1 /* 2 * Copyright (C) 2007 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 // #define LOG_NDEBUG 0 18 #define LOG_TAG "libutils.threads" 19 20 #include <utils/threads.h> 21 #include <utils/Log.h> 22 23 #include <cutils/sched_policy.h> 24 #include <cutils/properties.h> 25 26 #include <stdio.h> 27 #include <stdlib.h> 28 #include <memory.h> 29 #include <errno.h> 30 #include <assert.h> 31 #include <unistd.h> 32 33 #if defined(HAVE_PTHREADS) 34 # include <pthread.h> 35 # include <sched.h> 36 # include <sys/resource.h> 37 #elif defined(HAVE_WIN32_THREADS) 38 # include <windows.h> 39 # include <stdint.h> 40 # include <process.h> 41 # define HAVE_CREATETHREAD // Cygwin, vs. HAVE__BEGINTHREADEX for MinGW 42 #endif 43 44 #if defined(HAVE_PRCTL) 45 #include <sys/prctl.h> 46 #endif 47 48 /* 49 * =========================================================================== 50 * Thread wrappers 51 * =========================================================================== 52 */ 53 54 using namespace android; 55 56 // ---------------------------------------------------------------------------- 57 #if defined(HAVE_PTHREADS) 58 // ---------------------------------------------------------------------------- 59 60 /* 61 * Create and run a new thread. 62 * 63 * We create it "detached", so it cleans up after itself. 64 */ 65 66 typedef void* (*android_pthread_entry)(void*); 67 68 static pthread_once_t gDoSchedulingGroupOnce = PTHREAD_ONCE_INIT; 69 static bool gDoSchedulingGroup = true; 70 71 static void checkDoSchedulingGroup(void) { 72 char buf[PROPERTY_VALUE_MAX]; 73 int len = property_get("debug.sys.noschedgroups", buf, ""); 74 if (len > 0) { 75 int temp; 76 if (sscanf(buf, "%d", &temp) == 1) { 77 gDoSchedulingGroup = temp == 0; 78 } 79 } 80 } 81 82 struct thread_data_t { 83 thread_func_t entryFunction; 84 void* userData; 85 int priority; 86 char * threadName; 87 88 // we use this trampoline when we need to set the priority with 89 // nice/setpriority. 90 static int trampoline(const thread_data_t* t) { 91 thread_func_t f = t->entryFunction; 92 void* u = t->userData; 93 int prio = t->priority; 94 char * name = t->threadName; 95 delete t; 96 setpriority(PRIO_PROCESS, 0, prio); 97 pthread_once(&gDoSchedulingGroupOnce, checkDoSchedulingGroup); 98 if (gDoSchedulingGroup) { 99 if (prio >= ANDROID_PRIORITY_BACKGROUND) { 100 set_sched_policy(androidGetTid(), SP_BACKGROUND); 101 } else { 102 set_sched_policy(androidGetTid(), SP_FOREGROUND); 103 } 104 } 105 106 if (name) { 107 #if defined(HAVE_PRCTL) 108 // Mac OS doesn't have this, and we build libutil for the host too 109 int hasAt = 0; 110 int hasDot = 0; 111 char *s = name; 112 while (*s) { 113 if (*s == '.') hasDot = 1; 114 else if (*s == '@') hasAt = 1; 115 s++; 116 } 117 int len = s - name; 118 if (len < 15 || hasAt || !hasDot) { 119 s = name; 120 } else { 121 s = name + len - 15; 122 } 123 prctl(PR_SET_NAME, (unsigned long) s, 0, 0, 0); 124 #endif 125 free(name); 126 } 127 return f(u); 128 } 129 }; 130 131 int androidCreateRawThreadEtc(android_thread_func_t entryFunction, 132 void *userData, 133 const char* threadName, 134 int32_t threadPriority, 135 size_t threadStackSize, 136 android_thread_id_t *threadId) 137 { 138 pthread_attr_t attr; 139 pthread_attr_init(&attr); 140 pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED); 141 142 #ifdef HAVE_ANDROID_OS /* valgrind is rejecting RT-priority create reqs */ 143 if (threadPriority != PRIORITY_DEFAULT || threadName != NULL) { 144 // We could avoid the trampoline if there was a way to get to the 145 // android_thread_id_t (pid) from pthread_t 146 thread_data_t* t = new thread_data_t; 147 t->priority = threadPriority; 148 t->threadName = threadName ? strdup(threadName) : NULL; 149 t->entryFunction = entryFunction; 150 t->userData = userData; 151 entryFunction = (android_thread_func_t)&thread_data_t::trampoline; 152 userData = t; 153 } 154 #endif 155 156 if (threadStackSize) { 157 pthread_attr_setstacksize(&attr, threadStackSize); 158 } 159 160 errno = 0; 161 pthread_t thread; 162 int result = pthread_create(&thread, &attr, 163 (android_pthread_entry)entryFunction, userData); 164 pthread_attr_destroy(&attr); 165 if (result != 0) { 166 LOGE("androidCreateRawThreadEtc failed (entry=%p, res=%d, errno=%d)\n" 167 "(android threadPriority=%d)", 168 entryFunction, result, errno, threadPriority); 169 return 0; 170 } 171 172 // Note that *threadID is directly available to the parent only, as it is 173 // assigned after the child starts. Use memory barrier / lock if the child 174 // or other threads also need access. 175 if (threadId != NULL) { 176 *threadId = (android_thread_id_t)thread; // XXX: this is not portable 177 } 178 return 1; 179 } 180 181 android_thread_id_t androidGetThreadId() 182 { 183 return (android_thread_id_t)pthread_self(); 184 } 185 186 // ---------------------------------------------------------------------------- 187 #elif defined(HAVE_WIN32_THREADS) 188 // ---------------------------------------------------------------------------- 189 190 /* 191 * Trampoline to make us __stdcall-compliant. 192 * 193 * We're expected to delete "vDetails" when we're done. 194 */ 195 struct threadDetails { 196 int (*func)(void*); 197 void* arg; 198 }; 199 static __stdcall unsigned int threadIntermediary(void* vDetails) 200 { 201 struct threadDetails* pDetails = (struct threadDetails*) vDetails; 202 int result; 203 204 result = (*(pDetails->func))(pDetails->arg); 205 206 delete pDetails; 207 208 LOG(LOG_VERBOSE, "thread", "thread exiting\n"); 209 return (unsigned int) result; 210 } 211 212 /* 213 * Create and run a new thread. 214 */ 215 static bool doCreateThread(android_thread_func_t fn, void* arg, android_thread_id_t *id) 216 { 217 HANDLE hThread; 218 struct threadDetails* pDetails = new threadDetails; // must be on heap 219 unsigned int thrdaddr; 220 221 pDetails->func = fn; 222 pDetails->arg = arg; 223 224 #if defined(HAVE__BEGINTHREADEX) 225 hThread = (HANDLE) _beginthreadex(NULL, 0, threadIntermediary, pDetails, 0, 226 &thrdaddr); 227 if (hThread == 0) 228 #elif defined(HAVE_CREATETHREAD) 229 hThread = CreateThread(NULL, 0, 230 (LPTHREAD_START_ROUTINE) threadIntermediary, 231 (void*) pDetails, 0, (DWORD*) &thrdaddr); 232 if (hThread == NULL) 233 #endif 234 { 235 LOG(LOG_WARN, "thread", "WARNING: thread create failed\n"); 236 return false; 237 } 238 239 #if defined(HAVE_CREATETHREAD) 240 /* close the management handle */ 241 CloseHandle(hThread); 242 #endif 243 244 if (id != NULL) { 245 *id = (android_thread_id_t)thrdaddr; 246 } 247 248 return true; 249 } 250 251 int androidCreateRawThreadEtc(android_thread_func_t fn, 252 void *userData, 253 const char* threadName, 254 int32_t threadPriority, 255 size_t threadStackSize, 256 android_thread_id_t *threadId) 257 { 258 return doCreateThread( fn, userData, threadId); 259 } 260 261 android_thread_id_t androidGetThreadId() 262 { 263 return (android_thread_id_t)GetCurrentThreadId(); 264 } 265 266 // ---------------------------------------------------------------------------- 267 #else 268 #error "Threads not supported" 269 #endif 270 271 // ---------------------------------------------------------------------------- 272 273 int androidCreateThread(android_thread_func_t fn, void* arg) 274 { 275 return createThreadEtc(fn, arg); 276 } 277 278 int androidCreateThreadGetID(android_thread_func_t fn, void *arg, android_thread_id_t *id) 279 { 280 return createThreadEtc(fn, arg, "android:unnamed_thread", 281 PRIORITY_DEFAULT, 0, id); 282 } 283 284 static android_create_thread_fn gCreateThreadFn = androidCreateRawThreadEtc; 285 286 int androidCreateThreadEtc(android_thread_func_t entryFunction, 287 void *userData, 288 const char* threadName, 289 int32_t threadPriority, 290 size_t threadStackSize, 291 android_thread_id_t *threadId) 292 { 293 return gCreateThreadFn(entryFunction, userData, threadName, 294 threadPriority, threadStackSize, threadId); 295 } 296 297 void androidSetCreateThreadFunc(android_create_thread_fn func) 298 { 299 gCreateThreadFn = func; 300 } 301 302 pid_t androidGetTid() 303 { 304 #ifdef HAVE_GETTID 305 return gettid(); 306 #else 307 return getpid(); 308 #endif 309 } 310 311 int androidSetThreadSchedulingGroup(pid_t tid, int grp) 312 { 313 if (grp > ANDROID_TGROUP_MAX || grp < 0) { 314 return BAD_VALUE; 315 } 316 317 #if defined(HAVE_PTHREADS) 318 pthread_once(&gDoSchedulingGroupOnce, checkDoSchedulingGroup); 319 if (gDoSchedulingGroup) { 320 // set_sched_policy does not support tid == 0 321 if (tid == 0) { 322 tid = androidGetTid(); 323 } 324 if (set_sched_policy(tid, (grp == ANDROID_TGROUP_BG_NONINTERACT) ? 325 SP_BACKGROUND : SP_FOREGROUND)) { 326 return PERMISSION_DENIED; 327 } 328 } 329 #endif 330 331 return NO_ERROR; 332 } 333 334 int androidSetThreadPriority(pid_t tid, int pri) 335 { 336 int rc = 0; 337 338 #if defined(HAVE_PTHREADS) 339 int lasterr = 0; 340 341 pthread_once(&gDoSchedulingGroupOnce, checkDoSchedulingGroup); 342 if (gDoSchedulingGroup) { 343 // set_sched_policy does not support tid == 0 344 int policy_tid; 345 if (tid == 0) { 346 policy_tid = androidGetTid(); 347 } else { 348 policy_tid = tid; 349 } 350 if (pri >= ANDROID_PRIORITY_BACKGROUND) { 351 rc = set_sched_policy(policy_tid, SP_BACKGROUND); 352 } else if (getpriority(PRIO_PROCESS, tid) >= ANDROID_PRIORITY_BACKGROUND) { 353 rc = set_sched_policy(policy_tid, SP_FOREGROUND); 354 } 355 } 356 357 if (rc) { 358 lasterr = errno; 359 } 360 361 if (setpriority(PRIO_PROCESS, tid, pri) < 0) { 362 rc = INVALID_OPERATION; 363 } else { 364 errno = lasterr; 365 } 366 #endif 367 368 return rc; 369 } 370 371 int androidGetThreadPriority(pid_t tid) { 372 #if defined(HAVE_PTHREADS) 373 return getpriority(PRIO_PROCESS, tid); 374 #else 375 return ANDROID_PRIORITY_NORMAL; 376 #endif 377 } 378 379 int androidGetThreadSchedulingGroup(pid_t tid) 380 { 381 int ret = ANDROID_TGROUP_DEFAULT; 382 383 #if defined(HAVE_PTHREADS) 384 // convention is to not call get/set_sched_policy methods if disabled by property 385 pthread_once(&gDoSchedulingGroupOnce, checkDoSchedulingGroup); 386 if (gDoSchedulingGroup) { 387 SchedPolicy policy; 388 // get_sched_policy does not support tid == 0 389 if (tid == 0) { 390 tid = androidGetTid(); 391 } 392 if (get_sched_policy(tid, &policy) < 0) { 393 ret = INVALID_OPERATION; 394 } else { 395 switch (policy) { 396 case SP_BACKGROUND: 397 ret = ANDROID_TGROUP_BG_NONINTERACT; 398 break; 399 case SP_FOREGROUND: 400 ret = ANDROID_TGROUP_FG_BOOST; 401 break; 402 default: 403 // should not happen, as enum SchedPolicy does not have any other values 404 ret = INVALID_OPERATION; 405 break; 406 } 407 } 408 } 409 #endif 410 411 return ret; 412 } 413 414 namespace android { 415 416 /* 417 * =========================================================================== 418 * Mutex class 419 * =========================================================================== 420 */ 421 422 #if defined(HAVE_PTHREADS) 423 // implemented as inlines in threads.h 424 #elif defined(HAVE_WIN32_THREADS) 425 426 Mutex::Mutex() 427 { 428 HANDLE hMutex; 429 430 assert(sizeof(hMutex) == sizeof(mState)); 431 432 hMutex = CreateMutex(NULL, FALSE, NULL); 433 mState = (void*) hMutex; 434 } 435 436 Mutex::Mutex(const char* name) 437 { 438 // XXX: name not used for now 439 HANDLE hMutex; 440 441 assert(sizeof(hMutex) == sizeof(mState)); 442 443 hMutex = CreateMutex(NULL, FALSE, NULL); 444 mState = (void*) hMutex; 445 } 446 447 Mutex::Mutex(int type, const char* name) 448 { 449 // XXX: type and name not used for now 450 HANDLE hMutex; 451 452 assert(sizeof(hMutex) == sizeof(mState)); 453 454 hMutex = CreateMutex(NULL, FALSE, NULL); 455 mState = (void*) hMutex; 456 } 457 458 Mutex::~Mutex() 459 { 460 CloseHandle((HANDLE) mState); 461 } 462 463 status_t Mutex::lock() 464 { 465 DWORD dwWaitResult; 466 dwWaitResult = WaitForSingleObject((HANDLE) mState, INFINITE); 467 return dwWaitResult != WAIT_OBJECT_0 ? -1 : NO_ERROR; 468 } 469 470 void Mutex::unlock() 471 { 472 if (!ReleaseMutex((HANDLE) mState)) 473 LOG(LOG_WARN, "thread", "WARNING: bad result from unlocking mutex\n"); 474 } 475 476 status_t Mutex::tryLock() 477 { 478 DWORD dwWaitResult; 479 480 dwWaitResult = WaitForSingleObject((HANDLE) mState, 0); 481 if (dwWaitResult != WAIT_OBJECT_0 && dwWaitResult != WAIT_TIMEOUT) 482 LOG(LOG_WARN, "thread", "WARNING: bad result from try-locking mutex\n"); 483 return (dwWaitResult == WAIT_OBJECT_0) ? 0 : -1; 484 } 485 486 #else 487 #error "Somebody forgot to implement threads for this platform." 488 #endif 489 490 491 /* 492 * =========================================================================== 493 * Condition class 494 * =========================================================================== 495 */ 496 497 #if defined(HAVE_PTHREADS) 498 // implemented as inlines in threads.h 499 #elif defined(HAVE_WIN32_THREADS) 500 501 /* 502 * Windows doesn't have a condition variable solution. It's possible 503 * to create one, but it's easy to get it wrong. For a discussion, and 504 * the origin of this implementation, see: 505 * 506 * http://www.cs.wustl.edu/~schmidt/win32-cv-1.html 507 * 508 * The implementation shown on the page does NOT follow POSIX semantics. 509 * As an optimization they require acquiring the external mutex before 510 * calling signal() and broadcast(), whereas POSIX only requires grabbing 511 * it before calling wait(). The implementation here has been un-optimized 512 * to have the correct behavior. 513 */ 514 typedef struct WinCondition { 515 // Number of waiting threads. 516 int waitersCount; 517 518 // Serialize access to waitersCount. 519 CRITICAL_SECTION waitersCountLock; 520 521 // Semaphore used to queue up threads waiting for the condition to 522 // become signaled. 523 HANDLE sema; 524 525 // An auto-reset event used by the broadcast/signal thread to wait 526 // for all the waiting thread(s) to wake up and be released from 527 // the semaphore. 528 HANDLE waitersDone; 529 530 // This mutex wouldn't be necessary if we required that the caller 531 // lock the external mutex before calling signal() and broadcast(). 532 // I'm trying to mimic pthread semantics though. 533 HANDLE internalMutex; 534 535 // Keeps track of whether we were broadcasting or signaling. This 536 // allows us to optimize the code if we're just signaling. 537 bool wasBroadcast; 538 539 status_t wait(WinCondition* condState, HANDLE hMutex, nsecs_t* abstime) 540 { 541 // Increment the wait count, avoiding race conditions. 542 EnterCriticalSection(&condState->waitersCountLock); 543 condState->waitersCount++; 544 //printf("+++ wait: incr waitersCount to %d (tid=%ld)\n", 545 // condState->waitersCount, getThreadId()); 546 LeaveCriticalSection(&condState->waitersCountLock); 547 548 DWORD timeout = INFINITE; 549 if (abstime) { 550 nsecs_t reltime = *abstime - systemTime(); 551 if (reltime < 0) 552 reltime = 0; 553 timeout = reltime/1000000; 554 } 555 556 // Atomically release the external mutex and wait on the semaphore. 557 DWORD res = 558 SignalObjectAndWait(hMutex, condState->sema, timeout, FALSE); 559 560 //printf("+++ wait: awake (tid=%ld)\n", getThreadId()); 561 562 // Reacquire lock to avoid race conditions. 563 EnterCriticalSection(&condState->waitersCountLock); 564 565 // No longer waiting. 566 condState->waitersCount--; 567 568 // Check to see if we're the last waiter after a broadcast. 569 bool lastWaiter = (condState->wasBroadcast && condState->waitersCount == 0); 570 571 //printf("+++ wait: lastWaiter=%d (wasBc=%d wc=%d)\n", 572 // lastWaiter, condState->wasBroadcast, condState->waitersCount); 573 574 LeaveCriticalSection(&condState->waitersCountLock); 575 576 // If we're the last waiter thread during this particular broadcast 577 // then signal broadcast() that we're all awake. It'll drop the 578 // internal mutex. 579 if (lastWaiter) { 580 // Atomically signal the "waitersDone" event and wait until we 581 // can acquire the internal mutex. We want to do this in one step 582 // because it ensures that everybody is in the mutex FIFO before 583 // any thread has a chance to run. Without it, another thread 584 // could wake up, do work, and hop back in ahead of us. 585 SignalObjectAndWait(condState->waitersDone, condState->internalMutex, 586 INFINITE, FALSE); 587 } else { 588 // Grab the internal mutex. 589 WaitForSingleObject(condState->internalMutex, INFINITE); 590 } 591 592 // Release the internal and grab the external. 593 ReleaseMutex(condState->internalMutex); 594 WaitForSingleObject(hMutex, INFINITE); 595 596 return res == WAIT_OBJECT_0 ? NO_ERROR : -1; 597 } 598 } WinCondition; 599 600 /* 601 * Constructor. Set up the WinCondition stuff. 602 */ 603 Condition::Condition() 604 { 605 WinCondition* condState = new WinCondition; 606 607 condState->waitersCount = 0; 608 condState->wasBroadcast = false; 609 // semaphore: no security, initial value of 0 610 condState->sema = CreateSemaphore(NULL, 0, 0x7fffffff, NULL); 611 InitializeCriticalSection(&condState->waitersCountLock); 612 // auto-reset event, not signaled initially 613 condState->waitersDone = CreateEvent(NULL, FALSE, FALSE, NULL); 614 // used so we don't have to lock external mutex on signal/broadcast 615 condState->internalMutex = CreateMutex(NULL, FALSE, NULL); 616 617 mState = condState; 618 } 619 620 /* 621 * Destructor. Free Windows resources as well as our allocated storage. 622 */ 623 Condition::~Condition() 624 { 625 WinCondition* condState = (WinCondition*) mState; 626 if (condState != NULL) { 627 CloseHandle(condState->sema); 628 CloseHandle(condState->waitersDone); 629 delete condState; 630 } 631 } 632 633 634 status_t Condition::wait(Mutex& mutex) 635 { 636 WinCondition* condState = (WinCondition*) mState; 637 HANDLE hMutex = (HANDLE) mutex.mState; 638 639 return ((WinCondition*)mState)->wait(condState, hMutex, NULL); 640 } 641 642 status_t Condition::waitRelative(Mutex& mutex, nsecs_t reltime) 643 { 644 WinCondition* condState = (WinCondition*) mState; 645 HANDLE hMutex = (HANDLE) mutex.mState; 646 nsecs_t absTime = systemTime()+reltime; 647 648 return ((WinCondition*)mState)->wait(condState, hMutex, &absTime); 649 } 650 651 /* 652 * Signal the condition variable, allowing one thread to continue. 653 */ 654 void Condition::signal() 655 { 656 WinCondition* condState = (WinCondition*) mState; 657 658 // Lock the internal mutex. This ensures that we don't clash with 659 // broadcast(). 660 WaitForSingleObject(condState->internalMutex, INFINITE); 661 662 EnterCriticalSection(&condState->waitersCountLock); 663 bool haveWaiters = (condState->waitersCount > 0); 664 LeaveCriticalSection(&condState->waitersCountLock); 665 666 // If no waiters, then this is a no-op. Otherwise, knock the semaphore 667 // down a notch. 668 if (haveWaiters) 669 ReleaseSemaphore(condState->sema, 1, 0); 670 671 // Release internal mutex. 672 ReleaseMutex(condState->internalMutex); 673 } 674 675 /* 676 * Signal the condition variable, allowing all threads to continue. 677 * 678 * First we have to wake up all threads waiting on the semaphore, then 679 * we wait until all of the threads have actually been woken before 680 * releasing the internal mutex. This ensures that all threads are woken. 681 */ 682 void Condition::broadcast() 683 { 684 WinCondition* condState = (WinCondition*) mState; 685 686 // Lock the internal mutex. This keeps the guys we're waking up 687 // from getting too far. 688 WaitForSingleObject(condState->internalMutex, INFINITE); 689 690 EnterCriticalSection(&condState->waitersCountLock); 691 bool haveWaiters = false; 692 693 if (condState->waitersCount > 0) { 694 haveWaiters = true; 695 condState->wasBroadcast = true; 696 } 697 698 if (haveWaiters) { 699 // Wake up all the waiters. 700 ReleaseSemaphore(condState->sema, condState->waitersCount, 0); 701 702 LeaveCriticalSection(&condState->waitersCountLock); 703 704 // Wait for all awakened threads to acquire the counting semaphore. 705 // The last guy who was waiting sets this. 706 WaitForSingleObject(condState->waitersDone, INFINITE); 707 708 // Reset wasBroadcast. (No crit section needed because nobody 709 // else can wake up to poke at it.) 710 condState->wasBroadcast = 0; 711 } else { 712 // nothing to do 713 LeaveCriticalSection(&condState->waitersCountLock); 714 } 715 716 // Release internal mutex. 717 ReleaseMutex(condState->internalMutex); 718 } 719 720 #else 721 #error "condition variables not supported on this platform" 722 #endif 723 724 // ---------------------------------------------------------------------------- 725 726 /* 727 * This is our thread object! 728 */ 729 730 Thread::Thread(bool canCallJava) 731 : mCanCallJava(canCallJava), 732 mThread(thread_id_t(-1)), 733 mLock("Thread::mLock"), 734 mStatus(NO_ERROR), 735 mExitPending(false), mRunning(false) 736 #ifdef HAVE_ANDROID_OS 737 , mTid(-1) 738 #endif 739 { 740 } 741 742 Thread::~Thread() 743 { 744 } 745 746 status_t Thread::readyToRun() 747 { 748 return NO_ERROR; 749 } 750 751 status_t Thread::run(const char* name, int32_t priority, size_t stack) 752 { 753 Mutex::Autolock _l(mLock); 754 755 if (mRunning) { 756 // thread already started 757 return INVALID_OPERATION; 758 } 759 760 // reset status and exitPending to their default value, so we can 761 // try again after an error happened (either below, or in readyToRun()) 762 mStatus = NO_ERROR; 763 mExitPending = false; 764 mThread = thread_id_t(-1); 765 766 // hold a strong reference on ourself 767 mHoldSelf = this; 768 769 mRunning = true; 770 771 bool res; 772 if (mCanCallJava) { 773 res = createThreadEtc(_threadLoop, 774 this, name, priority, stack, &mThread); 775 } else { 776 res = androidCreateRawThreadEtc(_threadLoop, 777 this, name, priority, stack, &mThread); 778 } 779 780 if (res == false) { 781 mStatus = UNKNOWN_ERROR; // something happened! 782 mRunning = false; 783 mThread = thread_id_t(-1); 784 mHoldSelf.clear(); // "this" may have gone away after this. 785 786 return UNKNOWN_ERROR; 787 } 788 789 // Do not refer to mStatus here: The thread is already running (may, in fact 790 // already have exited with a valid mStatus result). The NO_ERROR indication 791 // here merely indicates successfully starting the thread and does not 792 // imply successful termination/execution. 793 return NO_ERROR; 794 795 // Exiting scope of mLock is a memory barrier and allows new thread to run 796 } 797 798 int Thread::_threadLoop(void* user) 799 { 800 Thread* const self = static_cast<Thread*>(user); 801 802 sp<Thread> strong(self->mHoldSelf); 803 wp<Thread> weak(strong); 804 self->mHoldSelf.clear(); 805 806 #ifdef HAVE_ANDROID_OS 807 // this is very useful for debugging with gdb 808 self->mTid = gettid(); 809 #endif 810 811 bool first = true; 812 813 do { 814 bool result; 815 if (first) { 816 first = false; 817 self->mStatus = self->readyToRun(); 818 result = (self->mStatus == NO_ERROR); 819 820 if (result && !self->exitPending()) { 821 // Binder threads (and maybe others) rely on threadLoop 822 // running at least once after a successful ::readyToRun() 823 // (unless, of course, the thread has already been asked to exit 824 // at that point). 825 // This is because threads are essentially used like this: 826 // (new ThreadSubclass())->run(); 827 // The caller therefore does not retain a strong reference to 828 // the thread and the thread would simply disappear after the 829 // successful ::readyToRun() call instead of entering the 830 // threadLoop at least once. 831 result = self->threadLoop(); 832 } 833 } else { 834 result = self->threadLoop(); 835 } 836 837 // establish a scope for mLock 838 { 839 Mutex::Autolock _l(self->mLock); 840 if (result == false || self->mExitPending) { 841 self->mExitPending = true; 842 self->mRunning = false; 843 // clear thread ID so that requestExitAndWait() does not exit if 844 // called by a new thread using the same thread ID as this one. 845 self->mThread = thread_id_t(-1); 846 // note that interested observers blocked in requestExitAndWait are 847 // awoken by broadcast, but blocked on mLock until break exits scope 848 self->mThreadExitedCondition.broadcast(); 849 break; 850 } 851 } 852 853 // Release our strong reference, to let a chance to the thread 854 // to die a peaceful death. 855 strong.clear(); 856 // And immediately, re-acquire a strong reference for the next loop 857 strong = weak.promote(); 858 } while(strong != 0); 859 860 return 0; 861 } 862 863 void Thread::requestExit() 864 { 865 Mutex::Autolock _l(mLock); 866 mExitPending = true; 867 } 868 869 status_t Thread::requestExitAndWait() 870 { 871 Mutex::Autolock _l(mLock); 872 if (mThread == getThreadId()) { 873 LOGW( 874 "Thread (this=%p): don't call waitForExit() from this " 875 "Thread object's thread. It's a guaranteed deadlock!", 876 this); 877 878 return WOULD_BLOCK; 879 } 880 881 mExitPending = true; 882 883 while (mRunning == true) { 884 mThreadExitedCondition.wait(mLock); 885 } 886 // This next line is probably not needed any more, but is being left for 887 // historical reference. Note that each interested party will clear flag. 888 mExitPending = false; 889 890 return mStatus; 891 } 892 893 status_t Thread::join() 894 { 895 Mutex::Autolock _l(mLock); 896 if (mThread == getThreadId()) { 897 LOGW( 898 "Thread (this=%p): don't call join() from this " 899 "Thread object's thread. It's a guaranteed deadlock!", 900 this); 901 902 return WOULD_BLOCK; 903 } 904 905 while (mRunning == true) { 906 mThreadExitedCondition.wait(mLock); 907 } 908 909 return mStatus; 910 } 911 912 bool Thread::exitPending() const 913 { 914 Mutex::Autolock _l(mLock); 915 return mExitPending; 916 } 917 918 919 920 }; // namespace android 921