+PREARGS_START] = args[i]; 752 } 753 754 CallExprBits.NumPreArgs = 0; 755 RParenLoc = rparenloc; 756 } 757 758 CallExpr::CallExpr(ASTContext &C, StmtClass SC, EmptyShell Empty) 759 : Expr(SC, Empty), SubExprs(0), NumArgs(0) { 760 // FIXME: Why do we allocate this? 761 SubExprs = new (C) Stmt*[PREARGS_START]; 762 CallExprBits.NumPreArgs = 0; 763 } 764 765 CallExpr::CallExpr(ASTContext &C, StmtClass SC, unsigned NumPreArgs, 766 EmptyShell Empty) 767 : Expr(SC, Empty), SubExprs(0), NumArgs(0) { 768 // FIXME: Why do we allocate this? 769 SubExprs = new (C) Stmt*[PREARGS_START+NumPreArgs]; 770 CallExprBits.NumPreArgs = NumPreArgs; 771 } 772 773 Decl *CallExpr::getCalleeDecl() { 774 Expr *CEE = getCallee()->IgnoreParenCasts(); 775 // If we're calling a dereference, look at the pointer instead. 776 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CEE)) { 777 if (BO->isPtrMemOp()) 778 CEE = BO->getRHS()->IgnoreParenCasts(); 779 } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(CEE)) { 780 if (UO->getOpcode() == UO_Deref) 781 CEE = UO->getSubExpr()->IgnoreParenCasts(); 782 } 783 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE)) 784 return DRE->getDecl(); 785 if (MemberExpr *ME = dyn_cast<MemberExpr>(CEE)) 786 return ME->getMemberDecl(); 787 788 return 0; 789 } 790 791 FunctionDecl *CallExpr::getDirectCallee() { 792 return dyn_cast_or_null<FunctionDecl>(getCalleeDecl()); 793 } 794 795 /// setNumArgs - This changes the number of arguments present in this call. 796 /// Any orphaned expressions are deleted by this, and any new operands are set 797 /// to null. 798 void CallExpr::setNumArgs(ASTContext& C, unsigned NumArgs) { 799 // No change, just return. 800 if (NumArgs == getNumArgs()) return; 801 802 // If shrinking # arguments, just delete the extras and forgot them. 803 if (NumArgs < getNumArgs()) { 804 this->NumArgs = NumArgs; 805 return; 806 } 807 808 // Otherwise, we are growing the # arguments. New an bigger argument array. 809 unsigned NumPreArgs = getNumPreArgs(); 810 Stmt **NewSubExprs = new (C) Stmt*[NumArgs+PREARGS_START+NumPreArgs]; 811 // Copy over args. 812 for (unsigned i = 0; i != getNumArgs()+PREARGS_START+NumPreArgs; ++i) 813 NewSubExprs[i] = SubExprs[i]; 814 // Null out new args. 815 for (unsigned i = getNumArgs()+PREARGS_START+NumPreArgs; 816 i != NumArgs+PREARGS_START+NumPreArgs; ++i) 817 NewSubExprs[i] = 0; 818 819 if (SubExprs) C.Deallocate(SubExprs); 820 SubExprs = NewSubExprs; 821 this->NumArgs = NumArgs; 822 } 823 824 /// isBuiltinCall - If this is a call to a builtin, return the builtin ID. If 825 /// not, return 0. 826 unsigned CallExpr::isBuiltinCall(const ASTContext &Context) const { 827 // All simple function calls (e.g. func()) are implicitly cast to pointer to 828 // function. As a result, we try and obtain the DeclRefExpr from the 829 // ImplicitCastExpr. 830 const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(getCallee()); 831 if (!ICE) // FIXME: deal with more complex calls (e.g. (func)(), (*func)()). 832 return 0; 833 834 const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr()); 835 if (!DRE) 836 return 0; 837 838 const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl()); 839 if (!FDecl) 840 return 0; 841 842 if (!FDecl->getIdentifier()) 843 return 0; 844 845 return FDecl->getBuiltinID(); 846 } 847 848 QualType CallExpr::getCallReturnType() const { 849 QualType CalleeType = getCallee()->getType(); 850 if (const PointerType *FnTypePtr = CalleeType->getAs<PointerType>()) 851 CalleeType = FnTypePtr->getPointeeType(); 852 else if (const BlockPointerType *BPT = CalleeType->getAs<BlockPointerType>()) 853 CalleeType = BPT->getPointeeType(); 854 else if (CalleeType->isSpecificPlaceholderType(BuiltinType::BoundMember)) 855 // This should never be overloaded and so should never return null. 856 CalleeType = Expr::findBoundMemberType(getCallee()); 857 858 const FunctionType *FnType = CalleeType->castAs<FunctionType>(); 859 return FnType->getResultType(); 860 } 861 862 SourceRange CallExpr::getSourceRange() const { 863 if (isa<CXXOperatorCallExpr>(this)) 864 return cast<CXXOperatorCallExpr>(this)->getSourceRange(); 865 866 SourceLocation begin = getCallee()->getLocStart(); 867 if (begin.isInvalid() && getNumArgs() > 0) 868 begin = getArg(0)->getLocStart(); 869 SourceLocation end = getRParenLoc(); 870 if (end.isInvalid() && getNumArgs() > 0) 871 end = getArg(getNumArgs() - 1)->getLocEnd(); 872 return SourceRange(begin, end); 873 } 874 875 OffsetOfExpr *OffsetOfExpr::Create(ASTContext &C, QualType type, 876 SourceLocation OperatorLoc, 877 TypeSourceInfo *tsi, 878 OffsetOfNode* compsPtr, unsigned numComps, 879 Expr** exprsPtr, unsigned numExprs, 880 SourceLocation RParenLoc) { 881 void *Mem = C.Allocate(sizeof(OffsetOfExpr) + 882 sizeof(OffsetOfNode) * numComps + 883 sizeof(Expr*) * numExprs); 884 885 return new (Mem) OffsetOfExpr(C, type, OperatorLoc, tsi, compsPtr, numComps, 886 exprsPtr, numExprs, RParenLoc); 887 } 888 889 OffsetOfExpr *OffsetOfExpr::CreateEmpty(ASTContext &C, 890 unsigned numComps, unsigned numExprs) { 891 void *Mem = C.Allocate(sizeof(OffsetOfExpr) + 892 sizeof(OffsetOfNode) * numComps + 893 sizeof(Expr*) * numExprs); 894 return new (Mem) OffsetOfExpr(numComps, numExprs); 895 } 896 897 OffsetOfExpr::OffsetOfExpr(ASTContext &C, QualType type, 898 SourceLocation OperatorLoc, TypeSourceInfo *tsi, 899 OffsetOfNode* compsPtr, unsigned numComps, 900 Expr** exprsPtr, unsigned numExprs, 901 SourceLocation RParenLoc) 902 : Expr(OffsetOfExprClass, type, VK_RValue, OK_Ordinary, 903 /*TypeDependent=*/false, 904 /*ValueDependent=*/tsi->getType()->isDependentType(), 905 tsi->getType()->isInstantiationDependentType(), 906 tsi->getType()->containsUnexpandedParameterPack()), 907 OperatorLoc(OperatorLoc), RParenLoc(RParenLoc), TSInfo(tsi), 908 NumComps(numComps), NumExprs(numExprs) 909 { 910 for(unsigned i = 0; i < numComps; ++i) { 911 setComponent(i, compsPtr[i]); 912 } 913 914 for(unsigned i = 0; i < numExprs; ++i) { 915 if (exprsPtr[i]->isTypeDependent() || exprsPtr[i]->isValueDependent()) 916 ExprBits.ValueDependent = true; 917 if (exprsPtr[i]->containsUnexpandedParameterPack()) 918 ExprBits.ContainsUnexpandedParameterPack = true; 919 920 setIndexExpr(i, exprsPtr[i]); 921 } 922 } 923 924 IdentifierInfo *OffsetOfExpr::OffsetOfNode::getFieldName() const { 925 assert(getKind() == Field || getKind() == Identifier); 926 if (getKind() == Field) 927 return getField()->getIdentifier(); 928 929 return reinterpret_cast<IdentifierInfo *> (Data & ~(uintptr_t)Mask); 930 } 931 932 MemberExpr *MemberExpr::Create(ASTContext &C, Expr *base, bool isarrow, 933 NestedNameSpecifierLoc QualifierLoc, 934 ValueDecl *memberdecl, 935 DeclAccessPair founddecl, 936 DeclarationNameInfo nameinfo, 937 const TemplateArgumentListInfo *targs, 938 QualType ty, 939 ExprValueKind vk, 940 ExprObjectKind ok) { 941 std::size_t Size = sizeof(MemberExpr); 942 943 bool hasQualOrFound = (QualifierLoc || 944 founddecl.getDecl() != memberdecl || 945 founddecl.getAccess() != memberdecl->getAccess()); 946 if (hasQualOrFound) 947 Size += sizeof(MemberNameQualifier); 948 949 if (targs) 950 Size += ExplicitTemplateArgumentList::sizeFor(*targs); 951 952 void *Mem = C.Allocate(Size, llvm::alignOf<MemberExpr>()); 953 MemberExpr *E = new (Mem) MemberExpr(base, isarrow, memberdecl, nameinfo, 954 ty, vk, ok); 955 956 if (hasQualOrFound) { 957 // FIXME: Wrong. We should be looking at the member declaration we found. 958 if (QualifierLoc && QualifierLoc.getNestedNameSpecifier()->isDependent()) { 959 E->setValueDependent(true); 960 E->setTypeDependent(true); 961 E->setInstantiationDependent(true); 962 } 963 else if (QualifierLoc && 964 QualifierLoc.getNestedNameSpecifier()->isInstantiationDependent()) 965 E->setInstantiationDependent(true); 966 967 E->HasQualifierOrFoundDecl = true; 968 969 MemberNameQualifier *NQ = E->getMemberQualifier(); 970 NQ->QualifierLoc = QualifierLoc; 971 NQ->FoundDecl = founddecl; 972 } 973 974 if (targs) { 975 bool Dependent = false; 976 bool InstantiationDependent = false; 977 bool ContainsUnexpandedParameterPack = false; 978 E->HasExplicitTemplateArgumentList = true; 979 E->getExplicitTemplateArgs().initializeFrom(*targs, Dependent, 980 InstantiationDependent, 981 ContainsUnexpandedParameterPack); 982 if (InstantiationDependent) 983 E->setInstantiationDependent(true); 984 } 985 986 return E; 987 } 988 989 SourceRange MemberExpr::getSourceRange() const { 990 SourceLocation StartLoc; 991 if (isImplicitAccess()) { 992 if (hasQualifier()) 993 StartLoc = getQualifierLoc().getBeginLoc(); 994 else 995 StartLoc = MemberLoc; 996 } else { 997 // FIXME: We don't want this to happen. Rather, we should be able to 998 // detect all kinds of implicit accesses more cleanly. 999 StartLoc = getBase()->getLocStart(); 1000 if (StartLoc.isInvalid()) 1001 StartLoc = MemberLoc; 1002 } 1003 1004 SourceLocation EndLoc = 1005 HasExplicitTemplateArgumentList? getRAngleLoc() 1006 : getMemberNameInfo().getEndLoc(); 1007 1008 return SourceRange(StartLoc, EndLoc); 1009 } 1010 1011 const char *CastExpr::getCastKindName() const { 1012 switch (getCastKind()) { 1013 case CK_Dependent: 1014 return "Dependent"; 1015 case CK_BitCast: 1016 return "BitCast"; 1017 case CK_LValueBitCast: 1018 return "LValueBitCast"; 1019 case CK_LValueToRValue: 1020 return "LValueToRValue"; 1021 case CK_GetObjCProperty: 1022 return "GetObjCProperty"; 1023 case CK_NoOp: 1024 return "NoOp"; 1025 case CK_BaseToDerived: 1026 return "BaseToDerived"; 1027 case CK_DerivedToBase: 1028 return "DerivedToBase"; 1029 case CK_UncheckedDerivedToBase: 1030 return "UncheckedDerivedToBase"; 1031 case CK_Dynamic: 1032 return "Dynamic"; 1033 case CK_ToUnion: 1034 return "ToUnion"; 1035 case CK_ArrayToPointerDecay: 1036 return "ArrayToPointerDecay"; 1037 case CK_FunctionToPointerDecay: 1038 return "FunctionToPointerDecay"; 1039 case CK_NullToMemberPointer: 1040 return "NullToMemberPointer"; 1041 case CK_NullToPointer: 1042 return "NullToPointer"; 1043 case CK_BaseToDerivedMemberPointer: 1044 return "BaseToDerivedMemberPointer"; 1045 case CK_DerivedToBaseMemberPointer: 1046 return "DerivedToBaseMemberPointer"; 1047 case CK_UserDefinedConversion: 1048 return "UserDefinedConversion"; 1049 case CK_ConstructorConversion: 1050 return "ConstructorConversion"; 1051 case CK_IntegralToPointer: 1052 return "IntegralToPointer"; 1053 case CK_PointerToIntegral: 1054 return "PointerToIntegral"; 1055 case CK_PointerToBoolean: 1056 return "PointerToBoolean"; 1057 case CK_ToVoid: 1058 return "ToVoid"; 1059 case CK_VectorSplat: 1060 return "VectorSplat"; 1061 case CK_IntegralCast: 1062 return "IntegralCast"; 1063 case CK_IntegralToBoolean: 1064 return "IntegralToBoolean"; 1065 case CK_IntegralToFloating: 1066 return "IntegralToFloating"; 1067 case CK_FloatingToIntegral: 1068 return "FloatingToIntegral"; 1069 case CK_FloatingCast: 1070 return "FloatingCast"; 1071 case CK_FloatingToBoolean: 1072 return "FloatingToBoolean"; 1073 case CK_MemberPointerToBoolean: 1074 return "MemberPointerToBoolean"; 1075 case CK_AnyPointerToObjCPointerCast: 1076 return "AnyPointerToObjCPointerCast"; 1077 case CK_AnyPointerToBlockPointerCast: 1078 return "AnyPointerToBlockPointerCast"; 1079 case CK_ObjCObjectLValueCast: 1080 return "ObjCObjectLValueCast"; 1081 case CK_FloatingRealToComplex: 1082 return "FloatingRealToComplex"; 1083 case CK_FloatingComplexToReal: 1084 return "FloatingComplexToReal"; 1085 case CK_FloatingComplexToBoolean: 1086 return "FloatingComplexToBoolean"; 1087 case CK_FloatingComplexCast: 1088 return "FloatingComplexCast"; 1089 case CK_FloatingComplexToIntegralComplex: 1090 return "FloatingComplexToIntegralComplex"; 1091 case CK_IntegralRealToComplex: 1092 return "IntegralRealToComplex"; 1093 case CK_IntegralComplexToReal: 1094 return "IntegralComplexToReal"; 1095 case CK_IntegralComplexToBoolean: 1096 return "IntegralComplexToBoolean"; 1097 case CK_IntegralComplexCast: 1098 return "IntegralComplexCast"; 1099 case CK_IntegralComplexToFloatingComplex: 1100 return "IntegralComplexToFloatingComplex"; 1101 case CK_ObjCConsumeObject: 1102 return "ObjCConsumeObject"; 1103 case CK_ObjCProduceObject: 1104 return "ObjCProduceObject"; 1105 case CK_ObjCReclaimReturnedObject: 1106 return "ObjCReclaimReturnedObject"; 1107 } 1108 1109 llvm_unreachable("Unhandled cast kind!"); 1110 return 0; 1111 } 1112 1113 Expr *CastExpr::getSubExprAsWritten() { 1114 Expr *SubExpr = 0; 1115 CastExpr *E = this; 1116 do { 1117 SubExpr = E->getSubExpr(); 1118 1119 // Skip through reference binding to temporary. 1120 if (MaterializeTemporaryExpr *Materialize 1121 = dyn_cast<MaterializeTemporaryExpr>(SubExpr)) 1122 SubExpr = Materialize->GetTemporaryExpr(); 1123 1124 // Skip any temporary bindings; they're implicit. 1125 if (CXXBindTemporaryExpr *Binder = dyn_cast<CXXBindTemporaryExpr>(SubExpr)) 1126 SubExpr = Binder->getSubExpr(); 1127 1128 // Conversions by constructor and conversion functions have a 1129 // subexpression describing the call; strip it off. 1130 if (E->getCastKind() == CK_ConstructorConversion) 1131 SubExpr = cast<CXXConstructExpr>(SubExpr)->getArg(0); 1132 else if (E->getCastKind() == CK_UserDefinedConversion) 1133 SubExpr = cast<CXXMemberCallExpr>(SubExpr)->getImplicitObjectArgument(); 1134 1135 // If the subexpression we're left with is an implicit cast, look 1136 // through that, too. 1137 } while ((E = dyn_cast<ImplicitCastExpr>(SubExpr))); 1138 1139 return SubExpr; 1140 } 1141 1142 CXXBaseSpecifier **CastExpr::path_buffer() { 1143 switch (getStmtClass()) { 1144 #define ABSTRACT_STMT(x) 1145 #define CASTEXPR(Type, Base) \ 1146 case Stmt::Type##Class: \ 1147 return reinterpret_cast<CXXBaseSpecifier**>(static_cast<Type*>(this)+1); 1148 #define STMT(Type, Base) 1149 #include "clang/AST/StmtNodes.inc" 1150 default: 1151 llvm_unreachable("non-cast expressions not possible here"); 1152 return 0; 1153 } 1154 } 1155 1156 void CastExpr::setCastPath(const CXXCastPath &Path) { 1157 assert(Path.size() == path_size()); 1158 memcpy(path_buffer(), Path.data(), Path.size() * sizeof(CXXBaseSpecifier*)); 1159 } 1160 1161 ImplicitCastExpr *ImplicitCastExpr::Create(ASTContext &C, QualType T, 1162 CastKind Kind, Expr *Operand, 1163 const CXXCastPath *BasePath, 1164 ExprValueKind VK) { 1165 unsigned PathSize = (BasePath ? BasePath->size() : 0); 1166 void *Buffer = 1167 C.Allocate(sizeof(ImplicitCastExpr) + PathSize * sizeof(CXXBaseSpecifier*)); 1168 ImplicitCastExpr *E = 1169 new (Buffer) ImplicitCastExpr(T, Kind, Operand, PathSize, VK); 1170 if (PathSize) E->setCastPath(*BasePath); 1171 return E; 1172 } 1173 1174 ImplicitCastExpr *ImplicitCastExpr::CreateEmpty(ASTContext &C, 1175 unsigned PathSize) { 1176 void *Buffer = 1177 C.Allocate(sizeof(ImplicitCastExpr) + PathSize * sizeof(CXXBaseSpecifier*)); 1178 return new (Buffer) ImplicitCastExpr(EmptyShell(), PathSize); 1179 } 1180 1181 1182 CStyleCastExpr *CStyleCastExpr::Create(ASTContext &C, QualType T, 1183 ExprValueKind VK, CastKind K, Expr *Op, 1184 const CXXCastPath *BasePath, 1185 TypeSourceInfo *WrittenTy, 1186 SourceLocation L, SourceLocation R) { 1187 unsigned PathSize = (BasePath ? BasePath->size() : 0); 1188 void *Buffer = 1189 C.Allocate(sizeof(CStyleCastExpr) + PathSize * sizeof(CXXBaseSpecifier*)); 1190 CStyleCastExpr *E = 1191 new (Buffer) CStyleCastExpr(T, VK, K, Op, PathSize, WrittenTy, L, R); 1192 if (PathSize) E->setCastPath(*BasePath); 1193 return E; 1194 } 1195 1196 CStyleCastExpr *CStyleCastExpr::CreateEmpty(ASTContext &C, unsigned PathSize) { 1197 void *Buffer = 1198 C.Allocate(sizeof(CStyleCastExpr) + PathSize * sizeof(CXXBaseSpecifier*)); 1199 return new (Buffer) CStyleCastExpr(EmptyShell(), PathSize); 1200 } 1201 1202 /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it 1203 /// corresponds to, e.g. "<<=". 1204 const char *BinaryOperator::getOpcodeStr(Opcode Op) { 1205 switch (Op) { 1206 case BO_PtrMemD: return ".*"; 1207 case BO_PtrMemI: return "->*"; 1208 case BO_Mul: return "*"; 1209 case BO_Div: return "/"; 1210 case BO_Rem: return "%"; 1211 case BO_Add: return "+"; 1212 case BO_Sub: return "-"; 1213 case BO_Shl: return "<<"; 1214 case BO_Shr: return ">>"; 1215 case BO_LT: return "<"; 1216 case BO_GT: return ">"; 1217 case BO_LE: return "<="; 1218 case BO_GE: return ">="; 1219 case BO_EQ: return "=="; 1220 case BO_NE: return "!="; 1221 case BO_And: return "&"; 1222 case BO_Xor: return "^"; 1223 case BO_Or: return "|"; 1224 case BO_LAnd: return "&&"; 1225 case BO_LOr: return "||"; 1226 case BO_Assign: return "="; 1227 case BO_MulAssign: return "*="; 1228 case BO_DivAssign: return "/="; 1229 case BO_RemAssign: return "%="; 1230 case BO_AddAssign: return "+="; 1231 case BO_SubAssign: return "-="; 1232 case BO_ShlAssign: return "<<="; 1233 case BO_ShrAssign: return ">>="; 1234 case BO_AndAssign: return "&="; 1235 case BO_XorAssign: return "^="; 1236 case BO_OrAssign: return "|="; 1237 case BO_Comma: return ","; 1238 } 1239 1240 return ""; 1241 } 1242 1243 BinaryOperatorKind 1244 BinaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO) { 1245 switch (OO) { 1246 default: assert(false && "Not an overloadable binary operator"); 1247 case OO_Plus: return BO_Add; 1248 case OO_Minus: return BO_Sub; 1249 case OO_Star: return BO_Mul; 1250 case OO_Slash: return BO_Div; 1251 case OO_Percent: return BO_Rem; 1252 case OO_Caret: return BO_Xor; 1253 case OO_Amp: return BO_And; 1254 case OO_Pipe: return BO_Or; 1255 case OO_Equal: return BO_Assign; 1256 case OO_Less: return BO_LT; 1257 case OO_Greater: return BO_GT; 1258 case OO_PlusEqual: return BO_AddAssign; 1259 case OO_MinusEqual: return BO_SubAssign; 1260 case OO_StarEqual: return BO_MulAssign; 1261 case OO_SlashEqual: return BO_DivAssign; 1262 case OO_PercentEqual: return BO_RemAssign; 1263 case OO_CaretEqual: return BO_XorAssign; 1264 case OO_AmpEqual: return BO_AndAssign; 1265 case OO_PipeEqual: return BO_OrAssign; 1266 case OO_LessLess: return BO_Shl; 1267 case OO_GreaterGreater: return BO_Shr; 1268 case OO_LessLessEqual: return BO_ShlAssign; 1269 case OO_GreaterGreaterEqual: return BO_ShrAssign; 1270 case OO_EqualEqual: return BO_EQ; 1271 case OO_ExclaimEqual: return BO_NE; 1272 case OO_LessEqual: return BO_LE; 1273 case OO_GreaterEqual: return BO_GE; 1274 case OO_AmpAmp: return BO_LAnd; 1275 case OO_PipePipe: return BO_LOr; 1276 case OO_Comma: return BO_Comma; 1277 case OO_ArrowStar: return BO_PtrMemI; 1278 } 1279 } 1280 1281 OverloadedOperatorKind BinaryOperator::getOverloadedOperator(Opcode Opc) { 1282 static const OverloadedOperatorKind OverOps[] = { 1283 /* .* Cannot be overloaded */OO_None, OO_ArrowStar, 1284 OO_Star, OO_Slash, OO_Percent, 1285 OO_Plus, OO_Minus, 1286 OO_LessLess, OO_GreaterGreater, 1287 OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual, 1288 OO_EqualEqual, OO_ExclaimEqual, 1289 OO_Amp, 1290 OO_Caret, 1291 OO_Pipe, 1292 OO_AmpAmp, 1293 OO_PipePipe, 1294 OO_Equal, OO_StarEqual, 1295 OO_SlashEqual, OO_PercentEqual, 1296 OO_PlusEqual, OO_MinusEqual, 1297 OO_LessLessEqual, OO_GreaterGreaterEqual, 1298 OO_AmpEqual, OO_CaretEqual, 1299 OO_PipeEqual, 1300 OO_Comma 1301 }; 1302 return OverOps[Opc]; 1303 } 1304 1305 InitListExpr::InitListExpr(ASTContext &C, SourceLocation lbraceloc, 1306 Expr **initExprs, unsigned numInits, 1307 SourceLocation rbraceloc) 1308 : Expr(InitListExprClass, QualType(), VK_RValue, OK_Ordinary, false, false, 1309 false, false), 1310 InitExprs(C, numInits), 1311 LBraceLoc(lbraceloc), RBraceLoc(rbraceloc), SyntacticForm(0), 1312 HadArrayRangeDesignator(false) 1313 { 1314 for (unsigned I = 0; I != numInits; ++I) { 1315 if (initExprs[I]->isTypeDependent()) 1316 ExprBits.TypeDependent = true; 1317 if (initExprs[I]->isValueDependent()) 1318 ExprBits.ValueDependent = true; 1319 if (initExprs[I]->isInstantiationDependent()) 1320 ExprBits.InstantiationDependent = true; 1321 if (initExprs[I]->containsUnexpandedParameterPack()) 1322 ExprBits.ContainsUnexpandedParameterPack = true; 1323 } 1324 1325 InitExprs.insert(C, InitExprs.end(), initExprs, initExprs+numInits); 1326 } 1327 1328 void InitListExpr::reserveInits(ASTContext &C, unsigned NumInits) { 1329 if (NumInits > InitExprs.size()) 1330 InitExprs.reserve(C, NumInits); 1331 } 1332 1333 void InitListExpr::resizeInits(ASTContext &C, unsigned NumInits) { 1334 InitExprs.resize(C, NumInits, 0); 1335 } 1336 1337 Expr *InitListExpr::updateInit(ASTContext &C, unsigned Init, Expr *expr) { 1338 if (Init >= InitExprs.size()) { 1339 InitExprs.insert(C, InitExprs.end(), Init - InitExprs.size() + 1, 0); 1340 InitExprs.back() = expr; 1341 return 0; 1342 } 1343 1344 Expr *Result = cast_or_null<Expr>(InitExprs[Init]); 1345 InitExprs[Init] = expr; 1346 return Result; 1347 } 1348 1349 void InitListExpr::setArrayFiller(Expr *filler) { 1350 ArrayFillerOrUnionFieldInit = filler; 1351 // Fill out any "holes" in the array due to designated initializers. 1352 Expr **inits = getInits(); 1353 for (unsigned i = 0, e = getNumInits(); i != e; ++i) 1354 if (inits[i] == 0) 1355 inits[i] = filler; 1356 } 1357 1358 SourceRange InitListExpr::getSourceRange() const { 1359 if (SyntacticForm) 1360 return SyntacticForm->getSourceRange(); 1361 SourceLocation Beg = LBraceLoc, End = RBraceLoc; 1362 if (Beg.isInvalid()) { 1363 // Find the first non-null initializer. 1364 for (InitExprsTy::const_iterator I = InitExprs.begin(), 1365 E = InitExprs.end(); 1366 I != E; ++I) { 1367 if (Stmt *S = *I) { 1368 Beg = S->getLocStart(); 1369 break; 1370 } 1371 } 1372 } 1373 if (End.isInvalid()) { 1374 // Find the first non-null initializer from the end. 1375 for (InitExprsTy::const_reverse_iterator I = InitExprs.rbegin(), 1376 E = InitExprs.rend(); 1377 I != E; ++I) { 1378 if (Stmt *S = *I) { 1379 End = S->getSourceRange().getEnd(); 1380 break; 1381 } 1382 } 1383 } 1384 return SourceRange(Beg, End); 1385 } 1386 1387 /// getFunctionType - Return the underlying function type for this block. 1388 /// 1389 const FunctionType *BlockExpr::getFunctionType() const { 1390 return getType()->getAs<BlockPointerType>()-> 1391 getPointeeType()->getAs<FunctionType>(); 1392 } 1393 1394 SourceLocation BlockExpr::getCaretLocation() const { 1395 return TheBlock->getCaretLocation(); 1396 } 1397 const Stmt *BlockExpr::getBody() const { 1398 return TheBlock->getBody(); 1399 } 1400 Stmt *BlockExpr::getBody() { 1401 return TheBlock->getBody(); 1402 } 1403 1404 1405 //===----------------------------------------------------------------------===// 1406 // Generic Expression Routines 1407 //===----------------------------------------------------------------------===// 1408 1409 /// isUnusedResultAWarning - Return true if this immediate expression should 1410 /// be warned about if the result is unused. If so, fill in Loc and Ranges 1411 /// with location to warn on and the source range[s] to report with the 1412 /// warning. 1413 bool Expr::isUnusedResultAWarning(SourceLocation &Loc, SourceRange &R1, 1414 SourceRange &R2, ASTContext &Ctx) const { 1415 // Don't warn if the expr is type dependent. The type could end up 1416 // instantiating to void. 1417 if (isTypeDependent()) 1418 return false; 1419 1420 switch (getStmtClass()) { 1421 default: 1422 if (getType()->isVoidType()) 1423 return false; 1424 Loc = getExprLoc(); 1425 R1 = getSourceRange(); 1426 return true; 1427 case ParenExprClass: 1428 return cast<ParenExpr>(this)->getSubExpr()-> 1429 isUnusedResultAWarning(Loc, R1, R2, Ctx); 1430 case GenericSelectionExprClass: 1431 return cast<GenericSelectionExpr>(this)->getResultExpr()-> 1432 isUnusedResultAWarning(Loc, R1, R2, Ctx); 1433 case UnaryOperatorClass: { 1434 const UnaryOperator *UO = cast<UnaryOperator>(this); 1435 1436 switch (UO->getOpcode()) { 1437 default: break; 1438 case UO_PostInc: 1439 case UO_PostDec: 1440 case UO_PreInc: 1441 case UO_PreDec: // ++/-- 1442 return false; // Not a warning. 1443 case UO_Deref: 1444 // Dereferencing a volatile pointer is a side-effect. 1445 if (Ctx.getCanonicalType(getType()).isVolatileQualified()) 1446 return false; 1447 break; 1448 case UO_Real: 1449 case UO_Imag: 1450 // accessing a piece of a volatile complex is a side-effect. 1451 if (Ctx.getCanonicalType(UO->getSubExpr()->getType()) 1452 .isVolatileQualified()) 1453 return false; 1454 break; 1455 case UO_Extension: 1456 return UO->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx); 1457 } 1458 Loc = UO->getOperatorLoc(); 1459 R1 = UO->getSubExpr()->getSourceRange(); 1460 return true; 1461 } 1462 case BinaryOperatorClass: { 1463 const BinaryOperator *BO = cast<BinaryOperator>(this); 1464 switch (BO->getOpcode()) { 1465 default: 1466 break; 1467 // Consider the RHS of comma for side effects. LHS was checked by 1468 // Sema::CheckCommaOperands. 1469 case BO_Comma: 1470 // ((foo = <blah>), 0) is an idiom for hiding the result (and 1471 // lvalue-ness) of an assignment written in a macro. 1472 if (IntegerLiteral *IE = 1473 dyn_cast<IntegerLiteral>(BO->getRHS()->IgnoreParens())) 1474 if (IE->getValue() == 0) 1475 return false; 1476 return BO->getRHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx); 1477 // Consider '||', '&&' to have side effects if the LHS or RHS does. 1478 case BO_LAnd: 1479 case BO_LOr: 1480 if (!BO->getLHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx) || 1481 !BO->getRHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx)) 1482 return false; 1483 break; 1484 } 1485 if (BO->isAssignmentOp()) 1486 return false; 1487 Loc = BO->getOperatorLoc(); 1488 R1 = BO->getLHS()->getSourceRange(); 1489 R2 = BO->getRHS()->getSourceRange(); 1490 return true; 1491 } 1492 case CompoundAssignOperatorClass: 1493 case VAArgExprClass: 1494 return false; 1495 1496 case ConditionalOperatorClass: { 1497 // If only one of the LHS or RHS is a warning, the operator might 1498 // be being used for control flow. Only warn if both the LHS and 1499 // RHS are warnings. 1500 const ConditionalOperator *Exp = cast<ConditionalOperator>(this); 1501 if (!Exp->getRHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx)) 1502 return false; 1503 if (!Exp->getLHS()) 1504 return true; 1505 return Exp->getLHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx); 1506 } 1507 1508 case MemberExprClass: 1509 // If the base pointer or element is to a volatile pointer/field, accessing 1510 // it is a side effect. 1511 if (Ctx.getCanonicalType(getType()).isVolatileQualified()) 1512 return false; 1513 Loc = cast<MemberExpr>(this)->getMemberLoc(); 1514 R1 = SourceRange(Loc, Loc); 1515 R2 = cast<MemberExpr>(this)->getBase()->getSourceRange(); 1516 return true; 1517 1518 case ArraySubscriptExprClass: 1519 // If the base pointer or element is to a volatile pointer/field, accessing 1520 // it is a side effect. 1521 if (Ctx.getCanonicalType(getType()).isVolatileQualified()) 1522 return false; 1523 Loc = cast<ArraySubscriptExpr>(this)->getRBracketLoc(); 1524 R1 = cast<ArraySubscriptExpr>(this)->getLHS()->getSourceRange(); 1525 R2 = cast<ArraySubscriptExpr>(this)->getRHS()->getSourceRange(); 1526 return true; 1527 1528 case CallExprClass: 1529 case CXXOperatorCallExprClass: 1530 case CXXMemberCallExprClass: { 1531 // If this is a direct call, get the callee. 1532 const CallExpr *CE = cast<CallExpr>(this); 1533 if (const Decl *FD = CE->getCalleeDecl()) { 1534 // If the callee has attribute pure, const, or warn_unused_result, warn 1535 // about it. void foo() { strlen("bar"); } should warn. 1536 // 1537 // Note: If new cases are added here, DiagnoseUnusedExprResult should be 1538 // updated to match for QoI. 1539 if (FD->getAttr<WarnUnusedResultAttr>() || 1540 FD->getAttr<PureAttr>() || FD->getAttr<ConstAttr>()) { 1541 Loc = CE->getCallee()->getLocStart(); 1542 R1 = CE->getCallee()->getSourceRange(); 1543 1544 if (unsigned NumArgs = CE->getNumArgs()) 1545 R2 = SourceRange(CE->getArg(0)->getLocStart(), 1546 CE->getArg(NumArgs-1)->getLocEnd()); 1547 return true; 1548 } 1549 } 1550 return false; 1551 } 1552 1553 case CXXTemporaryObjectExprClass: 1554 case CXXConstructExprClass: 1555 return false; 1556 1557 case ObjCMessageExprClass: { 1558 const ObjCMessageExpr *ME = cast<ObjCMessageExpr>(this); 1559 if (Ctx.getLangOptions().ObjCAutoRefCount && 1560 ME->isInstanceMessage() && 1561 !ME->getType()->isVoidType() && 1562 ME->getSelector().getIdentifierInfoForSlot(0) && 1563 ME->getSelector().getIdentifierInfoForSlot(0) 1564 ->getName().startswith("init")) { 1565 Loc = getExprLoc(); 1566 R1 = ME->getSourceRange(); 1567 return true; 1568 } 1569 1570 const ObjCMethodDecl *MD = ME->getMethodDecl(); 1571 if (MD && MD->getAttr<WarnUnusedResultAttr>()) { 1572 Loc = getExprLoc(); 1573 return true; 1574 } 1575 return false; 1576 } 1577 1578 case ObjCPropertyRefExprClass: 1579 Loc = getExprLoc(); 1580 R1 = getSourceRange(); 1581 return true; 1582 1583 case StmtExprClass: { 1584 // Statement exprs don't logically have side effects themselves, but are 1585 // sometimes used in macros in ways that give them a type that is unused. 1586 // For example ({ blah; foo(); }) will end up with a type if foo has a type. 1587 // however, if the result of the stmt expr is dead, we don't want to emit a 1588 // warning. 1589 const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt(); 1590 if (!CS->body_empty()) { 1591 if (const Expr *E = dyn_cast<Expr>(CS->body_back())) 1592 return E->isUnusedResultAWarning(Loc, R1, R2, Ctx); 1593 if (const LabelStmt *Label = dyn_cast<LabelStmt>(CS->body_back())) 1594 if (const Expr *E = dyn_cast<Expr>(Label->getSubStmt())) 1595 return E->isUnusedResultAWarning(Loc, R1, R2, Ctx); 1596 } 1597 1598 if (getType()->isVoidType()) 1599 return false; 1600 Loc = cast<StmtExpr>(this)->getLParenLoc(); 1601 R1 = getSourceRange(); 1602 return true; 1603 } 1604 case CStyleCastExprClass: 1605 // If this is an explicit cast to void, allow it. People do this when they 1606 // think they know what they're doing :). 1607 if (getType()->isVoidType()) 1608 return false; 1609 Loc = cast<CStyleCastExpr>(this)->getLParenLoc(); 1610 R1 = cast<CStyleCastExpr>(this)->getSubExpr()->getSourceRange(); 1611 return true; 1612 case CXXFunctionalCastExprClass: { 1613 if (getType()->isVoidType()) 1614 return false; 1615 const CastExpr *CE = cast<CastExpr>(this); 1616 1617 // If this is a cast to void or a constructor conversion, check the operand. 1618 // Otherwise, the result of the cast is unused. 1619 if (CE->getCastKind() == CK_ToVoid || 1620 CE->getCastKind() == CK_ConstructorConversion) 1621 return (cast<CastExpr>(this)->getSubExpr() 1622 ->isUnusedResultAWarning(Loc, R1, R2, Ctx)); 1623 Loc = cast<CXXFunctionalCastExpr>(this)->getTypeBeginLoc(); 1624 R1 = cast<CXXFunctionalCastExpr>(this)->getSubExpr()->getSourceRange(); 1625 return true; 1626 } 1627 1628 case ImplicitCastExprClass: 1629 // Check the operand, since implicit casts are inserted by Sema 1630 return (cast<ImplicitCastExpr>(this) 1631 ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx)); 1632 1633 case CXXDefaultArgExprClass: 1634 return (cast<CXXDefaultArgExpr>(this) 1635 ->getExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx)); 1636 1637 case CXXNewExprClass: 1638 // FIXME: In theory, there might be new expressions that don't have side 1639 // effects (e.g. a placement new with an uninitialized POD). 1640 case CXXDeleteExprClass: 1641 return false; 1642 case CXXBindTemporaryExprClass: 1643 return (cast<CXXBindTemporaryExpr>(this) 1644 ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx)); 1645 case ExprWithCleanupsClass: 1646 return (cast<ExprWithCleanups>(this) 1647 ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx)); 1648 } 1649 } 1650 1651 /// isOBJCGCCandidate - Check if an expression is objc gc'able. 1652 /// returns true, if it is; false otherwise. 1653 bool Expr::isOBJCGCCandidate(ASTContext &Ctx) const { 1654 const Expr *E = IgnoreParens(); 1655 switch (E->getStmtClass()) { 1656 default: 1657 return false; 1658 case ObjCIvarRefExprClass: 1659 return true; 1660 case Expr::UnaryOperatorClass: 1661 return cast<UnaryOperator>(E)->getSubExpr()->isOBJCGCCandidate(Ctx); 1662 case ImplicitCastExprClass: 1663 return cast<ImplicitCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx); 1664 case MaterializeTemporaryExprClass: 1665 return cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr() 1666 ->isOBJCGCCandidate(Ctx); 1667 case CStyleCastExprClass: 1668 return cast<CStyleCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx); 1669 case DeclRefExprClass: { 1670 const Decl *D = cast<DeclRefExpr>(E)->getDecl(); 1671 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 1672 if (VD->hasGlobalStorage()) 1673 return true; 1674 QualType T = VD->getType(); 1675 // dereferencing to a pointer is always a gc'able candidate, 1676 // unless it is __weak. 1677 return T->isPointerType() && 1678 (Ctx.getObjCGCAttrKind(T) != Qualifiers::Weak); 1679 } 1680 return false; 1681 } 1682 case MemberExprClass: { 1683 const MemberExpr *M = cast<MemberExpr>(E); 1684 return M->getBase()->isOBJCGCCandidate(Ctx); 1685 } 1686 case ArraySubscriptExprClass: 1687 return cast<ArraySubscriptExpr>(E)->getBase()->isOBJCGCCandidate(Ctx); 1688 } 1689 } 1690 1691 bool Expr::isBoundMemberFunction(ASTContext &Ctx) const { 1692 if (isTypeDependent()) 1693 return false; 1694 return ClassifyLValue(Ctx) == Expr::LV_MemberFunction; 1695 } 1696 1697 QualType Expr::findBoundMemberType(const Expr *expr) { 1698 assert(expr->getType()->isSpecificPlaceholderType(BuiltinType::BoundMember)); 1699 1700 // Bound member expressions are always one of these possibilities: 1701 // x->m x.m x->*y x.*y 1702 // (possibly parenthesized) 1703 1704 expr = expr->IgnoreParens(); 1705 if (const MemberExpr *mem = dyn_cast<MemberExpr>(expr)) { 1706 assert(isa<CXXMethodDecl>(mem->getMemberDecl())); 1707 return mem->getMemberDecl()->getType(); 1708 } 1709 1710 if (const BinaryOperator *op = dyn_cast<BinaryOperator>(expr)) { 1711 QualType type = op->getRHS()->getType()->castAs<MemberPointerType>() 1712 ->getPointeeType(); 1713 assert(type->isFunctionType()); 1714 return type; 1715 } 1716 1717 assert(isa<UnresolvedMemberExpr>(expr)); 1718 return QualType(); 1719 } 1720 1721 static Expr::CanThrowResult MergeCanThrow(Expr::CanThrowResult CT1, 1722 Expr::CanThrowResult CT2) { 1723 // CanThrowResult constants are ordered so that the maximum is the correct 1724 // merge result. 1725 return CT1 > CT2 ? CT1 : CT2; 1726 } 1727 1728 static Expr::CanThrowResult CanSubExprsThrow(ASTContext &C, const Expr *CE) { 1729 Expr *E = const_cast<Expr*>(CE); 1730 Expr::CanThrowResult R = Expr::CT_Cannot; 1731 for (Expr::child_range I = E->children(); I && R != Expr::CT_Can; ++I) { 1732 R = MergeCanThrow(R, cast<Expr>(*I)->CanThrow(C)); 1733 } 1734 return R; 1735 } 1736 1737 static Expr::CanThrowResult CanCalleeThrow(ASTContext &Ctx, const Expr *E, 1738 const Decl *D, 1739 bool NullThrows = true) { 1740 if (!D) 1741 return NullThrows ? Expr::CT_Can : Expr::CT_Cannot; 1742 1743 // See if we can get a function type from the decl somehow. 1744 const ValueDecl *VD = dyn_cast<ValueDecl>(D); 1745 if (!VD) // If we have no clue what we're calling, assume the worst. 1746 return Expr::CT_Can; 1747 1748 // As an extension, we assume that __attribute__((nothrow)) functions don't 1749 // throw. 1750 if (isa<FunctionDecl>(D) && D->hasAttr<NoThrowAttr>()) 1751 return Expr::CT_Cannot; 1752 1753 QualType T = VD->getType(); 1754 const FunctionProtoType *FT; 1755 if ((FT = T->getAs<FunctionProtoType>())) { 1756 } else if (const PointerType *PT = T->getAs<PointerType>()) 1757 FT = PT->getPointeeType()->getAs<FunctionProtoType>(); 1758 else if (const ReferenceType *RT = T->getAs<ReferenceType>()) 1759 FT = RT->getPointeeType()->getAs<FunctionProtoType>(); 1760 else if (const MemberPointerType *MT = T->getAs<MemberPointerType>()) 1761 FT = MT->getPointeeType()->getAs<FunctionProtoType>(); 1762 else if (const BlockPointerType *BT = T->getAs<BlockPointerType>()) 1763 FT = BT->getPointeeType()->getAs<FunctionProtoType>(); 1764 1765 if (!FT) 1766 return Expr::CT_Can; 1767 1768 if (FT->getExceptionSpecType() == EST_Delayed) { 1769 assert(isa<CXXConstructorDecl>(D) && 1770 "only constructor exception specs can be unknown"); 1771 Ctx.getDiagnostics().Report(E->getLocStart(), 1772 diag::err_exception_spec_unknown) 1773 << E->getSourceRange(); 1774 return Expr::CT_Can; 1775 } 1776 1777 return FT->isNothrow(Ctx) ? Expr::CT_Cannot : Expr::CT_Can; 1778 } 1779 1780 static Expr::CanThrowResult CanDynamicCastThrow(const CXXDynamicCastExpr *DC) { 1781 if (DC->isTypeDependent()) 1782 return Expr::CT_Dependent; 1783 1784 if (!DC->getTypeAsWritten()->isReferenceType()) 1785 return Expr::CT_Cannot; 1786 1787 if (DC->getSubExpr()->isTypeDependent()) 1788 return Expr::CT_Dependent; 1789 1790 return DC->getCastKind() == clang::CK_Dynamic? Expr::CT_Can : Expr::CT_Cannot; 1791 } 1792 1793 static Expr::CanThrowResult CanTypeidThrow(ASTContext &C, 1794 const CXXTypeidExpr *DC) { 1795 if (DC->isTypeOperand()) 1796 return Expr::CT_Cannot; 1797 1798 Expr *Op = DC->getExprOperand(); 1799 if (Op->isTypeDependent()) 1800 return Expr::CT_Dependent; 1801 1802 const RecordType *RT = Op->getType()->getAs<RecordType>(); 1803 if (!RT) 1804 return Expr::CT_Cannot; 1805 1806 if (!cast<CXXRecordDecl>(RT->getDecl())->isPolymorphic()) 1807 return Expr::CT_Cannot; 1808 1809 if (Op->Classify(C).isPRValue()) 1810 return Expr::CT_Cannot; 1811 1812 return Expr::CT_Can; 1813 } 1814 1815 Expr::CanThrowResult Expr::CanThrow(ASTContext &C) const { 1816 // C++ [expr.unary.noexcept]p3: 1817 // [Can throw] if in a potentially-evaluated context the expression would 1818 // contain: 1819 switch (getStmtClass()) { 1820 case CXXThrowExprClass: 1821 // - a potentially evaluated throw-expression 1822 return CT_Can; 1823 1824 case CXXDynamicCastExprClass: { 1825 // - a potentially evaluated dynamic_cast expression dynamic_cast<T>(v), 1826 // where T is a reference type, that requires a run-time check 1827 CanThrowResult CT = CanDynamicCastThrow(cast<CXXDynamicCastExpr>(this)); 1828 if (CT == CT_Can) 1829 return CT; 1830 return MergeCanThrow(CT, CanSubExprsThrow(C, this)); 1831 } 1832 1833 case CXXTypeidExprClass: 1834 // - a potentially evaluated typeid expression applied to a glvalue 1835 // expression whose type is a polymorphic class type 1836 return CanTypeidThrow(C, cast<CXXTypeidExpr>(this)); 1837 1838 // - a potentially evaluated call to a function, member function, function 1839 // pointer, or member function pointer that does not have a non-throwing 1840 // exception-specification 1841 case CallExprClass: 1842 case CXXOperatorCallExprClass: 1843 case CXXMemberCallExprClass: { 1844 const CallExpr *CE = cast<CallExpr>(this); 1845 CanThrowResult CT; 1846 if (isTypeDependent()) 1847 CT = CT_Dependent; 1848 else if (isa<CXXPseudoDestructorExpr>(CE->getCallee()->IgnoreParens())) 1849 CT = CT_Cannot; 1850 else 1851 CT = CanCalleeThrow(C, this, CE->getCalleeDecl()); 1852 if (CT == CT_Can) 1853 return CT; 1854 return MergeCanThrow(CT, CanSubExprsThrow(C, this)); 1855 } 1856 1857 case CXXConstructExprClass: 1858 case CXXTemporaryObjectExprClass: { 1859 CanThrowResult CT = CanCalleeThrow(C, this, 1860 cast<CXXConstructExpr>(this)->getConstructor()); 1861 if (CT == CT_Can) 1862 return CT; 1863 return MergeCanThrow(CT, CanSubExprsThrow(C, this)); 1864 } 1865 1866 case CXXNewExprClass: { 1867 CanThrowResult CT; 1868 if (isTypeDependent()) 1869 CT = CT_Dependent; 1870 else 1871 CT = MergeCanThrow( 1872 CanCalleeThrow(C, this, cast<CXXNewExpr>(this)->getOperatorNew()), 1873 CanCalleeThrow(C, this, cast<CXXNewExpr>(this)->getConstructor(), 1874 /*NullThrows*/false)); 1875 if (CT == CT_Can) 1876 return CT; 1877 return MergeCanThrow(CT, CanSubExprsThrow(C, this)); 1878 } 1879 1880 case CXXDeleteExprClass: { 1881 CanThrowResult CT; 1882 QualType DTy = cast<CXXDeleteExpr>(this)->getDestroyedType(); 1883 if (DTy.isNull() || DTy->isDependentType()) { 1884 CT = CT_Dependent; 1885 } else { 1886 CT = CanCalleeThrow(C, this, 1887 cast<CXXDeleteExpr>(this)->getOperatorDelete()); 1888 if (const RecordType *RT = DTy->getAs<RecordType>()) { 1889 const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 1890 CT = MergeCanThrow(CT, CanCalleeThrow(C, this, RD->getDestructor())); 1891 } 1892 if (CT == CT_Can) 1893 return CT; 1894 } 1895 return MergeCanThrow(CT, CanSubExprsThrow(C, this)); 1896 } 1897 1898 case CXXBindTemporaryExprClass: { 1899 // The bound temporary has to be destroyed again, which might throw. 1900 CanThrowResult CT = CanCalleeThrow(C, this, 1901 cast<CXXBindTemporaryExpr>(this)->getTemporary()->getDestructor()); 1902 if (CT == CT_Can) 1903 return CT; 1904 return MergeCanThrow(CT, CanSubExprsThrow(C, this)); 1905 } 1906 1907 // ObjC message sends are like function calls, but never have exception 1908 // specs. 1909 case ObjCMessageExprClass: 1910 case ObjCPropertyRefExprClass: 1911 return CT_Can; 1912 1913 // Many other things have subexpressions, so we have to test those. 1914 // Some are simple: 1915 case ParenExprClass: 1916 case MemberExprClass: 1917 case CXXReinterpretCastExprClass: 1918 case CXXConstCastExprClass: 1919 case ConditionalOperatorClass: 1920 case CompoundLiteralExprClass: 1921 case ExtVectorElementExprClass: 1922 case InitListExprClass: 1923 case DesignatedInitExprClass: 1924 case ParenListExprClass: 1925 case VAArgExprClass: 1926 case CXXDefaultArgExprClass: 1927 case ExprWithCleanupsClass: 1928 case ObjCIvarRefExprClass: 1929 case ObjCIsaExprClass: 1930 case ShuffleVectorExprClass: 1931 return CanSubExprsThrow(C, this); 1932 1933 // Some might be dependent for other reasons. 1934 case UnaryOperatorClass: 1935 case ArraySubscriptExprClass: 1936 case ImplicitCastExprClass: 1937 case CStyleCastExprClass: 1938 case CXXStaticCastExprClass: 1939 case CXXFunctionalCastExprClass: 1940 case BinaryOperatorClass: 1941 case CompoundAssignOperatorClass: 1942 case MaterializeTemporaryExprClass: { 1943 CanThrowResult CT = isTypeDependent() ? CT_Dependent : CT_Cannot; 1944 return MergeCanThrow(CT, CanSubExprsThrow(C, this)); 1945 } 1946 1947 // FIXME: We should handle StmtExpr, but that opens a MASSIVE can of worms. 1948 case StmtExprClass: 1949 return CT_Can; 1950 1951 case ChooseExprClass: 1952 if (isTypeDependent() || isValueDependent()) 1953 return CT_Dependent; 1954 return cast<ChooseExpr>(this)->getChosenSubExpr(C)->CanThrow(C); 1955 1956 case GenericSelectionExprClass: 1957 if (cast<GenericSelectionExpr>(this)->isResultDependent()) 1958 return CT_Dependent; 1959 return cast<GenericSelectionExpr>(this)->getResultExpr()->CanThrow(C); 1960 1961 // Some expressions are always dependent. 1962 case DependentScopeDeclRefExprClass: 1963 case CXXUnresolvedConstructExprClass: 1964 case CXXDependentScopeMemberExprClass: 1965 return CT_Dependent; 1966 1967 default: 1968 // All other expressions don't have subexpressions, or else they are 1969 // unevaluated. 1970 return CT_Cannot; 1971 } 1972 } 1973 1974 Expr* Expr::IgnoreParens() { 1975 Expr* E = this; 1976 while (true) { 1977 if (ParenExpr* P = dyn_cast<ParenExpr>(E)) { 1978 E = P->getSubExpr(); 1979 continue; 1980 } 1981 if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) { 1982 if (P->getOpcode() == UO_Extension) { 1983 E = P->getSubExpr(); 1984 continue; 1985 } 1986 } 1987 if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) { 1988 if (!P->isResultDependent()) { 1989 E = P->getResultExpr(); 1990 continue; 1991 } 1992 } 1993 return E; 1994 } 1995 } 1996 1997 /// IgnoreParenCasts - Ignore parentheses and casts. Strip off any ParenExpr 1998 /// or CastExprs or ImplicitCastExprs, returning their operand. 1999 Expr *Expr::IgnoreParenCasts() { 2000 Expr *E = this; 2001 while (true) { 2002 if (ParenExpr* P = dyn_cast<ParenExpr>(E)) { 2003 E = P->getSubExpr(); 2004 continue; 2005 } 2006 if (CastExpr *P = dyn_cast<CastExpr>(E)) { 2007 E = P->getSubExpr(); 2008 continue; 2009 } 2010 if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) { 2011 if (P->getOpcode() == UO_Extension) { 2012 E = P->getSubExpr(); 2013 continue; 2014 } 2015 } 2016 if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) { 2017 if (!P->isResultDependent()) { 2018 E = P->getResultExpr(); 2019 continue; 2020 } 2021 } 2022 if (MaterializeTemporaryExpr *Materialize 2023 = dyn_cast<MaterializeTemporaryExpr>(E)) { 2024 E = Materialize->GetTemporaryExpr(); 2025 continue; 2026 } 2027 2028 return E; 2029 } 2030 } 2031 2032 /// IgnoreParenLValueCasts - Ignore parentheses and lvalue-to-rvalue 2033 /// casts. This is intended purely as a temporary workaround for code 2034 /// that hasn't yet been rewritten to do the right thing about those 2035 /// casts, and may disappear along with the last internal use. 2036 Expr *Expr::IgnoreParenLValueCasts() { 2037 Expr *E = this; 2038 while (true) { 2039 if (ParenExpr *P = dyn_cast<ParenExpr>(E)) { 2040 E = P->getSubExpr(); 2041 continue; 2042 } else if (CastExpr *P = dyn_cast<CastExpr>(E)) { 2043 if (P->getCastKind() == CK_LValueToRValue) { 2044 E = P->getSubExpr(); 2045 continue; 2046 } 2047 } else if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) { 2048 if (P->getOpcode() == UO_Extension) { 2049 E = P->getSubExpr(); 2050 continue; 2051 } 2052 } else if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) { 2053 if (!P->isResultDependent()) { 2054 E = P->getResultExpr(); 2055 continue; 2056 } 2057 } else if (MaterializeTemporaryExpr *Materialize 2058 = dyn_cast<MaterializeTemporaryExpr>(E)) { 2059 E = Materialize->GetTemporaryExpr(); 2060 continue; 2061 } 2062 break; 2063 } 2064 return E; 2065 } 2066 2067 Expr *Expr::IgnoreParenImpCasts() { 2068 Expr *E = this; 2069 while (true) { 2070 if (ParenExpr *P = dyn_cast<ParenExpr>(E)) { 2071 E = P->getSubExpr(); 2072 continue; 2073 } 2074 if (ImplicitCastExpr *P = dyn_cast<ImplicitCastExpr>(E)) { 2075 E = P->getSubExpr(); 2076 continue; 2077 } 2078 if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) { 2079 if (P->getOpcode() == UO_Extension) { 2080 E = P->getSubExpr(); 2081 continue; 2082 } 2083 } 2084 if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) { 2085 if (!P->isResultDependent()) { 2086 E = P->getResultExpr(); 2087 continue; 2088 } 2089 } 2090 if (MaterializeTemporaryExpr *Materialize 2091 = dyn_cast<MaterializeTemporaryExpr>(E)) { 2092 E = Materialize->GetTemporaryExpr(); 2093 continue; 2094 } 2095 return E; 2096 } 2097 } 2098 2099 Expr *Expr::IgnoreConversionOperator() { 2100 if (CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(this)) { 2101 if (MCE->getMethodDecl() && isa<CXXConversionDecl>(MCE->getMethodDecl())) 2102 return MCE->getImplicitObjectArgument(); 2103 } 2104 return this; 2105 } 2106 2107 /// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the 2108 /// value (including ptr->int casts of the same size). Strip off any 2109 /// ParenExpr or CastExprs, returning their operand. 2110 Expr *Expr::IgnoreParenNoopCasts(ASTContext &Ctx) { 2111 Expr *E = this; 2112 while (true) { 2113 if (ParenExpr *P = dyn_cast<ParenExpr>(E)) { 2114 E = P->getSubExpr(); 2115 continue; 2116 } 2117 2118 if (CastExpr *P = dyn_cast<CastExpr>(E)) { 2119 // We ignore integer <-> casts that are of the same width, ptr<->ptr and 2120 // ptr<->int casts of the same width. We also ignore all identity casts. 2121 Expr *SE = P->getSubExpr(); 2122 2123 if (Ctx.hasSameUnqualifiedType(E->getType(), SE->getType())) { 2124 E = SE; 2125 continue; 2126 } 2127 2128 if ((E->getType()->isPointerType() || 2129 E->getType()->isIntegralType(Ctx)) && 2130 (SE->getType()->isPointerType() || 2131 SE->getType()->isIntegralType(Ctx)) && 2132 Ctx.getTypeSize(E->getType()) == Ctx.getTypeSize(SE->getType())) { 2133 E = SE; 2134 continue; 2135 } 2136 } 2137 2138 if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) { 2139 if (P->getOpcode() == UO_Extension) { 2140 E = P->getSubExpr(); 2141 continue; 2142 } 2143 } 2144 2145 if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) { 2146 if (!P->isResultDependent()) { 2147 E = P->getResultExpr(); 2148 continue; 2149 } 2150 } 2151 2152 return E; 2153 } 2154 } 2155 2156 bool Expr::isDefaultArgument() const { 2157 const Expr *E = this; 2158 if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E)) 2159 E = M->GetTemporaryExpr(); 2160 2161 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) 2162 E = ICE->getSubExprAsWritten(); 2163 2164 return isa<CXXDefaultArgExpr>(E); 2165 } 2166 2167 /// \brief Skip over any no-op casts and any temporary-binding 2168 /// expressions. 2169 static const Expr *skipTemporaryBindingsNoOpCastsAndParens(const Expr *E) { 2170 if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E)) 2171 E = M->GetTemporaryExpr(); 2172 2173 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 2174 if (ICE->getCastKind() == CK_NoOp) 2175 E = ICE->getSubExpr(); 2176 else 2177 break; 2178 } 2179 2180 while (const CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E)) 2181 E = BE->getSubExpr(); 2182 2183 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 2184 if (ICE->getCastKind() == CK_NoOp) 2185 E = ICE->getSubExpr(); 2186 else 2187 break; 2188 } 2189 2190 return E->IgnoreParens(); 2191 } 2192 2193 /// isTemporaryObject - Determines if this expression produces a 2194 /// temporary of the given class type. 2195 bool Expr::isTemporaryObject(ASTContext &C, const CXXRecordDecl *TempTy) const { 2196 if (!C.hasSameUnqualifiedType(getType(), C.getTypeDeclType(TempTy))) 2197 return false; 2198 2199 const Expr *E = skipTemporaryBindingsNoOpCastsAndParens(this); 2200 2201 // Temporaries are by definition pr-values of class type. 2202 if (!E->Classify(C).isPRValue()) { 2203 // In this context, property reference is a message call and is pr-value. 2204 if (!isa<ObjCPropertyRefExpr>(E)) 2205 return false; 2206 } 2207 2208 // Black-list a few cases which yield pr-values of class type that don't 2209 // refer to temporaries of that type: 2210 2211 // - implicit derived-to-base conversions 2212 if (isa<ImplicitCastExpr>(E)) { 2213 switch (cast<ImplicitCastExpr>(E)->getCastKind()) { 2214 case CK_DerivedToBase: 2215 case CK_UncheckedDerivedToBase: 2216 return false; 2217 default: 2218 break; 2219 } 2220 } 2221 2222 // - member expressions (all) 2223 if (isa<MemberExpr>(E)) 2224 return false; 2225 2226 // - opaque values (all) 2227 if (isa<OpaqueValueExpr>(E)) 2228 return false; 2229 2230 return true; 2231 } 2232 2233 bool Expr::isImplicitCXXThis() const { 2234 const Expr *E = this; 2235 2236 // Strip away parentheses and casts we don't care about. 2237 while (true) { 2238 if (const ParenExpr *Paren = dyn_cast<ParenExpr>(E)) { 2239 E = Paren->getSubExpr(); 2240 continue; 2241 } 2242 2243 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 2244 if (ICE->getCastKind() == CK_NoOp || 2245 ICE->getCastKind() == CK_LValueToRValue || 2246 ICE->getCastKind() == CK_DerivedToBase || 2247 ICE->getCastKind() == CK_UncheckedDerivedToBase) { 2248 E = ICE->getSubExpr(); 2249 continue; 2250 } 2251 } 2252 2253 if (const UnaryOperator* UnOp = dyn_cast<UnaryOperator>(E)) { 2254 if (UnOp->getOpcode() == UO_Extension) { 2255 E = UnOp->getSubExpr(); 2256 continue; 2257 } 2258 } 2259 2260 if (const MaterializeTemporaryExpr *M 2261 = dyn_cast<MaterializeTemporaryExpr>(E)) { 2262 E = M->GetTemporaryExpr(); 2263 continue; 2264 } 2265 2266 break; 2267 } 2268 2269 if (const CXXThisExpr *This = dyn_cast<CXXThisExpr>(E)) 2270 return This->isImplicit(); 2271 2272 return false; 2273 } 2274 2275 /// hasAnyTypeDependentArguments - Determines if any of the expressions 2276 /// in Exprs is type-dependent. 2277 bool Expr::hasAnyTypeDependentArguments(Expr** Exprs, unsigned NumExprs) { 2278 for (unsigned I = 0; I < NumExprs; ++I) 2279 if (Exprs[I]->isTypeDependent()) 2280 return true; 2281 2282 return false; 2283 } 2284 2285 /// hasAnyValueDependentArguments - Determines if any of the expressions 2286 /// in Exprs is value-dependent. 2287 bool Expr::hasAnyValueDependentArguments(Expr** Exprs, unsigned NumExprs) { 2288 for (unsigned I = 0; I < NumExprs; ++I) 2289 if (Exprs[I]->isValueDependent()) 2290 return true; 2291 2292 return false; 2293 } 2294 2295 bool Expr::isConstantInitializer(ASTContext &Ctx, bool IsForRef) const { 2296 // This function is attempting whether an expression is an initializer 2297 // which can be evaluated at compile-time. isEvaluatable handles most 2298 // of the cases, but it can't deal with some initializer-specific 2299 // expressions, and it can't deal with aggregates; we deal with those here, 2300 // and fall back to isEvaluatable for the other cases. 2301 2302 // If we ever capture reference-binding directly in the AST, we can 2303 // kill the second parameter. 2304 2305 if (IsForRef) { 2306 EvalResult Result; 2307 return EvaluateAsLValue(Result, Ctx) && !Result.HasSideEffects; 2308 } 2309 2310 switch (getStmtClass()) { 2311 default: break; 2312 case StringLiteralClass: 2313 case ObjCStringLiteralClass: 2314 case ObjCEncodeExprClass: 2315 return true; 2316 case CXXTemporaryObjectExprClass: 2317 case CXXConstructExprClass: { 2318 const CXXConstructExpr *CE = cast<CXXConstructExpr>(this); 2319 2320 // Only if it's 2321 // 1) an application of the trivial default constructor or 2322 if (!CE->getConstructor()->isTrivial()) return false; 2323 if (!CE->getNumArgs()) return true; 2324 2325 // 2) an elidable trivial copy construction of an operand which is 2326 // itself a constant initializer. Note that we consider the 2327 // operand on its own, *not* as a reference binding. 2328 return CE->isElidable() && 2329 CE->getArg(0)->isConstantInitializer(Ctx, false); 2330 } 2331 case CompoundLiteralExprClass: { 2332 // This handles gcc's extension that allows global initializers like 2333 // "struct x {int x;} x = (struct x) {};". 2334 // FIXME: This accepts other cases it shouldn't! 2335 const Expr *Exp = cast<CompoundLiteralExpr>(this)->getInitializer(); 2336 return Exp->isConstantInitializer(Ctx, false); 2337 } 2338 case InitListExprClass: { 2339 // FIXME: This doesn't deal with fields with reference types correctly. 2340 // FIXME: This incorrectly allows pointers cast to integers to be assigned 2341 // to bitfields. 2342 const InitListExpr *Exp = cast<InitListExpr>(this); 2343 unsigned numInits = Exp->getNumInits(); 2344 for (unsigned i = 0; i < numInits; i++) { 2345 if (!Exp->getInit(i)->isConstantInitializer(Ctx, false)) 2346 return false; 2347 } 2348 return true; 2349 } 2350 case ImplicitValueInitExprClass: 2351 return true; 2352 case ParenExprClass: 2353 return cast<ParenExpr>(this)->getSubExpr() 2354 ->isConstantInitializer(Ctx, IsForRef); 2355 case GenericSelectionExprClass: 2356 if (cast<GenericSelectionExpr>(this)->isResultDependent()) 2357 return false; 2358 return cast<GenericSelectionExpr>(this)->getResultExpr() 2359 ->isConstantInitializer(Ctx, IsForRef); 2360 case ChooseExprClass: 2361 return cast<ChooseExpr>(this)->getChosenSubExpr(Ctx) 2362 ->isConstantInitializer(Ctx, IsForRef); 2363 case UnaryOperatorClass: { 2364 const UnaryOperator* Exp = cast<UnaryOperator>(this); 2365 if (Exp->getOpcode() == UO_Extension) 2366 return Exp->getSubExpr()->isConstantInitializer(Ctx, false); 2367 break; 2368 } 2369 case BinaryOperatorClass: { 2370 // Special case &&foo - &&bar. It would be nice to generalize this somehow 2371 // but this handles the common case. 2372 const BinaryOperator *Exp = cast<BinaryOperator>(this); 2373 if (Exp->getOpcode() == BO_Sub && 2374 isa<AddrLabelExpr>(Exp->getLHS()->IgnoreParenNoopCasts(Ctx)) && 2375 isa<AddrLabelExpr>(Exp->getRHS()->IgnoreParenNoopCasts(Ctx))) 2376 return true; 2377 break; 2378 } 2379 case CXXFunctionalCastExprClass: 2380 case CXXStaticCastExprClass: 2381 case ImplicitCastExprClass: 2382 case CStyleCastExprClass: 2383 // Handle casts with a destination that's a struct or union; this 2384 // deals with both the gcc no-op struct cast extension and the 2385 // cast-to-union extension. 2386 if (getType()->isRecordType()) 2387 return cast<CastExpr>(this)->getSubExpr() 2388 ->isConstantInitializer(Ctx, false); 2389 2390 // Integer->integer casts can be handled here, which is important for 2391 // things like (int)(&&x-&&y). Scary but true. 2392 if (getType()->isIntegerType() && 2393 cast<CastExpr>(this)->getSubExpr()->getType()->isIntegerType()) 2394 return cast<CastExpr>(this)->getSubExpr() 2395 ->isConstantInitializer(Ctx, false); 2396 2397 break; 2398 2399 case MaterializeTemporaryExprClass: 2400 return llvm::cast<MaterializeTemporaryExpr>(this)->GetTemporaryExpr() 2401 ->isConstantInitializer(Ctx, false); 2402 } 2403 return isEvaluatable(Ctx); 2404 } 2405 2406 /// isNullPointerConstant - C99 6.3.2.3p3 - Return whether this is a null 2407 /// pointer constant or not, as well as the specific kind of constant detected. 2408 /// Null pointer constants can be integer constant expressions with the 2409 /// value zero, casts of zero to void*, nullptr (C++0X), or __null 2410 /// (a GNU extension). 2411 Expr::NullPointerConstantKind 2412 Expr::isNullPointerConstant(ASTContext &Ctx, 2413 NullPointerConstantValueDependence NPC) const { 2414 if (isValueDependent()) { 2415 switch (NPC) { 2416 case NPC_NeverValueDependent: 2417 assert(false && "Unexpected value dependent expression!"); 2418 // If the unthinkable happens, fall through to the safest alternative. 2419 2420 case NPC_ValueDependentIsNull: 2421 if (isTypeDependent() || getType()->isIntegralType(Ctx)) 2422 return NPCK_ZeroInteger; 2423 else 2424 return NPCK_NotNull; 2425 2426 case NPC_ValueDependentIsNotNull: 2427 return NPCK_NotNull; 2428 } 2429 } 2430 2431 // Strip off a cast to void*, if it exists. Except in C++. 2432 if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) { 2433 if (!Ctx.getLangOptions().CPlusPlus) { 2434 // Check that it is a cast to void*. 2435 if (const PointerType *PT = CE->getType()->getAs<PointerType>()) { 2436 QualType Pointee = PT->getPointeeType(); 2437 if (!Pointee.hasQualifiers() && 2438 Pointee->isVoidType() && // to void* 2439 CE->getSubExpr()->getType()->isIntegerType()) // from int. 2440 return CE->getSubExpr()->isNullPointerConstant(Ctx, NPC); 2441 } 2442 } 2443 } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) { 2444 // Ignore the ImplicitCastExpr type entirely. 2445 return ICE->getSubExpr()->isNullPointerConstant(Ctx, NPC); 2446 } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) { 2447 // Accept ((void*)0) as a null pointer constant, as many other 2448 // implementations do. 2449 return PE->getSubExpr()->isNullPointerConstant(Ctx, NPC); 2450 } else if (const GenericSelectionExpr *GE = 2451 dyn_cast<GenericSelectionExpr>(this)) { 2452 return GE->getResultExpr()->isNullPointerConstant(Ctx, NPC); 2453 } else if (const CXXDefaultArgExpr *DefaultArg 2454 = dyn_cast<CXXDefaultArgExpr>(this)) { 2455 // See through default argument expressions 2456 return DefaultArg->getExpr()->isNullPointerConstant(Ctx, NPC); 2457 } else if (isa<GNUNullExpr>(this)) { 2458 // The GNU __null extension is always a null pointer constant. 2459 return NPCK_GNUNull; 2460 } else if (const MaterializeTemporaryExpr *M 2461 = dyn_cast<MaterializeTemporaryExpr>(this)) { 2462 return M->GetTemporaryExpr()->isNullPointerConstant(Ctx, NPC); 2463 } 2464 2465 // C++0x nullptr_t is always a null pointer constant. 2466 if (getType()->isNullPtrType()) 2467 return NPCK_CXX0X_nullptr; 2468 2469 if (const RecordType *UT = getType()->getAsUnionType()) 2470 if (UT && UT->getDecl()->hasAttr<TransparentUnionAttr>()) 2471 if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(this)){ 2472 const Expr *InitExpr = CLE->getInitializer(); 2473 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(InitExpr)) 2474 return ILE->getInit(0)->isNullPointerConstant(Ctx, NPC); 2475 } 2476 // This expression must be an integer type. 2477 if (!getType()->isIntegerType() || 2478 (Ctx.getLangOptions().CPlusPlus && getType()->isEnumeralType())) 2479 return NPCK_NotNull; 2480 2481 // If we have an integer constant expression, we need to *evaluate* it and 2482 // test for the value 0. 2483 llvm::APSInt Result; 2484 bool IsNull = isIntegerConstantExpr(Result, Ctx) && Result == 0; 2485 2486 return (IsNull ? NPCK_ZeroInteger : NPCK_NotNull); 2487 } 2488 2489 /// \brief If this expression is an l-value for an Objective C 2490 /// property, find the underlying property reference expression. 2491 const ObjCPropertyRefExpr *Expr::getObjCProperty() const { 2492 const Expr *E = this; 2493 while (true) { 2494 assert((E->getValueKind() == VK_LValue && 2495 E->getObjectKind() == OK_ObjCProperty) && 2496 "expression is not a property reference"); 2497 E = E->IgnoreParenCasts(); 2498 if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 2499 if (BO->getOpcode() == BO_Comma) { 2500 E = BO->getRHS(); 2501 continue; 2502 } 2503 } 2504 2505 break; 2506 } 2507 2508 return cast<ObjCPropertyRefExpr>(E); 2509 } 2510 2511 FieldDecl *Expr::getBitField() { 2512 Expr *E = this->IgnoreParens(); 2513 2514 while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 2515 if (ICE->getCastKind() == CK_LValueToRValue || 2516 (ICE->getValueKind() != VK_RValue && ICE->getCastKind() == CK_NoOp)) 2517 E = ICE->getSubExpr()->IgnoreParens(); 2518 else 2519 break; 2520 } 2521 2522 if (MemberExpr *MemRef = dyn_cast<MemberExpr>(E)) 2523 if (FieldDecl *Field = dyn_cast<FieldDecl>(MemRef->getMemberDecl())) 2524 if (Field->isBitField()) 2525 return Field; 2526 2527 if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E)) 2528 if (FieldDecl *Field = dyn_cast<FieldDecl>(DeclRef->getDecl())) 2529 if (Field->isBitField()) 2530 return Field; 2531 2532 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(E)) { 2533 if (BinOp->isAssignmentOp() && BinOp->getLHS()) 2534 return BinOp->getLHS()->getBitField(); 2535 2536 if (BinOp->getOpcode() == BO_Comma && BinOp->getRHS()) 2537 return BinOp->getRHS()->getBitField(); 2538 } 2539 2540 return 0; 2541 } 2542 2543 bool Expr::refersToVectorElement() const { 2544 const Expr *E = this->IgnoreParens(); 2545 2546 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 2547 if (ICE->getValueKind() != VK_RValue && 2548 ICE->getCastKind() == CK_NoOp) 2549 E = ICE->getSubExpr()->IgnoreParens(); 2550 else 2551 break; 2552 } 2553 2554 if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(E)) 2555 return ASE->getBase()->getType()->isVectorType(); 2556 2557 if (isa<ExtVectorElementExpr>(E)) 2558 return true; 2559 2560 return false; 2561 } 2562 2563 /// isArrow - Return true if the base expression is a pointer to vector, 2564 /// return false if the base expression is a vector. 2565 bool ExtVectorElementExpr::isArrow() const { 2566 return getBase()->getType()->isPointerType(); 2567 } 2568 2569 unsigned ExtVectorElementExpr::getNumElements() const { 2570 if (const VectorType *VT = getType()->getAs<VectorType>()) 2571 return VT->getNumElements(); 2572 return 1; 2573 } 2574 2575 /// containsDuplicateElements - Return true if any element access is repeated. 2576 bool ExtVectorElementExpr::containsDuplicateElements() const { 2577 // FIXME: Refactor this code to an accessor on the AST node which returns the 2578 // "type" of component access, and share with code below and in Sema. 2579 llvm::StringRef Comp = Accessor->getName(); 2580 2581 // Halving swizzles do not contain duplicate elements. 2582 if (Comp == "hi" || Comp == "lo" || Comp == "even" || Comp == "odd") 2583 return false; 2584 2585 // Advance past s-char prefix on hex swizzles. 2586 if (Comp[0] == 's' || Comp[0] == 'S') 2587 Comp = Comp.substr(1); 2588 2589 for (unsigned i = 0, e = Comp.size(); i != e; ++i) 2590 if (Comp.substr(i + 1).find(Comp[i]) != llvm::StringRef::npos) 2591 return true; 2592 2593 return false; 2594 } 2595 2596 /// getEncodedElementAccess - We encode the fields as a llvm ConstantArray. 2597 void ExtVectorElementExpr::getEncodedElementAccess( 2598 llvm::SmallVectorImpl<unsigned> &Elts) const { 2599 llvm::StringRef Comp = Accessor->getName(); 2600 if (Comp[0] == 's' || Comp[0] == 'S') 2601 Comp = Comp.substr(1); 2602 2603 bool isHi = Comp == "hi"; 2604 bool isLo = Comp == "lo"; 2605 bool isEven = Comp == "even"; 2606 bool isOdd = Comp == "odd"; 2607 2608 for (unsigned i = 0, e = getNumElements(); i != e; ++i) { 2609 uint64_t Index; 2610 2611 if (isHi) 2612 Index = e + i; 2613 else if (isLo) 2614 Index = i; 2615 else if (isEven) 2616 Index = 2 * i; 2617 else if (isOdd) 2618 Index = 2 * i + 1; 2619 else 2620 Index = ExtVectorType::getAccessorIdx(Comp[i]); 2621 2622 Elts.push_back(Index); 2623 } 2624 } 2625 2626 ObjCMessageExpr::ObjCMessageExpr(QualType T, 2627 ExprValueKind VK, 2628 SourceLocation LBracLoc, 2629 SourceLocation SuperLoc, 2630 bool IsInstanceSuper, 2631 QualType SuperType, 2632 Selector Sel, 2633 SourceLocation SelLoc, 2634 ObjCMethodDecl *Method, 2635 Expr **Args, unsigned NumArgs, 2636 SourceLocation RBracLoc) 2637 : Expr(ObjCMessageExprClass, T, VK, OK_Ordinary, 2638 /*TypeDependent=*/false, /*ValueDependent=*/false, 2639 /*InstantiationDependent=*/false, 2640 /*ContainsUnexpandedParameterPack=*/false), 2641 NumArgs(NumArgs), Kind(IsInstanceSuper? SuperInstance : SuperClass), 2642 HasMethod(Method != 0), IsDelegateInitCall(false), SuperLoc(SuperLoc), 2643 SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method 2644 : Sel.getAsOpaquePtr())), 2645 SelectorLoc(SelLoc), LBracLoc(LBracLoc), RBracLoc(RBracLoc) 2646 { 2647 setReceiverPointer(SuperType.getAsOpaquePtr()); 2648 if (NumArgs) 2649 memcpy(getArgs(), Args, NumArgs * sizeof(Expr *)); 2650 } 2651 2652 ObjCMessageExpr::ObjCMessageExpr(QualType T, 2653 ExprValueKind VK, 2654 SourceLocation LBracLoc, 2655 TypeSourceInfo *Receiver, 2656 Selector Sel, 2657 SourceLocation SelLoc, 2658 ObjCMethodDecl *Method, 2659 Expr **Args, unsigned NumArgs, 2660 SourceLocation RBracLoc) 2661 : Expr(ObjCMessageExprClass, T, VK, OK_Ordinary, T->isDependentType(), 2662 T->isDependentType(), T->isInstantiationDependentType(), 2663 T->containsUnexpandedParameterPack()), 2664 NumArgs(NumArgs), Kind(Class), 2665 HasMethod(Method != 0), IsDelegateInitCall(false), 2666 SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method 2667 : Sel.getAsOpaquePtr())), 2668 SelectorLoc(SelLoc), LBracLoc(LBracLoc), RBracLoc(RBracLoc) 2669 { 2670 setReceiverPointer(Receiver); 2671 Expr **MyArgs = getArgs(); 2672 for (unsigned I = 0; I != NumArgs; ++I) { 2673 if (Args[I]->isTypeDependent()) 2674 ExprBits.TypeDependent = true; 2675 if (Args[I]->isValueDependent()) 2676 ExprBits.ValueDependent = true; 2677 if (Args[I]->isInstantiationDependent()) 2678 ExprBits.InstantiationDependent = true; 2679 if (Args[I]->containsUnexpandedParameterPack()) 2680 ExprBits.ContainsUnexpandedParameterPack = true; 2681 2682 MyArgs[I] = Args[I]; 2683 } 2684 } 2685 2686 ObjCMessageExpr::ObjCMessageExpr(QualType T, 2687 ExprValueKind VK, 2688 SourceLocation LBracLoc, 2689 Expr *Receiver, 2690 Selector Sel, 2691 SourceLocation SelLoc, 2692 ObjCMethodDecl *Method, 2693 Expr **Args, unsigned NumArgs, 2694 SourceLocation RBracLoc) 2695 : Expr(ObjCMessageExprClass, T, VK, OK_Ordinary, Receiver->isTypeDependent(), 2696 Receiver->isTypeDependent(), 2697 Receiver->isInstantiationDependent(), 2698 Receiver->containsUnexpandedParameterPack()), 2699 NumArgs(NumArgs), Kind(Instance), 2700 HasMethod(Method != 0), IsDelegateInitCall(false), 2701 SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method 2702 : Sel.getAsOpaquePtr())), 2703 SelectorLoc(SelLoc), LBracLoc(LBracLoc), RBracLoc(RBracLoc) 2704 { 2705 setReceiverPointer(Receiver); 2706 Expr **MyArgs = getArgs(); 2707 for (unsigned I = 0; I != NumArgs; ++I) { 2708 if (Args[I]->isTypeDependent()) 2709 ExprBits.TypeDependent = true; 2710 if (Args[I]->isValueDependent()) 2711 ExprBits.ValueDependent = true; 2712 if (Args[I]->isInstantiationDependent()) 2713 ExprBits.InstantiationDependent = true; 2714 if (Args[I]->containsUnexpandedParameterPack()) 2715 ExprBits.ContainsUnexpandedParameterPack = true; 2716 2717 MyArgs[I] = Args[I]; 2718 } 2719 } 2720 2721 ObjCMessageExpr *ObjCMessageExpr::Create(ASTContext &Context, QualType T, 2722 ExprValueKind VK, 2723 SourceLocation LBracLoc, 2724 SourceLocation SuperLoc, 2725 bool IsInstanceSuper, 2726 QualType SuperType, 2727 Selector Sel, 2728 SourceLocation SelLoc, 2729 ObjCMethodDecl *Method, 2730 Expr **Args, unsigned NumArgs, 2731 SourceLocation RBracLoc) { 2732 unsigned Size = sizeof(ObjCMessageExpr) + sizeof(void *) + 2733 NumArgs * sizeof(Expr *); 2734 void *Mem = Context.Allocate(Size, llvm::AlignOf<ObjCMessageExpr>::Alignment); 2735 return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, SuperLoc, IsInstanceSuper, 2736 SuperType, Sel, SelLoc, Method, Args,NumArgs, 2737 RBracLoc); 2738 } 2739 2740 ObjCMessageExpr *ObjCMessageExpr::Create(ASTContext &Context, QualType T, 2741 ExprValueKind VK, 2742 SourceLocation LBracLoc, 2743 TypeSourceInfo *Receiver, 2744 Selector Sel, 2745 SourceLocation SelLoc, 2746 ObjCMethodDecl *Method, 2747 Expr **Args, unsigned NumArgs, 2748 SourceLocation RBracLoc) { 2749 unsigned Size = sizeof(ObjCMessageExpr) + sizeof(void *) + 2750 NumArgs * sizeof(Expr *); 2751 void *Mem = Context.Allocate(Size, llvm::AlignOf<ObjCMessageExpr>::Alignment); 2752 return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, Receiver, Sel, SelLoc, 2753 Method, Args, NumArgs, RBracLoc); 2754 } 2755 2756 ObjCMessageExpr *ObjCMessageExpr::Create(ASTContext &Context, QualType T, 2757 ExprValueKind VK, 2758 SourceLocation LBracLoc, 2759 Expr *Receiver, 2760 Selector Sel, 2761 SourceLocation SelLoc, 2762 ObjCMethodDecl *Method, 2763 Expr **Args, unsigned NumArgs, 2764 SourceLocation RBracLoc) { 2765 unsigned Size = sizeof(ObjCMessageExpr) + sizeof(void *) + 2766 NumArgs * sizeof(Expr *); 2767 void *Mem = Context.Allocate(Size, llvm::AlignOf<ObjCMessageExpr>::Alignment); 2768 return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, Receiver, Sel, SelLoc, 2769 Method, Args, NumArgs, RBracLoc); 2770 } 2771 2772 ObjCMessageExpr *ObjCMessageExpr::CreateEmpty(ASTContext &Context, 2773 unsigned NumArgs) { 2774 unsigned Size = sizeof(ObjCMessageExpr) + sizeof(void *) + 2775 NumArgs * sizeof(Expr *); 2776 void *Mem = Context.Allocate(Size, llvm::AlignOf<ObjCMessageExpr>::Alignment); 2777 return new (Mem) ObjCMessageExpr(EmptyShell(), NumArgs); 2778 } 2779 2780 SourceRange ObjCMessageExpr::getReceiverRange() const { 2781 switch (getReceiverKind()) { 2782 case Instance: 2783 return getInstanceReceiver()->getSourceRange(); 2784 2785 case Class: 2786 return getClassReceiverTypeInfo()->getTypeLoc().getSourceRange(); 2787 2788 case SuperInstance: 2789 case SuperClass: 2790 return getSuperLoc(); 2791 } 2792 2793 return SourceLocation(); 2794 } 2795 2796 Selector ObjCMessageExpr::getSelector() const { 2797 if (HasMethod) 2798 return reinterpret_cast<const ObjCMethodDecl *>(SelectorOrMethod) 2799 ->getSelector(); 2800 return Selector(SelectorOrMethod); 2801 } 2802 2803 ObjCInterfaceDecl *ObjCMessageExpr::getReceiverInterface() const { 2804 switch (getReceiverKind()) { 2805 case Instance: 2806 if (const ObjCObjectPointerType *Ptr 2807 = getInstanceReceiver()->getType()->getAs<ObjCObjectPointerType>()) 2808 return Ptr->getInterfaceDecl(); 2809 break; 2810 2811 case Class: 2812 if (const ObjCObjectType *Ty 2813 = getClassReceiver()->getAs<ObjCObjectType>()) 2814 return Ty->getInterface(); 2815 break; 2816 2817 case SuperInstance: 2818 if (const ObjCObjectPointerType *Ptr 2819 = getSuperType()->getAs<ObjCObjectPointerType>()) 2820 return Ptr->getInterfaceDecl(); 2821 break; 2822 2823 case SuperClass: 2824 if (const ObjCObjectType *Iface 2825 = getSuperType()->getAs<ObjCObjectType>()) 2826 return Iface->getInterface(); 2827 break; 2828 } 2829 2830 return 0; 2831 } 2832 2833 llvm::StringRef ObjCBridgedCastExpr::getBridgeKindName() const { 2834 switch (getBridgeKind()) { 2835 case OBC_Bridge: 2836 return "__bridge"; 2837 case OBC_BridgeTransfer: 2838 return "__bridge_transfer"; 2839 case OBC_BridgeRetained: 2840 return "__bridge_retained"; 2841 } 2842 2843 return "__bridge"; 2844 } 2845 2846 bool ChooseExpr::isConditionTrue(const ASTContext &C) const { 2847 return getCond()->EvaluateAsInt(C) != 0; 2848 } 2849 2850 ShuffleVectorExpr::ShuffleVectorExpr(ASTContext &C, Expr **args, unsigned nexpr, 2851 QualType Type, SourceLocation BLoc, 2852 SourceLocation RP) 2853 : Expr(ShuffleVectorExprClass, Type, VK_RValue, OK_Ordinary, 2854 Type->isDependentType(), Type->isDependentType(), 2855 Type->isInstantiationDependentType(), 2856 Type->containsUnexpandedParameterPack()), 2857 BuiltinLoc(BLoc), RParenLoc(RP), NumExprs(nexpr) 2858 { 2859 SubExprs = new (C) Stmt*[nexpr]; 2860 for (unsigned i = 0; i < nexpr; i++) { 2861 if (args[i]->isTypeDependent()) 2862 ExprBits.TypeDependent = true; 2863 if (args[i]->isValueDependent()) 2864 ExprBits.ValueDependent = true; 2865 if (args[i]->isInstantiationDependent()) 2866 ExprBits.InstantiationDependent = true; 2867 if (args[i]->containsUnexpandedParameterPack()) 2868 ExprBits.ContainsUnexpandedParameterPack = true; 2869 2870 SubExprs[i] = args[i]; 2871 } 2872 } 2873 2874 void ShuffleVectorExpr::setExprs(ASTContext &C, Expr ** Exprs, 2875 unsigned NumExprs) { 2876 if (SubExprs) C.Deallocate(SubExprs); 2877 2878 SubExprs = new (C) Stmt* [NumExprs]; 2879 this->NumExprs = NumExprs; 2880 memcpy(SubExprs, Exprs, sizeof(Expr *) * NumExprs); 2881 } 2882 2883 GenericSelectionExpr::GenericSelectionExpr(ASTContext &Context, 2884 SourceLocation GenericLoc, Expr *ControllingExpr, 2885 TypeSourceInfo **AssocTypes, Expr **AssocExprs, 2886 unsigned NumAssocs, SourceLocation DefaultLoc, 2887 SourceLocation RParenLoc, 2888 bool ContainsUnexpandedParameterPack, 2889 unsigned ResultIndex) 2890 : Expr(GenericSelectionExprClass, 2891 AssocExprs[ResultIndex]->getType(), 2892 AssocExprs[ResultIndex]->getValueKind(), 2893 AssocExprs[ResultIndex]->getObjectKind(), 2894 AssocExprs[ResultIndex]->isTypeDependent(), 2895 AssocExprs[ResultIndex]->isValueDependent(), 2896 AssocExprs[ResultIndex]->isInstantiationDependent(), 2897 ContainsUnexpandedParameterPack), 2898 AssocTypes(new (Context) TypeSourceInfo*[NumAssocs]), 2899 SubExprs(new (Context) Stmt*[END_EXPR+NumAssocs]), NumAssocs(NumAssocs), 2900 ResultIndex(ResultIndex), GenericLoc(GenericLoc), DefaultLoc(DefaultLoc), 2901 RParenLoc(RParenLoc) { 2902 SubExprs[CONTROLLING] = ControllingExpr; 2903 std::copy(AssocTypes, AssocTypes+NumAssocs, this->AssocTypes); 2904 std::copy(AssocExprs, AssocExprs+NumAssocs, SubExprs+END_EXPR); 2905 } 2906 2907 GenericSelectionExpr::GenericSelectionExpr(ASTContext &Context, 2908 SourceLocation GenericLoc, Expr *ControllingExpr, 2909 TypeSourceInfo **AssocTypes, Expr **AssocExprs, 2910 unsigned NumAssocs, SourceLocation DefaultLoc, 2911 SourceLocation RParenLoc, 2912 bool ContainsUnexpandedParameterPack) 2913 : Expr(GenericSelectionExprClass, 2914 Context.DependentTy, 2915 VK_RValue, 2916 OK_Ordinary, 2917 /*isTypeDependent=*/true, 2918 /*isValueDependent=*/true, 2919 /*isInstantiationDependent=*/true, 2920 ContainsUnexpandedParameterPack), 2921 AssocTypes(new (Context) TypeSourceInfo*[NumAssocs]), 2922 SubExprs(new (Context) Stmt*[END_EXPR+NumAssocs]), NumAssocs(NumAssocs), 2923 ResultIndex(-1U), GenericLoc(GenericLoc), DefaultLoc(DefaultLoc), 2924 RParenLoc(RParenLoc) { 2925 SubExprs[CONTROLLING] = ControllingExpr; 2926 std::copy(AssocTypes, AssocTypes+NumAssocs, this->AssocTypes); 2927 std::copy(AssocExprs, AssocExprs+NumAssocs, SubExprs+END_EXPR); 2928 } 2929 2930 //===----------------------------------------------------------------------===// 2931 // DesignatedInitExpr 2932 //===----------------------------------------------------------------------===// 2933 2934 IdentifierInfo *DesignatedInitExpr::Designator::getFieldName() const { 2935 assert(Kind == FieldDesignator && "Only valid on a field designator"); 2936 if (Field.NameOrField & 0x01) 2937 return reinterpret_cast<IdentifierInfo *>(Field.NameOrField&~0x01); 2938 else 2939 return getField()->getIdentifier(); 2940 } 2941 2942 DesignatedInitExpr::DesignatedInitExpr(ASTContext &C, QualType Ty, 2943 unsigned NumDesignators, 2944 const Designator *Designators, 2945 SourceLocation EqualOrColonLoc, 2946 bool GNUSyntax, 2947 Expr **IndexExprs, 2948 unsigned NumIndexExprs, 2949 Expr *Init) 2950 : Expr(DesignatedInitExprClass, Ty, 2951 Init->getValueKind(), Init->getObjectKind(), 2952 Init->isTypeDependent(), Init->isValueDependent(), 2953 Init->isInstantiationDependent(), 2954 Init->containsUnexpandedParameterPack()), 2955 EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax), 2956 NumDesignators(NumDesignators), NumSubExprs(NumIndexExprs + 1) { 2957 this->Designators = new (C) Designator[NumDesignators]; 2958 2959 // Record the initializer itself. 2960 child_range Child = children(); 2961 *Child++ = Init; 2962 2963 // Copy the designators and their subexpressions, computing 2964 // value-dependence along the way. 2965 unsigned IndexIdx = 0; 2966 for (unsigned I = 0; I != NumDesignators; ++I) { 2967 this->Designators[I] = Designators[I]; 2968 2969 if (this->Designators[I].isArrayDesignator()) { 2970 // Compute type- and value-dependence. 2971 Expr *Index = IndexExprs[IndexIdx]; 2972 if (Index->isTypeDependent() || Index->isValueDependent()) 2973 ExprBits.ValueDependent = true; 2974 if (Index->isInstantiationDependent()) 2975 ExprBits.InstantiationDependent = true; 2976 // Propagate unexpanded parameter packs. 2977 if (Index->containsUnexpandedParameterPack()) 2978 ExprBits.ContainsUnexpandedParameterPack = true; 2979 2980 // Copy the index expressions into permanent storage. 2981 *Child++ = IndexExprs[IndexIdx++]; 2982 } else if (this->Designators[I].isArrayRangeDesignator()) { 2983 // Compute type- and value-dependence. 2984 Expr *Start = IndexExprs[IndexIdx]; 2985 Expr *End = IndexExprs[IndexIdx + 1]; 2986 if (Start->isTypeDependent() || Start->isValueDependent() || 2987 End->isTypeDependent() || End->isValueDependent()) { 2988 ExprBits.ValueDependent = true; 2989 ExprBits.InstantiationDependent = true; 2990 } else if (Start->isInstantiationDependent() || 2991 End->isInstantiationDependent()) { 2992 ExprBits.InstantiationDependent = true; 2993 } 2994 2995 // Propagate unexpanded parameter packs. 2996 if (Start->containsUnexpandedParameterPack() || 2997 End->containsUnexpandedParameterPack()) 2998 ExprBits.ContainsUnexpandedParameterPack = true; 2999 3000 // Copy the start/end expressions into permanent storage. 3001 *Child++ = IndexExprs[IndexIdx++]; 3002 *Child++ = IndexExprs[IndexIdx++]; 3003 } 3004 } 3005 3006 assert(IndexIdx == NumIndexExprs && "Wrong number of index expressions"); 3007 } 3008 3009 DesignatedInitExpr * 3010 DesignatedInitExpr::Create(ASTContext &C, Designator *Designators, 3011 unsigned NumDesignators, 3012 Expr **IndexExprs, unsigned NumIndexExprs, 3013 SourceLocation ColonOrEqualLoc, 3014 bool UsesColonSyntax, Expr *Init) { 3015 void *Mem = C.Allocate(sizeof(DesignatedInitExpr) + 3016 sizeof(Stmt *) * (NumIndexExprs + 1), 8); 3017 return new (Mem) DesignatedInitExpr(C, C.VoidTy, NumDesignators, Designators, 3018 ColonOrEqualLoc, UsesColonSyntax, 3019 IndexExprs, NumIndexExprs, Init); 3020 } 3021 3022 DesignatedInitExpr *DesignatedInitExpr::CreateEmpty(ASTContext &C, 3023 unsigned NumIndexExprs) { 3024 void *Mem = C.Allocate(sizeof(DesignatedInitExpr) + 3025 sizeof(Stmt *) * (NumIndexExprs + 1), 8); 3026 return new (Mem) DesignatedInitExpr(NumIndexExprs + 1); 3027 } 3028 3029 void DesignatedInitExpr::setDesignators(ASTContext &C, 3030 const Designator *Desigs, 3031 unsigned NumDesigs) { 3032 Designators = new (C) Designator[NumDesigs]; 3033 NumDesignators = NumDesigs; 3034 for (unsigned I = 0; I != NumDesigs; ++I) 3035 Designators[I] = Desigs[I]; 3036 } 3037 3038 SourceRange DesignatedInitExpr::getDesignatorsSourceRange() const { 3039 DesignatedInitExpr *DIE = const_cast<DesignatedInitExpr*>(this); 3040 if (size() == 1) 3041 return DIE->getDesignator(0)->getSourceRange(); 3042 return SourceRange(DIE->getDesignator(0)->getStartLocation(), 3043 DIE->getDesignator(size()-1)->getEndLocation()); 3044 } 3045 3046 SourceRange DesignatedInitExpr::getSourceRange() const { 3047 SourceLocation StartLoc; 3048 Designator &First = 3049 *const_cast<DesignatedInitExpr*>(this)->designators_begin(); 3050 if (First.isFieldDesignator()) { 3051 if (GNUSyntax) 3052 StartLoc = SourceLocation::getFromRawEncoding(First.Field.FieldLoc); 3053 else 3054 StartLoc = SourceLocation::getFromRawEncoding(First.Field.DotLoc); 3055 } else 3056 StartLoc = 3057 SourceLocation::getFromRawEncoding(First.ArrayOrRange.LBracketLoc); 3058 return SourceRange(StartLoc, getInit()->getSourceRange().getEnd()); 3059 } 3060 3061 Expr *DesignatedInitExpr::getArrayIndex(const Designator& D) { 3062 assert(D.Kind == Designator::ArrayDesignator && "Requires array designator"); 3063 char* Ptr = static_cast<char*>(static_cast<void *>(this)); 3064 Ptr += sizeof(DesignatedInitExpr); 3065 Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr)); 3066 return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1)); 3067 } 3068 3069 Expr *DesignatedInitExpr::getArrayRangeStart(const Designator& D) { 3070 assert(D.Kind == Designator::ArrayRangeDesignator && 3071 "Requires array range designator"); 3072 char* Ptr = static_cast<char*>(static_cast<void *>(this)); 3073 Ptr += sizeof(DesignatedInitExpr); 3074 Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr)); 3075 return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1)); 3076 } 3077 3078 Expr *DesignatedInitExpr::getArrayRangeEnd(const Designator& D) { 3079 assert(D.Kind == Designator::ArrayRangeDesignator && 3080 "Requires array range designator"); 3081 char* Ptr = static_cast<char*>(static_cast<void *>(this)); 3082 Ptr += sizeof(DesignatedInitExpr); 3083 Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr)); 3084 return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 2)); 3085 } 3086 3087 /// \brief Replaces the designator at index @p Idx with the series 3088 /// of designators in [First, Last). 3089 void DesignatedInitExpr::ExpandDesignator(ASTContext &C, unsigned Idx, 3090 const Designator *First, 3091 const Designator *Last) { 3092 unsigned NumNewDesignators = Last - First; 3093 if (NumNewDesignators == 0) { 3094 std::copy_backward(Designators + Idx + 1, 3095 Designators + NumDesignators, 3096 Designators + Idx); 3097 --NumNewDesignators; 3098 return; 3099 } else if (NumNewDesignators == 1) { 3100 Designators[Idx] = *First; 3101 return; 3102 } 3103 3104 Designator *NewDesignators 3105 = new (C) Designator[NumDesignators - 1 + NumNewDesignators]; 3106 std::copy(Designators, Designators + Idx, NewDesignators); 3107 std::copy(First, Last, NewDesignators + Idx); 3108 std::copy(Designators + Idx + 1, Designators + NumDesignators, 3109 NewDesignators + Idx + NumNewDesignators); 3110 Designators = NewDesignators; 3111 NumDesignators = NumDesignators - 1 + NumNewDesignators; 3112 } 3113 3114 ParenListExpr::ParenListExpr(ASTContext& C, SourceLocation lparenloc, 3115 Expr **exprs, unsigned nexprs, 3116 SourceLocation rparenloc, QualType T) 3117 : Expr(ParenListExprClass, T, VK_RValue, OK_Ordinary, 3118 false, false, false, false), 3119 NumExprs(nexprs), LParenLoc(lparenloc), RParenLoc(rparenloc) { 3120 assert(!T.isNull() && "ParenListExpr must have a valid type"); 3121 Exprs = new (C) Stmt*[nexprs]; 3122 for (unsigned i = 0; i != nexprs; ++i) { 3123 if (exprs[i]->isTypeDependent()) 3124 ExprBits.TypeDependent = true; 3125 if (exprs[i]->isValueDependent()) 3126 ExprBits.ValueDependent = true; 3127 if (exprs[i]->isInstantiationDependent()) 3128 ExprBits.InstantiationDependent = true; 3129 if (exprs[i]->containsUnexpandedParameterPack()) 3130 ExprBits.ContainsUnexpandedParameterPack = true; 3131 3132 Exprs[i] = exprs[i]; 3133 } 3134 } 3135 3136 const OpaqueValueExpr *OpaqueValueExpr::findInCopyConstruct(const Expr *e) { 3137 if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(e)) 3138 e = ewc->getSubExpr(); 3139 if (const MaterializeTemporaryExpr *m = dyn_cast<MaterializeTemporaryExpr>(e)) 3140 e = m->GetTemporaryExpr(); 3141 e = cast<CXXConstructExpr>(e)->getArg(0); 3142 while (const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e)) 3143 e = ice->getSubExpr(); 3144 return cast<OpaqueValueExpr>(e); 3145 } 3146 3147 //===----------------------------------------------------------------------===// 3148 // ExprIterator. 3149 //===----------------------------------------------------------------------===// 3150 3151 Expr* ExprIterator::operator[](size_t idx) { return cast<Expr>(I[idx]); } 3152 Expr* ExprIterator::operator*() const { return cast<Expr>(*I); } 3153 Expr* ExprIterator::operator->() const { return cast<Expr>(*I); } 3154 const Expr* ConstExprIterator::operator[](size_t idx) const { 3155 return cast<Expr>(I[idx]); 3156 } 3157 const Expr* ConstExprIterator::operator*() const { return cast<Expr>(*I); } 3158 const Expr* ConstExprIterator::operator->() const { return cast<Expr>(*I); } 3159 3160 //===----------------------------------------------------------------------===// 3161 // Child Iterators for iterating over subexpressions/substatements 3162 //===----------------------------------------------------------------------===// 3163 3164 // UnaryExprOrTypeTraitExpr 3165 Stmt::child_range UnaryExprOrTypeTraitExpr::children() { 3166 // If this is of a type and the type is a VLA type (and not a typedef), the 3167 // size expression of the VLA needs to be treated as an executable expression. 3168 // Why isn't this weirdness documented better in StmtIterator? 3169 if (isArgumentType()) { 3170 if (const VariableArrayType* T = dyn_cast<VariableArrayType>( 3171 getArgumentType().getTypePtr())) 3172 return child_range(child_iterator(T), child_iterator()); 3173 return child_range(); 3174 } 3175 return child_range(&Argument.Ex, &Argument.Ex + 1); 3176 } 3177 3178 // ObjCMessageExpr 3179 Stmt::child_range ObjCMessageExpr::children() { 3180 Stmt **begin; 3181 if (getReceiverKind() == Instance) 3182 begin = reinterpret_cast<Stmt **>(this + 1); 3183 else 3184 begin = reinterpret_cast<Stmt **>(getArgs()); 3185 return child_range(begin, 3186 reinterpret_cast<Stmt **>(getArgs() + getNumArgs())); 3187 } 3188 3189 // Blocks 3190 BlockDeclRefExpr::BlockDeclRefExpr(VarDecl *d, QualType t, ExprValueKind VK, 3191 SourceLocation l, bool ByRef, 3192 bool constAdded) 3193 : Expr(BlockDeclRefExprClass, t, VK, OK_Ordinary, false, false, false, 3194 d->isParameterPack()), 3195 D(d), Loc(l), IsByRef(ByRef), ConstQualAdded(constAdded) 3196 { 3197 bool TypeDependent = false; 3198 bool ValueDependent = false; 3199 bool InstantiationDependent = false; 3200 computeDeclRefDependence(D, getType(), TypeDependent, ValueDependent, 3201 InstantiationDependent); 3202 ExprBits.TypeDependent = TypeDependent; 3203 ExprBits.ValueDependent = ValueDependent; 3204 ExprBits.InstantiationDependent = InstantiationDependent; 3205 } 3206