Home | History | Annotate | Download | only in Sema
      1 //===--- SemaCXXScopeSpec.cpp - Semantic Analysis for C++ scope specifiers-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements C++ semantic analysis for scope specifiers.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "clang/Sema/SemaInternal.h"
     15 #include "clang/Sema/Lookup.h"
     16 #include "clang/AST/ASTContext.h"
     17 #include "clang/AST/DeclTemplate.h"
     18 #include "clang/AST/ExprCXX.h"
     19 #include "clang/AST/NestedNameSpecifier.h"
     20 #include "clang/Basic/PartialDiagnostic.h"
     21 #include "clang/Sema/DeclSpec.h"
     22 #include "TypeLocBuilder.h"
     23 #include "llvm/ADT/STLExtras.h"
     24 #include "llvm/Support/raw_ostream.h"
     25 using namespace clang;
     26 
     27 /// \brief Find the current instantiation that associated with the given type.
     28 static CXXRecordDecl *getCurrentInstantiationOf(QualType T,
     29                                                 DeclContext *CurContext) {
     30   if (T.isNull())
     31     return 0;
     32 
     33   const Type *Ty = T->getCanonicalTypeInternal().getTypePtr();
     34   if (const RecordType *RecordTy = dyn_cast<RecordType>(Ty)) {
     35     CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordTy->getDecl());
     36     if (!T->isDependentType())
     37       return Record;
     38 
     39     // This may be a member of a class template or class template partial
     40     // specialization. If it's part of the current semantic context, then it's
     41     // an injected-class-name;
     42     for (; !CurContext->isFileContext(); CurContext = CurContext->getParent())
     43       if (CurContext->Equals(Record))
     44         return Record;
     45 
     46     return 0;
     47   } else if (isa<InjectedClassNameType>(Ty))
     48     return cast<InjectedClassNameType>(Ty)->getDecl();
     49   else
     50     return 0;
     51 }
     52 
     53 /// \brief Compute the DeclContext that is associated with the given type.
     54 ///
     55 /// \param T the type for which we are attempting to find a DeclContext.
     56 ///
     57 /// \returns the declaration context represented by the type T,
     58 /// or NULL if the declaration context cannot be computed (e.g., because it is
     59 /// dependent and not the current instantiation).
     60 DeclContext *Sema::computeDeclContext(QualType T) {
     61   if (!T->isDependentType())
     62     if (const TagType *Tag = T->getAs<TagType>())
     63       return Tag->getDecl();
     64 
     65   return ::getCurrentInstantiationOf(T, CurContext);
     66 }
     67 
     68 /// \brief Compute the DeclContext that is associated with the given
     69 /// scope specifier.
     70 ///
     71 /// \param SS the C++ scope specifier as it appears in the source
     72 ///
     73 /// \param EnteringContext when true, we will be entering the context of
     74 /// this scope specifier, so we can retrieve the declaration context of a
     75 /// class template or class template partial specialization even if it is
     76 /// not the current instantiation.
     77 ///
     78 /// \returns the declaration context represented by the scope specifier @p SS,
     79 /// or NULL if the declaration context cannot be computed (e.g., because it is
     80 /// dependent and not the current instantiation).
     81 DeclContext *Sema::computeDeclContext(const CXXScopeSpec &SS,
     82                                       bool EnteringContext) {
     83   if (!SS.isSet() || SS.isInvalid())
     84     return 0;
     85 
     86   NestedNameSpecifier *NNS
     87     = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
     88   if (NNS->isDependent()) {
     89     // If this nested-name-specifier refers to the current
     90     // instantiation, return its DeclContext.
     91     if (CXXRecordDecl *Record = getCurrentInstantiationOf(NNS))
     92       return Record;
     93 
     94     if (EnteringContext) {
     95       const Type *NNSType = NNS->getAsType();
     96       if (!NNSType) {
     97         return 0;
     98       }
     99 
    100       // Look through type alias templates, per C++0x [temp.dep.type]p1.
    101       NNSType = Context.getCanonicalType(NNSType);
    102       if (const TemplateSpecializationType *SpecType
    103             = NNSType->getAs<TemplateSpecializationType>()) {
    104         // We are entering the context of the nested name specifier, so try to
    105         // match the nested name specifier to either a primary class template
    106         // or a class template partial specialization.
    107         if (ClassTemplateDecl *ClassTemplate
    108               = dyn_cast_or_null<ClassTemplateDecl>(
    109                             SpecType->getTemplateName().getAsTemplateDecl())) {
    110           QualType ContextType
    111             = Context.getCanonicalType(QualType(SpecType, 0));
    112 
    113           // If the type of the nested name specifier is the same as the
    114           // injected class name of the named class template, we're entering
    115           // into that class template definition.
    116           QualType Injected
    117             = ClassTemplate->getInjectedClassNameSpecialization();
    118           if (Context.hasSameType(Injected, ContextType))
    119             return ClassTemplate->getTemplatedDecl();
    120 
    121           // If the type of the nested name specifier is the same as the
    122           // type of one of the class template's class template partial
    123           // specializations, we're entering into the definition of that
    124           // class template partial specialization.
    125           if (ClassTemplatePartialSpecializationDecl *PartialSpec
    126                 = ClassTemplate->findPartialSpecialization(ContextType))
    127             return PartialSpec;
    128         }
    129       } else if (const RecordType *RecordT = NNSType->getAs<RecordType>()) {
    130         // The nested name specifier refers to a member of a class template.
    131         return RecordT->getDecl();
    132       }
    133     }
    134 
    135     return 0;
    136   }
    137 
    138   switch (NNS->getKind()) {
    139   case NestedNameSpecifier::Identifier:
    140     llvm_unreachable("Dependent nested-name-specifier has no DeclContext");
    141 
    142   case NestedNameSpecifier::Namespace:
    143     return NNS->getAsNamespace();
    144 
    145   case NestedNameSpecifier::NamespaceAlias:
    146     return NNS->getAsNamespaceAlias()->getNamespace();
    147 
    148   case NestedNameSpecifier::TypeSpec:
    149   case NestedNameSpecifier::TypeSpecWithTemplate: {
    150     const TagType *Tag = NNS->getAsType()->getAs<TagType>();
    151     assert(Tag && "Non-tag type in nested-name-specifier");
    152     return Tag->getDecl();
    153   } break;
    154 
    155   case NestedNameSpecifier::Global:
    156     return Context.getTranslationUnitDecl();
    157   }
    158 
    159   // Required to silence a GCC warning.
    160   return 0;
    161 }
    162 
    163 bool Sema::isDependentScopeSpecifier(const CXXScopeSpec &SS) {
    164   if (!SS.isSet() || SS.isInvalid())
    165     return false;
    166 
    167   NestedNameSpecifier *NNS
    168     = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
    169   return NNS->isDependent();
    170 }
    171 
    172 // \brief Determine whether this C++ scope specifier refers to an
    173 // unknown specialization, i.e., a dependent type that is not the
    174 // current instantiation.
    175 bool Sema::isUnknownSpecialization(const CXXScopeSpec &SS) {
    176   if (!isDependentScopeSpecifier(SS))
    177     return false;
    178 
    179   NestedNameSpecifier *NNS
    180     = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
    181   return getCurrentInstantiationOf(NNS) == 0;
    182 }
    183 
    184 /// \brief If the given nested name specifier refers to the current
    185 /// instantiation, return the declaration that corresponds to that
    186 /// current instantiation (C++0x [temp.dep.type]p1).
    187 ///
    188 /// \param NNS a dependent nested name specifier.
    189 CXXRecordDecl *Sema::getCurrentInstantiationOf(NestedNameSpecifier *NNS) {
    190   assert(getLangOptions().CPlusPlus && "Only callable in C++");
    191   assert(NNS->isDependent() && "Only dependent nested-name-specifier allowed");
    192 
    193   if (!NNS->getAsType())
    194     return 0;
    195 
    196   QualType T = QualType(NNS->getAsType(), 0);
    197   return ::getCurrentInstantiationOf(T, CurContext);
    198 }
    199 
    200 /// \brief Require that the context specified by SS be complete.
    201 ///
    202 /// If SS refers to a type, this routine checks whether the type is
    203 /// complete enough (or can be made complete enough) for name lookup
    204 /// into the DeclContext. A type that is not yet completed can be
    205 /// considered "complete enough" if it is a class/struct/union/enum
    206 /// that is currently being defined. Or, if we have a type that names
    207 /// a class template specialization that is not a complete type, we
    208 /// will attempt to instantiate that class template.
    209 bool Sema::RequireCompleteDeclContext(CXXScopeSpec &SS,
    210                                       DeclContext *DC) {
    211   assert(DC != 0 && "given null context");
    212 
    213   if (TagDecl *tag = dyn_cast<TagDecl>(DC)) {
    214     // If this is a dependent type, then we consider it complete.
    215     if (tag->isDependentContext())
    216       return false;
    217 
    218     // If we're currently defining this type, then lookup into the
    219     // type is okay: don't complain that it isn't complete yet.
    220     QualType type = Context.getTypeDeclType(tag);
    221     const TagType *tagType = type->getAs<TagType>();
    222     if (tagType && tagType->isBeingDefined())
    223       return false;
    224 
    225     SourceLocation loc = SS.getLastQualifierNameLoc();
    226     if (loc.isInvalid()) loc = SS.getRange().getBegin();
    227 
    228     // The type must be complete.
    229     if (RequireCompleteType(loc, type,
    230                             PDiag(diag::err_incomplete_nested_name_spec)
    231                               << SS.getRange())) {
    232       SS.SetInvalid(SS.getRange());
    233       return true;
    234     }
    235 
    236     // Fixed enum types are complete, but they aren't valid as scopes
    237     // until we see a definition, so awkwardly pull out this special
    238     // case.
    239     if (const EnumType *enumType = dyn_cast_or_null<EnumType>(tagType)) {
    240       if (!enumType->getDecl()->isCompleteDefinition()) {
    241         Diag(loc, diag::err_incomplete_nested_name_spec)
    242           << type << SS.getRange();
    243         SS.SetInvalid(SS.getRange());
    244         return true;
    245       }
    246     }
    247   }
    248 
    249   return false;
    250 }
    251 
    252 bool Sema::ActOnCXXGlobalScopeSpecifier(Scope *S, SourceLocation CCLoc,
    253                                         CXXScopeSpec &SS) {
    254   SS.MakeGlobal(Context, CCLoc);
    255   return false;
    256 }
    257 
    258 /// \brief Determines whether the given declaration is an valid acceptable
    259 /// result for name lookup of a nested-name-specifier.
    260 bool Sema::isAcceptableNestedNameSpecifier(NamedDecl *SD) {
    261   if (!SD)
    262     return false;
    263 
    264   // Namespace and namespace aliases are fine.
    265   if (isa<NamespaceDecl>(SD) || isa<NamespaceAliasDecl>(SD))
    266     return true;
    267 
    268   if (!isa<TypeDecl>(SD))
    269     return false;
    270 
    271   // Determine whether we have a class (or, in C++11, an enum) or
    272   // a typedef thereof. If so, build the nested-name-specifier.
    273   QualType T = Context.getTypeDeclType(cast<TypeDecl>(SD));
    274   if (T->isDependentType())
    275     return true;
    276   else if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(SD)) {
    277     if (TD->getUnderlyingType()->isRecordType() ||
    278         (Context.getLangOptions().CPlusPlus0x &&
    279          TD->getUnderlyingType()->isEnumeralType()))
    280       return true;
    281   } else if (isa<RecordDecl>(SD) ||
    282              (Context.getLangOptions().CPlusPlus0x && isa<EnumDecl>(SD)))
    283     return true;
    284 
    285   return false;
    286 }
    287 
    288 /// \brief If the given nested-name-specifier begins with a bare identifier
    289 /// (e.g., Base::), perform name lookup for that identifier as a
    290 /// nested-name-specifier within the given scope, and return the result of that
    291 /// name lookup.
    292 NamedDecl *Sema::FindFirstQualifierInScope(Scope *S, NestedNameSpecifier *NNS) {
    293   if (!S || !NNS)
    294     return 0;
    295 
    296   while (NNS->getPrefix())
    297     NNS = NNS->getPrefix();
    298 
    299   if (NNS->getKind() != NestedNameSpecifier::Identifier)
    300     return 0;
    301 
    302   LookupResult Found(*this, NNS->getAsIdentifier(), SourceLocation(),
    303                      LookupNestedNameSpecifierName);
    304   LookupName(Found, S);
    305   assert(!Found.isAmbiguous() && "Cannot handle ambiguities here yet");
    306 
    307   if (!Found.isSingleResult())
    308     return 0;
    309 
    310   NamedDecl *Result = Found.getFoundDecl();
    311   if (isAcceptableNestedNameSpecifier(Result))
    312     return Result;
    313 
    314   return 0;
    315 }
    316 
    317 bool Sema::isNonTypeNestedNameSpecifier(Scope *S, CXXScopeSpec &SS,
    318                                         SourceLocation IdLoc,
    319                                         IdentifierInfo &II,
    320                                         ParsedType ObjectTypePtr) {
    321   QualType ObjectType = GetTypeFromParser(ObjectTypePtr);
    322   LookupResult Found(*this, &II, IdLoc, LookupNestedNameSpecifierName);
    323 
    324   // Determine where to perform name lookup
    325   DeclContext *LookupCtx = 0;
    326   bool isDependent = false;
    327   if (!ObjectType.isNull()) {
    328     // This nested-name-specifier occurs in a member access expression, e.g.,
    329     // x->B::f, and we are looking into the type of the object.
    330     assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
    331     LookupCtx = computeDeclContext(ObjectType);
    332     isDependent = ObjectType->isDependentType();
    333   } else if (SS.isSet()) {
    334     // This nested-name-specifier occurs after another nested-name-specifier,
    335     // so long into the context associated with the prior nested-name-specifier.
    336     LookupCtx = computeDeclContext(SS, false);
    337     isDependent = isDependentScopeSpecifier(SS);
    338     Found.setContextRange(SS.getRange());
    339   }
    340 
    341   if (LookupCtx) {
    342     // Perform "qualified" name lookup into the declaration context we
    343     // computed, which is either the type of the base of a member access
    344     // expression or the declaration context associated with a prior
    345     // nested-name-specifier.
    346 
    347     // The declaration context must be complete.
    348     if (!LookupCtx->isDependentContext() &&
    349         RequireCompleteDeclContext(SS, LookupCtx))
    350       return false;
    351 
    352     LookupQualifiedName(Found, LookupCtx);
    353   } else if (isDependent) {
    354     return false;
    355   } else {
    356     LookupName(Found, S);
    357   }
    358   Found.suppressDiagnostics();
    359 
    360   if (NamedDecl *ND = Found.getAsSingle<NamedDecl>())
    361     return isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND);
    362 
    363   return false;
    364 }
    365 
    366 /// \brief Build a new nested-name-specifier for "identifier::", as described
    367 /// by ActOnCXXNestedNameSpecifier.
    368 ///
    369 /// This routine differs only slightly from ActOnCXXNestedNameSpecifier, in
    370 /// that it contains an extra parameter \p ScopeLookupResult, which provides
    371 /// the result of name lookup within the scope of the nested-name-specifier
    372 /// that was computed at template definition time.
    373 ///
    374 /// If ErrorRecoveryLookup is true, then this call is used to improve error
    375 /// recovery.  This means that it should not emit diagnostics, it should
    376 /// just return true on failure.  It also means it should only return a valid
    377 /// scope if it *knows* that the result is correct.  It should not return in a
    378 /// dependent context, for example. Nor will it extend \p SS with the scope
    379 /// specifier.
    380 bool Sema::BuildCXXNestedNameSpecifier(Scope *S,
    381                                        IdentifierInfo &Identifier,
    382                                        SourceLocation IdentifierLoc,
    383                                        SourceLocation CCLoc,
    384                                        QualType ObjectType,
    385                                        bool EnteringContext,
    386                                        CXXScopeSpec &SS,
    387                                        NamedDecl *ScopeLookupResult,
    388                                        bool ErrorRecoveryLookup) {
    389   LookupResult Found(*this, &Identifier, IdentifierLoc,
    390                      LookupNestedNameSpecifierName);
    391 
    392   // Determine where to perform name lookup
    393   DeclContext *LookupCtx = 0;
    394   bool isDependent = false;
    395   if (!ObjectType.isNull()) {
    396     // This nested-name-specifier occurs in a member access expression, e.g.,
    397     // x->B::f, and we are looking into the type of the object.
    398     assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
    399     LookupCtx = computeDeclContext(ObjectType);
    400     isDependent = ObjectType->isDependentType();
    401   } else if (SS.isSet()) {
    402     // This nested-name-specifier occurs after another nested-name-specifier,
    403     // so look into the context associated with the prior nested-name-specifier.
    404     LookupCtx = computeDeclContext(SS, EnteringContext);
    405     isDependent = isDependentScopeSpecifier(SS);
    406     Found.setContextRange(SS.getRange());
    407   }
    408 
    409 
    410   bool ObjectTypeSearchedInScope = false;
    411   if (LookupCtx) {
    412     // Perform "qualified" name lookup into the declaration context we
    413     // computed, which is either the type of the base of a member access
    414     // expression or the declaration context associated with a prior
    415     // nested-name-specifier.
    416 
    417     // The declaration context must be complete.
    418     if (!LookupCtx->isDependentContext() &&
    419         RequireCompleteDeclContext(SS, LookupCtx))
    420       return true;
    421 
    422     LookupQualifiedName(Found, LookupCtx);
    423 
    424     if (!ObjectType.isNull() && Found.empty()) {
    425       // C++ [basic.lookup.classref]p4:
    426       //   If the id-expression in a class member access is a qualified-id of
    427       //   the form
    428       //
    429       //        class-name-or-namespace-name::...
    430       //
    431       //   the class-name-or-namespace-name following the . or -> operator is
    432       //   looked up both in the context of the entire postfix-expression and in
    433       //   the scope of the class of the object expression. If the name is found
    434       //   only in the scope of the class of the object expression, the name
    435       //   shall refer to a class-name. If the name is found only in the
    436       //   context of the entire postfix-expression, the name shall refer to a
    437       //   class-name or namespace-name. [...]
    438       //
    439       // Qualified name lookup into a class will not find a namespace-name,
    440       // so we do not need to diagnose that case specifically. However,
    441       // this qualified name lookup may find nothing. In that case, perform
    442       // unqualified name lookup in the given scope (if available) or
    443       // reconstruct the result from when name lookup was performed at template
    444       // definition time.
    445       if (S)
    446         LookupName(Found, S);
    447       else if (ScopeLookupResult)
    448         Found.addDecl(ScopeLookupResult);
    449 
    450       ObjectTypeSearchedInScope = true;
    451     }
    452   } else if (!isDependent) {
    453     // Perform unqualified name lookup in the current scope.
    454     LookupName(Found, S);
    455   }
    456 
    457   // If we performed lookup into a dependent context and did not find anything,
    458   // that's fine: just build a dependent nested-name-specifier.
    459   if (Found.empty() && isDependent &&
    460       !(LookupCtx && LookupCtx->isRecord() &&
    461         (!cast<CXXRecordDecl>(LookupCtx)->hasDefinition() ||
    462          !cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases()))) {
    463     // Don't speculate if we're just trying to improve error recovery.
    464     if (ErrorRecoveryLookup)
    465       return true;
    466 
    467     // We were not able to compute the declaration context for a dependent
    468     // base object type or prior nested-name-specifier, so this
    469     // nested-name-specifier refers to an unknown specialization. Just build
    470     // a dependent nested-name-specifier.
    471     SS.Extend(Context, &Identifier, IdentifierLoc, CCLoc);
    472     return false;
    473   }
    474 
    475   // FIXME: Deal with ambiguities cleanly.
    476 
    477   if (Found.empty() && !ErrorRecoveryLookup) {
    478     // We haven't found anything, and we're not recovering from a
    479     // different kind of error, so look for typos.
    480     DeclarationName Name = Found.getLookupName();
    481     TypoCorrection Corrected;
    482     Found.clear();
    483     if ((Corrected = CorrectTypo(Found.getLookupNameInfo(),
    484                                  Found.getLookupKind(), S, &SS, LookupCtx,
    485                                  EnteringContext, CTC_NoKeywords)) &&
    486         isAcceptableNestedNameSpecifier(Corrected.getCorrectionDecl())) {
    487       std::string CorrectedStr(Corrected.getAsString(getLangOptions()));
    488       std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOptions()));
    489       if (LookupCtx)
    490         Diag(Found.getNameLoc(), diag::err_no_member_suggest)
    491           << Name << LookupCtx << CorrectedQuotedStr << SS.getRange()
    492           << FixItHint::CreateReplacement(Found.getNameLoc(), CorrectedStr);
    493       else
    494         Diag(Found.getNameLoc(), diag::err_undeclared_var_use_suggest)
    495           << Name << CorrectedQuotedStr
    496           << FixItHint::CreateReplacement(Found.getNameLoc(), CorrectedStr);
    497 
    498       if (NamedDecl *ND = Corrected.getCorrectionDecl()) {
    499         Diag(ND->getLocation(), diag::note_previous_decl) << CorrectedQuotedStr;
    500         Found.addDecl(ND);
    501       }
    502       Found.setLookupName(Corrected.getCorrection());
    503     } else {
    504       Found.setLookupName(&Identifier);
    505     }
    506   }
    507 
    508   NamedDecl *SD = Found.getAsSingle<NamedDecl>();
    509   if (isAcceptableNestedNameSpecifier(SD)) {
    510     if (!ObjectType.isNull() && !ObjectTypeSearchedInScope) {
    511       // C++ [basic.lookup.classref]p4:
    512       //   [...] If the name is found in both contexts, the
    513       //   class-name-or-namespace-name shall refer to the same entity.
    514       //
    515       // We already found the name in the scope of the object. Now, look
    516       // into the current scope (the scope of the postfix-expression) to
    517       // see if we can find the same name there. As above, if there is no
    518       // scope, reconstruct the result from the template instantiation itself.
    519       NamedDecl *OuterDecl;
    520       if (S) {
    521         LookupResult FoundOuter(*this, &Identifier, IdentifierLoc,
    522                                 LookupNestedNameSpecifierName);
    523         LookupName(FoundOuter, S);
    524         OuterDecl = FoundOuter.getAsSingle<NamedDecl>();
    525       } else
    526         OuterDecl = ScopeLookupResult;
    527 
    528       if (isAcceptableNestedNameSpecifier(OuterDecl) &&
    529           OuterDecl->getCanonicalDecl() != SD->getCanonicalDecl() &&
    530           (!isa<TypeDecl>(OuterDecl) || !isa<TypeDecl>(SD) ||
    531            !Context.hasSameType(
    532                             Context.getTypeDeclType(cast<TypeDecl>(OuterDecl)),
    533                                Context.getTypeDeclType(cast<TypeDecl>(SD))))) {
    534          if (ErrorRecoveryLookup)
    535            return true;
    536 
    537          Diag(IdentifierLoc,
    538               diag::err_nested_name_member_ref_lookup_ambiguous)
    539            << &Identifier;
    540          Diag(SD->getLocation(), diag::note_ambig_member_ref_object_type)
    541            << ObjectType;
    542          Diag(OuterDecl->getLocation(), diag::note_ambig_member_ref_scope);
    543 
    544          // Fall through so that we'll pick the name we found in the object
    545          // type, since that's probably what the user wanted anyway.
    546        }
    547     }
    548 
    549     // If we're just performing this lookup for error-recovery purposes,
    550     // don't extend the nested-name-specifier. Just return now.
    551     if (ErrorRecoveryLookup)
    552       return false;
    553 
    554     if (NamespaceDecl *Namespace = dyn_cast<NamespaceDecl>(SD)) {
    555       SS.Extend(Context, Namespace, IdentifierLoc, CCLoc);
    556       return false;
    557     }
    558 
    559     if (NamespaceAliasDecl *Alias = dyn_cast<NamespaceAliasDecl>(SD)) {
    560       SS.Extend(Context, Alias, IdentifierLoc, CCLoc);
    561       return false;
    562     }
    563 
    564     QualType T = Context.getTypeDeclType(cast<TypeDecl>(SD));
    565     TypeLocBuilder TLB;
    566     if (isa<InjectedClassNameType>(T)) {
    567       InjectedClassNameTypeLoc InjectedTL
    568         = TLB.push<InjectedClassNameTypeLoc>(T);
    569       InjectedTL.setNameLoc(IdentifierLoc);
    570     } else if (isa<RecordType>(T)) {
    571       RecordTypeLoc RecordTL = TLB.push<RecordTypeLoc>(T);
    572       RecordTL.setNameLoc(IdentifierLoc);
    573     } else if (isa<TypedefType>(T)) {
    574       TypedefTypeLoc TypedefTL = TLB.push<TypedefTypeLoc>(T);
    575       TypedefTL.setNameLoc(IdentifierLoc);
    576     } else if (isa<EnumType>(T)) {
    577       EnumTypeLoc EnumTL = TLB.push<EnumTypeLoc>(T);
    578       EnumTL.setNameLoc(IdentifierLoc);
    579     } else if (isa<TemplateTypeParmType>(T)) {
    580       TemplateTypeParmTypeLoc TemplateTypeTL
    581         = TLB.push<TemplateTypeParmTypeLoc>(T);
    582       TemplateTypeTL.setNameLoc(IdentifierLoc);
    583     } else if (isa<UnresolvedUsingType>(T)) {
    584       UnresolvedUsingTypeLoc UnresolvedTL
    585         = TLB.push<UnresolvedUsingTypeLoc>(T);
    586       UnresolvedTL.setNameLoc(IdentifierLoc);
    587     } else if (isa<SubstTemplateTypeParmType>(T)) {
    588       SubstTemplateTypeParmTypeLoc TL
    589         = TLB.push<SubstTemplateTypeParmTypeLoc>(T);
    590       TL.setNameLoc(IdentifierLoc);
    591     } else if (isa<SubstTemplateTypeParmPackType>(T)) {
    592       SubstTemplateTypeParmPackTypeLoc TL
    593         = TLB.push<SubstTemplateTypeParmPackTypeLoc>(T);
    594       TL.setNameLoc(IdentifierLoc);
    595     } else {
    596       llvm_unreachable("Unhandled TypeDecl node in nested-name-specifier");
    597     }
    598 
    599     SS.Extend(Context, SourceLocation(), TLB.getTypeLocInContext(Context, T),
    600               CCLoc);
    601     return false;
    602   }
    603 
    604   // Otherwise, we have an error case.  If we don't want diagnostics, just
    605   // return an error now.
    606   if (ErrorRecoveryLookup)
    607     return true;
    608 
    609   // If we didn't find anything during our lookup, try again with
    610   // ordinary name lookup, which can help us produce better error
    611   // messages.
    612   if (Found.empty()) {
    613     Found.clear(LookupOrdinaryName);
    614     LookupName(Found, S);
    615   }
    616 
    617   // In Microsoft mode, if we are within a templated function and we can't
    618   // resolve Identifier, then extend the SS with Identifier. This will have
    619   // the effect of resolving Identifier during template instantiation.
    620   // The goal is to be able to resolve a function call whose
    621   // nested-name-specifier is located inside a dependent base class.
    622   // Example:
    623   //
    624   // class C {
    625   // public:
    626   //    static void foo2() {  }
    627   // };
    628   // template <class T> class A { public: typedef C D; };
    629   //
    630   // template <class T> class B : public A<T> {
    631   // public:
    632   //   void foo() { D::foo2(); }
    633   // };
    634   if (getLangOptions().MicrosoftExt) {
    635     DeclContext *DC = LookupCtx ? LookupCtx : CurContext;
    636     if (DC->isDependentContext() && DC->isFunctionOrMethod()) {
    637       SS.Extend(Context, &Identifier, IdentifierLoc, CCLoc);
    638       return false;
    639     }
    640   }
    641 
    642   unsigned DiagID;
    643   if (!Found.empty())
    644     DiagID = diag::err_expected_class_or_namespace;
    645   else if (SS.isSet()) {
    646     Diag(IdentifierLoc, diag::err_no_member)
    647       << &Identifier << LookupCtx << SS.getRange();
    648     return true;
    649   } else
    650     DiagID = diag::err_undeclared_var_use;
    651 
    652   if (SS.isSet())
    653     Diag(IdentifierLoc, DiagID) << &Identifier << SS.getRange();
    654   else
    655     Diag(IdentifierLoc, DiagID) << &Identifier;
    656 
    657   return true;
    658 }
    659 
    660 bool Sema::ActOnCXXNestedNameSpecifier(Scope *S,
    661                                        IdentifierInfo &Identifier,
    662                                        SourceLocation IdentifierLoc,
    663                                        SourceLocation CCLoc,
    664                                        ParsedType ObjectType,
    665                                        bool EnteringContext,
    666                                        CXXScopeSpec &SS) {
    667   if (SS.isInvalid())
    668     return true;
    669 
    670   return BuildCXXNestedNameSpecifier(S, Identifier, IdentifierLoc, CCLoc,
    671                                      GetTypeFromParser(ObjectType),
    672                                      EnteringContext, SS,
    673                                      /*ScopeLookupResult=*/0, false);
    674 }
    675 
    676 /// IsInvalidUnlessNestedName - This method is used for error recovery
    677 /// purposes to determine whether the specified identifier is only valid as
    678 /// a nested name specifier, for example a namespace name.  It is
    679 /// conservatively correct to always return false from this method.
    680 ///
    681 /// The arguments are the same as those passed to ActOnCXXNestedNameSpecifier.
    682 bool Sema::IsInvalidUnlessNestedName(Scope *S, CXXScopeSpec &SS,
    683                                      IdentifierInfo &Identifier,
    684                                      SourceLocation IdentifierLoc,
    685                                      SourceLocation ColonLoc,
    686                                      ParsedType ObjectType,
    687                                      bool EnteringContext) {
    688   if (SS.isInvalid())
    689     return false;
    690 
    691   return !BuildCXXNestedNameSpecifier(S, Identifier, IdentifierLoc, ColonLoc,
    692                                       GetTypeFromParser(ObjectType),
    693                                       EnteringContext, SS,
    694                                       /*ScopeLookupResult=*/0, true);
    695 }
    696 
    697 bool Sema::ActOnCXXNestedNameSpecifier(Scope *S,
    698                                        SourceLocation TemplateLoc,
    699                                        CXXScopeSpec &SS,
    700                                        TemplateTy Template,
    701                                        SourceLocation TemplateNameLoc,
    702                                        SourceLocation LAngleLoc,
    703                                        ASTTemplateArgsPtr TemplateArgsIn,
    704                                        SourceLocation RAngleLoc,
    705                                        SourceLocation CCLoc,
    706                                        bool EnteringContext) {
    707   if (SS.isInvalid())
    708     return true;
    709 
    710   // Translate the parser's template argument list in our AST format.
    711   TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
    712   translateTemplateArguments(TemplateArgsIn, TemplateArgs);
    713 
    714   if (DependentTemplateName *DTN = Template.get().getAsDependentTemplateName()){
    715     // Handle a dependent template specialization for which we cannot resolve
    716     // the template name.
    717     assert(DTN->getQualifier()
    718              == static_cast<NestedNameSpecifier*>(SS.getScopeRep()));
    719     QualType T = Context.getDependentTemplateSpecializationType(ETK_None,
    720                                                           DTN->getQualifier(),
    721                                                           DTN->getIdentifier(),
    722                                                                 TemplateArgs);
    723 
    724     // Create source-location information for this type.
    725     TypeLocBuilder Builder;
    726     DependentTemplateSpecializationTypeLoc SpecTL
    727       = Builder.push<DependentTemplateSpecializationTypeLoc>(T);
    728     SpecTL.setLAngleLoc(LAngleLoc);
    729     SpecTL.setRAngleLoc(RAngleLoc);
    730     SpecTL.setKeywordLoc(SourceLocation());
    731     SpecTL.setNameLoc(TemplateNameLoc);
    732     SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
    733     for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
    734       SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
    735 
    736     SS.Extend(Context, TemplateLoc, Builder.getTypeLocInContext(Context, T),
    737               CCLoc);
    738     return false;
    739   }
    740 
    741 
    742   if (Template.get().getAsOverloadedTemplate() ||
    743       isa<FunctionTemplateDecl>(Template.get().getAsTemplateDecl())) {
    744     SourceRange R(TemplateNameLoc, RAngleLoc);
    745     if (SS.getRange().isValid())
    746       R.setBegin(SS.getRange().getBegin());
    747 
    748     Diag(CCLoc, diag::err_non_type_template_in_nested_name_specifier)
    749       << Template.get() << R;
    750     NoteAllFoundTemplates(Template.get());
    751     return true;
    752   }
    753 
    754   // We were able to resolve the template name to an actual template.
    755   // Build an appropriate nested-name-specifier.
    756   QualType T = CheckTemplateIdType(Template.get(), TemplateNameLoc,
    757                                    TemplateArgs);
    758   if (T.isNull())
    759     return true;
    760 
    761   // Alias template specializations can produce types which are not valid
    762   // nested name specifiers.
    763   if (!T->isDependentType() && !T->getAs<TagType>()) {
    764     Diag(TemplateNameLoc, diag::err_nested_name_spec_non_tag) << T;
    765     NoteAllFoundTemplates(Template.get());
    766     return true;
    767   }
    768 
    769   // Provide source-location information for the template specialization
    770   // type.
    771   TypeLocBuilder Builder;
    772   TemplateSpecializationTypeLoc SpecTL
    773     = Builder.push<TemplateSpecializationTypeLoc>(T);
    774 
    775   SpecTL.setLAngleLoc(LAngleLoc);
    776   SpecTL.setRAngleLoc(RAngleLoc);
    777   SpecTL.setTemplateNameLoc(TemplateNameLoc);
    778   for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
    779     SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
    780 
    781 
    782   SS.Extend(Context, TemplateLoc, Builder.getTypeLocInContext(Context, T),
    783             CCLoc);
    784   return false;
    785 }
    786 
    787 namespace {
    788   /// \brief A structure that stores a nested-name-specifier annotation,
    789   /// including both the nested-name-specifier
    790   struct NestedNameSpecifierAnnotation {
    791     NestedNameSpecifier *NNS;
    792   };
    793 }
    794 
    795 void *Sema::SaveNestedNameSpecifierAnnotation(CXXScopeSpec &SS) {
    796   if (SS.isEmpty() || SS.isInvalid())
    797     return 0;
    798 
    799   void *Mem = Context.Allocate((sizeof(NestedNameSpecifierAnnotation) +
    800                                                         SS.location_size()),
    801                                llvm::alignOf<NestedNameSpecifierAnnotation>());
    802   NestedNameSpecifierAnnotation *Annotation
    803     = new (Mem) NestedNameSpecifierAnnotation;
    804   Annotation->NNS = SS.getScopeRep();
    805   memcpy(Annotation + 1, SS.location_data(), SS.location_size());
    806   return Annotation;
    807 }
    808 
    809 void Sema::RestoreNestedNameSpecifierAnnotation(void *AnnotationPtr,
    810                                                 SourceRange AnnotationRange,
    811                                                 CXXScopeSpec &SS) {
    812   if (!AnnotationPtr) {
    813     SS.SetInvalid(AnnotationRange);
    814     return;
    815   }
    816 
    817   NestedNameSpecifierAnnotation *Annotation
    818     = static_cast<NestedNameSpecifierAnnotation *>(AnnotationPtr);
    819   SS.Adopt(NestedNameSpecifierLoc(Annotation->NNS, Annotation + 1));
    820 }
    821 
    822 bool Sema::ShouldEnterDeclaratorScope(Scope *S, const CXXScopeSpec &SS) {
    823   assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
    824 
    825   NestedNameSpecifier *Qualifier =
    826     static_cast<NestedNameSpecifier*>(SS.getScopeRep());
    827 
    828   // There are only two places a well-formed program may qualify a
    829   // declarator: first, when defining a namespace or class member
    830   // out-of-line, and second, when naming an explicitly-qualified
    831   // friend function.  The latter case is governed by
    832   // C++03 [basic.lookup.unqual]p10:
    833   //   In a friend declaration naming a member function, a name used
    834   //   in the function declarator and not part of a template-argument
    835   //   in a template-id is first looked up in the scope of the member
    836   //   function's class. If it is not found, or if the name is part of
    837   //   a template-argument in a template-id, the look up is as
    838   //   described for unqualified names in the definition of the class
    839   //   granting friendship.
    840   // i.e. we don't push a scope unless it's a class member.
    841 
    842   switch (Qualifier->getKind()) {
    843   case NestedNameSpecifier::Global:
    844   case NestedNameSpecifier::Namespace:
    845   case NestedNameSpecifier::NamespaceAlias:
    846     // These are always namespace scopes.  We never want to enter a
    847     // namespace scope from anything but a file context.
    848     return CurContext->getRedeclContext()->isFileContext();
    849 
    850   case NestedNameSpecifier::Identifier:
    851   case NestedNameSpecifier::TypeSpec:
    852   case NestedNameSpecifier::TypeSpecWithTemplate:
    853     // These are never namespace scopes.
    854     return true;
    855   }
    856 
    857   // Silence bogus warning.
    858   return false;
    859 }
    860 
    861 /// ActOnCXXEnterDeclaratorScope - Called when a C++ scope specifier (global
    862 /// scope or nested-name-specifier) is parsed, part of a declarator-id.
    863 /// After this method is called, according to [C++ 3.4.3p3], names should be
    864 /// looked up in the declarator-id's scope, until the declarator is parsed and
    865 /// ActOnCXXExitDeclaratorScope is called.
    866 /// The 'SS' should be a non-empty valid CXXScopeSpec.
    867 bool Sema::ActOnCXXEnterDeclaratorScope(Scope *S, CXXScopeSpec &SS) {
    868   assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
    869 
    870   if (SS.isInvalid()) return true;
    871 
    872   DeclContext *DC = computeDeclContext(SS, true);
    873   if (!DC) return true;
    874 
    875   // Before we enter a declarator's context, we need to make sure that
    876   // it is a complete declaration context.
    877   if (!DC->isDependentContext() && RequireCompleteDeclContext(SS, DC))
    878     return true;
    879 
    880   EnterDeclaratorContext(S, DC);
    881 
    882   // Rebuild the nested name specifier for the new scope.
    883   if (DC->isDependentContext())
    884     RebuildNestedNameSpecifierInCurrentInstantiation(SS);
    885 
    886   return false;
    887 }
    888 
    889 /// ActOnCXXExitDeclaratorScope - Called when a declarator that previously
    890 /// invoked ActOnCXXEnterDeclaratorScope(), is finished. 'SS' is the same
    891 /// CXXScopeSpec that was passed to ActOnCXXEnterDeclaratorScope as well.
    892 /// Used to indicate that names should revert to being looked up in the
    893 /// defining scope.
    894 void Sema::ActOnCXXExitDeclaratorScope(Scope *S, const CXXScopeSpec &SS) {
    895   assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
    896   if (SS.isInvalid())
    897     return;
    898   assert(!SS.isInvalid() && computeDeclContext(SS, true) &&
    899          "exiting declarator scope we never really entered");
    900   ExitDeclaratorContext(S);
    901 }
    902