OpenGrok
Home
Sort by relevance
Sort by last modified time
Full Search
Definition
Symbol
File Path
History
|
|
Help
Searched
refs:ieee_expm1
(Results
1 - 6
of
6
) sorted by null
/external/fdlibm/
s_tanh.c
26
* 2**-55 < x <= 1 : ieee_tanh(x) := -----; t =
ieee_expm1
(-2x)
29
* 1 <= x <= 22.0 : ieee_tanh(x) := 1- ----- ; t=
ieee_expm1
(2x)
71
t =
ieee_expm1
(two*ieee_fabs(x));
74
t =
ieee_expm1
(-two*ieee_fabs(x));
s_expm1.c
13
/*
ieee_expm1
(x)
25
* 2. Approximating
ieee_expm1
(r) by a special rational function on
55
*
ieee_expm1
(r) = r + --- + --- * [--------------------]
59
* expm1(r+c) =
ieee_expm1
(r) + c +
ieee_expm1
(r)*c
60
* ~
ieee_expm1
(r) + c + r*c
66
*
ieee_expm1
(r+c)~r - ({r*(--- * [--------------------]-c)-c} - --- )
71
* 3. Scale back to obtain
ieee_expm1
(x):
73
*
ieee_expm1
(x) = either 2^k*[expm1(r)+1] - 1
78
* (B). To achieve maximum accuracy, we compute
ieee_expm1
(x) b
130
double
ieee_expm1
(double x)
function
[
all
...]
e_cosh.c
61
/* |x| in [0,0.5*ln2], return 1+
ieee_expm1
(|x|)^2/(2*ieee_exp(|x|)) */
63
t =
ieee_expm1
(ieee_fabs(x));
e_sinh.c
20
* 0 <= x <= 22 : ieee_sinh(x) := --------------, E=
ieee_expm1
(x)
64
t =
ieee_expm1
(ieee_fabs(x));
fdlibm.h
174
extern double
ieee_expm1
__P((double));
/libcore/luni/src/main/native/
java_lang_StrictMath.cpp
106
return
ieee_expm1
(a);
Completed in 100 milliseconds