Home | History | Annotate | Download | only in Scalar
      1 //===-- LoopUnswitch.cpp - Hoist loop-invariant conditionals in loop ------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This pass transforms loops that contain branches on loop-invariant conditions
     11 // to have multiple loops.  For example, it turns the left into the right code:
     12 //
     13 //  for (...)                  if (lic)
     14 //    A                          for (...)
     15 //    if (lic)                     A; B; C
     16 //      B                      else
     17 //    C                          for (...)
     18 //                                 A; C
     19 //
     20 // This can increase the size of the code exponentially (doubling it every time
     21 // a loop is unswitched) so we only unswitch if the resultant code will be
     22 // smaller than a threshold.
     23 //
     24 // This pass expects LICM to be run before it to hoist invariant conditions out
     25 // of the loop, to make the unswitching opportunity obvious.
     26 //
     27 //===----------------------------------------------------------------------===//
     28 
     29 #define DEBUG_TYPE "loop-unswitch"
     30 #include "llvm/Transforms/Scalar.h"
     31 #include "llvm/Constants.h"
     32 #include "llvm/DerivedTypes.h"
     33 #include "llvm/Function.h"
     34 #include "llvm/Instructions.h"
     35 #include "llvm/Analysis/InlineCost.h"
     36 #include "llvm/Analysis/InstructionSimplify.h"
     37 #include "llvm/Analysis/LoopInfo.h"
     38 #include "llvm/Analysis/LoopPass.h"
     39 #include "llvm/Analysis/Dominators.h"
     40 #include "llvm/Analysis/ScalarEvolution.h"
     41 #include "llvm/Transforms/Utils/Cloning.h"
     42 #include "llvm/Transforms/Utils/Local.h"
     43 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
     44 #include "llvm/ADT/Statistic.h"
     45 #include "llvm/ADT/SmallPtrSet.h"
     46 #include "llvm/ADT/STLExtras.h"
     47 #include "llvm/Support/CommandLine.h"
     48 #include "llvm/Support/Debug.h"
     49 #include "llvm/Support/raw_ostream.h"
     50 #include <algorithm>
     51 #include <set>
     52 using namespace llvm;
     53 
     54 STATISTIC(NumBranches, "Number of branches unswitched");
     55 STATISTIC(NumSwitches, "Number of switches unswitched");
     56 STATISTIC(NumSelects , "Number of selects unswitched");
     57 STATISTIC(NumTrivial , "Number of unswitches that are trivial");
     58 STATISTIC(NumSimplify, "Number of simplifications of unswitched code");
     59 
     60 // The specific value of 50 here was chosen based only on intuition and a
     61 // few specific examples.
     62 static cl::opt<unsigned>
     63 Threshold("loop-unswitch-threshold", cl::desc("Max loop size to unswitch"),
     64           cl::init(50), cl::Hidden);
     65 
     66 namespace {
     67   class LoopUnswitch : public LoopPass {
     68     LoopInfo *LI;  // Loop information
     69     LPPassManager *LPM;
     70 
     71     // LoopProcessWorklist - Used to check if second loop needs processing
     72     // after RewriteLoopBodyWithConditionConstant rewrites first loop.
     73     std::vector<Loop*> LoopProcessWorklist;
     74     SmallPtrSet<Value *,8> UnswitchedVals;
     75 
     76     bool OptimizeForSize;
     77     bool redoLoop;
     78 
     79     Loop *currentLoop;
     80     DominatorTree *DT;
     81     BasicBlock *loopHeader;
     82     BasicBlock *loopPreheader;
     83 
     84     // LoopBlocks contains all of the basic blocks of the loop, including the
     85     // preheader of the loop, the body of the loop, and the exit blocks of the
     86     // loop, in that order.
     87     std::vector<BasicBlock*> LoopBlocks;
     88     // NewBlocks contained cloned copy of basic blocks from LoopBlocks.
     89     std::vector<BasicBlock*> NewBlocks;
     90 
     91   public:
     92     static char ID; // Pass ID, replacement for typeid
     93     explicit LoopUnswitch(bool Os = false) :
     94       LoopPass(ID), OptimizeForSize(Os), redoLoop(false),
     95       currentLoop(NULL), DT(NULL), loopHeader(NULL),
     96       loopPreheader(NULL) {
     97         initializeLoopUnswitchPass(*PassRegistry::getPassRegistry());
     98       }
     99 
    100     bool runOnLoop(Loop *L, LPPassManager &LPM);
    101     bool processCurrentLoop();
    102 
    103     /// This transformation requires natural loop information & requires that
    104     /// loop preheaders be inserted into the CFG.
    105     ///
    106     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
    107       AU.addRequiredID(LoopSimplifyID);
    108       AU.addPreservedID(LoopSimplifyID);
    109       AU.addRequired<LoopInfo>();
    110       AU.addPreserved<LoopInfo>();
    111       AU.addRequiredID(LCSSAID);
    112       AU.addPreservedID(LCSSAID);
    113       AU.addPreserved<DominatorTree>();
    114       AU.addPreserved<ScalarEvolution>();
    115     }
    116 
    117   private:
    118 
    119     virtual void releaseMemory() {
    120       UnswitchedVals.clear();
    121     }
    122 
    123     /// RemoveLoopFromWorklist - If the specified loop is on the loop worklist,
    124     /// remove it.
    125     void RemoveLoopFromWorklist(Loop *L) {
    126       std::vector<Loop*>::iterator I = std::find(LoopProcessWorklist.begin(),
    127                                                  LoopProcessWorklist.end(), L);
    128       if (I != LoopProcessWorklist.end())
    129         LoopProcessWorklist.erase(I);
    130     }
    131 
    132     void initLoopData() {
    133       loopHeader = currentLoop->getHeader();
    134       loopPreheader = currentLoop->getLoopPreheader();
    135     }
    136 
    137     /// Split all of the edges from inside the loop to their exit blocks.
    138     /// Update the appropriate Phi nodes as we do so.
    139     void SplitExitEdges(Loop *L, const SmallVector<BasicBlock *, 8> &ExitBlocks);
    140 
    141     bool UnswitchIfProfitable(Value *LoopCond, Constant *Val);
    142     void UnswitchTrivialCondition(Loop *L, Value *Cond, Constant *Val,
    143                                   BasicBlock *ExitBlock);
    144     void UnswitchNontrivialCondition(Value *LIC, Constant *OnVal, Loop *L);
    145 
    146     void RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC,
    147                                               Constant *Val, bool isEqual);
    148 
    149     void EmitPreheaderBranchOnCondition(Value *LIC, Constant *Val,
    150                                         BasicBlock *TrueDest,
    151                                         BasicBlock *FalseDest,
    152                                         Instruction *InsertPt);
    153 
    154     void SimplifyCode(std::vector<Instruction*> &Worklist, Loop *L);
    155     void RemoveBlockIfDead(BasicBlock *BB,
    156                            std::vector<Instruction*> &Worklist, Loop *l);
    157     void RemoveLoopFromHierarchy(Loop *L);
    158     bool IsTrivialUnswitchCondition(Value *Cond, Constant **Val = 0,
    159                                     BasicBlock **LoopExit = 0);
    160 
    161   };
    162 }
    163 char LoopUnswitch::ID = 0;
    164 INITIALIZE_PASS_BEGIN(LoopUnswitch, "loop-unswitch", "Unswitch loops",
    165                       false, false)
    166 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
    167 INITIALIZE_PASS_DEPENDENCY(LoopInfo)
    168 INITIALIZE_PASS_DEPENDENCY(LCSSA)
    169 INITIALIZE_PASS_END(LoopUnswitch, "loop-unswitch", "Unswitch loops",
    170                       false, false)
    171 
    172 Pass *llvm::createLoopUnswitchPass(bool Os) {
    173   return new LoopUnswitch(Os);
    174 }
    175 
    176 /// FindLIVLoopCondition - Cond is a condition that occurs in L.  If it is
    177 /// invariant in the loop, or has an invariant piece, return the invariant.
    178 /// Otherwise, return null.
    179 static Value *FindLIVLoopCondition(Value *Cond, Loop *L, bool &Changed) {
    180   // We can never unswitch on vector conditions.
    181   if (Cond->getType()->isVectorTy())
    182     return 0;
    183 
    184   // Constants should be folded, not unswitched on!
    185   if (isa<Constant>(Cond)) return 0;
    186 
    187   // TODO: Handle: br (VARIANT|INVARIANT).
    188 
    189   // Hoist simple values out.
    190   if (L->makeLoopInvariant(Cond, Changed))
    191     return Cond;
    192 
    193   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Cond))
    194     if (BO->getOpcode() == Instruction::And ||
    195         BO->getOpcode() == Instruction::Or) {
    196       // If either the left or right side is invariant, we can unswitch on this,
    197       // which will cause the branch to go away in one loop and the condition to
    198       // simplify in the other one.
    199       if (Value *LHS = FindLIVLoopCondition(BO->getOperand(0), L, Changed))
    200         return LHS;
    201       if (Value *RHS = FindLIVLoopCondition(BO->getOperand(1), L, Changed))
    202         return RHS;
    203     }
    204 
    205   return 0;
    206 }
    207 
    208 bool LoopUnswitch::runOnLoop(Loop *L, LPPassManager &LPM_Ref) {
    209   LI = &getAnalysis<LoopInfo>();
    210   LPM = &LPM_Ref;
    211   DT = getAnalysisIfAvailable<DominatorTree>();
    212   currentLoop = L;
    213   Function *F = currentLoop->getHeader()->getParent();
    214   bool Changed = false;
    215   do {
    216     assert(currentLoop->isLCSSAForm(*DT));
    217     redoLoop = false;
    218     Changed |= processCurrentLoop();
    219   } while(redoLoop);
    220 
    221   if (Changed) {
    222     // FIXME: Reconstruct dom info, because it is not preserved properly.
    223     if (DT)
    224       DT->runOnFunction(*F);
    225   }
    226   return Changed;
    227 }
    228 
    229 /// processCurrentLoop - Do actual work and unswitch loop if possible
    230 /// and profitable.
    231 bool LoopUnswitch::processCurrentLoop() {
    232   bool Changed = false;
    233   LLVMContext &Context = currentLoop->getHeader()->getContext();
    234 
    235   // Loop over all of the basic blocks in the loop.  If we find an interior
    236   // block that is branching on a loop-invariant condition, we can unswitch this
    237   // loop.
    238   for (Loop::block_iterator I = currentLoop->block_begin(),
    239          E = currentLoop->block_end(); I != E; ++I) {
    240     TerminatorInst *TI = (*I)->getTerminator();
    241     if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
    242       // If this isn't branching on an invariant condition, we can't unswitch
    243       // it.
    244       if (BI->isConditional()) {
    245         // See if this, or some part of it, is loop invariant.  If so, we can
    246         // unswitch on it if we desire.
    247         Value *LoopCond = FindLIVLoopCondition(BI->getCondition(),
    248                                                currentLoop, Changed);
    249         if (LoopCond && UnswitchIfProfitable(LoopCond,
    250                                              ConstantInt::getTrue(Context))) {
    251           ++NumBranches;
    252           return true;
    253         }
    254       }
    255     } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
    256       Value *LoopCond = FindLIVLoopCondition(SI->getCondition(),
    257                                              currentLoop, Changed);
    258       if (LoopCond && SI->getNumCases() > 1) {
    259         // Find a value to unswitch on:
    260         // FIXME: this should chose the most expensive case!
    261         // FIXME: scan for a case with a non-critical edge?
    262         Constant *UnswitchVal = SI->getCaseValue(1);
    263         // Do not process same value again and again.
    264         if (!UnswitchedVals.insert(UnswitchVal))
    265           continue;
    266 
    267         if (UnswitchIfProfitable(LoopCond, UnswitchVal)) {
    268           ++NumSwitches;
    269           return true;
    270         }
    271       }
    272     }
    273 
    274     // Scan the instructions to check for unswitchable values.
    275     for (BasicBlock::iterator BBI = (*I)->begin(), E = (*I)->end();
    276          BBI != E; ++BBI)
    277       if (SelectInst *SI = dyn_cast<SelectInst>(BBI)) {
    278         Value *LoopCond = FindLIVLoopCondition(SI->getCondition(),
    279                                                currentLoop, Changed);
    280         if (LoopCond && UnswitchIfProfitable(LoopCond,
    281                                              ConstantInt::getTrue(Context))) {
    282           ++NumSelects;
    283           return true;
    284         }
    285       }
    286   }
    287   return Changed;
    288 }
    289 
    290 /// isTrivialLoopExitBlock - Check to see if all paths from BB exit the
    291 /// loop with no side effects (including infinite loops).
    292 ///
    293 /// If true, we return true and set ExitBB to the block we
    294 /// exit through.
    295 ///
    296 static bool isTrivialLoopExitBlockHelper(Loop *L, BasicBlock *BB,
    297                                          BasicBlock *&ExitBB,
    298                                          std::set<BasicBlock*> &Visited) {
    299   if (!Visited.insert(BB).second) {
    300     // Already visited. Without more analysis, this could indicate an infinte loop.
    301     return false;
    302   } else if (!L->contains(BB)) {
    303     // Otherwise, this is a loop exit, this is fine so long as this is the
    304     // first exit.
    305     if (ExitBB != 0) return false;
    306     ExitBB = BB;
    307     return true;
    308   }
    309 
    310   // Otherwise, this is an unvisited intra-loop node.  Check all successors.
    311   for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI) {
    312     // Check to see if the successor is a trivial loop exit.
    313     if (!isTrivialLoopExitBlockHelper(L, *SI, ExitBB, Visited))
    314       return false;
    315   }
    316 
    317   // Okay, everything after this looks good, check to make sure that this block
    318   // doesn't include any side effects.
    319   for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
    320     if (I->mayHaveSideEffects())
    321       return false;
    322 
    323   return true;
    324 }
    325 
    326 /// isTrivialLoopExitBlock - Return true if the specified block unconditionally
    327 /// leads to an exit from the specified loop, and has no side-effects in the
    328 /// process.  If so, return the block that is exited to, otherwise return null.
    329 static BasicBlock *isTrivialLoopExitBlock(Loop *L, BasicBlock *BB) {
    330   std::set<BasicBlock*> Visited;
    331   Visited.insert(L->getHeader());  // Branches to header make infinite loops.
    332   BasicBlock *ExitBB = 0;
    333   if (isTrivialLoopExitBlockHelper(L, BB, ExitBB, Visited))
    334     return ExitBB;
    335   return 0;
    336 }
    337 
    338 /// IsTrivialUnswitchCondition - Check to see if this unswitch condition is
    339 /// trivial: that is, that the condition controls whether or not the loop does
    340 /// anything at all.  If this is a trivial condition, unswitching produces no
    341 /// code duplications (equivalently, it produces a simpler loop and a new empty
    342 /// loop, which gets deleted).
    343 ///
    344 /// If this is a trivial condition, return true, otherwise return false.  When
    345 /// returning true, this sets Cond and Val to the condition that controls the
    346 /// trivial condition: when Cond dynamically equals Val, the loop is known to
    347 /// exit.  Finally, this sets LoopExit to the BB that the loop exits to when
    348 /// Cond == Val.
    349 ///
    350 bool LoopUnswitch::IsTrivialUnswitchCondition(Value *Cond, Constant **Val,
    351                                        BasicBlock **LoopExit) {
    352   BasicBlock *Header = currentLoop->getHeader();
    353   TerminatorInst *HeaderTerm = Header->getTerminator();
    354   LLVMContext &Context = Header->getContext();
    355 
    356   BasicBlock *LoopExitBB = 0;
    357   if (BranchInst *BI = dyn_cast<BranchInst>(HeaderTerm)) {
    358     // If the header block doesn't end with a conditional branch on Cond, we
    359     // can't handle it.
    360     if (!BI->isConditional() || BI->getCondition() != Cond)
    361       return false;
    362 
    363     // Check to see if a successor of the branch is guaranteed to
    364     // exit through a unique exit block without having any
    365     // side-effects.  If so, determine the value of Cond that causes it to do
    366     // this.
    367     if ((LoopExitBB = isTrivialLoopExitBlock(currentLoop,
    368                                              BI->getSuccessor(0)))) {
    369       if (Val) *Val = ConstantInt::getTrue(Context);
    370     } else if ((LoopExitBB = isTrivialLoopExitBlock(currentLoop,
    371                                                     BI->getSuccessor(1)))) {
    372       if (Val) *Val = ConstantInt::getFalse(Context);
    373     }
    374   } else if (SwitchInst *SI = dyn_cast<SwitchInst>(HeaderTerm)) {
    375     // If this isn't a switch on Cond, we can't handle it.
    376     if (SI->getCondition() != Cond) return false;
    377 
    378     // Check to see if a successor of the switch is guaranteed to go to the
    379     // latch block or exit through a one exit block without having any
    380     // side-effects.  If so, determine the value of Cond that causes it to do
    381     // this.  Note that we can't trivially unswitch on the default case.
    382     for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i)
    383       if ((LoopExitBB = isTrivialLoopExitBlock(currentLoop,
    384                                                SI->getSuccessor(i)))) {
    385         // Okay, we found a trivial case, remember the value that is trivial.
    386         if (Val) *Val = SI->getCaseValue(i);
    387         break;
    388       }
    389   }
    390 
    391   // If we didn't find a single unique LoopExit block, or if the loop exit block
    392   // contains phi nodes, this isn't trivial.
    393   if (!LoopExitBB || isa<PHINode>(LoopExitBB->begin()))
    394     return false;   // Can't handle this.
    395 
    396   if (LoopExit) *LoopExit = LoopExitBB;
    397 
    398   // We already know that nothing uses any scalar values defined inside of this
    399   // loop.  As such, we just have to check to see if this loop will execute any
    400   // side-effecting instructions (e.g. stores, calls, volatile loads) in the
    401   // part of the loop that the code *would* execute.  We already checked the
    402   // tail, check the header now.
    403   for (BasicBlock::iterator I = Header->begin(), E = Header->end(); I != E; ++I)
    404     if (I->mayHaveSideEffects())
    405       return false;
    406   return true;
    407 }
    408 
    409 /// UnswitchIfProfitable - We have found that we can unswitch currentLoop when
    410 /// LoopCond == Val to simplify the loop.  If we decide that this is profitable,
    411 /// unswitch the loop, reprocess the pieces, then return true.
    412 bool LoopUnswitch::UnswitchIfProfitable(Value *LoopCond, Constant *Val) {
    413 
    414   initLoopData();
    415 
    416   // If LoopSimplify was unable to form a preheader, don't do any unswitching.
    417   if (!loopPreheader)
    418     return false;
    419 
    420   Function *F = loopHeader->getParent();
    421 
    422   Constant *CondVal = 0;
    423   BasicBlock *ExitBlock = 0;
    424   if (IsTrivialUnswitchCondition(LoopCond, &CondVal, &ExitBlock)) {
    425     // If the condition is trivial, always unswitch. There is no code growth
    426     // for this case.
    427     UnswitchTrivialCondition(currentLoop, LoopCond, CondVal, ExitBlock);
    428     return true;
    429   }
    430 
    431   // Check to see if it would be profitable to unswitch current loop.
    432 
    433   // Do not do non-trivial unswitch while optimizing for size.
    434   if (OptimizeForSize || F->hasFnAttr(Attribute::OptimizeForSize))
    435     return false;
    436 
    437   // FIXME: This is overly conservative because it does not take into
    438   // consideration code simplification opportunities and code that can
    439   // be shared by the resultant unswitched loops.
    440   CodeMetrics Metrics;
    441   for (Loop::block_iterator I = currentLoop->block_begin(),
    442          E = currentLoop->block_end();
    443        I != E; ++I)
    444     Metrics.analyzeBasicBlock(*I);
    445 
    446   // Limit the number of instructions to avoid causing significant code
    447   // expansion, and the number of basic blocks, to avoid loops with
    448   // large numbers of branches which cause loop unswitching to go crazy.
    449   // This is a very ad-hoc heuristic.
    450   if (Metrics.NumInsts > Threshold ||
    451       Metrics.NumBlocks * 5 > Threshold ||
    452       Metrics.containsIndirectBr || Metrics.isRecursive) {
    453     DEBUG(dbgs() << "NOT unswitching loop %"
    454           << currentLoop->getHeader()->getName() << ", cost too high: "
    455           << currentLoop->getBlocks().size() << "\n");
    456     return false;
    457   }
    458 
    459   UnswitchNontrivialCondition(LoopCond, Val, currentLoop);
    460   return true;
    461 }
    462 
    463 /// CloneLoop - Recursively clone the specified loop and all of its children,
    464 /// mapping the blocks with the specified map.
    465 static Loop *CloneLoop(Loop *L, Loop *PL, ValueToValueMapTy &VM,
    466                        LoopInfo *LI, LPPassManager *LPM) {
    467   Loop *New = new Loop();
    468   LPM->insertLoop(New, PL);
    469 
    470   // Add all of the blocks in L to the new loop.
    471   for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
    472        I != E; ++I)
    473     if (LI->getLoopFor(*I) == L)
    474       New->addBasicBlockToLoop(cast<BasicBlock>(VM[*I]), LI->getBase());
    475 
    476   // Add all of the subloops to the new loop.
    477   for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
    478     CloneLoop(*I, New, VM, LI, LPM);
    479 
    480   return New;
    481 }
    482 
    483 /// EmitPreheaderBranchOnCondition - Emit a conditional branch on two values
    484 /// if LIC == Val, branch to TrueDst, otherwise branch to FalseDest.  Insert the
    485 /// code immediately before InsertPt.
    486 void LoopUnswitch::EmitPreheaderBranchOnCondition(Value *LIC, Constant *Val,
    487                                                   BasicBlock *TrueDest,
    488                                                   BasicBlock *FalseDest,
    489                                                   Instruction *InsertPt) {
    490   // Insert a conditional branch on LIC to the two preheaders.  The original
    491   // code is the true version and the new code is the false version.
    492   Value *BranchVal = LIC;
    493   if (!isa<ConstantInt>(Val) ||
    494       Val->getType() != Type::getInt1Ty(LIC->getContext()))
    495     BranchVal = new ICmpInst(InsertPt, ICmpInst::ICMP_EQ, LIC, Val);
    496   else if (Val != ConstantInt::getTrue(Val->getContext()))
    497     // We want to enter the new loop when the condition is true.
    498     std::swap(TrueDest, FalseDest);
    499 
    500   // Insert the new branch.
    501   BranchInst *BI = BranchInst::Create(TrueDest, FalseDest, BranchVal, InsertPt);
    502 
    503   // If either edge is critical, split it. This helps preserve LoopSimplify
    504   // form for enclosing loops.
    505   SplitCriticalEdge(BI, 0, this);
    506   SplitCriticalEdge(BI, 1, this);
    507 }
    508 
    509 /// UnswitchTrivialCondition - Given a loop that has a trivial unswitchable
    510 /// condition in it (a cond branch from its header block to its latch block,
    511 /// where the path through the loop that doesn't execute its body has no
    512 /// side-effects), unswitch it.  This doesn't involve any code duplication, just
    513 /// moving the conditional branch outside of the loop and updating loop info.
    514 void LoopUnswitch::UnswitchTrivialCondition(Loop *L, Value *Cond,
    515                                             Constant *Val,
    516                                             BasicBlock *ExitBlock) {
    517   DEBUG(dbgs() << "loop-unswitch: Trivial-Unswitch loop %"
    518         << loopHeader->getName() << " [" << L->getBlocks().size()
    519         << " blocks] in Function " << L->getHeader()->getParent()->getName()
    520         << " on cond: " << *Val << " == " << *Cond << "\n");
    521 
    522   // First step, split the preheader, so that we know that there is a safe place
    523   // to insert the conditional branch.  We will change loopPreheader to have a
    524   // conditional branch on Cond.
    525   BasicBlock *NewPH = SplitEdge(loopPreheader, loopHeader, this);
    526 
    527   // Now that we have a place to insert the conditional branch, create a place
    528   // to branch to: this is the exit block out of the loop that we should
    529   // short-circuit to.
    530 
    531   // Split this block now, so that the loop maintains its exit block, and so
    532   // that the jump from the preheader can execute the contents of the exit block
    533   // without actually branching to it (the exit block should be dominated by the
    534   // loop header, not the preheader).
    535   assert(!L->contains(ExitBlock) && "Exit block is in the loop?");
    536   BasicBlock *NewExit = SplitBlock(ExitBlock, ExitBlock->begin(), this);
    537 
    538   // Okay, now we have a position to branch from and a position to branch to,
    539   // insert the new conditional branch.
    540   EmitPreheaderBranchOnCondition(Cond, Val, NewExit, NewPH,
    541                                  loopPreheader->getTerminator());
    542   LPM->deleteSimpleAnalysisValue(loopPreheader->getTerminator(), L);
    543   loopPreheader->getTerminator()->eraseFromParent();
    544 
    545   // We need to reprocess this loop, it could be unswitched again.
    546   redoLoop = true;
    547 
    548   // Now that we know that the loop is never entered when this condition is a
    549   // particular value, rewrite the loop with this info.  We know that this will
    550   // at least eliminate the old branch.
    551   RewriteLoopBodyWithConditionConstant(L, Cond, Val, false);
    552   ++NumTrivial;
    553 }
    554 
    555 /// SplitExitEdges - Split all of the edges from inside the loop to their exit
    556 /// blocks.  Update the appropriate Phi nodes as we do so.
    557 void LoopUnswitch::SplitExitEdges(Loop *L,
    558                                 const SmallVector<BasicBlock *, 8> &ExitBlocks){
    559 
    560   for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
    561     BasicBlock *ExitBlock = ExitBlocks[i];
    562     SmallVector<BasicBlock *, 4> Preds(pred_begin(ExitBlock),
    563                                        pred_end(ExitBlock));
    564 
    565     // Although SplitBlockPredecessors doesn't preserve loop-simplify in
    566     // general, if we call it on all predecessors of all exits then it does.
    567     if (!ExitBlock->isLandingPad()) {
    568       SplitBlockPredecessors(ExitBlock, Preds.data(), Preds.size(),
    569                              ".us-lcssa", this);
    570     } else {
    571       SmallVector<BasicBlock*, 2> NewBBs;
    572       SplitLandingPadPredecessors(ExitBlock, Preds, ".us-lcssa", ".us-lcssa",
    573                                   this, NewBBs);
    574     }
    575   }
    576 }
    577 
    578 /// UnswitchNontrivialCondition - We determined that the loop is profitable
    579 /// to unswitch when LIC equal Val.  Split it into loop versions and test the
    580 /// condition outside of either loop.  Return the loops created as Out1/Out2.
    581 void LoopUnswitch::UnswitchNontrivialCondition(Value *LIC, Constant *Val,
    582                                                Loop *L) {
    583   Function *F = loopHeader->getParent();
    584   DEBUG(dbgs() << "loop-unswitch: Unswitching loop %"
    585         << loopHeader->getName() << " [" << L->getBlocks().size()
    586         << " blocks] in Function " << F->getName()
    587         << " when '" << *Val << "' == " << *LIC << "\n");
    588 
    589   if (ScalarEvolution *SE = getAnalysisIfAvailable<ScalarEvolution>())
    590     SE->forgetLoop(L);
    591 
    592   LoopBlocks.clear();
    593   NewBlocks.clear();
    594 
    595   // First step, split the preheader and exit blocks, and add these blocks to
    596   // the LoopBlocks list.
    597   BasicBlock *NewPreheader = SplitEdge(loopPreheader, loopHeader, this);
    598   LoopBlocks.push_back(NewPreheader);
    599 
    600   // We want the loop to come after the preheader, but before the exit blocks.
    601   LoopBlocks.insert(LoopBlocks.end(), L->block_begin(), L->block_end());
    602 
    603   SmallVector<BasicBlock*, 8> ExitBlocks;
    604   L->getUniqueExitBlocks(ExitBlocks);
    605 
    606   // Split all of the edges from inside the loop to their exit blocks.  Update
    607   // the appropriate Phi nodes as we do so.
    608   SplitExitEdges(L, ExitBlocks);
    609 
    610   // The exit blocks may have been changed due to edge splitting, recompute.
    611   ExitBlocks.clear();
    612   L->getUniqueExitBlocks(ExitBlocks);
    613 
    614   // Add exit blocks to the loop blocks.
    615   LoopBlocks.insert(LoopBlocks.end(), ExitBlocks.begin(), ExitBlocks.end());
    616 
    617   // Next step, clone all of the basic blocks that make up the loop (including
    618   // the loop preheader and exit blocks), keeping track of the mapping between
    619   // the instructions and blocks.
    620   NewBlocks.reserve(LoopBlocks.size());
    621   ValueToValueMapTy VMap;
    622   for (unsigned i = 0, e = LoopBlocks.size(); i != e; ++i) {
    623     BasicBlock *NewBB = CloneBasicBlock(LoopBlocks[i], VMap, ".us", F);
    624     NewBlocks.push_back(NewBB);
    625     VMap[LoopBlocks[i]] = NewBB;  // Keep the BB mapping.
    626     LPM->cloneBasicBlockSimpleAnalysis(LoopBlocks[i], NewBB, L);
    627   }
    628 
    629   // Splice the newly inserted blocks into the function right before the
    630   // original preheader.
    631   F->getBasicBlockList().splice(NewPreheader, F->getBasicBlockList(),
    632                                 NewBlocks[0], F->end());
    633 
    634   // Now we create the new Loop object for the versioned loop.
    635   Loop *NewLoop = CloneLoop(L, L->getParentLoop(), VMap, LI, LPM);
    636   Loop *ParentLoop = L->getParentLoop();
    637   if (ParentLoop) {
    638     // Make sure to add the cloned preheader and exit blocks to the parent loop
    639     // as well.
    640     ParentLoop->addBasicBlockToLoop(NewBlocks[0], LI->getBase());
    641   }
    642 
    643   for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
    644     BasicBlock *NewExit = cast<BasicBlock>(VMap[ExitBlocks[i]]);
    645     // The new exit block should be in the same loop as the old one.
    646     if (Loop *ExitBBLoop = LI->getLoopFor(ExitBlocks[i]))
    647       ExitBBLoop->addBasicBlockToLoop(NewExit, LI->getBase());
    648 
    649     assert(NewExit->getTerminator()->getNumSuccessors() == 1 &&
    650            "Exit block should have been split to have one successor!");
    651     BasicBlock *ExitSucc = NewExit->getTerminator()->getSuccessor(0);
    652 
    653     // If the successor of the exit block had PHI nodes, add an entry for
    654     // NewExit.
    655     PHINode *PN;
    656     for (BasicBlock::iterator I = ExitSucc->begin(); isa<PHINode>(I); ++I) {
    657       PN = cast<PHINode>(I);
    658       Value *V = PN->getIncomingValueForBlock(ExitBlocks[i]);
    659       ValueToValueMapTy::iterator It = VMap.find(V);
    660       if (It != VMap.end()) V = It->second;
    661       PN->addIncoming(V, NewExit);
    662     }
    663 
    664     if (LandingPadInst *LPad = NewExit->getLandingPadInst()) {
    665       PN = PHINode::Create(LPad->getType(), 0, "",
    666                            ExitSucc->getFirstInsertionPt());
    667 
    668       for (pred_iterator I = pred_begin(ExitSucc), E = pred_end(ExitSucc);
    669            I != E; ++I) {
    670         BasicBlock *BB = *I;
    671         LandingPadInst *LPI = BB->getLandingPadInst();
    672         LPI->replaceAllUsesWith(PN);
    673         PN->addIncoming(LPI, BB);
    674       }
    675     }
    676   }
    677 
    678   // Rewrite the code to refer to itself.
    679   for (unsigned i = 0, e = NewBlocks.size(); i != e; ++i)
    680     for (BasicBlock::iterator I = NewBlocks[i]->begin(),
    681            E = NewBlocks[i]->end(); I != E; ++I)
    682       RemapInstruction(I, VMap,RF_NoModuleLevelChanges|RF_IgnoreMissingEntries);
    683 
    684   // Rewrite the original preheader to select between versions of the loop.
    685   BranchInst *OldBR = cast<BranchInst>(loopPreheader->getTerminator());
    686   assert(OldBR->isUnconditional() && OldBR->getSuccessor(0) == LoopBlocks[0] &&
    687          "Preheader splitting did not work correctly!");
    688 
    689   // Emit the new branch that selects between the two versions of this loop.
    690   EmitPreheaderBranchOnCondition(LIC, Val, NewBlocks[0], LoopBlocks[0], OldBR);
    691   LPM->deleteSimpleAnalysisValue(OldBR, L);
    692   OldBR->eraseFromParent();
    693 
    694   LoopProcessWorklist.push_back(NewLoop);
    695   redoLoop = true;
    696 
    697   // Keep a WeakVH holding onto LIC.  If the first call to RewriteLoopBody
    698   // deletes the instruction (for example by simplifying a PHI that feeds into
    699   // the condition that we're unswitching on), we don't rewrite the second
    700   // iteration.
    701   WeakVH LICHandle(LIC);
    702 
    703   // Now we rewrite the original code to know that the condition is true and the
    704   // new code to know that the condition is false.
    705   RewriteLoopBodyWithConditionConstant(L, LIC, Val, false);
    706 
    707   // It's possible that simplifying one loop could cause the other to be
    708   // changed to another value or a constant.  If its a constant, don't simplify
    709   // it.
    710   if (!LoopProcessWorklist.empty() && LoopProcessWorklist.back() == NewLoop &&
    711       LICHandle && !isa<Constant>(LICHandle))
    712     RewriteLoopBodyWithConditionConstant(NewLoop, LICHandle, Val, true);
    713 }
    714 
    715 /// RemoveFromWorklist - Remove all instances of I from the worklist vector
    716 /// specified.
    717 static void RemoveFromWorklist(Instruction *I,
    718                                std::vector<Instruction*> &Worklist) {
    719   std::vector<Instruction*>::iterator WI = std::find(Worklist.begin(),
    720                                                      Worklist.end(), I);
    721   while (WI != Worklist.end()) {
    722     unsigned Offset = WI-Worklist.begin();
    723     Worklist.erase(WI);
    724     WI = std::find(Worklist.begin()+Offset, Worklist.end(), I);
    725   }
    726 }
    727 
    728 /// ReplaceUsesOfWith - When we find that I really equals V, remove I from the
    729 /// program, replacing all uses with V and update the worklist.
    730 static void ReplaceUsesOfWith(Instruction *I, Value *V,
    731                               std::vector<Instruction*> &Worklist,
    732                               Loop *L, LPPassManager *LPM) {
    733   DEBUG(dbgs() << "Replace with '" << *V << "': " << *I);
    734 
    735   // Add uses to the worklist, which may be dead now.
    736   for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
    737     if (Instruction *Use = dyn_cast<Instruction>(I->getOperand(i)))
    738       Worklist.push_back(Use);
    739 
    740   // Add users to the worklist which may be simplified now.
    741   for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
    742        UI != E; ++UI)
    743     Worklist.push_back(cast<Instruction>(*UI));
    744   LPM->deleteSimpleAnalysisValue(I, L);
    745   RemoveFromWorklist(I, Worklist);
    746   I->replaceAllUsesWith(V);
    747   I->eraseFromParent();
    748   ++NumSimplify;
    749 }
    750 
    751 /// RemoveBlockIfDead - If the specified block is dead, remove it, update loop
    752 /// information, and remove any dead successors it has.
    753 ///
    754 void LoopUnswitch::RemoveBlockIfDead(BasicBlock *BB,
    755                                      std::vector<Instruction*> &Worklist,
    756                                      Loop *L) {
    757   if (pred_begin(BB) != pred_end(BB)) {
    758     // This block isn't dead, since an edge to BB was just removed, see if there
    759     // are any easy simplifications we can do now.
    760     if (BasicBlock *Pred = BB->getSinglePredecessor()) {
    761       // If it has one pred, fold phi nodes in BB.
    762       while (isa<PHINode>(BB->begin()))
    763         ReplaceUsesOfWith(BB->begin(),
    764                           cast<PHINode>(BB->begin())->getIncomingValue(0),
    765                           Worklist, L, LPM);
    766 
    767       // If this is the header of a loop and the only pred is the latch, we now
    768       // have an unreachable loop.
    769       if (Loop *L = LI->getLoopFor(BB))
    770         if (loopHeader == BB && L->contains(Pred)) {
    771           // Remove the branch from the latch to the header block, this makes
    772           // the header dead, which will make the latch dead (because the header
    773           // dominates the latch).
    774           LPM->deleteSimpleAnalysisValue(Pred->getTerminator(), L);
    775           Pred->getTerminator()->eraseFromParent();
    776           new UnreachableInst(BB->getContext(), Pred);
    777 
    778           // The loop is now broken, remove it from LI.
    779           RemoveLoopFromHierarchy(L);
    780 
    781           // Reprocess the header, which now IS dead.
    782           RemoveBlockIfDead(BB, Worklist, L);
    783           return;
    784         }
    785 
    786       // If pred ends in a uncond branch, add uncond branch to worklist so that
    787       // the two blocks will get merged.
    788       if (BranchInst *BI = dyn_cast<BranchInst>(Pred->getTerminator()))
    789         if (BI->isUnconditional())
    790           Worklist.push_back(BI);
    791     }
    792     return;
    793   }
    794 
    795   DEBUG(dbgs() << "Nuking dead block: " << *BB);
    796 
    797   // Remove the instructions in the basic block from the worklist.
    798   for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
    799     RemoveFromWorklist(I, Worklist);
    800 
    801     // Anything that uses the instructions in this basic block should have their
    802     // uses replaced with undefs.
    803     // If I is not void type then replaceAllUsesWith undef.
    804     // This allows ValueHandlers and custom metadata to adjust itself.
    805     if (!I->getType()->isVoidTy())
    806       I->replaceAllUsesWith(UndefValue::get(I->getType()));
    807   }
    808 
    809   // If this is the edge to the header block for a loop, remove the loop and
    810   // promote all subloops.
    811   if (Loop *BBLoop = LI->getLoopFor(BB)) {
    812     if (BBLoop->getLoopLatch() == BB) {
    813       RemoveLoopFromHierarchy(BBLoop);
    814       if (currentLoop == BBLoop) {
    815         currentLoop = 0;
    816         redoLoop = false;
    817       }
    818     }
    819   }
    820 
    821   // Remove the block from the loop info, which removes it from any loops it
    822   // was in.
    823   LI->removeBlock(BB);
    824 
    825 
    826   // Remove phi node entries in successors for this block.
    827   TerminatorInst *TI = BB->getTerminator();
    828   SmallVector<BasicBlock*, 4> Succs;
    829   for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
    830     Succs.push_back(TI->getSuccessor(i));
    831     TI->getSuccessor(i)->removePredecessor(BB);
    832   }
    833 
    834   // Unique the successors, remove anything with multiple uses.
    835   array_pod_sort(Succs.begin(), Succs.end());
    836   Succs.erase(std::unique(Succs.begin(), Succs.end()), Succs.end());
    837 
    838   // Remove the basic block, including all of the instructions contained in it.
    839   LPM->deleteSimpleAnalysisValue(BB, L);
    840   BB->eraseFromParent();
    841   // Remove successor blocks here that are not dead, so that we know we only
    842   // have dead blocks in this list.  Nondead blocks have a way of becoming dead,
    843   // then getting removed before we revisit them, which is badness.
    844   //
    845   for (unsigned i = 0; i != Succs.size(); ++i)
    846     if (pred_begin(Succs[i]) != pred_end(Succs[i])) {
    847       // One exception is loop headers.  If this block was the preheader for a
    848       // loop, then we DO want to visit the loop so the loop gets deleted.
    849       // We know that if the successor is a loop header, that this loop had to
    850       // be the preheader: the case where this was the latch block was handled
    851       // above and headers can only have two predecessors.
    852       if (!LI->isLoopHeader(Succs[i])) {
    853         Succs.erase(Succs.begin()+i);
    854         --i;
    855       }
    856     }
    857 
    858   for (unsigned i = 0, e = Succs.size(); i != e; ++i)
    859     RemoveBlockIfDead(Succs[i], Worklist, L);
    860 }
    861 
    862 /// RemoveLoopFromHierarchy - We have discovered that the specified loop has
    863 /// become unwrapped, either because the backedge was deleted, or because the
    864 /// edge into the header was removed.  If the edge into the header from the
    865 /// latch block was removed, the loop is unwrapped but subloops are still alive,
    866 /// so they just reparent loops.  If the loops are actually dead, they will be
    867 /// removed later.
    868 void LoopUnswitch::RemoveLoopFromHierarchy(Loop *L) {
    869   LPM->deleteLoopFromQueue(L);
    870   RemoveLoopFromWorklist(L);
    871 }
    872 
    873 // RewriteLoopBodyWithConditionConstant - We know either that the value LIC has
    874 // the value specified by Val in the specified loop, or we know it does NOT have
    875 // that value.  Rewrite any uses of LIC or of properties correlated to it.
    876 void LoopUnswitch::RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC,
    877                                                         Constant *Val,
    878                                                         bool IsEqual) {
    879   assert(!isa<Constant>(LIC) && "Why are we unswitching on a constant?");
    880 
    881   // FIXME: Support correlated properties, like:
    882   //  for (...)
    883   //    if (li1 < li2)
    884   //      ...
    885   //    if (li1 > li2)
    886   //      ...
    887 
    888   // FOLD boolean conditions (X|LIC), (X&LIC).  Fold conditional branches,
    889   // selects, switches.
    890   std::vector<Instruction*> Worklist;
    891   LLVMContext &Context = Val->getContext();
    892 
    893 
    894   // If we know that LIC == Val, or that LIC == NotVal, just replace uses of LIC
    895   // in the loop with the appropriate one directly.
    896   if (IsEqual || (isa<ConstantInt>(Val) &&
    897       Val->getType()->isIntegerTy(1))) {
    898     Value *Replacement;
    899     if (IsEqual)
    900       Replacement = Val;
    901     else
    902       Replacement = ConstantInt::get(Type::getInt1Ty(Val->getContext()),
    903                                      !cast<ConstantInt>(Val)->getZExtValue());
    904 
    905     for (Value::use_iterator UI = LIC->use_begin(), E = LIC->use_end();
    906          UI != E; ++UI) {
    907       Instruction *U = dyn_cast<Instruction>(*UI);
    908       if (!U || !L->contains(U))
    909         continue;
    910       U->replaceUsesOfWith(LIC, Replacement);
    911       Worklist.push_back(U);
    912     }
    913     SimplifyCode(Worklist, L);
    914     return;
    915   }
    916 
    917   // Otherwise, we don't know the precise value of LIC, but we do know that it
    918   // is certainly NOT "Val".  As such, simplify any uses in the loop that we
    919   // can.  This case occurs when we unswitch switch statements.
    920   for (Value::use_iterator UI = LIC->use_begin(), E = LIC->use_end();
    921        UI != E; ++UI) {
    922     Instruction *U = dyn_cast<Instruction>(*UI);
    923     if (!U || !L->contains(U))
    924       continue;
    925 
    926     Worklist.push_back(U);
    927 
    928     // TODO: We could do other simplifications, for example, turning
    929     // 'icmp eq LIC, Val' -> false.
    930 
    931     // If we know that LIC is not Val, use this info to simplify code.
    932     SwitchInst *SI = dyn_cast<SwitchInst>(U);
    933     if (SI == 0 || !isa<ConstantInt>(Val)) continue;
    934 
    935     unsigned DeadCase = SI->findCaseValue(cast<ConstantInt>(Val));
    936     if (DeadCase == 0) continue;  // Default case is live for multiple values.
    937 
    938     // Found a dead case value.  Don't remove PHI nodes in the
    939     // successor if they become single-entry, those PHI nodes may
    940     // be in the Users list.
    941 
    942     BasicBlock *Switch = SI->getParent();
    943     BasicBlock *SISucc = SI->getSuccessor(DeadCase);
    944     BasicBlock *Latch = L->getLoopLatch();
    945     if (!SI->findCaseDest(SISucc)) continue;  // Edge is critical.
    946     // If the DeadCase successor dominates the loop latch, then the
    947     // transformation isn't safe since it will delete the sole predecessor edge
    948     // to the latch.
    949     if (Latch && DT->dominates(SISucc, Latch))
    950       continue;
    951 
    952     // FIXME: This is a hack.  We need to keep the successor around
    953     // and hooked up so as to preserve the loop structure, because
    954     // trying to update it is complicated.  So instead we preserve the
    955     // loop structure and put the block on a dead code path.
    956     SplitEdge(Switch, SISucc, this);
    957     // Compute the successors instead of relying on the return value
    958     // of SplitEdge, since it may have split the switch successor
    959     // after PHI nodes.
    960     BasicBlock *NewSISucc = SI->getSuccessor(DeadCase);
    961     BasicBlock *OldSISucc = *succ_begin(NewSISucc);
    962     // Create an "unreachable" destination.
    963     BasicBlock *Abort = BasicBlock::Create(Context, "us-unreachable",
    964                                            Switch->getParent(),
    965                                            OldSISucc);
    966     new UnreachableInst(Context, Abort);
    967     // Force the new case destination to branch to the "unreachable"
    968     // block while maintaining a (dead) CFG edge to the old block.
    969     NewSISucc->getTerminator()->eraseFromParent();
    970     BranchInst::Create(Abort, OldSISucc,
    971                        ConstantInt::getTrue(Context), NewSISucc);
    972     // Release the PHI operands for this edge.
    973     for (BasicBlock::iterator II = NewSISucc->begin();
    974          PHINode *PN = dyn_cast<PHINode>(II); ++II)
    975       PN->setIncomingValue(PN->getBasicBlockIndex(Switch),
    976                            UndefValue::get(PN->getType()));
    977     // Tell the domtree about the new block. We don't fully update the
    978     // domtree here -- instead we force it to do a full recomputation
    979     // after the pass is complete -- but we do need to inform it of
    980     // new blocks.
    981     if (DT)
    982       DT->addNewBlock(Abort, NewSISucc);
    983   }
    984 
    985   SimplifyCode(Worklist, L);
    986 }
    987 
    988 /// SimplifyCode - Okay, now that we have simplified some instructions in the
    989 /// loop, walk over it and constant prop, dce, and fold control flow where
    990 /// possible.  Note that this is effectively a very simple loop-structure-aware
    991 /// optimizer.  During processing of this loop, L could very well be deleted, so
    992 /// it must not be used.
    993 ///
    994 /// FIXME: When the loop optimizer is more mature, separate this out to a new
    995 /// pass.
    996 ///
    997 void LoopUnswitch::SimplifyCode(std::vector<Instruction*> &Worklist, Loop *L) {
    998   while (!Worklist.empty()) {
    999     Instruction *I = Worklist.back();
   1000     Worklist.pop_back();
   1001 
   1002     // Simple DCE.
   1003     if (isInstructionTriviallyDead(I)) {
   1004       DEBUG(dbgs() << "Remove dead instruction '" << *I);
   1005 
   1006       // Add uses to the worklist, which may be dead now.
   1007       for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
   1008         if (Instruction *Use = dyn_cast<Instruction>(I->getOperand(i)))
   1009           Worklist.push_back(Use);
   1010       LPM->deleteSimpleAnalysisValue(I, L);
   1011       RemoveFromWorklist(I, Worklist);
   1012       I->eraseFromParent();
   1013       ++NumSimplify;
   1014       continue;
   1015     }
   1016 
   1017     // See if instruction simplification can hack this up.  This is common for
   1018     // things like "select false, X, Y" after unswitching made the condition be
   1019     // 'false'.
   1020     if (Value *V = SimplifyInstruction(I, 0, DT))
   1021       if (LI->replacementPreservesLCSSAForm(I, V)) {
   1022         ReplaceUsesOfWith(I, V, Worklist, L, LPM);
   1023         continue;
   1024       }
   1025 
   1026     // Special case hacks that appear commonly in unswitched code.
   1027     if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
   1028       if (BI->isUnconditional()) {
   1029         // If BI's parent is the only pred of the successor, fold the two blocks
   1030         // together.
   1031         BasicBlock *Pred = BI->getParent();
   1032         BasicBlock *Succ = BI->getSuccessor(0);
   1033         BasicBlock *SinglePred = Succ->getSinglePredecessor();
   1034         if (!SinglePred) continue;  // Nothing to do.
   1035         assert(SinglePred == Pred && "CFG broken");
   1036 
   1037         DEBUG(dbgs() << "Merging blocks: " << Pred->getName() << " <- "
   1038               << Succ->getName() << "\n");
   1039 
   1040         // Resolve any single entry PHI nodes in Succ.
   1041         while (PHINode *PN = dyn_cast<PHINode>(Succ->begin()))
   1042           ReplaceUsesOfWith(PN, PN->getIncomingValue(0), Worklist, L, LPM);
   1043 
   1044         // If Succ has any successors with PHI nodes, update them to have
   1045         // entries coming from Pred instead of Succ.
   1046         Succ->replaceAllUsesWith(Pred);
   1047 
   1048         // Move all of the successor contents from Succ to Pred.
   1049         Pred->getInstList().splice(BI, Succ->getInstList(), Succ->begin(),
   1050                                    Succ->end());
   1051         LPM->deleteSimpleAnalysisValue(BI, L);
   1052         BI->eraseFromParent();
   1053         RemoveFromWorklist(BI, Worklist);
   1054 
   1055         // Remove Succ from the loop tree.
   1056         LI->removeBlock(Succ);
   1057         LPM->deleteSimpleAnalysisValue(Succ, L);
   1058         Succ->eraseFromParent();
   1059         ++NumSimplify;
   1060         continue;
   1061       }
   1062 
   1063       if (ConstantInt *CB = dyn_cast<ConstantInt>(BI->getCondition())){
   1064         // Conditional branch.  Turn it into an unconditional branch, then
   1065         // remove dead blocks.
   1066         continue;  // FIXME: Enable.
   1067 
   1068         DEBUG(dbgs() << "Folded branch: " << *BI);
   1069         BasicBlock *DeadSucc = BI->getSuccessor(CB->getZExtValue());
   1070         BasicBlock *LiveSucc = BI->getSuccessor(!CB->getZExtValue());
   1071         DeadSucc->removePredecessor(BI->getParent(), true);
   1072         Worklist.push_back(BranchInst::Create(LiveSucc, BI));
   1073         LPM->deleteSimpleAnalysisValue(BI, L);
   1074         BI->eraseFromParent();
   1075         RemoveFromWorklist(BI, Worklist);
   1076         ++NumSimplify;
   1077 
   1078         RemoveBlockIfDead(DeadSucc, Worklist, L);
   1079       }
   1080       continue;
   1081     }
   1082   }
   1083 }
   1084