Home | History | Annotate | Download | only in VMCore
      1 //===-- AsmWriter.cpp - Printing LLVM as an assembly file -----------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This library implements the functionality defined in llvm/Assembly/Writer.h
     11 //
     12 // Note that these routines must be extremely tolerant of various errors in the
     13 // LLVM code, because it can be used for debugging transformations.
     14 //
     15 //===----------------------------------------------------------------------===//
     16 
     17 #include "llvm/Assembly/Writer.h"
     18 #include "llvm/Assembly/PrintModulePass.h"
     19 #include "llvm/Assembly/AssemblyAnnotationWriter.h"
     20 #include "llvm/LLVMContext.h"
     21 #include "llvm/CallingConv.h"
     22 #include "llvm/Constants.h"
     23 #include "llvm/DerivedTypes.h"
     24 #include "llvm/InlineAsm.h"
     25 #include "llvm/IntrinsicInst.h"
     26 #include "llvm/Operator.h"
     27 #include "llvm/Module.h"
     28 #include "llvm/ValueSymbolTable.h"
     29 #include "llvm/ADT/DenseMap.h"
     30 #include "llvm/ADT/SmallString.h"
     31 #include "llvm/ADT/StringExtras.h"
     32 #include "llvm/ADT/STLExtras.h"
     33 #include "llvm/Support/CFG.h"
     34 #include "llvm/Support/Debug.h"
     35 #include "llvm/Support/Dwarf.h"
     36 #include "llvm/Support/ErrorHandling.h"
     37 #include "llvm/Support/MathExtras.h"
     38 #include "llvm/Support/FormattedStream.h"
     39 #include <algorithm>
     40 #include <cctype>
     41 using namespace llvm;
     42 
     43 // Make virtual table appear in this compilation unit.
     44 AssemblyAnnotationWriter::~AssemblyAnnotationWriter() {}
     45 
     46 //===----------------------------------------------------------------------===//
     47 // Helper Functions
     48 //===----------------------------------------------------------------------===//
     49 
     50 static const Module *getModuleFromVal(const Value *V) {
     51   if (const Argument *MA = dyn_cast<Argument>(V))
     52     return MA->getParent() ? MA->getParent()->getParent() : 0;
     53 
     54   if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
     55     return BB->getParent() ? BB->getParent()->getParent() : 0;
     56 
     57   if (const Instruction *I = dyn_cast<Instruction>(V)) {
     58     const Function *M = I->getParent() ? I->getParent()->getParent() : 0;
     59     return M ? M->getParent() : 0;
     60   }
     61 
     62   if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
     63     return GV->getParent();
     64   return 0;
     65 }
     66 
     67 // PrintEscapedString - Print each character of the specified string, escaping
     68 // it if it is not printable or if it is an escape char.
     69 static void PrintEscapedString(StringRef Name, raw_ostream &Out) {
     70   for (unsigned i = 0, e = Name.size(); i != e; ++i) {
     71     unsigned char C = Name[i];
     72     if (isprint(C) && C != '\\' && C != '"')
     73       Out << C;
     74     else
     75       Out << '\\' << hexdigit(C >> 4) << hexdigit(C & 0x0F);
     76   }
     77 }
     78 
     79 enum PrefixType {
     80   GlobalPrefix,
     81   LabelPrefix,
     82   LocalPrefix,
     83   NoPrefix
     84 };
     85 
     86 /// PrintLLVMName - Turn the specified name into an 'LLVM name', which is either
     87 /// prefixed with % (if the string only contains simple characters) or is
     88 /// surrounded with ""'s (if it has special chars in it).  Print it out.
     89 static void PrintLLVMName(raw_ostream &OS, StringRef Name, PrefixType Prefix) {
     90   assert(!Name.empty() && "Cannot get empty name!");
     91   switch (Prefix) {
     92   default: llvm_unreachable("Bad prefix!");
     93   case NoPrefix: break;
     94   case GlobalPrefix: OS << '@'; break;
     95   case LabelPrefix:  break;
     96   case LocalPrefix:  OS << '%'; break;
     97   }
     98 
     99   // Scan the name to see if it needs quotes first.
    100   bool NeedsQuotes = isdigit(Name[0]);
    101   if (!NeedsQuotes) {
    102     for (unsigned i = 0, e = Name.size(); i != e; ++i) {
    103       char C = Name[i];
    104       if (!isalnum(C) && C != '-' && C != '.' && C != '_') {
    105         NeedsQuotes = true;
    106         break;
    107       }
    108     }
    109   }
    110 
    111   // If we didn't need any quotes, just write out the name in one blast.
    112   if (!NeedsQuotes) {
    113     OS << Name;
    114     return;
    115   }
    116 
    117   // Okay, we need quotes.  Output the quotes and escape any scary characters as
    118   // needed.
    119   OS << '"';
    120   PrintEscapedString(Name, OS);
    121   OS << '"';
    122 }
    123 
    124 /// PrintLLVMName - Turn the specified name into an 'LLVM name', which is either
    125 /// prefixed with % (if the string only contains simple characters) or is
    126 /// surrounded with ""'s (if it has special chars in it).  Print it out.
    127 static void PrintLLVMName(raw_ostream &OS, const Value *V) {
    128   PrintLLVMName(OS, V->getName(),
    129                 isa<GlobalValue>(V) ? GlobalPrefix : LocalPrefix);
    130 }
    131 
    132 //===----------------------------------------------------------------------===//
    133 // TypePrinting Class: Type printing machinery
    134 //===----------------------------------------------------------------------===//
    135 
    136 /// TypePrinting - Type printing machinery.
    137 namespace {
    138 class TypePrinting {
    139   TypePrinting(const TypePrinting &);   // DO NOT IMPLEMENT
    140   void operator=(const TypePrinting&);  // DO NOT IMPLEMENT
    141 public:
    142 
    143   /// NamedTypes - The named types that are used by the current module.
    144   std::vector<StructType*> NamedTypes;
    145 
    146   /// NumberedTypes - The numbered types, along with their value.
    147   DenseMap<StructType*, unsigned> NumberedTypes;
    148 
    149 
    150   TypePrinting() {}
    151   ~TypePrinting() {}
    152 
    153   void incorporateTypes(const Module &M);
    154 
    155   void print(Type *Ty, raw_ostream &OS);
    156 
    157   void printStructBody(StructType *Ty, raw_ostream &OS);
    158 };
    159 } // end anonymous namespace.
    160 
    161 
    162 void TypePrinting::incorporateTypes(const Module &M) {
    163   M.findUsedStructTypes(NamedTypes);
    164 
    165   // The list of struct types we got back includes all the struct types, split
    166   // the unnamed ones out to a numbering and remove the anonymous structs.
    167   unsigned NextNumber = 0;
    168 
    169   std::vector<StructType*>::iterator NextToUse = NamedTypes.begin(), I, E;
    170   for (I = NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) {
    171     StructType *STy = *I;
    172 
    173     // Ignore anonymous types.
    174     if (STy->isLiteral())
    175       continue;
    176 
    177     if (STy->getName().empty())
    178       NumberedTypes[STy] = NextNumber++;
    179     else
    180       *NextToUse++ = STy;
    181   }
    182 
    183   NamedTypes.erase(NextToUse, NamedTypes.end());
    184 }
    185 
    186 
    187 /// CalcTypeName - Write the specified type to the specified raw_ostream, making
    188 /// use of type names or up references to shorten the type name where possible.
    189 void TypePrinting::print(Type *Ty, raw_ostream &OS) {
    190   switch (Ty->getTypeID()) {
    191   case Type::VoidTyID:      OS << "void"; break;
    192   case Type::FloatTyID:     OS << "float"; break;
    193   case Type::DoubleTyID:    OS << "double"; break;
    194   case Type::X86_FP80TyID:  OS << "x86_fp80"; break;
    195   case Type::FP128TyID:     OS << "fp128"; break;
    196   case Type::PPC_FP128TyID: OS << "ppc_fp128"; break;
    197   case Type::LabelTyID:     OS << "label"; break;
    198   case Type::MetadataTyID:  OS << "metadata"; break;
    199   case Type::X86_MMXTyID:   OS << "x86_mmx"; break;
    200   case Type::IntegerTyID:
    201     OS << 'i' << cast<IntegerType>(Ty)->getBitWidth();
    202     return;
    203 
    204   case Type::FunctionTyID: {
    205     FunctionType *FTy = cast<FunctionType>(Ty);
    206     print(FTy->getReturnType(), OS);
    207     OS << " (";
    208     for (FunctionType::param_iterator I = FTy->param_begin(),
    209          E = FTy->param_end(); I != E; ++I) {
    210       if (I != FTy->param_begin())
    211         OS << ", ";
    212       print(*I, OS);
    213     }
    214     if (FTy->isVarArg()) {
    215       if (FTy->getNumParams()) OS << ", ";
    216       OS << "...";
    217     }
    218     OS << ')';
    219     return;
    220   }
    221   case Type::StructTyID: {
    222     StructType *STy = cast<StructType>(Ty);
    223 
    224     if (STy->isLiteral())
    225       return printStructBody(STy, OS);
    226 
    227     if (!STy->getName().empty())
    228       return PrintLLVMName(OS, STy->getName(), LocalPrefix);
    229 
    230     DenseMap<StructType*, unsigned>::iterator I = NumberedTypes.find(STy);
    231     if (I != NumberedTypes.end())
    232       OS << '%' << I->second;
    233     else  // Not enumerated, print the hex address.
    234       OS << "%\"type 0x" << STy << '\"';
    235     return;
    236   }
    237   case Type::PointerTyID: {
    238     PointerType *PTy = cast<PointerType>(Ty);
    239     print(PTy->getElementType(), OS);
    240     if (unsigned AddressSpace = PTy->getAddressSpace())
    241       OS << " addrspace(" << AddressSpace << ')';
    242     OS << '*';
    243     return;
    244   }
    245   case Type::ArrayTyID: {
    246     ArrayType *ATy = cast<ArrayType>(Ty);
    247     OS << '[' << ATy->getNumElements() << " x ";
    248     print(ATy->getElementType(), OS);
    249     OS << ']';
    250     return;
    251   }
    252   case Type::VectorTyID: {
    253     VectorType *PTy = cast<VectorType>(Ty);
    254     OS << "<" << PTy->getNumElements() << " x ";
    255     print(PTy->getElementType(), OS);
    256     OS << '>';
    257     return;
    258   }
    259   default:
    260     OS << "<unrecognized-type>";
    261     return;
    262   }
    263 }
    264 
    265 void TypePrinting::printStructBody(StructType *STy, raw_ostream &OS) {
    266   if (STy->isOpaque()) {
    267     OS << "opaque";
    268     return;
    269   }
    270 
    271   if (STy->isPacked())
    272     OS << '<';
    273 
    274   if (STy->getNumElements() == 0) {
    275     OS << "{}";
    276   } else {
    277     StructType::element_iterator I = STy->element_begin();
    278     OS << "{ ";
    279     print(*I++, OS);
    280     for (StructType::element_iterator E = STy->element_end(); I != E; ++I) {
    281       OS << ", ";
    282       print(*I, OS);
    283     }
    284 
    285     OS << " }";
    286   }
    287   if (STy->isPacked())
    288     OS << '>';
    289 }
    290 
    291 
    292 
    293 //===----------------------------------------------------------------------===//
    294 // SlotTracker Class: Enumerate slot numbers for unnamed values
    295 //===----------------------------------------------------------------------===//
    296 
    297 namespace {
    298 
    299 /// This class provides computation of slot numbers for LLVM Assembly writing.
    300 ///
    301 class SlotTracker {
    302 public:
    303   /// ValueMap - A mapping of Values to slot numbers.
    304   typedef DenseMap<const Value*, unsigned> ValueMap;
    305 
    306 private:
    307   /// TheModule - The module for which we are holding slot numbers.
    308   const Module* TheModule;
    309 
    310   /// TheFunction - The function for which we are holding slot numbers.
    311   const Function* TheFunction;
    312   bool FunctionProcessed;
    313 
    314   /// mMap - The slot map for the module level data.
    315   ValueMap mMap;
    316   unsigned mNext;
    317 
    318   /// fMap - The slot map for the function level data.
    319   ValueMap fMap;
    320   unsigned fNext;
    321 
    322   /// mdnMap - Map for MDNodes.
    323   DenseMap<const MDNode*, unsigned> mdnMap;
    324   unsigned mdnNext;
    325 public:
    326   /// Construct from a module
    327   explicit SlotTracker(const Module *M);
    328   /// Construct from a function, starting out in incorp state.
    329   explicit SlotTracker(const Function *F);
    330 
    331   /// Return the slot number of the specified value in it's type
    332   /// plane.  If something is not in the SlotTracker, return -1.
    333   int getLocalSlot(const Value *V);
    334   int getGlobalSlot(const GlobalValue *V);
    335   int getMetadataSlot(const MDNode *N);
    336 
    337   /// If you'd like to deal with a function instead of just a module, use
    338   /// this method to get its data into the SlotTracker.
    339   void incorporateFunction(const Function *F) {
    340     TheFunction = F;
    341     FunctionProcessed = false;
    342   }
    343 
    344   /// After calling incorporateFunction, use this method to remove the
    345   /// most recently incorporated function from the SlotTracker. This
    346   /// will reset the state of the machine back to just the module contents.
    347   void purgeFunction();
    348 
    349   /// MDNode map iterators.
    350   typedef DenseMap<const MDNode*, unsigned>::iterator mdn_iterator;
    351   mdn_iterator mdn_begin() { return mdnMap.begin(); }
    352   mdn_iterator mdn_end() { return mdnMap.end(); }
    353   unsigned mdn_size() const { return mdnMap.size(); }
    354   bool mdn_empty() const { return mdnMap.empty(); }
    355 
    356   /// This function does the actual initialization.
    357   inline void initialize();
    358 
    359   // Implementation Details
    360 private:
    361   /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
    362   void CreateModuleSlot(const GlobalValue *V);
    363 
    364   /// CreateMetadataSlot - Insert the specified MDNode* into the slot table.
    365   void CreateMetadataSlot(const MDNode *N);
    366 
    367   /// CreateFunctionSlot - Insert the specified Value* into the slot table.
    368   void CreateFunctionSlot(const Value *V);
    369 
    370   /// Add all of the module level global variables (and their initializers)
    371   /// and function declarations, but not the contents of those functions.
    372   void processModule();
    373 
    374   /// Add all of the functions arguments, basic blocks, and instructions.
    375   void processFunction();
    376 
    377   SlotTracker(const SlotTracker &);  // DO NOT IMPLEMENT
    378   void operator=(const SlotTracker &);  // DO NOT IMPLEMENT
    379 };
    380 
    381 }  // end anonymous namespace
    382 
    383 
    384 static SlotTracker *createSlotTracker(const Value *V) {
    385   if (const Argument *FA = dyn_cast<Argument>(V))
    386     return new SlotTracker(FA->getParent());
    387 
    388   if (const Instruction *I = dyn_cast<Instruction>(V))
    389     if (I->getParent())
    390       return new SlotTracker(I->getParent()->getParent());
    391 
    392   if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
    393     return new SlotTracker(BB->getParent());
    394 
    395   if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
    396     return new SlotTracker(GV->getParent());
    397 
    398   if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
    399     return new SlotTracker(GA->getParent());
    400 
    401   if (const Function *Func = dyn_cast<Function>(V))
    402     return new SlotTracker(Func);
    403 
    404   if (const MDNode *MD = dyn_cast<MDNode>(V)) {
    405     if (!MD->isFunctionLocal())
    406       return new SlotTracker(MD->getFunction());
    407 
    408     return new SlotTracker((Function *)0);
    409   }
    410 
    411   return 0;
    412 }
    413 
    414 #if 0
    415 #define ST_DEBUG(X) dbgs() << X
    416 #else
    417 #define ST_DEBUG(X)
    418 #endif
    419 
    420 // Module level constructor. Causes the contents of the Module (sans functions)
    421 // to be added to the slot table.
    422 SlotTracker::SlotTracker(const Module *M)
    423   : TheModule(M), TheFunction(0), FunctionProcessed(false),
    424     mNext(0), fNext(0),  mdnNext(0) {
    425 }
    426 
    427 // Function level constructor. Causes the contents of the Module and the one
    428 // function provided to be added to the slot table.
    429 SlotTracker::SlotTracker(const Function *F)
    430   : TheModule(F ? F->getParent() : 0), TheFunction(F), FunctionProcessed(false),
    431     mNext(0), fNext(0), mdnNext(0) {
    432 }
    433 
    434 inline void SlotTracker::initialize() {
    435   if (TheModule) {
    436     processModule();
    437     TheModule = 0; ///< Prevent re-processing next time we're called.
    438   }
    439 
    440   if (TheFunction && !FunctionProcessed)
    441     processFunction();
    442 }
    443 
    444 // Iterate through all the global variables, functions, and global
    445 // variable initializers and create slots for them.
    446 void SlotTracker::processModule() {
    447   ST_DEBUG("begin processModule!\n");
    448 
    449   // Add all of the unnamed global variables to the value table.
    450   for (Module::const_global_iterator I = TheModule->global_begin(),
    451          E = TheModule->global_end(); I != E; ++I) {
    452     if (!I->hasName())
    453       CreateModuleSlot(I);
    454   }
    455 
    456   // Add metadata used by named metadata.
    457   for (Module::const_named_metadata_iterator
    458          I = TheModule->named_metadata_begin(),
    459          E = TheModule->named_metadata_end(); I != E; ++I) {
    460     const NamedMDNode *NMD = I;
    461     for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i)
    462       CreateMetadataSlot(NMD->getOperand(i));
    463   }
    464 
    465   // Add all the unnamed functions to the table.
    466   for (Module::const_iterator I = TheModule->begin(), E = TheModule->end();
    467        I != E; ++I)
    468     if (!I->hasName())
    469       CreateModuleSlot(I);
    470 
    471   ST_DEBUG("end processModule!\n");
    472 }
    473 
    474 // Process the arguments, basic blocks, and instructions  of a function.
    475 void SlotTracker::processFunction() {
    476   ST_DEBUG("begin processFunction!\n");
    477   fNext = 0;
    478 
    479   // Add all the function arguments with no names.
    480   for(Function::const_arg_iterator AI = TheFunction->arg_begin(),
    481       AE = TheFunction->arg_end(); AI != AE; ++AI)
    482     if (!AI->hasName())
    483       CreateFunctionSlot(AI);
    484 
    485   ST_DEBUG("Inserting Instructions:\n");
    486 
    487   SmallVector<std::pair<unsigned, MDNode*>, 4> MDForInst;
    488 
    489   // Add all of the basic blocks and instructions with no names.
    490   for (Function::const_iterator BB = TheFunction->begin(),
    491        E = TheFunction->end(); BB != E; ++BB) {
    492     if (!BB->hasName())
    493       CreateFunctionSlot(BB);
    494 
    495     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E;
    496          ++I) {
    497       if (!I->getType()->isVoidTy() && !I->hasName())
    498         CreateFunctionSlot(I);
    499 
    500       // Intrinsics can directly use metadata.  We allow direct calls to any
    501       // llvm.foo function here, because the target may not be linked into the
    502       // optimizer.
    503       if (const CallInst *CI = dyn_cast<CallInst>(I)) {
    504         if (Function *F = CI->getCalledFunction())
    505           if (F->getName().startswith("llvm."))
    506             for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
    507               if (MDNode *N = dyn_cast_or_null<MDNode>(I->getOperand(i)))
    508                 CreateMetadataSlot(N);
    509       }
    510 
    511       // Process metadata attached with this instruction.
    512       I->getAllMetadata(MDForInst);
    513       for (unsigned i = 0, e = MDForInst.size(); i != e; ++i)
    514         CreateMetadataSlot(MDForInst[i].second);
    515       MDForInst.clear();
    516     }
    517   }
    518 
    519   FunctionProcessed = true;
    520 
    521   ST_DEBUG("end processFunction!\n");
    522 }
    523 
    524 /// Clean up after incorporating a function. This is the only way to get out of
    525 /// the function incorporation state that affects get*Slot/Create*Slot. Function
    526 /// incorporation state is indicated by TheFunction != 0.
    527 void SlotTracker::purgeFunction() {
    528   ST_DEBUG("begin purgeFunction!\n");
    529   fMap.clear(); // Simply discard the function level map
    530   TheFunction = 0;
    531   FunctionProcessed = false;
    532   ST_DEBUG("end purgeFunction!\n");
    533 }
    534 
    535 /// getGlobalSlot - Get the slot number of a global value.
    536 int SlotTracker::getGlobalSlot(const GlobalValue *V) {
    537   // Check for uninitialized state and do lazy initialization.
    538   initialize();
    539 
    540   // Find the value in the module map
    541   ValueMap::iterator MI = mMap.find(V);
    542   return MI == mMap.end() ? -1 : (int)MI->second;
    543 }
    544 
    545 /// getMetadataSlot - Get the slot number of a MDNode.
    546 int SlotTracker::getMetadataSlot(const MDNode *N) {
    547   // Check for uninitialized state and do lazy initialization.
    548   initialize();
    549 
    550   // Find the MDNode in the module map
    551   mdn_iterator MI = mdnMap.find(N);
    552   return MI == mdnMap.end() ? -1 : (int)MI->second;
    553 }
    554 
    555 
    556 /// getLocalSlot - Get the slot number for a value that is local to a function.
    557 int SlotTracker::getLocalSlot(const Value *V) {
    558   assert(!isa<Constant>(V) && "Can't get a constant or global slot with this!");
    559 
    560   // Check for uninitialized state and do lazy initialization.
    561   initialize();
    562 
    563   ValueMap::iterator FI = fMap.find(V);
    564   return FI == fMap.end() ? -1 : (int)FI->second;
    565 }
    566 
    567 
    568 /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
    569 void SlotTracker::CreateModuleSlot(const GlobalValue *V) {
    570   assert(V && "Can't insert a null Value into SlotTracker!");
    571   assert(!V->getType()->isVoidTy() && "Doesn't need a slot!");
    572   assert(!V->hasName() && "Doesn't need a slot!");
    573 
    574   unsigned DestSlot = mNext++;
    575   mMap[V] = DestSlot;
    576 
    577   ST_DEBUG("  Inserting value [" << V->getType() << "] = " << V << " slot=" <<
    578            DestSlot << " [");
    579   // G = Global, F = Function, A = Alias, o = other
    580   ST_DEBUG((isa<GlobalVariable>(V) ? 'G' :
    581             (isa<Function>(V) ? 'F' :
    582              (isa<GlobalAlias>(V) ? 'A' : 'o'))) << "]\n");
    583 }
    584 
    585 /// CreateSlot - Create a new slot for the specified value if it has no name.
    586 void SlotTracker::CreateFunctionSlot(const Value *V) {
    587   assert(!V->getType()->isVoidTy() && !V->hasName() && "Doesn't need a slot!");
    588 
    589   unsigned DestSlot = fNext++;
    590   fMap[V] = DestSlot;
    591 
    592   // G = Global, F = Function, o = other
    593   ST_DEBUG("  Inserting value [" << V->getType() << "] = " << V << " slot=" <<
    594            DestSlot << " [o]\n");
    595 }
    596 
    597 /// CreateModuleSlot - Insert the specified MDNode* into the slot table.
    598 void SlotTracker::CreateMetadataSlot(const MDNode *N) {
    599   assert(N && "Can't insert a null Value into SlotTracker!");
    600 
    601   // Don't insert if N is a function-local metadata, these are always printed
    602   // inline.
    603   if (!N->isFunctionLocal()) {
    604     mdn_iterator I = mdnMap.find(N);
    605     if (I != mdnMap.end())
    606       return;
    607 
    608     unsigned DestSlot = mdnNext++;
    609     mdnMap[N] = DestSlot;
    610   }
    611 
    612   // Recursively add any MDNodes referenced by operands.
    613   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
    614     if (const MDNode *Op = dyn_cast_or_null<MDNode>(N->getOperand(i)))
    615       CreateMetadataSlot(Op);
    616 }
    617 
    618 //===----------------------------------------------------------------------===//
    619 // AsmWriter Implementation
    620 //===----------------------------------------------------------------------===//
    621 
    622 static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
    623                                    TypePrinting *TypePrinter,
    624                                    SlotTracker *Machine,
    625                                    const Module *Context);
    626 
    627 
    628 
    629 static const char *getPredicateText(unsigned predicate) {
    630   const char * pred = "unknown";
    631   switch (predicate) {
    632   case FCmpInst::FCMP_FALSE: pred = "false"; break;
    633   case FCmpInst::FCMP_OEQ:   pred = "oeq"; break;
    634   case FCmpInst::FCMP_OGT:   pred = "ogt"; break;
    635   case FCmpInst::FCMP_OGE:   pred = "oge"; break;
    636   case FCmpInst::FCMP_OLT:   pred = "olt"; break;
    637   case FCmpInst::FCMP_OLE:   pred = "ole"; break;
    638   case FCmpInst::FCMP_ONE:   pred = "one"; break;
    639   case FCmpInst::FCMP_ORD:   pred = "ord"; break;
    640   case FCmpInst::FCMP_UNO:   pred = "uno"; break;
    641   case FCmpInst::FCMP_UEQ:   pred = "ueq"; break;
    642   case FCmpInst::FCMP_UGT:   pred = "ugt"; break;
    643   case FCmpInst::FCMP_UGE:   pred = "uge"; break;
    644   case FCmpInst::FCMP_ULT:   pred = "ult"; break;
    645   case FCmpInst::FCMP_ULE:   pred = "ule"; break;
    646   case FCmpInst::FCMP_UNE:   pred = "une"; break;
    647   case FCmpInst::FCMP_TRUE:  pred = "true"; break;
    648   case ICmpInst::ICMP_EQ:    pred = "eq"; break;
    649   case ICmpInst::ICMP_NE:    pred = "ne"; break;
    650   case ICmpInst::ICMP_SGT:   pred = "sgt"; break;
    651   case ICmpInst::ICMP_SGE:   pred = "sge"; break;
    652   case ICmpInst::ICMP_SLT:   pred = "slt"; break;
    653   case ICmpInst::ICMP_SLE:   pred = "sle"; break;
    654   case ICmpInst::ICMP_UGT:   pred = "ugt"; break;
    655   case ICmpInst::ICMP_UGE:   pred = "uge"; break;
    656   case ICmpInst::ICMP_ULT:   pred = "ult"; break;
    657   case ICmpInst::ICMP_ULE:   pred = "ule"; break;
    658   }
    659   return pred;
    660 }
    661 
    662 static void writeAtomicRMWOperation(raw_ostream &Out,
    663                                     AtomicRMWInst::BinOp Op) {
    664   switch (Op) {
    665   default: Out << " <unknown operation " << Op << ">"; break;
    666   case AtomicRMWInst::Xchg: Out << " xchg"; break;
    667   case AtomicRMWInst::Add:  Out << " add"; break;
    668   case AtomicRMWInst::Sub:  Out << " sub"; break;
    669   case AtomicRMWInst::And:  Out << " and"; break;
    670   case AtomicRMWInst::Nand: Out << " nand"; break;
    671   case AtomicRMWInst::Or:   Out << " or"; break;
    672   case AtomicRMWInst::Xor:  Out << " xor"; break;
    673   case AtomicRMWInst::Max:  Out << " max"; break;
    674   case AtomicRMWInst::Min:  Out << " min"; break;
    675   case AtomicRMWInst::UMax: Out << " umax"; break;
    676   case AtomicRMWInst::UMin: Out << " umin"; break;
    677   }
    678 }
    679 
    680 static void WriteOptimizationInfo(raw_ostream &Out, const User *U) {
    681   if (const OverflowingBinaryOperator *OBO =
    682         dyn_cast<OverflowingBinaryOperator>(U)) {
    683     if (OBO->hasNoUnsignedWrap())
    684       Out << " nuw";
    685     if (OBO->hasNoSignedWrap())
    686       Out << " nsw";
    687   } else if (const PossiblyExactOperator *Div =
    688                dyn_cast<PossiblyExactOperator>(U)) {
    689     if (Div->isExact())
    690       Out << " exact";
    691   } else if (const GEPOperator *GEP = dyn_cast<GEPOperator>(U)) {
    692     if (GEP->isInBounds())
    693       Out << " inbounds";
    694   }
    695 }
    696 
    697 static void WriteConstantInternal(raw_ostream &Out, const Constant *CV,
    698                                   TypePrinting &TypePrinter,
    699                                   SlotTracker *Machine,
    700                                   const Module *Context) {
    701   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
    702     if (CI->getType()->isIntegerTy(1)) {
    703       Out << (CI->getZExtValue() ? "true" : "false");
    704       return;
    705     }
    706     Out << CI->getValue();
    707     return;
    708   }
    709 
    710   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
    711     if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEdouble ||
    712         &CFP->getValueAPF().getSemantics() == &APFloat::IEEEsingle) {
    713       // We would like to output the FP constant value in exponential notation,
    714       // but we cannot do this if doing so will lose precision.  Check here to
    715       // make sure that we only output it in exponential format if we can parse
    716       // the value back and get the same value.
    717       //
    718       bool ignored;
    719       bool isDouble = &CFP->getValueAPF().getSemantics()==&APFloat::IEEEdouble;
    720       double Val = isDouble ? CFP->getValueAPF().convertToDouble() :
    721                               CFP->getValueAPF().convertToFloat();
    722       SmallString<128> StrVal;
    723       raw_svector_ostream(StrVal) << Val;
    724 
    725       // Check to make sure that the stringized number is not some string like
    726       // "Inf" or NaN, that atof will accept, but the lexer will not.  Check
    727       // that the string matches the "[-+]?[0-9]" regex.
    728       //
    729       if ((StrVal[0] >= '0' && StrVal[0] <= '9') ||
    730           ((StrVal[0] == '-' || StrVal[0] == '+') &&
    731            (StrVal[1] >= '0' && StrVal[1] <= '9'))) {
    732         // Reparse stringized version!
    733         if (atof(StrVal.c_str()) == Val) {
    734           Out << StrVal.str();
    735           return;
    736         }
    737       }
    738       // Otherwise we could not reparse it to exactly the same value, so we must
    739       // output the string in hexadecimal format!  Note that loading and storing
    740       // floating point types changes the bits of NaNs on some hosts, notably
    741       // x86, so we must not use these types.
    742       assert(sizeof(double) == sizeof(uint64_t) &&
    743              "assuming that double is 64 bits!");
    744       char Buffer[40];
    745       APFloat apf = CFP->getValueAPF();
    746       // Floats are represented in ASCII IR as double, convert.
    747       if (!isDouble)
    748         apf.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
    749                           &ignored);
    750       Out << "0x" <<
    751               utohex_buffer(uint64_t(apf.bitcastToAPInt().getZExtValue()),
    752                             Buffer+40);
    753       return;
    754     }
    755 
    756     // Some form of long double.  These appear as a magic letter identifying
    757     // the type, then a fixed number of hex digits.
    758     Out << "0x";
    759     if (&CFP->getValueAPF().getSemantics() == &APFloat::x87DoubleExtended) {
    760       Out << 'K';
    761       // api needed to prevent premature destruction
    762       APInt api = CFP->getValueAPF().bitcastToAPInt();
    763       const uint64_t* p = api.getRawData();
    764       uint64_t word = p[1];
    765       int shiftcount=12;
    766       int width = api.getBitWidth();
    767       for (int j=0; j<width; j+=4, shiftcount-=4) {
    768         unsigned int nibble = (word>>shiftcount) & 15;
    769         if (nibble < 10)
    770           Out << (unsigned char)(nibble + '0');
    771         else
    772           Out << (unsigned char)(nibble - 10 + 'A');
    773         if (shiftcount == 0 && j+4 < width) {
    774           word = *p;
    775           shiftcount = 64;
    776           if (width-j-4 < 64)
    777             shiftcount = width-j-4;
    778         }
    779       }
    780       return;
    781     } else if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEquad)
    782       Out << 'L';
    783     else if (&CFP->getValueAPF().getSemantics() == &APFloat::PPCDoubleDouble)
    784       Out << 'M';
    785     else
    786       llvm_unreachable("Unsupported floating point type");
    787     // api needed to prevent premature destruction
    788     APInt api = CFP->getValueAPF().bitcastToAPInt();
    789     const uint64_t* p = api.getRawData();
    790     uint64_t word = *p;
    791     int shiftcount=60;
    792     int width = api.getBitWidth();
    793     for (int j=0; j<width; j+=4, shiftcount-=4) {
    794       unsigned int nibble = (word>>shiftcount) & 15;
    795       if (nibble < 10)
    796         Out << (unsigned char)(nibble + '0');
    797       else
    798         Out << (unsigned char)(nibble - 10 + 'A');
    799       if (shiftcount == 0 && j+4 < width) {
    800         word = *(++p);
    801         shiftcount = 64;
    802         if (width-j-4 < 64)
    803           shiftcount = width-j-4;
    804       }
    805     }
    806     return;
    807   }
    808 
    809   if (isa<ConstantAggregateZero>(CV)) {
    810     Out << "zeroinitializer";
    811     return;
    812   }
    813 
    814   if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) {
    815     Out << "blockaddress(";
    816     WriteAsOperandInternal(Out, BA->getFunction(), &TypePrinter, Machine,
    817                            Context);
    818     Out << ", ";
    819     WriteAsOperandInternal(Out, BA->getBasicBlock(), &TypePrinter, Machine,
    820                            Context);
    821     Out << ")";
    822     return;
    823   }
    824 
    825   if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
    826     // As a special case, print the array as a string if it is an array of
    827     // i8 with ConstantInt values.
    828     //
    829     Type *ETy = CA->getType()->getElementType();
    830     if (CA->isString()) {
    831       Out << "c\"";
    832       PrintEscapedString(CA->getAsString(), Out);
    833       Out << '"';
    834     } else {                // Cannot output in string format...
    835       Out << '[';
    836       if (CA->getNumOperands()) {
    837         TypePrinter.print(ETy, Out);
    838         Out << ' ';
    839         WriteAsOperandInternal(Out, CA->getOperand(0),
    840                                &TypePrinter, Machine,
    841                                Context);
    842         for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
    843           Out << ", ";
    844           TypePrinter.print(ETy, Out);
    845           Out << ' ';
    846           WriteAsOperandInternal(Out, CA->getOperand(i), &TypePrinter, Machine,
    847                                  Context);
    848         }
    849       }
    850       Out << ']';
    851     }
    852     return;
    853   }
    854 
    855   if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
    856     if (CS->getType()->isPacked())
    857       Out << '<';
    858     Out << '{';
    859     unsigned N = CS->getNumOperands();
    860     if (N) {
    861       Out << ' ';
    862       TypePrinter.print(CS->getOperand(0)->getType(), Out);
    863       Out << ' ';
    864 
    865       WriteAsOperandInternal(Out, CS->getOperand(0), &TypePrinter, Machine,
    866                              Context);
    867 
    868       for (unsigned i = 1; i < N; i++) {
    869         Out << ", ";
    870         TypePrinter.print(CS->getOperand(i)->getType(), Out);
    871         Out << ' ';
    872 
    873         WriteAsOperandInternal(Out, CS->getOperand(i), &TypePrinter, Machine,
    874                                Context);
    875       }
    876       Out << ' ';
    877     }
    878 
    879     Out << '}';
    880     if (CS->getType()->isPacked())
    881       Out << '>';
    882     return;
    883   }
    884 
    885   if (const ConstantVector *CP = dyn_cast<ConstantVector>(CV)) {
    886     Type *ETy = CP->getType()->getElementType();
    887     assert(CP->getNumOperands() > 0 &&
    888            "Number of operands for a PackedConst must be > 0");
    889     Out << '<';
    890     TypePrinter.print(ETy, Out);
    891     Out << ' ';
    892     WriteAsOperandInternal(Out, CP->getOperand(0), &TypePrinter, Machine,
    893                            Context);
    894     for (unsigned i = 1, e = CP->getNumOperands(); i != e; ++i) {
    895       Out << ", ";
    896       TypePrinter.print(ETy, Out);
    897       Out << ' ';
    898       WriteAsOperandInternal(Out, CP->getOperand(i), &TypePrinter, Machine,
    899                              Context);
    900     }
    901     Out << '>';
    902     return;
    903   }
    904 
    905   if (isa<ConstantPointerNull>(CV)) {
    906     Out << "null";
    907     return;
    908   }
    909 
    910   if (isa<UndefValue>(CV)) {
    911     Out << "undef";
    912     return;
    913   }
    914 
    915   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
    916     Out << CE->getOpcodeName();
    917     WriteOptimizationInfo(Out, CE);
    918     if (CE->isCompare())
    919       Out << ' ' << getPredicateText(CE->getPredicate());
    920     Out << " (";
    921 
    922     for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) {
    923       TypePrinter.print((*OI)->getType(), Out);
    924       Out << ' ';
    925       WriteAsOperandInternal(Out, *OI, &TypePrinter, Machine, Context);
    926       if (OI+1 != CE->op_end())
    927         Out << ", ";
    928     }
    929 
    930     if (CE->hasIndices()) {
    931       ArrayRef<unsigned> Indices = CE->getIndices();
    932       for (unsigned i = 0, e = Indices.size(); i != e; ++i)
    933         Out << ", " << Indices[i];
    934     }
    935 
    936     if (CE->isCast()) {
    937       Out << " to ";
    938       TypePrinter.print(CE->getType(), Out);
    939     }
    940 
    941     Out << ')';
    942     return;
    943   }
    944 
    945   Out << "<placeholder or erroneous Constant>";
    946 }
    947 
    948 static void WriteMDNodeBodyInternal(raw_ostream &Out, const MDNode *Node,
    949                                     TypePrinting *TypePrinter,
    950                                     SlotTracker *Machine,
    951                                     const Module *Context) {
    952   Out << "!{";
    953   for (unsigned mi = 0, me = Node->getNumOperands(); mi != me; ++mi) {
    954     const Value *V = Node->getOperand(mi);
    955     if (V == 0)
    956       Out << "null";
    957     else {
    958       TypePrinter->print(V->getType(), Out);
    959       Out << ' ';
    960       WriteAsOperandInternal(Out, Node->getOperand(mi),
    961                              TypePrinter, Machine, Context);
    962     }
    963     if (mi + 1 != me)
    964       Out << ", ";
    965   }
    966 
    967   Out << "}";
    968 }
    969 
    970 
    971 /// WriteAsOperand - Write the name of the specified value out to the specified
    972 /// ostream.  This can be useful when you just want to print int %reg126, not
    973 /// the whole instruction that generated it.
    974 ///
    975 static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
    976                                    TypePrinting *TypePrinter,
    977                                    SlotTracker *Machine,
    978                                    const Module *Context) {
    979   if (V->hasName()) {
    980     PrintLLVMName(Out, V);
    981     return;
    982   }
    983 
    984   const Constant *CV = dyn_cast<Constant>(V);
    985   if (CV && !isa<GlobalValue>(CV)) {
    986     assert(TypePrinter && "Constants require TypePrinting!");
    987     WriteConstantInternal(Out, CV, *TypePrinter, Machine, Context);
    988     return;
    989   }
    990 
    991   if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
    992     Out << "asm ";
    993     if (IA->hasSideEffects())
    994       Out << "sideeffect ";
    995     if (IA->isAlignStack())
    996       Out << "alignstack ";
    997     Out << '"';
    998     PrintEscapedString(IA->getAsmString(), Out);
    999     Out << "\", \"";
   1000     PrintEscapedString(IA->getConstraintString(), Out);
   1001     Out << '"';
   1002     return;
   1003   }
   1004 
   1005   if (const MDNode *N = dyn_cast<MDNode>(V)) {
   1006     if (N->isFunctionLocal()) {
   1007       // Print metadata inline, not via slot reference number.
   1008       WriteMDNodeBodyInternal(Out, N, TypePrinter, Machine, Context);
   1009       return;
   1010     }
   1011 
   1012     if (!Machine) {
   1013       if (N->isFunctionLocal())
   1014         Machine = new SlotTracker(N->getFunction());
   1015       else
   1016         Machine = new SlotTracker(Context);
   1017     }
   1018     int Slot = Machine->getMetadataSlot(N);
   1019     if (Slot == -1)
   1020       Out << "<badref>";
   1021     else
   1022       Out << '!' << Slot;
   1023     return;
   1024   }
   1025 
   1026   if (const MDString *MDS = dyn_cast<MDString>(V)) {
   1027     Out << "!\"";
   1028     PrintEscapedString(MDS->getString(), Out);
   1029     Out << '"';
   1030     return;
   1031   }
   1032 
   1033   if (V->getValueID() == Value::PseudoSourceValueVal ||
   1034       V->getValueID() == Value::FixedStackPseudoSourceValueVal) {
   1035     V->print(Out);
   1036     return;
   1037   }
   1038 
   1039   char Prefix = '%';
   1040   int Slot;
   1041   // If we have a SlotTracker, use it.
   1042   if (Machine) {
   1043     if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
   1044       Slot = Machine->getGlobalSlot(GV);
   1045       Prefix = '@';
   1046     } else {
   1047       Slot = Machine->getLocalSlot(V);
   1048 
   1049       // If the local value didn't succeed, then we may be referring to a value
   1050       // from a different function.  Translate it, as this can happen when using
   1051       // address of blocks.
   1052       if (Slot == -1)
   1053         if ((Machine = createSlotTracker(V))) {
   1054           Slot = Machine->getLocalSlot(V);
   1055           delete Machine;
   1056         }
   1057     }
   1058   } else if ((Machine = createSlotTracker(V))) {
   1059     // Otherwise, create one to get the # and then destroy it.
   1060     if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
   1061       Slot = Machine->getGlobalSlot(GV);
   1062       Prefix = '@';
   1063     } else {
   1064       Slot = Machine->getLocalSlot(V);
   1065     }
   1066     delete Machine;
   1067     Machine = 0;
   1068   } else {
   1069     Slot = -1;
   1070   }
   1071 
   1072   if (Slot != -1)
   1073     Out << Prefix << Slot;
   1074   else
   1075     Out << "<badref>";
   1076 }
   1077 
   1078 void llvm::WriteAsOperand(raw_ostream &Out, const Value *V,
   1079                           bool PrintType, const Module *Context) {
   1080 
   1081   // Fast path: Don't construct and populate a TypePrinting object if we
   1082   // won't be needing any types printed.
   1083   if (!PrintType &&
   1084       ((!isa<Constant>(V) && !isa<MDNode>(V)) ||
   1085        V->hasName() || isa<GlobalValue>(V))) {
   1086     WriteAsOperandInternal(Out, V, 0, 0, Context);
   1087     return;
   1088   }
   1089 
   1090   if (Context == 0) Context = getModuleFromVal(V);
   1091 
   1092   TypePrinting TypePrinter;
   1093   if (Context)
   1094     TypePrinter.incorporateTypes(*Context);
   1095   if (PrintType) {
   1096     TypePrinter.print(V->getType(), Out);
   1097     Out << ' ';
   1098   }
   1099 
   1100   WriteAsOperandInternal(Out, V, &TypePrinter, 0, Context);
   1101 }
   1102 
   1103 namespace {
   1104 
   1105 class AssemblyWriter {
   1106   formatted_raw_ostream &Out;
   1107   SlotTracker &Machine;
   1108   const Module *TheModule;
   1109   TypePrinting TypePrinter;
   1110   AssemblyAnnotationWriter *AnnotationWriter;
   1111 
   1112 public:
   1113   inline AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac,
   1114                         const Module *M,
   1115                         AssemblyAnnotationWriter *AAW)
   1116     : Out(o), Machine(Mac), TheModule(M), AnnotationWriter(AAW) {
   1117     if (M)
   1118       TypePrinter.incorporateTypes(*M);
   1119   }
   1120 
   1121   void printMDNodeBody(const MDNode *MD);
   1122   void printNamedMDNode(const NamedMDNode *NMD);
   1123 
   1124   void printModule(const Module *M);
   1125 
   1126   void writeOperand(const Value *Op, bool PrintType);
   1127   void writeParamOperand(const Value *Operand, Attributes Attrs);
   1128   void writeAtomic(AtomicOrdering Ordering, SynchronizationScope SynchScope);
   1129 
   1130   void writeAllMDNodes();
   1131 
   1132   void printTypeIdentities();
   1133   void printGlobal(const GlobalVariable *GV);
   1134   void printAlias(const GlobalAlias *GV);
   1135   void printFunction(const Function *F);
   1136   void printArgument(const Argument *FA, Attributes Attrs);
   1137   void printBasicBlock(const BasicBlock *BB);
   1138   void printInstruction(const Instruction &I);
   1139 
   1140 private:
   1141   // printInfoComment - Print a little comment after the instruction indicating
   1142   // which slot it occupies.
   1143   void printInfoComment(const Value &V);
   1144 };
   1145 }  // end of anonymous namespace
   1146 
   1147 void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType) {
   1148   if (Operand == 0) {
   1149     Out << "<null operand!>";
   1150     return;
   1151   }
   1152   if (PrintType) {
   1153     TypePrinter.print(Operand->getType(), Out);
   1154     Out << ' ';
   1155   }
   1156   WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine, TheModule);
   1157 }
   1158 
   1159 void AssemblyWriter::writeAtomic(AtomicOrdering Ordering,
   1160                                  SynchronizationScope SynchScope) {
   1161   if (Ordering == NotAtomic)
   1162     return;
   1163 
   1164   switch (SynchScope) {
   1165   default: Out << " <bad scope " << int(SynchScope) << ">"; break;
   1166   case SingleThread: Out << " singlethread"; break;
   1167   case CrossThread: break;
   1168   }
   1169 
   1170   switch (Ordering) {
   1171   default: Out << " <bad ordering " << int(Ordering) << ">"; break;
   1172   case Unordered: Out << " unordered"; break;
   1173   case Monotonic: Out << " monotonic"; break;
   1174   case Acquire: Out << " acquire"; break;
   1175   case Release: Out << " release"; break;
   1176   case AcquireRelease: Out << " acq_rel"; break;
   1177   case SequentiallyConsistent: Out << " seq_cst"; break;
   1178   }
   1179 }
   1180 
   1181 void AssemblyWriter::writeParamOperand(const Value *Operand,
   1182                                        Attributes Attrs) {
   1183   if (Operand == 0) {
   1184     Out << "<null operand!>";
   1185     return;
   1186   }
   1187 
   1188   // Print the type
   1189   TypePrinter.print(Operand->getType(), Out);
   1190   // Print parameter attributes list
   1191   if (Attrs != Attribute::None)
   1192     Out << ' ' << Attribute::getAsString(Attrs);
   1193   Out << ' ';
   1194   // Print the operand
   1195   WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine, TheModule);
   1196 }
   1197 
   1198 void AssemblyWriter::printModule(const Module *M) {
   1199   if (!M->getModuleIdentifier().empty() &&
   1200       // Don't print the ID if it will start a new line (which would
   1201       // require a comment char before it).
   1202       M->getModuleIdentifier().find('\n') == std::string::npos)
   1203     Out << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
   1204 
   1205   if (!M->getDataLayout().empty())
   1206     Out << "target datalayout = \"" << M->getDataLayout() << "\"\n";
   1207   if (!M->getTargetTriple().empty())
   1208     Out << "target triple = \"" << M->getTargetTriple() << "\"\n";
   1209 
   1210   if (!M->getModuleInlineAsm().empty()) {
   1211     // Split the string into lines, to make it easier to read the .ll file.
   1212     std::string Asm = M->getModuleInlineAsm();
   1213     size_t CurPos = 0;
   1214     size_t NewLine = Asm.find_first_of('\n', CurPos);
   1215     Out << '\n';
   1216     while (NewLine != std::string::npos) {
   1217       // We found a newline, print the portion of the asm string from the
   1218       // last newline up to this newline.
   1219       Out << "module asm \"";
   1220       PrintEscapedString(std::string(Asm.begin()+CurPos, Asm.begin()+NewLine),
   1221                          Out);
   1222       Out << "\"\n";
   1223       CurPos = NewLine+1;
   1224       NewLine = Asm.find_first_of('\n', CurPos);
   1225     }
   1226     std::string rest(Asm.begin()+CurPos, Asm.end());
   1227     if (!rest.empty()) {
   1228       Out << "module asm \"";
   1229       PrintEscapedString(rest, Out);
   1230       Out << "\"\n";
   1231     }
   1232   }
   1233 
   1234   // Loop over the dependent libraries and emit them.
   1235   Module::lib_iterator LI = M->lib_begin();
   1236   Module::lib_iterator LE = M->lib_end();
   1237   if (LI != LE) {
   1238     Out << '\n';
   1239     Out << "deplibs = [ ";
   1240     while (LI != LE) {
   1241       Out << '"' << *LI << '"';
   1242       ++LI;
   1243       if (LI != LE)
   1244         Out << ", ";
   1245     }
   1246     Out << " ]";
   1247   }
   1248 
   1249   printTypeIdentities();
   1250 
   1251   // Output all globals.
   1252   if (!M->global_empty()) Out << '\n';
   1253   for (Module::const_global_iterator I = M->global_begin(), E = M->global_end();
   1254        I != E; ++I)
   1255     printGlobal(I);
   1256 
   1257   // Output all aliases.
   1258   if (!M->alias_empty()) Out << "\n";
   1259   for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end();
   1260        I != E; ++I)
   1261     printAlias(I);
   1262 
   1263   // Output all of the functions.
   1264   for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
   1265     printFunction(I);
   1266 
   1267   // Output named metadata.
   1268   if (!M->named_metadata_empty()) Out << '\n';
   1269 
   1270   for (Module::const_named_metadata_iterator I = M->named_metadata_begin(),
   1271        E = M->named_metadata_end(); I != E; ++I)
   1272     printNamedMDNode(I);
   1273 
   1274   // Output metadata.
   1275   if (!Machine.mdn_empty()) {
   1276     Out << '\n';
   1277     writeAllMDNodes();
   1278   }
   1279 }
   1280 
   1281 void AssemblyWriter::printNamedMDNode(const NamedMDNode *NMD) {
   1282   Out << '!';
   1283   StringRef Name = NMD->getName();
   1284   if (Name.empty()) {
   1285     Out << "<empty name> ";
   1286   } else {
   1287     if (isalpha(Name[0]) || Name[0] == '-' || Name[0] == '$' ||
   1288         Name[0] == '.' || Name[0] == '_')
   1289       Out << Name[0];
   1290     else
   1291       Out << '\\' << hexdigit(Name[0] >> 4) << hexdigit(Name[0] & 0x0F);
   1292     for (unsigned i = 1, e = Name.size(); i != e; ++i) {
   1293       unsigned char C = Name[i];
   1294       if (isalnum(C) || C == '-' || C == '$' || C == '.' || C == '_')
   1295         Out << C;
   1296       else
   1297         Out << '\\' << hexdigit(C >> 4) << hexdigit(C & 0x0F);
   1298     }
   1299   }
   1300   Out << " = !{";
   1301   for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
   1302     if (i) Out << ", ";
   1303     int Slot = Machine.getMetadataSlot(NMD->getOperand(i));
   1304     if (Slot == -1)
   1305       Out << "<badref>";
   1306     else
   1307       Out << '!' << Slot;
   1308   }
   1309   Out << "}\n";
   1310 }
   1311 
   1312 
   1313 static void PrintLinkage(GlobalValue::LinkageTypes LT,
   1314                          formatted_raw_ostream &Out) {
   1315   switch (LT) {
   1316   case GlobalValue::ExternalLinkage: break;
   1317   case GlobalValue::PrivateLinkage:       Out << "private ";        break;
   1318   case GlobalValue::LinkerPrivateLinkage: Out << "linker_private "; break;
   1319   case GlobalValue::LinkerPrivateWeakLinkage:
   1320     Out << "linker_private_weak ";
   1321     break;
   1322   case GlobalValue::LinkerPrivateWeakDefAutoLinkage:
   1323     Out << "linker_private_weak_def_auto ";
   1324     break;
   1325   case GlobalValue::InternalLinkage:      Out << "internal ";       break;
   1326   case GlobalValue::LinkOnceAnyLinkage:   Out << "linkonce ";       break;
   1327   case GlobalValue::LinkOnceODRLinkage:   Out << "linkonce_odr ";   break;
   1328   case GlobalValue::WeakAnyLinkage:       Out << "weak ";           break;
   1329   case GlobalValue::WeakODRLinkage:       Out << "weak_odr ";       break;
   1330   case GlobalValue::CommonLinkage:        Out << "common ";         break;
   1331   case GlobalValue::AppendingLinkage:     Out << "appending ";      break;
   1332   case GlobalValue::DLLImportLinkage:     Out << "dllimport ";      break;
   1333   case GlobalValue::DLLExportLinkage:     Out << "dllexport ";      break;
   1334   case GlobalValue::ExternalWeakLinkage:  Out << "extern_weak ";    break;
   1335   case GlobalValue::AvailableExternallyLinkage:
   1336     Out << "available_externally ";
   1337     break;
   1338   }
   1339 }
   1340 
   1341 
   1342 static void PrintVisibility(GlobalValue::VisibilityTypes Vis,
   1343                             formatted_raw_ostream &Out) {
   1344   switch (Vis) {
   1345   case GlobalValue::DefaultVisibility: break;
   1346   case GlobalValue::HiddenVisibility:    Out << "hidden "; break;
   1347   case GlobalValue::ProtectedVisibility: Out << "protected "; break;
   1348   }
   1349 }
   1350 
   1351 void AssemblyWriter::printGlobal(const GlobalVariable *GV) {
   1352   if (GV->isMaterializable())
   1353     Out << "; Materializable\n";
   1354 
   1355   WriteAsOperandInternal(Out, GV, &TypePrinter, &Machine, GV->getParent());
   1356   Out << " = ";
   1357 
   1358   if (!GV->hasInitializer() && GV->hasExternalLinkage())
   1359     Out << "external ";
   1360 
   1361   PrintLinkage(GV->getLinkage(), Out);
   1362   PrintVisibility(GV->getVisibility(), Out);
   1363 
   1364   if (GV->isThreadLocal()) Out << "thread_local ";
   1365   if (unsigned AddressSpace = GV->getType()->getAddressSpace())
   1366     Out << "addrspace(" << AddressSpace << ") ";
   1367   if (GV->hasUnnamedAddr()) Out << "unnamed_addr ";
   1368   Out << (GV->isConstant() ? "constant " : "global ");
   1369   TypePrinter.print(GV->getType()->getElementType(), Out);
   1370 
   1371   if (GV->hasInitializer()) {
   1372     Out << ' ';
   1373     writeOperand(GV->getInitializer(), false);
   1374   }
   1375 
   1376   if (GV->hasSection()) {
   1377     Out << ", section \"";
   1378     PrintEscapedString(GV->getSection(), Out);
   1379     Out << '"';
   1380   }
   1381   if (GV->getAlignment())
   1382     Out << ", align " << GV->getAlignment();
   1383 
   1384   printInfoComment(*GV);
   1385   Out << '\n';
   1386 }
   1387 
   1388 void AssemblyWriter::printAlias(const GlobalAlias *GA) {
   1389   if (GA->isMaterializable())
   1390     Out << "; Materializable\n";
   1391 
   1392   // Don't crash when dumping partially built GA
   1393   if (!GA->hasName())
   1394     Out << "<<nameless>> = ";
   1395   else {
   1396     PrintLLVMName(Out, GA);
   1397     Out << " = ";
   1398   }
   1399   PrintVisibility(GA->getVisibility(), Out);
   1400 
   1401   Out << "alias ";
   1402 
   1403   PrintLinkage(GA->getLinkage(), Out);
   1404 
   1405   const Constant *Aliasee = GA->getAliasee();
   1406 
   1407   if (Aliasee == 0) {
   1408     TypePrinter.print(GA->getType(), Out);
   1409     Out << " <<NULL ALIASEE>>";
   1410   } else {
   1411     writeOperand(Aliasee, !isa<ConstantExpr>(Aliasee));
   1412   }
   1413 
   1414   printInfoComment(*GA);
   1415   Out << '\n';
   1416 }
   1417 
   1418 void AssemblyWriter::printTypeIdentities() {
   1419   if (TypePrinter.NumberedTypes.empty() &&
   1420       TypePrinter.NamedTypes.empty())
   1421     return;
   1422 
   1423   Out << '\n';
   1424 
   1425   // We know all the numbers that each type is used and we know that it is a
   1426   // dense assignment.  Convert the map to an index table.
   1427   std::vector<StructType*> NumberedTypes(TypePrinter.NumberedTypes.size());
   1428   for (DenseMap<StructType*, unsigned>::iterator I =
   1429        TypePrinter.NumberedTypes.begin(), E = TypePrinter.NumberedTypes.end();
   1430        I != E; ++I) {
   1431     assert(I->second < NumberedTypes.size() && "Didn't get a dense numbering?");
   1432     NumberedTypes[I->second] = I->first;
   1433   }
   1434 
   1435   // Emit all numbered types.
   1436   for (unsigned i = 0, e = NumberedTypes.size(); i != e; ++i) {
   1437     Out << '%' << i << " = type ";
   1438 
   1439     // Make sure we print out at least one level of the type structure, so
   1440     // that we do not get %2 = type %2
   1441     TypePrinter.printStructBody(NumberedTypes[i], Out);
   1442     Out << '\n';
   1443   }
   1444 
   1445   for (unsigned i = 0, e = TypePrinter.NamedTypes.size(); i != e; ++i) {
   1446     PrintLLVMName(Out, TypePrinter.NamedTypes[i]->getName(), LocalPrefix);
   1447     Out << " = type ";
   1448 
   1449     // Make sure we print out at least one level of the type structure, so
   1450     // that we do not get %FILE = type %FILE
   1451     TypePrinter.printStructBody(TypePrinter.NamedTypes[i], Out);
   1452     Out << '\n';
   1453   }
   1454 }
   1455 
   1456 /// printFunction - Print all aspects of a function.
   1457 ///
   1458 void AssemblyWriter::printFunction(const Function *F) {
   1459   // Print out the return type and name.
   1460   Out << '\n';
   1461 
   1462   if (AnnotationWriter) AnnotationWriter->emitFunctionAnnot(F, Out);
   1463 
   1464   if (F->isMaterializable())
   1465     Out << "; Materializable\n";
   1466 
   1467   if (F->isDeclaration())
   1468     Out << "declare ";
   1469   else
   1470     Out << "define ";
   1471 
   1472   PrintLinkage(F->getLinkage(), Out);
   1473   PrintVisibility(F->getVisibility(), Out);
   1474 
   1475   // Print the calling convention.
   1476   switch (F->getCallingConv()) {
   1477   case CallingConv::C: break;   // default
   1478   case CallingConv::Fast:         Out << "fastcc "; break;
   1479   case CallingConv::Cold:         Out << "coldcc "; break;
   1480   case CallingConv::X86_StdCall:  Out << "x86_stdcallcc "; break;
   1481   case CallingConv::X86_FastCall: Out << "x86_fastcallcc "; break;
   1482   case CallingConv::X86_ThisCall: Out << "x86_thiscallcc "; break;
   1483   case CallingConv::ARM_APCS:     Out << "arm_apcscc "; break;
   1484   case CallingConv::ARM_AAPCS:    Out << "arm_aapcscc "; break;
   1485   case CallingConv::ARM_AAPCS_VFP:Out << "arm_aapcs_vfpcc "; break;
   1486   case CallingConv::MSP430_INTR:  Out << "msp430_intrcc "; break;
   1487   case CallingConv::PTX_Kernel:   Out << "ptx_kernel "; break;
   1488   case CallingConv::PTX_Device:   Out << "ptx_device "; break;
   1489   default: Out << "cc" << F->getCallingConv() << " "; break;
   1490   }
   1491 
   1492   FunctionType *FT = F->getFunctionType();
   1493   const AttrListPtr &Attrs = F->getAttributes();
   1494   Attributes RetAttrs = Attrs.getRetAttributes();
   1495   if (RetAttrs != Attribute::None)
   1496     Out <<  Attribute::getAsString(Attrs.getRetAttributes()) << ' ';
   1497   TypePrinter.print(F->getReturnType(), Out);
   1498   Out << ' ';
   1499   WriteAsOperandInternal(Out, F, &TypePrinter, &Machine, F->getParent());
   1500   Out << '(';
   1501   Machine.incorporateFunction(F);
   1502 
   1503   // Loop over the arguments, printing them...
   1504 
   1505   unsigned Idx = 1;
   1506   if (!F->isDeclaration()) {
   1507     // If this isn't a declaration, print the argument names as well.
   1508     for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
   1509          I != E; ++I) {
   1510       // Insert commas as we go... the first arg doesn't get a comma
   1511       if (I != F->arg_begin()) Out << ", ";
   1512       printArgument(I, Attrs.getParamAttributes(Idx));
   1513       Idx++;
   1514     }
   1515   } else {
   1516     // Otherwise, print the types from the function type.
   1517     for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
   1518       // Insert commas as we go... the first arg doesn't get a comma
   1519       if (i) Out << ", ";
   1520 
   1521       // Output type...
   1522       TypePrinter.print(FT->getParamType(i), Out);
   1523 
   1524       Attributes ArgAttrs = Attrs.getParamAttributes(i+1);
   1525       if (ArgAttrs != Attribute::None)
   1526         Out << ' ' << Attribute::getAsString(ArgAttrs);
   1527     }
   1528   }
   1529 
   1530   // Finish printing arguments...
   1531   if (FT->isVarArg()) {
   1532     if (FT->getNumParams()) Out << ", ";
   1533     Out << "...";  // Output varargs portion of signature!
   1534   }
   1535   Out << ')';
   1536   if (F->hasUnnamedAddr())
   1537     Out << " unnamed_addr";
   1538   Attributes FnAttrs = Attrs.getFnAttributes();
   1539   if (FnAttrs != Attribute::None)
   1540     Out << ' ' << Attribute::getAsString(Attrs.getFnAttributes());
   1541   if (F->hasSection()) {
   1542     Out << " section \"";
   1543     PrintEscapedString(F->getSection(), Out);
   1544     Out << '"';
   1545   }
   1546   if (F->getAlignment())
   1547     Out << " align " << F->getAlignment();
   1548   if (F->hasGC())
   1549     Out << " gc \"" << F->getGC() << '"';
   1550   if (F->isDeclaration()) {
   1551     Out << '\n';
   1552   } else {
   1553     Out << " {";
   1554     // Output all of the function's basic blocks.
   1555     for (Function::const_iterator I = F->begin(), E = F->end(); I != E; ++I)
   1556       printBasicBlock(I);
   1557 
   1558     Out << "}\n";
   1559   }
   1560 
   1561   Machine.purgeFunction();
   1562 }
   1563 
   1564 /// printArgument - This member is called for every argument that is passed into
   1565 /// the function.  Simply print it out
   1566 ///
   1567 void AssemblyWriter::printArgument(const Argument *Arg,
   1568                                    Attributes Attrs) {
   1569   // Output type...
   1570   TypePrinter.print(Arg->getType(), Out);
   1571 
   1572   // Output parameter attributes list
   1573   if (Attrs != Attribute::None)
   1574     Out << ' ' << Attribute::getAsString(Attrs);
   1575 
   1576   // Output name, if available...
   1577   if (Arg->hasName()) {
   1578     Out << ' ';
   1579     PrintLLVMName(Out, Arg);
   1580   }
   1581 }
   1582 
   1583 /// printBasicBlock - This member is called for each basic block in a method.
   1584 ///
   1585 void AssemblyWriter::printBasicBlock(const BasicBlock *BB) {
   1586   if (BB->hasName()) {              // Print out the label if it exists...
   1587     Out << "\n";
   1588     PrintLLVMName(Out, BB->getName(), LabelPrefix);
   1589     Out << ':';
   1590   } else if (!BB->use_empty()) {      // Don't print block # of no uses...
   1591     Out << "\n; <label>:";
   1592     int Slot = Machine.getLocalSlot(BB);
   1593     if (Slot != -1)
   1594       Out << Slot;
   1595     else
   1596       Out << "<badref>";
   1597   }
   1598 
   1599   if (BB->getParent() == 0) {
   1600     Out.PadToColumn(50);
   1601     Out << "; Error: Block without parent!";
   1602   } else if (BB != &BB->getParent()->getEntryBlock()) {  // Not the entry block?
   1603     // Output predecessors for the block.
   1604     Out.PadToColumn(50);
   1605     Out << ";";
   1606     const_pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
   1607 
   1608     if (PI == PE) {
   1609       Out << " No predecessors!";
   1610     } else {
   1611       Out << " preds = ";
   1612       writeOperand(*PI, false);
   1613       for (++PI; PI != PE; ++PI) {
   1614         Out << ", ";
   1615         writeOperand(*PI, false);
   1616       }
   1617     }
   1618   }
   1619 
   1620   Out << "\n";
   1621 
   1622   if (AnnotationWriter) AnnotationWriter->emitBasicBlockStartAnnot(BB, Out);
   1623 
   1624   // Output all of the instructions in the basic block...
   1625   for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
   1626     printInstruction(*I);
   1627     Out << '\n';
   1628   }
   1629 
   1630   if (AnnotationWriter) AnnotationWriter->emitBasicBlockEndAnnot(BB, Out);
   1631 }
   1632 
   1633 /// printInfoComment - Print a little comment after the instruction indicating
   1634 /// which slot it occupies.
   1635 ///
   1636 void AssemblyWriter::printInfoComment(const Value &V) {
   1637   if (AnnotationWriter) {
   1638     AnnotationWriter->printInfoComment(V, Out);
   1639     return;
   1640   }
   1641 }
   1642 
   1643 // This member is called for each Instruction in a function..
   1644 void AssemblyWriter::printInstruction(const Instruction &I) {
   1645   if (AnnotationWriter) AnnotationWriter->emitInstructionAnnot(&I, Out);
   1646 
   1647   // Print out indentation for an instruction.
   1648   Out << "  ";
   1649 
   1650   // Print out name if it exists...
   1651   if (I.hasName()) {
   1652     PrintLLVMName(Out, &I);
   1653     Out << " = ";
   1654   } else if (!I.getType()->isVoidTy()) {
   1655     // Print out the def slot taken.
   1656     int SlotNum = Machine.getLocalSlot(&I);
   1657     if (SlotNum == -1)
   1658       Out << "<badref> = ";
   1659     else
   1660       Out << '%' << SlotNum << " = ";
   1661   }
   1662 
   1663   if (isa<CallInst>(I) && cast<CallInst>(I).isTailCall())
   1664     Out << "tail ";
   1665 
   1666   // Print out the opcode...
   1667   Out << I.getOpcodeName();
   1668 
   1669   // If this is an atomic load or store, print out the atomic marker.
   1670   if ((isa<LoadInst>(I)  && cast<LoadInst>(I).isAtomic()) ||
   1671       (isa<StoreInst>(I) && cast<StoreInst>(I).isAtomic()))
   1672     Out << " atomic";
   1673 
   1674   // If this is a volatile operation, print out the volatile marker.
   1675   if ((isa<LoadInst>(I)  && cast<LoadInst>(I).isVolatile()) ||
   1676       (isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile()) ||
   1677       (isa<AtomicCmpXchgInst>(I) && cast<AtomicCmpXchgInst>(I).isVolatile()) ||
   1678       (isa<AtomicRMWInst>(I) && cast<AtomicRMWInst>(I).isVolatile()))
   1679     Out << " volatile";
   1680 
   1681   // Print out optimization information.
   1682   WriteOptimizationInfo(Out, &I);
   1683 
   1684   // Print out the compare instruction predicates
   1685   if (const CmpInst *CI = dyn_cast<CmpInst>(&I))
   1686     Out << ' ' << getPredicateText(CI->getPredicate());
   1687 
   1688   // Print out the atomicrmw operation
   1689   if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(&I))
   1690     writeAtomicRMWOperation(Out, RMWI->getOperation());
   1691 
   1692   // Print out the type of the operands...
   1693   const Value *Operand = I.getNumOperands() ? I.getOperand(0) : 0;
   1694 
   1695   // Special case conditional branches to swizzle the condition out to the front
   1696   if (isa<BranchInst>(I) && cast<BranchInst>(I).isConditional()) {
   1697     BranchInst &BI(cast<BranchInst>(I));
   1698     Out << ' ';
   1699     writeOperand(BI.getCondition(), true);
   1700     Out << ", ";
   1701     writeOperand(BI.getSuccessor(0), true);
   1702     Out << ", ";
   1703     writeOperand(BI.getSuccessor(1), true);
   1704 
   1705   } else if (isa<SwitchInst>(I)) {
   1706     SwitchInst& SI(cast<SwitchInst>(I));
   1707     // Special case switch instruction to get formatting nice and correct.
   1708     Out << ' ';
   1709     writeOperand(SI.getCondition(), true);
   1710     Out << ", ";
   1711     writeOperand(SI.getDefaultDest(), true);
   1712     Out << " [";
   1713     // Skip the first item since that's the default case.
   1714     unsigned NumCases = SI.getNumCases();
   1715     for (unsigned i = 1; i < NumCases; ++i) {
   1716       Out << "\n    ";
   1717       writeOperand(SI.getCaseValue(i), true);
   1718       Out << ", ";
   1719       writeOperand(SI.getSuccessor(i), true);
   1720     }
   1721     Out << "\n  ]";
   1722   } else if (isa<IndirectBrInst>(I)) {
   1723     // Special case indirectbr instruction to get formatting nice and correct.
   1724     Out << ' ';
   1725     writeOperand(Operand, true);
   1726     Out << ", [";
   1727 
   1728     for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
   1729       if (i != 1)
   1730         Out << ", ";
   1731       writeOperand(I.getOperand(i), true);
   1732     }
   1733     Out << ']';
   1734   } else if (const PHINode *PN = dyn_cast<PHINode>(&I)) {
   1735     Out << ' ';
   1736     TypePrinter.print(I.getType(), Out);
   1737     Out << ' ';
   1738 
   1739     for (unsigned op = 0, Eop = PN->getNumIncomingValues(); op < Eop; ++op) {
   1740       if (op) Out << ", ";
   1741       Out << "[ ";
   1742       writeOperand(PN->getIncomingValue(op), false); Out << ", ";
   1743       writeOperand(PN->getIncomingBlock(op), false); Out << " ]";
   1744     }
   1745   } else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&I)) {
   1746     Out << ' ';
   1747     writeOperand(I.getOperand(0), true);
   1748     for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
   1749       Out << ", " << *i;
   1750   } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&I)) {
   1751     Out << ' ';
   1752     writeOperand(I.getOperand(0), true); Out << ", ";
   1753     writeOperand(I.getOperand(1), true);
   1754     for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
   1755       Out << ", " << *i;
   1756   } else if (const LandingPadInst *LPI = dyn_cast<LandingPadInst>(&I)) {
   1757     Out << ' ';
   1758     TypePrinter.print(I.getType(), Out);
   1759     Out << " personality ";
   1760     writeOperand(I.getOperand(0), true); Out << '\n';
   1761 
   1762     if (LPI->isCleanup())
   1763       Out << "          cleanup";
   1764 
   1765     for (unsigned i = 0, e = LPI->getNumClauses(); i != e; ++i) {
   1766       if (i != 0 || LPI->isCleanup()) Out << "\n";
   1767       if (LPI->isCatch(i))
   1768         Out << "          catch ";
   1769       else
   1770         Out << "          filter ";
   1771 
   1772       writeOperand(LPI->getClause(i), true);
   1773     }
   1774   } else if (isa<ReturnInst>(I) && !Operand) {
   1775     Out << " void";
   1776   } else if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
   1777     // Print the calling convention being used.
   1778     switch (CI->getCallingConv()) {
   1779     case CallingConv::C: break;   // default
   1780     case CallingConv::Fast:  Out << " fastcc"; break;
   1781     case CallingConv::Cold:  Out << " coldcc"; break;
   1782     case CallingConv::X86_StdCall:  Out << " x86_stdcallcc"; break;
   1783     case CallingConv::X86_FastCall: Out << " x86_fastcallcc"; break;
   1784     case CallingConv::X86_ThisCall: Out << " x86_thiscallcc"; break;
   1785     case CallingConv::ARM_APCS:     Out << " arm_apcscc "; break;
   1786     case CallingConv::ARM_AAPCS:    Out << " arm_aapcscc "; break;
   1787     case CallingConv::ARM_AAPCS_VFP:Out << " arm_aapcs_vfpcc "; break;
   1788     case CallingConv::MSP430_INTR:  Out << " msp430_intrcc "; break;
   1789     case CallingConv::PTX_Kernel:   Out << " ptx_kernel"; break;
   1790     case CallingConv::PTX_Device:   Out << " ptx_device"; break;
   1791     default: Out << " cc" << CI->getCallingConv(); break;
   1792     }
   1793 
   1794     Operand = CI->getCalledValue();
   1795     PointerType *PTy = cast<PointerType>(Operand->getType());
   1796     FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
   1797     Type *RetTy = FTy->getReturnType();
   1798     const AttrListPtr &PAL = CI->getAttributes();
   1799 
   1800     if (PAL.getRetAttributes() != Attribute::None)
   1801       Out << ' ' << Attribute::getAsString(PAL.getRetAttributes());
   1802 
   1803     // If possible, print out the short form of the call instruction.  We can
   1804     // only do this if the first argument is a pointer to a nonvararg function,
   1805     // and if the return type is not a pointer to a function.
   1806     //
   1807     Out << ' ';
   1808     if (!FTy->isVarArg() &&
   1809         (!RetTy->isPointerTy() ||
   1810          !cast<PointerType>(RetTy)->getElementType()->isFunctionTy())) {
   1811       TypePrinter.print(RetTy, Out);
   1812       Out << ' ';
   1813       writeOperand(Operand, false);
   1814     } else {
   1815       writeOperand(Operand, true);
   1816     }
   1817     Out << '(';
   1818     for (unsigned op = 0, Eop = CI->getNumArgOperands(); op < Eop; ++op) {
   1819       if (op > 0)
   1820         Out << ", ";
   1821       writeParamOperand(CI->getArgOperand(op), PAL.getParamAttributes(op + 1));
   1822     }
   1823     Out << ')';
   1824     if (PAL.getFnAttributes() != Attribute::None)
   1825       Out << ' ' << Attribute::getAsString(PAL.getFnAttributes());
   1826   } else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
   1827     Operand = II->getCalledValue();
   1828     PointerType *PTy = cast<PointerType>(Operand->getType());
   1829     FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
   1830     Type *RetTy = FTy->getReturnType();
   1831     const AttrListPtr &PAL = II->getAttributes();
   1832 
   1833     // Print the calling convention being used.
   1834     switch (II->getCallingConv()) {
   1835     case CallingConv::C: break;   // default
   1836     case CallingConv::Fast:  Out << " fastcc"; break;
   1837     case CallingConv::Cold:  Out << " coldcc"; break;
   1838     case CallingConv::X86_StdCall:  Out << " x86_stdcallcc"; break;
   1839     case CallingConv::X86_FastCall: Out << " x86_fastcallcc"; break;
   1840     case CallingConv::X86_ThisCall: Out << " x86_thiscallcc"; break;
   1841     case CallingConv::ARM_APCS:     Out << " arm_apcscc "; break;
   1842     case CallingConv::ARM_AAPCS:    Out << " arm_aapcscc "; break;
   1843     case CallingConv::ARM_AAPCS_VFP:Out << " arm_aapcs_vfpcc "; break;
   1844     case CallingConv::MSP430_INTR:  Out << " msp430_intrcc "; break;
   1845     case CallingConv::PTX_Kernel:   Out << " ptx_kernel"; break;
   1846     case CallingConv::PTX_Device:   Out << " ptx_device"; break;
   1847     default: Out << " cc" << II->getCallingConv(); break;
   1848     }
   1849 
   1850     if (PAL.getRetAttributes() != Attribute::None)
   1851       Out << ' ' << Attribute::getAsString(PAL.getRetAttributes());
   1852 
   1853     // If possible, print out the short form of the invoke instruction. We can
   1854     // only do this if the first argument is a pointer to a nonvararg function,
   1855     // and if the return type is not a pointer to a function.
   1856     //
   1857     Out << ' ';
   1858     if (!FTy->isVarArg() &&
   1859         (!RetTy->isPointerTy() ||
   1860          !cast<PointerType>(RetTy)->getElementType()->isFunctionTy())) {
   1861       TypePrinter.print(RetTy, Out);
   1862       Out << ' ';
   1863       writeOperand(Operand, false);
   1864     } else {
   1865       writeOperand(Operand, true);
   1866     }
   1867     Out << '(';
   1868     for (unsigned op = 0, Eop = II->getNumArgOperands(); op < Eop; ++op) {
   1869       if (op)
   1870         Out << ", ";
   1871       writeParamOperand(II->getArgOperand(op), PAL.getParamAttributes(op + 1));
   1872     }
   1873 
   1874     Out << ')';
   1875     if (PAL.getFnAttributes() != Attribute::None)
   1876       Out << ' ' << Attribute::getAsString(PAL.getFnAttributes());
   1877 
   1878     Out << "\n          to ";
   1879     writeOperand(II->getNormalDest(), true);
   1880     Out << " unwind ";
   1881     writeOperand(II->getUnwindDest(), true);
   1882 
   1883   } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
   1884     Out << ' ';
   1885     TypePrinter.print(AI->getType()->getElementType(), Out);
   1886     if (!AI->getArraySize() || AI->isArrayAllocation()) {
   1887       Out << ", ";
   1888       writeOperand(AI->getArraySize(), true);
   1889     }
   1890     if (AI->getAlignment()) {
   1891       Out << ", align " << AI->getAlignment();
   1892     }
   1893   } else if (isa<CastInst>(I)) {
   1894     if (Operand) {
   1895       Out << ' ';
   1896       writeOperand(Operand, true);   // Work with broken code
   1897     }
   1898     Out << " to ";
   1899     TypePrinter.print(I.getType(), Out);
   1900   } else if (isa<VAArgInst>(I)) {
   1901     if (Operand) {
   1902       Out << ' ';
   1903       writeOperand(Operand, true);   // Work with broken code
   1904     }
   1905     Out << ", ";
   1906     TypePrinter.print(I.getType(), Out);
   1907   } else if (Operand) {   // Print the normal way.
   1908 
   1909     // PrintAllTypes - Instructions who have operands of all the same type
   1910     // omit the type from all but the first operand.  If the instruction has
   1911     // different type operands (for example br), then they are all printed.
   1912     bool PrintAllTypes = false;
   1913     Type *TheType = Operand->getType();
   1914 
   1915     // Select, Store and ShuffleVector always print all types.
   1916     if (isa<SelectInst>(I) || isa<StoreInst>(I) || isa<ShuffleVectorInst>(I)
   1917         || isa<ReturnInst>(I)) {
   1918       PrintAllTypes = true;
   1919     } else {
   1920       for (unsigned i = 1, E = I.getNumOperands(); i != E; ++i) {
   1921         Operand = I.getOperand(i);
   1922         // note that Operand shouldn't be null, but the test helps make dump()
   1923         // more tolerant of malformed IR
   1924         if (Operand && Operand->getType() != TheType) {
   1925           PrintAllTypes = true;    // We have differing types!  Print them all!
   1926           break;
   1927         }
   1928       }
   1929     }
   1930 
   1931     if (!PrintAllTypes) {
   1932       Out << ' ';
   1933       TypePrinter.print(TheType, Out);
   1934     }
   1935 
   1936     Out << ' ';
   1937     for (unsigned i = 0, E = I.getNumOperands(); i != E; ++i) {
   1938       if (i) Out << ", ";
   1939       writeOperand(I.getOperand(i), PrintAllTypes);
   1940     }
   1941   }
   1942 
   1943   // Print atomic ordering/alignment for memory operations
   1944   if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) {
   1945     if (LI->isAtomic())
   1946       writeAtomic(LI->getOrdering(), LI->getSynchScope());
   1947     if (LI->getAlignment())
   1948       Out << ", align " << LI->getAlignment();
   1949   } else if (const StoreInst *SI = dyn_cast<StoreInst>(&I)) {
   1950     if (SI->isAtomic())
   1951       writeAtomic(SI->getOrdering(), SI->getSynchScope());
   1952     if (SI->getAlignment())
   1953       Out << ", align " << SI->getAlignment();
   1954   } else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(&I)) {
   1955     writeAtomic(CXI->getOrdering(), CXI->getSynchScope());
   1956   } else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(&I)) {
   1957     writeAtomic(RMWI->getOrdering(), RMWI->getSynchScope());
   1958   } else if (const FenceInst *FI = dyn_cast<FenceInst>(&I)) {
   1959     writeAtomic(FI->getOrdering(), FI->getSynchScope());
   1960   }
   1961 
   1962   // Print Metadata info.
   1963   SmallVector<std::pair<unsigned, MDNode*>, 4> InstMD;
   1964   I.getAllMetadata(InstMD);
   1965   if (!InstMD.empty()) {
   1966     SmallVector<StringRef, 8> MDNames;
   1967     I.getType()->getContext().getMDKindNames(MDNames);
   1968     for (unsigned i = 0, e = InstMD.size(); i != e; ++i) {
   1969       unsigned Kind = InstMD[i].first;
   1970        if (Kind < MDNames.size()) {
   1971          Out << ", !" << MDNames[Kind];
   1972       } else {
   1973         Out << ", !<unknown kind #" << Kind << ">";
   1974       }
   1975       Out << ' ';
   1976       WriteAsOperandInternal(Out, InstMD[i].second, &TypePrinter, &Machine,
   1977                              TheModule);
   1978     }
   1979   }
   1980   printInfoComment(I);
   1981 }
   1982 
   1983 static void WriteMDNodeComment(const MDNode *Node,
   1984                                formatted_raw_ostream &Out) {
   1985   if (Node->getNumOperands() < 1)
   1986     return;
   1987   ConstantInt *CI = dyn_cast_or_null<ConstantInt>(Node->getOperand(0));
   1988   if (!CI) return;
   1989   APInt Val = CI->getValue();
   1990   APInt Tag = Val & ~APInt(Val.getBitWidth(), LLVMDebugVersionMask);
   1991   if (Val.ult(LLVMDebugVersion))
   1992     return;
   1993 
   1994   Out.PadToColumn(50);
   1995   if (Tag == dwarf::DW_TAG_user_base)
   1996     Out << "; [ DW_TAG_user_base ]";
   1997   else if (Tag.isIntN(32)) {
   1998     if (const char *TagName = dwarf::TagString(Tag.getZExtValue()))
   1999       Out << "; [ " << TagName << " ]";
   2000   }
   2001 }
   2002 
   2003 void AssemblyWriter::writeAllMDNodes() {
   2004   SmallVector<const MDNode *, 16> Nodes;
   2005   Nodes.resize(Machine.mdn_size());
   2006   for (SlotTracker::mdn_iterator I = Machine.mdn_begin(), E = Machine.mdn_end();
   2007        I != E; ++I)
   2008     Nodes[I->second] = cast<MDNode>(I->first);
   2009 
   2010   for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
   2011     Out << '!' << i << " = metadata ";
   2012     printMDNodeBody(Nodes[i]);
   2013   }
   2014 }
   2015 
   2016 void AssemblyWriter::printMDNodeBody(const MDNode *Node) {
   2017   WriteMDNodeBodyInternal(Out, Node, &TypePrinter, &Machine, TheModule);
   2018   WriteMDNodeComment(Node, Out);
   2019   Out << "\n";
   2020 }
   2021 
   2022 //===----------------------------------------------------------------------===//
   2023 //                       External Interface declarations
   2024 //===----------------------------------------------------------------------===//
   2025 
   2026 void Module::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW) const {
   2027   SlotTracker SlotTable(this);
   2028   formatted_raw_ostream OS(ROS);
   2029   AssemblyWriter W(OS, SlotTable, this, AAW);
   2030   W.printModule(this);
   2031 }
   2032 
   2033 void NamedMDNode::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW) const {
   2034   SlotTracker SlotTable(getParent());
   2035   formatted_raw_ostream OS(ROS);
   2036   AssemblyWriter W(OS, SlotTable, getParent(), AAW);
   2037   W.printNamedMDNode(this);
   2038 }
   2039 
   2040 void Type::print(raw_ostream &OS) const {
   2041   if (this == 0) {
   2042     OS << "<null Type>";
   2043     return;
   2044   }
   2045   TypePrinting TP;
   2046   TP.print(const_cast<Type*>(this), OS);
   2047 
   2048   // If the type is a named struct type, print the body as well.
   2049   if (StructType *STy = dyn_cast<StructType>(const_cast<Type*>(this)))
   2050     if (!STy->isLiteral()) {
   2051       OS << " = type ";
   2052       TP.printStructBody(STy, OS);
   2053     }
   2054 }
   2055 
   2056 void Value::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW) const {
   2057   if (this == 0) {
   2058     ROS << "printing a <null> value\n";
   2059     return;
   2060   }
   2061   formatted_raw_ostream OS(ROS);
   2062   if (const Instruction *I = dyn_cast<Instruction>(this)) {
   2063     const Function *F = I->getParent() ? I->getParent()->getParent() : 0;
   2064     SlotTracker SlotTable(F);
   2065     AssemblyWriter W(OS, SlotTable, getModuleFromVal(I), AAW);
   2066     W.printInstruction(*I);
   2067   } else if (const BasicBlock *BB = dyn_cast<BasicBlock>(this)) {
   2068     SlotTracker SlotTable(BB->getParent());
   2069     AssemblyWriter W(OS, SlotTable, getModuleFromVal(BB), AAW);
   2070     W.printBasicBlock(BB);
   2071   } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) {
   2072     SlotTracker SlotTable(GV->getParent());
   2073     AssemblyWriter W(OS, SlotTable, GV->getParent(), AAW);
   2074     if (const GlobalVariable *V = dyn_cast<GlobalVariable>(GV))
   2075       W.printGlobal(V);
   2076     else if (const Function *F = dyn_cast<Function>(GV))
   2077       W.printFunction(F);
   2078     else
   2079       W.printAlias(cast<GlobalAlias>(GV));
   2080   } else if (const MDNode *N = dyn_cast<MDNode>(this)) {
   2081     const Function *F = N->getFunction();
   2082     SlotTracker SlotTable(F);
   2083     AssemblyWriter W(OS, SlotTable, F ? F->getParent() : 0, AAW);
   2084     W.printMDNodeBody(N);
   2085   } else if (const Constant *C = dyn_cast<Constant>(this)) {
   2086     TypePrinting TypePrinter;
   2087     TypePrinter.print(C->getType(), OS);
   2088     OS << ' ';
   2089     WriteConstantInternal(OS, C, TypePrinter, 0, 0);
   2090   } else if (isa<InlineAsm>(this) || isa<MDString>(this) ||
   2091              isa<Argument>(this)) {
   2092     WriteAsOperand(OS, this, true, 0);
   2093   } else {
   2094     // Otherwise we don't know what it is. Call the virtual function to
   2095     // allow a subclass to print itself.
   2096     printCustom(OS);
   2097   }
   2098 }
   2099 
   2100 // Value::printCustom - subclasses should override this to implement printing.
   2101 void Value::printCustom(raw_ostream &OS) const {
   2102   llvm_unreachable("Unknown value to print out!");
   2103 }
   2104 
   2105 // Value::dump - allow easy printing of Values from the debugger.
   2106 void Value::dump() const { print(dbgs()); dbgs() << '\n'; }
   2107 
   2108 // Type::dump - allow easy printing of Types from the debugger.
   2109 void Type::dump() const { print(dbgs()); }
   2110 
   2111 // Module::dump() - Allow printing of Modules from the debugger.
   2112 void Module::dump() const { print(dbgs(), 0); }
   2113