Home | History | Annotate | Download | only in CodeGen
      1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This coordinates the per-function state used while generating code.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "CodeGenFunction.h"
     15 #include "CodeGenModule.h"
     16 #include "CGCUDARuntime.h"
     17 #include "CGCXXABI.h"
     18 #include "CGDebugInfo.h"
     19 #include "CGException.h"
     20 #include "clang/Basic/TargetInfo.h"
     21 #include "clang/AST/APValue.h"
     22 #include "clang/AST/ASTContext.h"
     23 #include "clang/AST/Decl.h"
     24 #include "clang/AST/DeclCXX.h"
     25 #include "clang/AST/StmtCXX.h"
     26 #include "clang/Frontend/CodeGenOptions.h"
     27 #include "llvm/Target/TargetData.h"
     28 #include "llvm/Intrinsics.h"
     29 using namespace clang;
     30 using namespace CodeGen;
     31 
     32 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm)
     33   : CodeGenTypeCache(cgm), CGM(cgm),
     34     Target(CGM.getContext().getTargetInfo()), Builder(cgm.getModule().getContext()),
     35     AutoreleaseResult(false), BlockInfo(0), BlockPointer(0),
     36     NormalCleanupDest(0), NextCleanupDestIndex(1),
     37     EHResumeBlock(0), ExceptionSlot(0), EHSelectorSlot(0),
     38     DebugInfo(0), DisableDebugInfo(false), DidCallStackSave(false),
     39     IndirectBranch(0), SwitchInsn(0), CaseRangeBlock(0), UnreachableBlock(0),
     40     CXXThisDecl(0), CXXThisValue(0), CXXVTTDecl(0), CXXVTTValue(0),
     41     OutermostConditional(0), TerminateLandingPad(0), TerminateHandler(0),
     42     TrapBB(0) {
     43 
     44   CatchUndefined = getContext().getLangOptions().CatchUndefined;
     45   CGM.getCXXABI().getMangleContext().startNewFunction();
     46 }
     47 
     48 
     49 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
     50   return CGM.getTypes().ConvertTypeForMem(T);
     51 }
     52 
     53 llvm::Type *CodeGenFunction::ConvertType(QualType T) {
     54   return CGM.getTypes().ConvertType(T);
     55 }
     56 
     57 bool CodeGenFunction::hasAggregateLLVMType(QualType type) {
     58   switch (type.getCanonicalType()->getTypeClass()) {
     59 #define TYPE(name, parent)
     60 #define ABSTRACT_TYPE(name, parent)
     61 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
     62 #define DEPENDENT_TYPE(name, parent) case Type::name:
     63 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
     64 #include "clang/AST/TypeNodes.def"
     65     llvm_unreachable("non-canonical or dependent type in IR-generation");
     66 
     67   case Type::Builtin:
     68   case Type::Pointer:
     69   case Type::BlockPointer:
     70   case Type::LValueReference:
     71   case Type::RValueReference:
     72   case Type::MemberPointer:
     73   case Type::Vector:
     74   case Type::ExtVector:
     75   case Type::FunctionProto:
     76   case Type::FunctionNoProto:
     77   case Type::Enum:
     78   case Type::ObjCObjectPointer:
     79     return false;
     80 
     81   // Complexes, arrays, records, and Objective-C objects.
     82   case Type::Complex:
     83   case Type::ConstantArray:
     84   case Type::IncompleteArray:
     85   case Type::VariableArray:
     86   case Type::Record:
     87   case Type::ObjCObject:
     88   case Type::ObjCInterface:
     89     return true;
     90 
     91   // In IRGen, atomic types are just the underlying type
     92   case Type::Atomic:
     93     return hasAggregateLLVMType(type->getAs<AtomicType>()->getValueType());
     94   }
     95   llvm_unreachable("unknown type kind!");
     96 }
     97 
     98 void CodeGenFunction::EmitReturnBlock() {
     99   // For cleanliness, we try to avoid emitting the return block for
    100   // simple cases.
    101   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
    102 
    103   if (CurBB) {
    104     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
    105 
    106     // We have a valid insert point, reuse it if it is empty or there are no
    107     // explicit jumps to the return block.
    108     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
    109       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
    110       delete ReturnBlock.getBlock();
    111     } else
    112       EmitBlock(ReturnBlock.getBlock());
    113     return;
    114   }
    115 
    116   // Otherwise, if the return block is the target of a single direct
    117   // branch then we can just put the code in that block instead. This
    118   // cleans up functions which started with a unified return block.
    119   if (ReturnBlock.getBlock()->hasOneUse()) {
    120     llvm::BranchInst *BI =
    121       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->use_begin());
    122     if (BI && BI->isUnconditional() &&
    123         BI->getSuccessor(0) == ReturnBlock.getBlock()) {
    124       // Reset insertion point, including debug location, and delete the branch.
    125       Builder.SetCurrentDebugLocation(BI->getDebugLoc());
    126       Builder.SetInsertPoint(BI->getParent());
    127       BI->eraseFromParent();
    128       delete ReturnBlock.getBlock();
    129       return;
    130     }
    131   }
    132 
    133   // FIXME: We are at an unreachable point, there is no reason to emit the block
    134   // unless it has uses. However, we still need a place to put the debug
    135   // region.end for now.
    136 
    137   EmitBlock(ReturnBlock.getBlock());
    138 }
    139 
    140 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
    141   if (!BB) return;
    142   if (!BB->use_empty())
    143     return CGF.CurFn->getBasicBlockList().push_back(BB);
    144   delete BB;
    145 }
    146 
    147 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
    148   assert(BreakContinueStack.empty() &&
    149          "mismatched push/pop in break/continue stack!");
    150 
    151   // Pop any cleanups that might have been associated with the
    152   // parameters.  Do this in whatever block we're currently in; it's
    153   // important to do this before we enter the return block or return
    154   // edges will be *really* confused.
    155   if (EHStack.stable_begin() != PrologueCleanupDepth)
    156     PopCleanupBlocks(PrologueCleanupDepth);
    157 
    158   // Emit function epilog (to return).
    159   EmitReturnBlock();
    160 
    161   if (ShouldInstrumentFunction())
    162     EmitFunctionInstrumentation("__cyg_profile_func_exit");
    163 
    164   // Emit debug descriptor for function end.
    165   if (CGDebugInfo *DI = getDebugInfo()) {
    166     DI->setLocation(EndLoc);
    167     DI->EmitFunctionEnd(Builder);
    168   }
    169 
    170   EmitFunctionEpilog(*CurFnInfo);
    171   EmitEndEHSpec(CurCodeDecl);
    172 
    173   assert(EHStack.empty() &&
    174          "did not remove all scopes from cleanup stack!");
    175 
    176   // If someone did an indirect goto, emit the indirect goto block at the end of
    177   // the function.
    178   if (IndirectBranch) {
    179     EmitBlock(IndirectBranch->getParent());
    180     Builder.ClearInsertionPoint();
    181   }
    182 
    183   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
    184   llvm::Instruction *Ptr = AllocaInsertPt;
    185   AllocaInsertPt = 0;
    186   Ptr->eraseFromParent();
    187 
    188   // If someone took the address of a label but never did an indirect goto, we
    189   // made a zero entry PHI node, which is illegal, zap it now.
    190   if (IndirectBranch) {
    191     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
    192     if (PN->getNumIncomingValues() == 0) {
    193       PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
    194       PN->eraseFromParent();
    195     }
    196   }
    197 
    198   EmitIfUsed(*this, EHResumeBlock);
    199   EmitIfUsed(*this, TerminateLandingPad);
    200   EmitIfUsed(*this, TerminateHandler);
    201   EmitIfUsed(*this, UnreachableBlock);
    202 
    203   if (CGM.getCodeGenOpts().EmitDeclMetadata)
    204     EmitDeclMetadata();
    205 }
    206 
    207 /// ShouldInstrumentFunction - Return true if the current function should be
    208 /// instrumented with __cyg_profile_func_* calls
    209 bool CodeGenFunction::ShouldInstrumentFunction() {
    210   if (!CGM.getCodeGenOpts().InstrumentFunctions)
    211     return false;
    212   if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
    213     return false;
    214   return true;
    215 }
    216 
    217 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
    218 /// instrumentation function with the current function and the call site, if
    219 /// function instrumentation is enabled.
    220 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) {
    221   // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site);
    222   llvm::PointerType *PointerTy = Int8PtrTy;
    223   llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy };
    224   llvm::FunctionType *FunctionTy =
    225     llvm::FunctionType::get(llvm::Type::getVoidTy(getLLVMContext()),
    226                             ProfileFuncArgs, false);
    227 
    228   llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn);
    229   llvm::CallInst *CallSite = Builder.CreateCall(
    230     CGM.getIntrinsic(llvm::Intrinsic::returnaddress),
    231     llvm::ConstantInt::get(Int32Ty, 0),
    232     "callsite");
    233 
    234   Builder.CreateCall2(F,
    235                       llvm::ConstantExpr::getBitCast(CurFn, PointerTy),
    236                       CallSite);
    237 }
    238 
    239 void CodeGenFunction::EmitMCountInstrumentation() {
    240   llvm::FunctionType *FTy =
    241     llvm::FunctionType::get(llvm::Type::getVoidTy(getLLVMContext()), false);
    242 
    243   llvm::Constant *MCountFn = CGM.CreateRuntimeFunction(FTy,
    244                                                        Target.getMCountName());
    245   Builder.CreateCall(MCountFn);
    246 }
    247 
    248 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy,
    249                                     llvm::Function *Fn,
    250                                     const CGFunctionInfo &FnInfo,
    251                                     const FunctionArgList &Args,
    252                                     SourceLocation StartLoc) {
    253   const Decl *D = GD.getDecl();
    254 
    255   DidCallStackSave = false;
    256   CurCodeDecl = CurFuncDecl = D;
    257   FnRetTy = RetTy;
    258   CurFn = Fn;
    259   CurFnInfo = &FnInfo;
    260   assert(CurFn->isDeclaration() && "Function already has body?");
    261 
    262   // Pass inline keyword to optimizer if it appears explicitly on any
    263   // declaration.
    264   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
    265     for (FunctionDecl::redecl_iterator RI = FD->redecls_begin(),
    266            RE = FD->redecls_end(); RI != RE; ++RI)
    267       if (RI->isInlineSpecified()) {
    268         Fn->addFnAttr(llvm::Attribute::InlineHint);
    269         break;
    270       }
    271 
    272   if (getContext().getLangOptions().OpenCL) {
    273     // Add metadata for a kernel function.
    274     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
    275       if (FD->hasAttr<OpenCLKernelAttr>()) {
    276         llvm::LLVMContext &Context = getLLVMContext();
    277         llvm::NamedMDNode *OpenCLMetadata =
    278           CGM.getModule().getOrInsertNamedMetadata("opencl.kernels");
    279 
    280         llvm::Value *Op = Fn;
    281         OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Op));
    282       }
    283   }
    284 
    285   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
    286 
    287   // Create a marker to make it easy to insert allocas into the entryblock
    288   // later.  Don't create this with the builder, because we don't want it
    289   // folded.
    290   llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
    291   AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "", EntryBB);
    292   if (Builder.isNamePreserving())
    293     AllocaInsertPt->setName("allocapt");
    294 
    295   ReturnBlock = getJumpDestInCurrentScope("return");
    296 
    297   Builder.SetInsertPoint(EntryBB);
    298 
    299   // Emit subprogram debug descriptor.
    300   if (CGDebugInfo *DI = getDebugInfo()) {
    301     // FIXME: what is going on here and why does it ignore all these
    302     // interesting type properties?
    303     QualType FnType =
    304       getContext().getFunctionType(RetTy, 0, 0,
    305                                    FunctionProtoType::ExtProtoInfo());
    306 
    307     DI->setLocation(StartLoc);
    308     DI->EmitFunctionStart(GD, FnType, CurFn, Builder);
    309   }
    310 
    311   if (ShouldInstrumentFunction())
    312     EmitFunctionInstrumentation("__cyg_profile_func_enter");
    313 
    314   if (CGM.getCodeGenOpts().InstrumentForProfiling)
    315     EmitMCountInstrumentation();
    316 
    317   if (RetTy->isVoidType()) {
    318     // Void type; nothing to return.
    319     ReturnValue = 0;
    320   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect &&
    321              hasAggregateLLVMType(CurFnInfo->getReturnType())) {
    322     // Indirect aggregate return; emit returned value directly into sret slot.
    323     // This reduces code size, and affects correctness in C++.
    324     ReturnValue = CurFn->arg_begin();
    325   } else {
    326     ReturnValue = CreateIRTemp(RetTy, "retval");
    327 
    328     // Tell the epilog emitter to autorelease the result.  We do this
    329     // now so that various specialized functions can suppress it
    330     // during their IR-generation.
    331     if (getLangOptions().ObjCAutoRefCount &&
    332         !CurFnInfo->isReturnsRetained() &&
    333         RetTy->isObjCRetainableType())
    334       AutoreleaseResult = true;
    335   }
    336 
    337   EmitStartEHSpec(CurCodeDecl);
    338 
    339   PrologueCleanupDepth = EHStack.stable_begin();
    340   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
    341 
    342   if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance())
    343     CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
    344 
    345   // If any of the arguments have a variably modified type, make sure to
    346   // emit the type size.
    347   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
    348        i != e; ++i) {
    349     QualType Ty = (*i)->getType();
    350 
    351     if (Ty->isVariablyModifiedType())
    352       EmitVariablyModifiedType(Ty);
    353   }
    354   // Emit a location at the end of the prologue.
    355   if (CGDebugInfo *DI = getDebugInfo())
    356     DI->EmitLocation(Builder, StartLoc);
    357 }
    358 
    359 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args) {
    360   const FunctionDecl *FD = cast<FunctionDecl>(CurGD.getDecl());
    361   assert(FD->getBody());
    362   EmitStmt(FD->getBody());
    363 }
    364 
    365 /// Tries to mark the given function nounwind based on the
    366 /// non-existence of any throwing calls within it.  We believe this is
    367 /// lightweight enough to do at -O0.
    368 static void TryMarkNoThrow(llvm::Function *F) {
    369   // LLVM treats 'nounwind' on a function as part of the type, so we
    370   // can't do this on functions that can be overwritten.
    371   if (F->mayBeOverridden()) return;
    372 
    373   for (llvm::Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI)
    374     for (llvm::BasicBlock::iterator
    375            BI = FI->begin(), BE = FI->end(); BI != BE; ++BI)
    376       if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(&*BI)) {
    377         if (!Call->doesNotThrow())
    378           return;
    379       } else if (isa<llvm::ResumeInst>(&*BI)) {
    380         return;
    381       }
    382   F->setDoesNotThrow(true);
    383 }
    384 
    385 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
    386                                    const CGFunctionInfo &FnInfo) {
    387   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
    388 
    389   // Check if we should generate debug info for this function.
    390   if (CGM.getModuleDebugInfo() && !FD->hasAttr<NoDebugAttr>())
    391     DebugInfo = CGM.getModuleDebugInfo();
    392 
    393   FunctionArgList Args;
    394   QualType ResTy = FD->getResultType();
    395 
    396   CurGD = GD;
    397   if (isa<CXXMethodDecl>(FD) && cast<CXXMethodDecl>(FD)->isInstance())
    398     CGM.getCXXABI().BuildInstanceFunctionParams(*this, ResTy, Args);
    399 
    400   if (FD->getNumParams())
    401     for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i)
    402       Args.push_back(FD->getParamDecl(i));
    403 
    404   SourceRange BodyRange;
    405   if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange();
    406 
    407   // Emit the standard function prologue.
    408   StartFunction(GD, ResTy, Fn, FnInfo, Args, BodyRange.getBegin());
    409 
    410   // Generate the body of the function.
    411   if (isa<CXXDestructorDecl>(FD))
    412     EmitDestructorBody(Args);
    413   else if (isa<CXXConstructorDecl>(FD))
    414     EmitConstructorBody(Args);
    415   else if (getContext().getLangOptions().CUDA &&
    416            !CGM.getCodeGenOpts().CUDAIsDevice &&
    417            FD->hasAttr<CUDAGlobalAttr>())
    418     CGM.getCUDARuntime().EmitDeviceStubBody(*this, Args);
    419   else
    420     EmitFunctionBody(Args);
    421 
    422   // Emit the standard function epilogue.
    423   FinishFunction(BodyRange.getEnd());
    424 
    425   // If we haven't marked the function nothrow through other means, do
    426   // a quick pass now to see if we can.
    427   if (!CurFn->doesNotThrow())
    428     TryMarkNoThrow(CurFn);
    429 }
    430 
    431 /// ContainsLabel - Return true if the statement contains a label in it.  If
    432 /// this statement is not executed normally, it not containing a label means
    433 /// that we can just remove the code.
    434 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
    435   // Null statement, not a label!
    436   if (S == 0) return false;
    437 
    438   // If this is a label, we have to emit the code, consider something like:
    439   // if (0) {  ...  foo:  bar(); }  goto foo;
    440   //
    441   // TODO: If anyone cared, we could track __label__'s, since we know that you
    442   // can't jump to one from outside their declared region.
    443   if (isa<LabelStmt>(S))
    444     return true;
    445 
    446   // If this is a case/default statement, and we haven't seen a switch, we have
    447   // to emit the code.
    448   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
    449     return true;
    450 
    451   // If this is a switch statement, we want to ignore cases below it.
    452   if (isa<SwitchStmt>(S))
    453     IgnoreCaseStmts = true;
    454 
    455   // Scan subexpressions for verboten labels.
    456   for (Stmt::const_child_range I = S->children(); I; ++I)
    457     if (ContainsLabel(*I, IgnoreCaseStmts))
    458       return true;
    459 
    460   return false;
    461 }
    462 
    463 /// containsBreak - Return true if the statement contains a break out of it.
    464 /// If the statement (recursively) contains a switch or loop with a break
    465 /// inside of it, this is fine.
    466 bool CodeGenFunction::containsBreak(const Stmt *S) {
    467   // Null statement, not a label!
    468   if (S == 0) return false;
    469 
    470   // If this is a switch or loop that defines its own break scope, then we can
    471   // include it and anything inside of it.
    472   if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
    473       isa<ForStmt>(S))
    474     return false;
    475 
    476   if (isa<BreakStmt>(S))
    477     return true;
    478 
    479   // Scan subexpressions for verboten breaks.
    480   for (Stmt::const_child_range I = S->children(); I; ++I)
    481     if (containsBreak(*I))
    482       return true;
    483 
    484   return false;
    485 }
    486 
    487 
    488 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
    489 /// to a constant, or if it does but contains a label, return false.  If it
    490 /// constant folds return true and set the boolean result in Result.
    491 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
    492                                                    bool &ResultBool) {
    493   llvm::APInt ResultInt;
    494   if (!ConstantFoldsToSimpleInteger(Cond, ResultInt))
    495     return false;
    496 
    497   ResultBool = ResultInt.getBoolValue();
    498   return true;
    499 }
    500 
    501 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
    502 /// to a constant, or if it does but contains a label, return false.  If it
    503 /// constant folds return true and set the folded value.
    504 bool CodeGenFunction::
    505 ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APInt &ResultInt) {
    506   // FIXME: Rename and handle conversion of other evaluatable things
    507   // to bool.
    508   Expr::EvalResult Result;
    509   if (!Cond->Evaluate(Result, getContext()) || !Result.Val.isInt() ||
    510       Result.HasSideEffects)
    511     return false;  // Not foldable, not integer or not fully evaluatable.
    512 
    513   if (CodeGenFunction::ContainsLabel(Cond))
    514     return false;  // Contains a label.
    515 
    516   ResultInt = Result.Val.getInt();
    517   return true;
    518 }
    519 
    520 
    521 
    522 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
    523 /// statement) to the specified blocks.  Based on the condition, this might try
    524 /// to simplify the codegen of the conditional based on the branch.
    525 ///
    526 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
    527                                            llvm::BasicBlock *TrueBlock,
    528                                            llvm::BasicBlock *FalseBlock) {
    529   Cond = Cond->IgnoreParens();
    530 
    531   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
    532     // Handle X && Y in a condition.
    533     if (CondBOp->getOpcode() == BO_LAnd) {
    534       // If we have "1 && X", simplify the code.  "0 && X" would have constant
    535       // folded if the case was simple enough.
    536       bool ConstantBool = false;
    537       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
    538           ConstantBool) {
    539         // br(1 && X) -> br(X).
    540         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
    541       }
    542 
    543       // If we have "X && 1", simplify the code to use an uncond branch.
    544       // "X && 0" would have been constant folded to 0.
    545       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
    546           ConstantBool) {
    547         // br(X && 1) -> br(X).
    548         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock);
    549       }
    550 
    551       // Emit the LHS as a conditional.  If the LHS conditional is false, we
    552       // want to jump to the FalseBlock.
    553       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
    554 
    555       ConditionalEvaluation eval(*this);
    556       EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock);
    557       EmitBlock(LHSTrue);
    558 
    559       // Any temporaries created here are conditional.
    560       eval.begin(*this);
    561       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
    562       eval.end(*this);
    563 
    564       return;
    565     }
    566 
    567     if (CondBOp->getOpcode() == BO_LOr) {
    568       // If we have "0 || X", simplify the code.  "1 || X" would have constant
    569       // folded if the case was simple enough.
    570       bool ConstantBool = false;
    571       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
    572           !ConstantBool) {
    573         // br(0 || X) -> br(X).
    574         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
    575       }
    576 
    577       // If we have "X || 0", simplify the code to use an uncond branch.
    578       // "X || 1" would have been constant folded to 1.
    579       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
    580           !ConstantBool) {
    581         // br(X || 0) -> br(X).
    582         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock);
    583       }
    584 
    585       // Emit the LHS as a conditional.  If the LHS conditional is true, we
    586       // want to jump to the TrueBlock.
    587       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
    588 
    589       ConditionalEvaluation eval(*this);
    590       EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse);
    591       EmitBlock(LHSFalse);
    592 
    593       // Any temporaries created here are conditional.
    594       eval.begin(*this);
    595       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
    596       eval.end(*this);
    597 
    598       return;
    599     }
    600   }
    601 
    602   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
    603     // br(!x, t, f) -> br(x, f, t)
    604     if (CondUOp->getOpcode() == UO_LNot)
    605       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock);
    606   }
    607 
    608   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
    609     // Handle ?: operator.
    610 
    611     // Just ignore GNU ?: extension.
    612     if (CondOp->getLHS()) {
    613       // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
    614       llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
    615       llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
    616 
    617       ConditionalEvaluation cond(*this);
    618       EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock);
    619 
    620       cond.begin(*this);
    621       EmitBlock(LHSBlock);
    622       EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock);
    623       cond.end(*this);
    624 
    625       cond.begin(*this);
    626       EmitBlock(RHSBlock);
    627       EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock);
    628       cond.end(*this);
    629 
    630       return;
    631     }
    632   }
    633 
    634   // Emit the code with the fully general case.
    635   llvm::Value *CondV = EvaluateExprAsBool(Cond);
    636   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock);
    637 }
    638 
    639 /// ErrorUnsupported - Print out an error that codegen doesn't support the
    640 /// specified stmt yet.
    641 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type,
    642                                        bool OmitOnError) {
    643   CGM.ErrorUnsupported(S, Type, OmitOnError);
    644 }
    645 
    646 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
    647 /// variable-length array whose elements have a non-zero bit-pattern.
    648 ///
    649 /// \param src - a char* pointing to the bit-pattern for a single
    650 /// base element of the array
    651 /// \param sizeInChars - the total size of the VLA, in chars
    652 /// \param align - the total alignment of the VLA
    653 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
    654                                llvm::Value *dest, llvm::Value *src,
    655                                llvm::Value *sizeInChars) {
    656   std::pair<CharUnits,CharUnits> baseSizeAndAlign
    657     = CGF.getContext().getTypeInfoInChars(baseType);
    658 
    659   CGBuilderTy &Builder = CGF.Builder;
    660 
    661   llvm::Value *baseSizeInChars
    662     = llvm::ConstantInt::get(CGF.IntPtrTy, baseSizeAndAlign.first.getQuantity());
    663 
    664   llvm::Type *i8p = Builder.getInt8PtrTy();
    665 
    666   llvm::Value *begin = Builder.CreateBitCast(dest, i8p, "vla.begin");
    667   llvm::Value *end = Builder.CreateInBoundsGEP(dest, sizeInChars, "vla.end");
    668 
    669   llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
    670   llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
    671   llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
    672 
    673   // Make a loop over the VLA.  C99 guarantees that the VLA element
    674   // count must be nonzero.
    675   CGF.EmitBlock(loopBB);
    676 
    677   llvm::PHINode *cur = Builder.CreatePHI(i8p, 2, "vla.cur");
    678   cur->addIncoming(begin, originBB);
    679 
    680   // memcpy the individual element bit-pattern.
    681   Builder.CreateMemCpy(cur, src, baseSizeInChars,
    682                        baseSizeAndAlign.second.getQuantity(),
    683                        /*volatile*/ false);
    684 
    685   // Go to the next element.
    686   llvm::Value *next = Builder.CreateConstInBoundsGEP1_32(cur, 1, "vla.next");
    687 
    688   // Leave if that's the end of the VLA.
    689   llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
    690   Builder.CreateCondBr(done, contBB, loopBB);
    691   cur->addIncoming(next, loopBB);
    692 
    693   CGF.EmitBlock(contBB);
    694 }
    695 
    696 void
    697 CodeGenFunction::EmitNullInitialization(llvm::Value *DestPtr, QualType Ty) {
    698   // Ignore empty classes in C++.
    699   if (getContext().getLangOptions().CPlusPlus) {
    700     if (const RecordType *RT = Ty->getAs<RecordType>()) {
    701       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
    702         return;
    703     }
    704   }
    705 
    706   // Cast the dest ptr to the appropriate i8 pointer type.
    707   unsigned DestAS =
    708     cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace();
    709   llvm::Type *BP = Builder.getInt8PtrTy(DestAS);
    710   if (DestPtr->getType() != BP)
    711     DestPtr = Builder.CreateBitCast(DestPtr, BP);
    712 
    713   // Get size and alignment info for this aggregate.
    714   std::pair<CharUnits, CharUnits> TypeInfo =
    715     getContext().getTypeInfoInChars(Ty);
    716   CharUnits Size = TypeInfo.first;
    717   CharUnits Align = TypeInfo.second;
    718 
    719   llvm::Value *SizeVal;
    720   const VariableArrayType *vla;
    721 
    722   // Don't bother emitting a zero-byte memset.
    723   if (Size.isZero()) {
    724     // But note that getTypeInfo returns 0 for a VLA.
    725     if (const VariableArrayType *vlaType =
    726           dyn_cast_or_null<VariableArrayType>(
    727                                           getContext().getAsArrayType(Ty))) {
    728       QualType eltType;
    729       llvm::Value *numElts;
    730       llvm::tie(numElts, eltType) = getVLASize(vlaType);
    731 
    732       SizeVal = numElts;
    733       CharUnits eltSize = getContext().getTypeSizeInChars(eltType);
    734       if (!eltSize.isOne())
    735         SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
    736       vla = vlaType;
    737     } else {
    738       return;
    739     }
    740   } else {
    741     SizeVal = CGM.getSize(Size);
    742     vla = 0;
    743   }
    744 
    745   // If the type contains a pointer to data member we can't memset it to zero.
    746   // Instead, create a null constant and copy it to the destination.
    747   // TODO: there are other patterns besides zero that we can usefully memset,
    748   // like -1, which happens to be the pattern used by member-pointers.
    749   if (!CGM.getTypes().isZeroInitializable(Ty)) {
    750     // For a VLA, emit a single element, then splat that over the VLA.
    751     if (vla) Ty = getContext().getBaseElementType(vla);
    752 
    753     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
    754 
    755     llvm::GlobalVariable *NullVariable =
    756       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
    757                                /*isConstant=*/true,
    758                                llvm::GlobalVariable::PrivateLinkage,
    759                                NullConstant, Twine());
    760     llvm::Value *SrcPtr =
    761       Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy());
    762 
    763     if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
    764 
    765     // Get and call the appropriate llvm.memcpy overload.
    766     Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity(), false);
    767     return;
    768   }
    769 
    770   // Otherwise, just memset the whole thing to zero.  This is legal
    771   // because in LLVM, all default initializers (other than the ones we just
    772   // handled above) are guaranteed to have a bit pattern of all zeros.
    773   Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal,
    774                        Align.getQuantity(), false);
    775 }
    776 
    777 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
    778   // Make sure that there is a block for the indirect goto.
    779   if (IndirectBranch == 0)
    780     GetIndirectGotoBlock();
    781 
    782   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
    783 
    784   // Make sure the indirect branch includes all of the address-taken blocks.
    785   IndirectBranch->addDestination(BB);
    786   return llvm::BlockAddress::get(CurFn, BB);
    787 }
    788 
    789 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
    790   // If we already made the indirect branch for indirect goto, return its block.
    791   if (IndirectBranch) return IndirectBranch->getParent();
    792 
    793   CGBuilderTy TmpBuilder(createBasicBlock("indirectgoto"));
    794 
    795   // Create the PHI node that indirect gotos will add entries to.
    796   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
    797                                               "indirect.goto.dest");
    798 
    799   // Create the indirect branch instruction.
    800   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
    801   return IndirectBranch->getParent();
    802 }
    803 
    804 /// Computes the length of an array in elements, as well as the base
    805 /// element type and a properly-typed first element pointer.
    806 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
    807                                               QualType &baseType,
    808                                               llvm::Value *&addr) {
    809   const ArrayType *arrayType = origArrayType;
    810 
    811   // If it's a VLA, we have to load the stored size.  Note that
    812   // this is the size of the VLA in bytes, not its size in elements.
    813   llvm::Value *numVLAElements = 0;
    814   if (isa<VariableArrayType>(arrayType)) {
    815     numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first;
    816 
    817     // Walk into all VLAs.  This doesn't require changes to addr,
    818     // which has type T* where T is the first non-VLA element type.
    819     do {
    820       QualType elementType = arrayType->getElementType();
    821       arrayType = getContext().getAsArrayType(elementType);
    822 
    823       // If we only have VLA components, 'addr' requires no adjustment.
    824       if (!arrayType) {
    825         baseType = elementType;
    826         return numVLAElements;
    827       }
    828     } while (isa<VariableArrayType>(arrayType));
    829 
    830     // We get out here only if we find a constant array type
    831     // inside the VLA.
    832   }
    833 
    834   // We have some number of constant-length arrays, so addr should
    835   // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
    836   // down to the first element of addr.
    837   SmallVector<llvm::Value*, 8> gepIndices;
    838 
    839   // GEP down to the array type.
    840   llvm::ConstantInt *zero = Builder.getInt32(0);
    841   gepIndices.push_back(zero);
    842 
    843   // It's more efficient to calculate the count from the LLVM
    844   // constant-length arrays than to re-evaluate the array bounds.
    845   uint64_t countFromCLAs = 1;
    846 
    847   llvm::ArrayType *llvmArrayType =
    848     cast<llvm::ArrayType>(
    849       cast<llvm::PointerType>(addr->getType())->getElementType());
    850   while (true) {
    851     assert(isa<ConstantArrayType>(arrayType));
    852     assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue()
    853              == llvmArrayType->getNumElements());
    854 
    855     gepIndices.push_back(zero);
    856     countFromCLAs *= llvmArrayType->getNumElements();
    857 
    858     llvmArrayType =
    859       dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
    860     if (!llvmArrayType) break;
    861 
    862     arrayType = getContext().getAsArrayType(arrayType->getElementType());
    863     assert(arrayType && "LLVM and Clang types are out-of-synch");
    864   }
    865 
    866   baseType = arrayType->getElementType();
    867 
    868   // Create the actual GEP.
    869   addr = Builder.CreateInBoundsGEP(addr, gepIndices, "array.begin");
    870 
    871   llvm::Value *numElements
    872     = llvm::ConstantInt::get(SizeTy, countFromCLAs);
    873 
    874   // If we had any VLA dimensions, factor them in.
    875   if (numVLAElements)
    876     numElements = Builder.CreateNUWMul(numVLAElements, numElements);
    877 
    878   return numElements;
    879 }
    880 
    881 std::pair<llvm::Value*, QualType>
    882 CodeGenFunction::getVLASize(QualType type) {
    883   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
    884   assert(vla && "type was not a variable array type!");
    885   return getVLASize(vla);
    886 }
    887 
    888 std::pair<llvm::Value*, QualType>
    889 CodeGenFunction::getVLASize(const VariableArrayType *type) {
    890   // The number of elements so far; always size_t.
    891   llvm::Value *numElements = 0;
    892 
    893   QualType elementType;
    894   do {
    895     elementType = type->getElementType();
    896     llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
    897     assert(vlaSize && "no size for VLA!");
    898     assert(vlaSize->getType() == SizeTy);
    899 
    900     if (!numElements) {
    901       numElements = vlaSize;
    902     } else {
    903       // It's undefined behavior if this wraps around, so mark it that way.
    904       numElements = Builder.CreateNUWMul(numElements, vlaSize);
    905     }
    906   } while ((type = getContext().getAsVariableArrayType(elementType)));
    907 
    908   return std::pair<llvm::Value*,QualType>(numElements, elementType);
    909 }
    910 
    911 void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
    912   assert(type->isVariablyModifiedType() &&
    913          "Must pass variably modified type to EmitVLASizes!");
    914 
    915   EnsureInsertPoint();
    916 
    917   // We're going to walk down into the type and look for VLA
    918   // expressions.
    919   type = type.getCanonicalType();
    920   do {
    921     assert(type->isVariablyModifiedType());
    922 
    923     const Type *ty = type.getTypePtr();
    924     switch (ty->getTypeClass()) {
    925 #define TYPE(Class, Base)
    926 #define ABSTRACT_TYPE(Class, Base)
    927 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
    928 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
    929 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
    930 #include "clang/AST/TypeNodes.def"
    931       llvm_unreachable("unexpected dependent or non-canonical type!");
    932 
    933     // These types are never variably-modified.
    934     case Type::Builtin:
    935     case Type::Complex:
    936     case Type::Vector:
    937     case Type::ExtVector:
    938     case Type::Record:
    939     case Type::Enum:
    940     case Type::ObjCObject:
    941     case Type::ObjCInterface:
    942     case Type::ObjCObjectPointer:
    943       llvm_unreachable("type class is never variably-modified!");
    944 
    945     case Type::Pointer:
    946       type = cast<PointerType>(ty)->getPointeeType();
    947       break;
    948 
    949     case Type::BlockPointer:
    950       type = cast<BlockPointerType>(ty)->getPointeeType();
    951       break;
    952 
    953     case Type::LValueReference:
    954     case Type::RValueReference:
    955       type = cast<ReferenceType>(ty)->getPointeeType();
    956       break;
    957 
    958     case Type::MemberPointer:
    959       type = cast<MemberPointerType>(ty)->getPointeeType();
    960       break;
    961 
    962     case Type::ConstantArray:
    963     case Type::IncompleteArray:
    964       // Losing element qualification here is fine.
    965       type = cast<ArrayType>(ty)->getElementType();
    966       break;
    967 
    968     case Type::VariableArray: {
    969       // Losing element qualification here is fine.
    970       const VariableArrayType *vat = cast<VariableArrayType>(ty);
    971 
    972       // Unknown size indication requires no size computation.
    973       // Otherwise, evaluate and record it.
    974       if (const Expr *size = vat->getSizeExpr()) {
    975         // It's possible that we might have emitted this already,
    976         // e.g. with a typedef and a pointer to it.
    977         llvm::Value *&entry = VLASizeMap[size];
    978         if (!entry) {
    979           // Always zexting here would be wrong if it weren't
    980           // undefined behavior to have a negative bound.
    981           entry = Builder.CreateIntCast(EmitScalarExpr(size), SizeTy,
    982                                         /*signed*/ false);
    983         }
    984       }
    985       type = vat->getElementType();
    986       break;
    987     }
    988 
    989     case Type::FunctionProto:
    990     case Type::FunctionNoProto:
    991       type = cast<FunctionType>(ty)->getResultType();
    992       break;
    993 
    994     case Type::Atomic:
    995       type = cast<AtomicType>(ty)->getValueType();
    996       break;
    997     }
    998   } while (type->isVariablyModifiedType());
    999 }
   1000 
   1001 llvm::Value* CodeGenFunction::EmitVAListRef(const Expr* E) {
   1002   if (getContext().getBuiltinVaListType()->isArrayType())
   1003     return EmitScalarExpr(E);
   1004   return EmitLValue(E).getAddress();
   1005 }
   1006 
   1007 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
   1008                                               llvm::Constant *Init) {
   1009   assert (Init && "Invalid DeclRefExpr initializer!");
   1010   if (CGDebugInfo *Dbg = getDebugInfo())
   1011     Dbg->EmitGlobalVariable(E->getDecl(), Init);
   1012 }
   1013 
   1014 CodeGenFunction::PeepholeProtection
   1015 CodeGenFunction::protectFromPeepholes(RValue rvalue) {
   1016   // At the moment, the only aggressive peephole we do in IR gen
   1017   // is trunc(zext) folding, but if we add more, we can easily
   1018   // extend this protection.
   1019 
   1020   if (!rvalue.isScalar()) return PeepholeProtection();
   1021   llvm::Value *value = rvalue.getScalarVal();
   1022   if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
   1023 
   1024   // Just make an extra bitcast.
   1025   assert(HaveInsertPoint());
   1026   llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
   1027                                                   Builder.GetInsertBlock());
   1028 
   1029   PeepholeProtection protection;
   1030   protection.Inst = inst;
   1031   return protection;
   1032 }
   1033 
   1034 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
   1035   if (!protection.Inst) return;
   1036 
   1037   // In theory, we could try to duplicate the peepholes now, but whatever.
   1038   protection.Inst->eraseFromParent();
   1039 }
   1040 
   1041 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn,
   1042                                                  llvm::Value *AnnotatedVal,
   1043                                                  llvm::StringRef AnnotationStr,
   1044                                                  SourceLocation Location) {
   1045   llvm::Value *Args[4] = {
   1046     AnnotatedVal,
   1047     Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy),
   1048     Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy),
   1049     CGM.EmitAnnotationLineNo(Location)
   1050   };
   1051   return Builder.CreateCall(AnnotationFn, Args);
   1052 }
   1053 
   1054 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
   1055   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
   1056   // FIXME We create a new bitcast for every annotation because that's what
   1057   // llvm-gcc was doing.
   1058   for (specific_attr_iterator<AnnotateAttr>
   1059        ai = D->specific_attr_begin<AnnotateAttr>(),
   1060        ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai)
   1061     EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation),
   1062                        Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()),
   1063                        (*ai)->getAnnotation(), D->getLocation());
   1064 }
   1065 
   1066 llvm::Value *CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
   1067                                                    llvm::Value *V) {
   1068   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
   1069   llvm::Type *VTy = V->getType();
   1070   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
   1071                                     CGM.Int8PtrTy);
   1072 
   1073   for (specific_attr_iterator<AnnotateAttr>
   1074        ai = D->specific_attr_begin<AnnotateAttr>(),
   1075        ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) {
   1076     // FIXME Always emit the cast inst so we can differentiate between
   1077     // annotation on the first field of a struct and annotation on the struct
   1078     // itself.
   1079     if (VTy != CGM.Int8PtrTy)
   1080       V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy));
   1081     V = EmitAnnotationCall(F, V, (*ai)->getAnnotation(), D->getLocation());
   1082     V = Builder.CreateBitCast(V, VTy);
   1083   }
   1084 
   1085   return V;
   1086 }
   1087