Home | History | Annotate | Download | only in lib
      1 /* hash - hashing table processing.
      2 
      3    Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free
      4    Software Foundation, Inc.
      5 
      6    Written by Jim Meyering, 1992.
      7 
      8    This program is free software; you can redistribute it and/or modify
      9    it under the terms of the GNU General Public License as published by
     10    the Free Software Foundation; either version 2, or (at your option)
     11    any later version.
     12 
     13    This program is distributed in the hope that it will be useful,
     14    but WITHOUT ANY WARRANTY; without even the implied warranty of
     15    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     16    GNU General Public License for more details.
     17 
     18    You should have received a copy of the GNU General Public License
     19    along with this program; if not, write to the Free Software Foundation,
     20    Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.  */
     21 
     22 /* A generic hash table package.  */
     23 
     24 /* Define USE_OBSTACK to 1 if you want the allocator to use obstacks instead
     25    of malloc.  If you change USE_OBSTACK, you have to recompile!  */
     26 
     27 #ifdef HAVE_CONFIG_H
     28 # include <config.h>
     29 #endif
     30 
     31 #include "hash.h"
     32 #include "xalloc.h"
     33 
     34 #include <limits.h>
     35 #include <stdio.h>
     36 #include <stdlib.h>
     37 
     38 #if USE_OBSTACK
     39 # include "obstack.h"
     40 # ifndef obstack_chunk_alloc
     41 #  define obstack_chunk_alloc malloc
     42 # endif
     43 # ifndef obstack_chunk_free
     44 #  define obstack_chunk_free free
     45 # endif
     46 #endif
     47 
     48 #ifndef SIZE_MAX
     49 # define SIZE_MAX ((size_t) -1)
     50 #endif
     51 
     52 struct hash_table
     53   {
     54     /* The array of buckets starts at BUCKET and extends to BUCKET_LIMIT-1,
     55        for a possibility of N_BUCKETS.  Among those, N_BUCKETS_USED buckets
     56        are not empty, there are N_ENTRIES active entries in the table.  */
     57     struct hash_entry *bucket;
     58     struct hash_entry const *bucket_limit;
     59     size_t n_buckets;
     60     size_t n_buckets_used;
     61     size_t n_entries;
     62 
     63     /* Tuning arguments, kept in a physicaly separate structure.  */
     64     const Hash_tuning *tuning;
     65 
     66     /* Three functions are given to `hash_initialize', see the documentation
     67        block for this function.  In a word, HASHER randomizes a user entry
     68        into a number up from 0 up to some maximum minus 1; COMPARATOR returns
     69        true if two user entries compare equally; and DATA_FREER is the cleanup
     70        function for a user entry.  */
     71     Hash_hasher hasher;
     72     Hash_comparator comparator;
     73     Hash_data_freer data_freer;
     74 
     75     /* A linked list of freed struct hash_entry structs.  */
     76     struct hash_entry *free_entry_list;
     77 
     78 #if USE_OBSTACK
     79     /* Whenever obstacks are used, it is possible to allocate all overflowed
     80        entries into a single stack, so they all can be freed in a single
     81        operation.  It is not clear if the speedup is worth the trouble.  */
     82     struct obstack entry_stack;
     83 #endif
     84   };
     85 
     86 /* A hash table contains many internal entries, each holding a pointer to
     87    some user provided data (also called a user entry).  An entry indistinctly
     88    refers to both the internal entry and its associated user entry.  A user
     89    entry contents may be hashed by a randomization function (the hashing
     90    function, or just `hasher' for short) into a number (or `slot') between 0
     91    and the current table size.  At each slot position in the hash table,
     92    starts a linked chain of entries for which the user data all hash to this
     93    slot.  A bucket is the collection of all entries hashing to the same slot.
     94 
     95    A good `hasher' function will distribute entries rather evenly in buckets.
     96    In the ideal case, the length of each bucket is roughly the number of
     97    entries divided by the table size.  Finding the slot for a data is usually
     98    done in constant time by the `hasher', and the later finding of a precise
     99    entry is linear in time with the size of the bucket.  Consequently, a
    100    larger hash table size (that is, a larger number of buckets) is prone to
    101    yielding shorter chains, *given* the `hasher' function behaves properly.
    102 
    103    Long buckets slow down the lookup algorithm.  One might use big hash table
    104    sizes in hope to reduce the average length of buckets, but this might
    105    become inordinate, as unused slots in the hash table take some space.  The
    106    best bet is to make sure you are using a good `hasher' function (beware
    107    that those are not that easy to write! :-), and to use a table size
    108    larger than the actual number of entries.  */
    109 
    110 /* If an insertion makes the ratio of nonempty buckets to table size larger
    111    than the growth threshold (a number between 0.0 and 1.0), then increase
    112    the table size by multiplying by the growth factor (a number greater than
    113    1.0).  The growth threshold defaults to 0.8, and the growth factor
    114    defaults to 1.414, meaning that the table will have doubled its size
    115    every second time 80% of the buckets get used.  */
    116 #define DEFAULT_GROWTH_THRESHOLD 0.8
    117 #define DEFAULT_GROWTH_FACTOR 1.414
    118 
    119 /* If a deletion empties a bucket and causes the ratio of used buckets to
    120    table size to become smaller than the shrink threshold (a number between
    121    0.0 and 1.0), then shrink the table by multiplying by the shrink factor (a
    122    number greater than the shrink threshold but smaller than 1.0).  The shrink
    123    threshold and factor default to 0.0 and 1.0, meaning that the table never
    124    shrinks.  */
    125 #define DEFAULT_SHRINK_THRESHOLD 0.0
    126 #define DEFAULT_SHRINK_FACTOR 1.0
    127 
    128 /* Use this to initialize or reset a TUNING structure to
    129    some sensible values. */
    130 static const Hash_tuning default_tuning =
    131   {
    132     DEFAULT_SHRINK_THRESHOLD,
    133     DEFAULT_SHRINK_FACTOR,
    134     DEFAULT_GROWTH_THRESHOLD,
    135     DEFAULT_GROWTH_FACTOR,
    136     false
    137   };
    138 
    139 /* Information and lookup.  */
    140 
    141 /* The following few functions provide information about the overall hash
    142    table organization: the number of entries, number of buckets and maximum
    143    length of buckets.  */
    144 
    145 /* Return the number of buckets in the hash table.  The table size, the total
    146    number of buckets (used plus unused), or the maximum number of slots, are
    147    the same quantity.  */
    148 
    149 size_t
    150 hash_get_n_buckets (const Hash_table *table)
    151 {
    152   return table->n_buckets;
    153 }
    154 
    155 /* Return the number of slots in use (non-empty buckets).  */
    156 
    157 size_t
    158 hash_get_n_buckets_used (const Hash_table *table)
    159 {
    160   return table->n_buckets_used;
    161 }
    162 
    163 /* Return the number of active entries.  */
    164 
    165 size_t
    166 hash_get_n_entries (const Hash_table *table)
    167 {
    168   return table->n_entries;
    169 }
    170 
    171 /* Return the length of the longest chain (bucket).  */
    172 
    173 size_t
    174 hash_get_max_bucket_length (const Hash_table *table)
    175 {
    176   struct hash_entry const *bucket;
    177   size_t max_bucket_length = 0;
    178 
    179   for (bucket = table->bucket; bucket < table->bucket_limit; bucket++)
    180     {
    181       if (bucket->data)
    182 	{
    183 	  struct hash_entry const *cursor = bucket;
    184 	  size_t bucket_length = 1;
    185 
    186 	  while (cursor = cursor->next, cursor)
    187 	    bucket_length++;
    188 
    189 	  if (bucket_length > max_bucket_length)
    190 	    max_bucket_length = bucket_length;
    191 	}
    192     }
    193 
    194   return max_bucket_length;
    195 }
    196 
    197 /* Do a mild validation of a hash table, by traversing it and checking two
    198    statistics.  */
    199 
    200 bool
    201 hash_table_ok (const Hash_table *table)
    202 {
    203   struct hash_entry const *bucket;
    204   size_t n_buckets_used = 0;
    205   size_t n_entries = 0;
    206 
    207   for (bucket = table->bucket; bucket < table->bucket_limit; bucket++)
    208     {
    209       if (bucket->data)
    210 	{
    211 	  struct hash_entry const *cursor = bucket;
    212 
    213 	  /* Count bucket head.  */
    214 	  n_buckets_used++;
    215 	  n_entries++;
    216 
    217 	  /* Count bucket overflow.  */
    218 	  while (cursor = cursor->next, cursor)
    219 	    n_entries++;
    220 	}
    221     }
    222 
    223   if (n_buckets_used == table->n_buckets_used && n_entries == table->n_entries)
    224     return true;
    225 
    226   return false;
    227 }
    228 
    229 void
    230 hash_print_statistics (const Hash_table *table, FILE *stream)
    231 {
    232   size_t n_entries = hash_get_n_entries (table);
    233   size_t n_buckets = hash_get_n_buckets (table);
    234   size_t n_buckets_used = hash_get_n_buckets_used (table);
    235   size_t max_bucket_length = hash_get_max_bucket_length (table);
    236 
    237   fprintf (stream, "# entries:         %lu\n", (unsigned long int) n_entries);
    238   fprintf (stream, "# buckets:         %lu\n", (unsigned long int) n_buckets);
    239   fprintf (stream, "# buckets used:    %lu (%.2f%%)\n",
    240 	   (unsigned long int) n_buckets_used,
    241 	   (100.0 * n_buckets_used) / n_buckets);
    242   fprintf (stream, "max bucket length: %lu\n",
    243 	   (unsigned long int) max_bucket_length);
    244 }
    245 
    246 /* If ENTRY matches an entry already in the hash table, return the
    247    entry from the table.  Otherwise, return NULL.  */
    248 
    249 void *
    250 hash_lookup (const Hash_table *table, const void *entry)
    251 {
    252   struct hash_entry const *bucket
    253     = table->bucket + table->hasher (entry, table->n_buckets);
    254   struct hash_entry const *cursor;
    255 
    256   if (! (bucket < table->bucket_limit))
    257     abort ();
    258 
    259   if (bucket->data == NULL)
    260     return NULL;
    261 
    262   for (cursor = bucket; cursor; cursor = cursor->next)
    263     if (table->comparator (entry, cursor->data))
    264       return cursor->data;
    265 
    266   return NULL;
    267 }
    268 
    269 /* Walking.  */
    270 
    271 /* The functions in this page traverse the hash table and process the
    272    contained entries.  For the traversal to work properly, the hash table
    273    should not be resized nor modified while any particular entry is being
    274    processed.  In particular, entries should not be added or removed.  */
    275 
    276 /* Return the first data in the table, or NULL if the table is empty.  */
    277 
    278 void *
    279 hash_get_first (const Hash_table *table)
    280 {
    281   struct hash_entry const *bucket;
    282 
    283   if (table->n_entries == 0)
    284     return NULL;
    285 
    286   for (bucket = table->bucket; ; bucket++)
    287     if (! (bucket < table->bucket_limit))
    288       abort ();
    289     else if (bucket->data)
    290       return bucket->data;
    291 }
    292 
    293 /* Return the user data for the entry following ENTRY, where ENTRY has been
    294    returned by a previous call to either `hash_get_first' or `hash_get_next'.
    295    Return NULL if there are no more entries.  */
    296 
    297 void *
    298 hash_get_next (const Hash_table *table, const void *entry)
    299 {
    300   struct hash_entry const *bucket
    301     = table->bucket + table->hasher (entry, table->n_buckets);
    302   struct hash_entry const *cursor;
    303 
    304   if (! (bucket < table->bucket_limit))
    305     abort ();
    306 
    307   /* Find next entry in the same bucket.  */
    308   for (cursor = bucket; cursor; cursor = cursor->next)
    309     if (cursor->data == entry && cursor->next)
    310       return cursor->next->data;
    311 
    312   /* Find first entry in any subsequent bucket.  */
    313   while (++bucket < table->bucket_limit)
    314     if (bucket->data)
    315       return bucket->data;
    316 
    317   /* None found.  */
    318   return NULL;
    319 }
    320 
    321 /* Fill BUFFER with pointers to active user entries in the hash table, then
    322    return the number of pointers copied.  Do not copy more than BUFFER_SIZE
    323    pointers.  */
    324 
    325 size_t
    326 hash_get_entries (const Hash_table *table, void **buffer,
    327 		  size_t buffer_size)
    328 {
    329   size_t counter = 0;
    330   struct hash_entry const *bucket;
    331   struct hash_entry const *cursor;
    332 
    333   for (bucket = table->bucket; bucket < table->bucket_limit; bucket++)
    334     {
    335       if (bucket->data)
    336 	{
    337 	  for (cursor = bucket; cursor; cursor = cursor->next)
    338 	    {
    339 	      if (counter >= buffer_size)
    340 		return counter;
    341 	      buffer[counter++] = cursor->data;
    342 	    }
    343 	}
    344     }
    345 
    346   return counter;
    347 }
    348 
    349 /* Call a PROCESSOR function for each entry of a hash table, and return the
    350    number of entries for which the processor function returned success.  A
    351    pointer to some PROCESSOR_DATA which will be made available to each call to
    352    the processor function.  The PROCESSOR accepts two arguments: the first is
    353    the user entry being walked into, the second is the value of PROCESSOR_DATA
    354    as received.  The walking continue for as long as the PROCESSOR function
    355    returns nonzero.  When it returns zero, the walking is interrupted.  */
    356 
    357 size_t
    358 hash_do_for_each (const Hash_table *table, Hash_processor processor,
    359 		  void *processor_data)
    360 {
    361   size_t counter = 0;
    362   struct hash_entry const *bucket;
    363   struct hash_entry const *cursor;
    364 
    365   for (bucket = table->bucket; bucket < table->bucket_limit; bucket++)
    366     {
    367       if (bucket->data)
    368 	{
    369 	  for (cursor = bucket; cursor; cursor = cursor->next)
    370 	    {
    371 	      if (!(*processor) (cursor->data, processor_data))
    372 		return counter;
    373 	      counter++;
    374 	    }
    375 	}
    376     }
    377 
    378   return counter;
    379 }
    380 
    381 /* Allocation and clean-up.  */
    382 
    383 /* Return a hash index for a NUL-terminated STRING between 0 and N_BUCKETS-1.
    384    This is a convenience routine for constructing other hashing functions.  */
    385 
    386 #if USE_DIFF_HASH
    387 
    388 /* About hashings, Paul Eggert writes to me (FP), on 1994-01-01: "Please see
    389    B. J. McKenzie, R. Harries & T. Bell, Selecting a hashing algorithm,
    390    Software--practice & experience 20, 2 (Feb 1990), 209-224.  Good hash
    391    algorithms tend to be domain-specific, so what's good for [diffutils'] io.c
    392    may not be good for your application."  */
    393 
    394 size_t
    395 hash_string (const char *string, size_t n_buckets)
    396 {
    397 # define ROTATE_LEFT(Value, Shift) \
    398   ((Value) << (Shift) | (Value) >> ((sizeof (size_t) * CHAR_BIT) - (Shift)))
    399 # define HASH_ONE_CHAR(Value, Byte) \
    400   ((Byte) + ROTATE_LEFT (Value, 7))
    401 
    402   size_t value = 0;
    403   unsigned char ch;
    404 
    405   for (; (ch = *string); string++)
    406     value = HASH_ONE_CHAR (value, ch);
    407   return value % n_buckets;
    408 
    409 # undef ROTATE_LEFT
    410 # undef HASH_ONE_CHAR
    411 }
    412 
    413 #else /* not USE_DIFF_HASH */
    414 
    415 /* This one comes from `recode', and performs a bit better than the above as
    416    per a few experiments.  It is inspired from a hashing routine found in the
    417    very old Cyber `snoop', itself written in typical Greg Mansfield style.
    418    (By the way, what happened to this excellent man?  Is he still alive?)  */
    419 
    420 size_t
    421 hash_string (const char *string, size_t n_buckets)
    422 {
    423   size_t value = 0;
    424   unsigned char ch;
    425 
    426   for (; (ch = *string); string++)
    427     value = (value * 31 + ch) % n_buckets;
    428   return value;
    429 }
    430 
    431 #endif /* not USE_DIFF_HASH */
    432 
    433 /* Return true if CANDIDATE is a prime number.  CANDIDATE should be an odd
    434    number at least equal to 11.  */
    435 
    436 static bool
    437 is_prime (size_t candidate)
    438 {
    439   size_t divisor = 3;
    440   size_t square = divisor * divisor;
    441 
    442   while (square < candidate && (candidate % divisor))
    443     {
    444       divisor++;
    445       square += 4 * divisor;
    446       divisor++;
    447     }
    448 
    449   return (candidate % divisor ? true : false);
    450 }
    451 
    452 /* Round a given CANDIDATE number up to the nearest prime, and return that
    453    prime.  Primes lower than 10 are merely skipped.  */
    454 
    455 static size_t
    456 next_prime (size_t candidate)
    457 {
    458   /* Skip small primes.  */
    459   if (candidate < 10)
    460     candidate = 10;
    461 
    462   /* Make it definitely odd.  */
    463   candidate |= 1;
    464 
    465   while (!is_prime (candidate))
    466     candidate += 2;
    467 
    468   return candidate;
    469 }
    470 
    471 void
    472 hash_reset_tuning (Hash_tuning *tuning)
    473 {
    474   *tuning = default_tuning;
    475 }
    476 
    477 /* For the given hash TABLE, check the user supplied tuning structure for
    478    reasonable values, and return true if there is no gross error with it.
    479    Otherwise, definitively reset the TUNING field to some acceptable default
    480    in the hash table (that is, the user loses the right of further modifying
    481    tuning arguments), and return false.  */
    482 
    483 static bool
    484 check_tuning (Hash_table *table)
    485 {
    486   const Hash_tuning *tuning = table->tuning;
    487 
    488   /* Be a bit stricter than mathematics would require, so that
    489      rounding errors in size calculations do not cause allocations to
    490      fail to grow or shrink as they should.  The smallest allocation
    491      is 11 (due to next_prime's algorithm), so an epsilon of 0.1
    492      should be good enough.  */
    493   float epsilon = 0.1f;
    494 
    495   if (epsilon < tuning->growth_threshold
    496       && tuning->growth_threshold < 1 - epsilon
    497       && 1 + epsilon < tuning->growth_factor
    498       && 0 <= tuning->shrink_threshold
    499       && tuning->shrink_threshold + epsilon < tuning->shrink_factor
    500       && tuning->shrink_factor <= 1
    501       && tuning->shrink_threshold + epsilon < tuning->growth_threshold)
    502     return true;
    503 
    504   table->tuning = &default_tuning;
    505   return false;
    506 }
    507 
    508 /* Allocate and return a new hash table, or NULL upon failure.  The initial
    509    number of buckets is automatically selected so as to _guarantee_ that you
    510    may insert at least CANDIDATE different user entries before any growth of
    511    the hash table size occurs.  So, if have a reasonably tight a-priori upper
    512    bound on the number of entries you intend to insert in the hash table, you
    513    may save some table memory and insertion time, by specifying it here.  If
    514    the IS_N_BUCKETS field of the TUNING structure is true, the CANDIDATE
    515    argument has its meaning changed to the wanted number of buckets.
    516 
    517    TUNING points to a structure of user-supplied values, in case some fine
    518    tuning is wanted over the default behavior of the hasher.  If TUNING is
    519    NULL, the default tuning parameters are used instead.
    520 
    521    The user-supplied HASHER function should be provided.  It accepts two
    522    arguments ENTRY and TABLE_SIZE.  It computes, by hashing ENTRY contents, a
    523    slot number for that entry which should be in the range 0..TABLE_SIZE-1.
    524    This slot number is then returned.
    525 
    526    The user-supplied COMPARATOR function should be provided.  It accepts two
    527    arguments pointing to user data, it then returns true for a pair of entries
    528    that compare equal, or false otherwise.  This function is internally called
    529    on entries which are already known to hash to the same bucket index.
    530 
    531    The user-supplied DATA_FREER function, when not NULL, may be later called
    532    with the user data as an argument, just before the entry containing the
    533    data gets freed.  This happens from within `hash_free' or `hash_clear'.
    534    You should specify this function only if you want these functions to free
    535    all of your `data' data.  This is typically the case when your data is
    536    simply an auxiliary struct that you have malloc'd to aggregate several
    537    values.  */
    538 
    539 Hash_table *
    540 hash_initialize (size_t candidate, const Hash_tuning *tuning,
    541 		 Hash_hasher hasher, Hash_comparator comparator,
    542 		 Hash_data_freer data_freer)
    543 {
    544   Hash_table *table;
    545 
    546   if (hasher == NULL || comparator == NULL)
    547     return NULL;
    548 
    549   table = malloc (sizeof *table);
    550   if (table == NULL)
    551     return NULL;
    552 
    553   if (!tuning)
    554     tuning = &default_tuning;
    555   table->tuning = tuning;
    556   if (!check_tuning (table))
    557     {
    558       /* Fail if the tuning options are invalid.  This is the only occasion
    559 	 when the user gets some feedback about it.  Once the table is created,
    560 	 if the user provides invalid tuning options, we silently revert to
    561 	 using the defaults, and ignore further request to change the tuning
    562 	 options.  */
    563       goto fail;
    564     }
    565 
    566   if (!tuning->is_n_buckets)
    567     {
    568       float new_candidate = candidate / tuning->growth_threshold;
    569       if (SIZE_MAX <= new_candidate)
    570 	goto fail;
    571       candidate = new_candidate;
    572     }
    573 
    574   if (xalloc_oversized (candidate, sizeof *table->bucket))
    575     goto fail;
    576   table->n_buckets = next_prime (candidate);
    577   if (xalloc_oversized (table->n_buckets, sizeof *table->bucket))
    578     goto fail;
    579 
    580   table->bucket = calloc (table->n_buckets, sizeof *table->bucket);
    581   table->bucket_limit = table->bucket + table->n_buckets;
    582   table->n_buckets_used = 0;
    583   table->n_entries = 0;
    584 
    585   table->hasher = hasher;
    586   table->comparator = comparator;
    587   table->data_freer = data_freer;
    588 
    589   table->free_entry_list = NULL;
    590 #if USE_OBSTACK
    591   obstack_init (&table->entry_stack);
    592 #endif
    593   return table;
    594 
    595  fail:
    596   free (table);
    597   return NULL;
    598 }
    599 
    600 /* Make all buckets empty, placing any chained entries on the free list.
    601    Apply the user-specified function data_freer (if any) to the datas of any
    602    affected entries.  */
    603 
    604 void
    605 hash_clear (Hash_table *table)
    606 {
    607   struct hash_entry *bucket;
    608 
    609   for (bucket = table->bucket; bucket < table->bucket_limit; bucket++)
    610     {
    611       if (bucket->data)
    612 	{
    613 	  struct hash_entry *cursor;
    614 	  struct hash_entry *next;
    615 
    616 	  /* Free the bucket overflow.  */
    617 	  for (cursor = bucket->next; cursor; cursor = next)
    618 	    {
    619 	      if (table->data_freer)
    620 		(*table->data_freer) (cursor->data);
    621 	      cursor->data = NULL;
    622 
    623 	      next = cursor->next;
    624 	      /* Relinking is done one entry at a time, as it is to be expected
    625 		 that overflows are either rare or short.  */
    626 	      cursor->next = table->free_entry_list;
    627 	      table->free_entry_list = cursor;
    628 	    }
    629 
    630 	  /* Free the bucket head.  */
    631 	  if (table->data_freer)
    632 	    (*table->data_freer) (bucket->data);
    633 	  bucket->data = NULL;
    634 	  bucket->next = NULL;
    635 	}
    636     }
    637 
    638   table->n_buckets_used = 0;
    639   table->n_entries = 0;
    640 }
    641 
    642 /* Reclaim all storage associated with a hash table.  If a data_freer
    643    function has been supplied by the user when the hash table was created,
    644    this function applies it to the data of each entry before freeing that
    645    entry.  */
    646 
    647 void
    648 hash_free (Hash_table *table)
    649 {
    650   struct hash_entry *bucket;
    651   struct hash_entry *cursor;
    652   struct hash_entry *next;
    653 
    654   /* Call the user data_freer function.  */
    655   if (table->data_freer && table->n_entries)
    656     {
    657       for (bucket = table->bucket; bucket < table->bucket_limit; bucket++)
    658 	{
    659 	  if (bucket->data)
    660 	    {
    661 	      for (cursor = bucket; cursor; cursor = cursor->next)
    662 		{
    663 		  (*table->data_freer) (cursor->data);
    664 		}
    665 	    }
    666 	}
    667     }
    668 
    669 #if USE_OBSTACK
    670 
    671   obstack_free (&table->entry_stack, NULL);
    672 
    673 #else
    674 
    675   /* Free all bucket overflowed entries.  */
    676   for (bucket = table->bucket; bucket < table->bucket_limit; bucket++)
    677     {
    678       for (cursor = bucket->next; cursor; cursor = next)
    679 	{
    680 	  next = cursor->next;
    681 	  free (cursor);
    682 	}
    683     }
    684 
    685   /* Also reclaim the internal list of previously freed entries.  */
    686   for (cursor = table->free_entry_list; cursor; cursor = next)
    687     {
    688       next = cursor->next;
    689       free (cursor);
    690     }
    691 
    692 #endif
    693 
    694   /* Free the remainder of the hash table structure.  */
    695   free (table->bucket);
    696   free (table);
    697 }
    698 
    699 /* Insertion and deletion.  */
    700 
    701 /* Get a new hash entry for a bucket overflow, possibly by reclying a
    702    previously freed one.  If this is not possible, allocate a new one.  */
    703 
    704 static struct hash_entry *
    705 allocate_entry (Hash_table *table)
    706 {
    707   struct hash_entry *new;
    708 
    709   if (table->free_entry_list)
    710     {
    711       new = table->free_entry_list;
    712       table->free_entry_list = new->next;
    713     }
    714   else
    715     {
    716 #if USE_OBSTACK
    717       new = obstack_alloc (&table->entry_stack, sizeof *new);
    718 #else
    719       new = malloc (sizeof *new);
    720 #endif
    721     }
    722 
    723   return new;
    724 }
    725 
    726 /* Free a hash entry which was part of some bucket overflow,
    727    saving it for later recycling.  */
    728 
    729 static void
    730 free_entry (Hash_table *table, struct hash_entry *entry)
    731 {
    732   entry->data = NULL;
    733   entry->next = table->free_entry_list;
    734   table->free_entry_list = entry;
    735 }
    736 
    737 /* This private function is used to help with insertion and deletion.  When
    738    ENTRY matches an entry in the table, return a pointer to the corresponding
    739    user data and set *BUCKET_HEAD to the head of the selected bucket.
    740    Otherwise, return NULL.  When DELETE is true and ENTRY matches an entry in
    741    the table, unlink the matching entry.  */
    742 
    743 static void *
    744 hash_find_entry (Hash_table *table, const void *entry,
    745 		 struct hash_entry **bucket_head, bool delete)
    746 {
    747   struct hash_entry *bucket
    748     = table->bucket + table->hasher (entry, table->n_buckets);
    749   struct hash_entry *cursor;
    750 
    751   if (! (bucket < table->bucket_limit))
    752     abort ();
    753 
    754   *bucket_head = bucket;
    755 
    756   /* Test for empty bucket.  */
    757   if (bucket->data == NULL)
    758     return NULL;
    759 
    760   /* See if the entry is the first in the bucket.  */
    761   if ((*table->comparator) (entry, bucket->data))
    762     {
    763       void *data = bucket->data;
    764 
    765       if (delete)
    766 	{
    767 	  if (bucket->next)
    768 	    {
    769 	      struct hash_entry *next = bucket->next;
    770 
    771 	      /* Bump the first overflow entry into the bucket head, then save
    772 		 the previous first overflow entry for later recycling.  */
    773 	      *bucket = *next;
    774 	      free_entry (table, next);
    775 	    }
    776 	  else
    777 	    {
    778 	      bucket->data = NULL;
    779 	    }
    780 	}
    781 
    782       return data;
    783     }
    784 
    785   /* Scan the bucket overflow.  */
    786   for (cursor = bucket; cursor->next; cursor = cursor->next)
    787     {
    788       if ((*table->comparator) (entry, cursor->next->data))
    789 	{
    790 	  void *data = cursor->next->data;
    791 
    792 	  if (delete)
    793 	    {
    794 	      struct hash_entry *next = cursor->next;
    795 
    796 	      /* Unlink the entry to delete, then save the freed entry for later
    797 		 recycling.  */
    798 	      cursor->next = next->next;
    799 	      free_entry (table, next);
    800 	    }
    801 
    802 	  return data;
    803 	}
    804     }
    805 
    806   /* No entry found.  */
    807   return NULL;
    808 }
    809 
    810 /* For an already existing hash table, change the number of buckets through
    811    specifying CANDIDATE.  The contents of the hash table are preserved.  The
    812    new number of buckets is automatically selected so as to _guarantee_ that
    813    the table may receive at least CANDIDATE different user entries, including
    814    those already in the table, before any other growth of the hash table size
    815    occurs.  If TUNING->IS_N_BUCKETS is true, then CANDIDATE specifies the
    816    exact number of buckets desired.  */
    817 
    818 bool
    819 hash_rehash (Hash_table *table, size_t candidate)
    820 {
    821   Hash_table *new_table;
    822   struct hash_entry *bucket;
    823   struct hash_entry *cursor;
    824   struct hash_entry *next;
    825 
    826   new_table = hash_initialize (candidate, table->tuning, table->hasher,
    827 			       table->comparator, table->data_freer);
    828   if (new_table == NULL)
    829     return false;
    830 
    831   /* Merely reuse the extra old space into the new table.  */
    832 #if USE_OBSTACK
    833   obstack_free (&new_table->entry_stack, NULL);
    834   new_table->entry_stack = table->entry_stack;
    835 #endif
    836   new_table->free_entry_list = table->free_entry_list;
    837 
    838   for (bucket = table->bucket; bucket < table->bucket_limit; bucket++)
    839     if (bucket->data)
    840       for (cursor = bucket; cursor; cursor = next)
    841 	{
    842 	  void *data = cursor->data;
    843 	  struct hash_entry *new_bucket
    844 	    = (new_table->bucket
    845 	       + new_table->hasher (data, new_table->n_buckets));
    846 
    847 	  if (! (new_bucket < new_table->bucket_limit))
    848 	    abort ();
    849 
    850 	  next = cursor->next;
    851 
    852 	  if (new_bucket->data)
    853 	    {
    854 	      if (cursor == bucket)
    855 		{
    856 		  /* Allocate or recycle an entry, when moving from a bucket
    857 		     header into a bucket overflow.  */
    858 		  struct hash_entry *new_entry = allocate_entry (new_table);
    859 
    860 		  if (new_entry == NULL)
    861 		    return false;
    862 
    863 		  new_entry->data = data;
    864 		  new_entry->next = new_bucket->next;
    865 		  new_bucket->next = new_entry;
    866 		}
    867 	      else
    868 		{
    869 		  /* Merely relink an existing entry, when moving from a
    870 		     bucket overflow into a bucket overflow.  */
    871 		  cursor->next = new_bucket->next;
    872 		  new_bucket->next = cursor;
    873 		}
    874 	    }
    875 	  else
    876 	    {
    877 	      /* Free an existing entry, when moving from a bucket
    878 		 overflow into a bucket header.  Also take care of the
    879 		 simple case of moving from a bucket header into a bucket
    880 		 header.  */
    881 	      new_bucket->data = data;
    882 	      new_table->n_buckets_used++;
    883 	      if (cursor != bucket)
    884 		free_entry (new_table, cursor);
    885 	    }
    886 	}
    887 
    888   free (table->bucket);
    889   table->bucket = new_table->bucket;
    890   table->bucket_limit = new_table->bucket_limit;
    891   table->n_buckets = new_table->n_buckets;
    892   table->n_buckets_used = new_table->n_buckets_used;
    893   table->free_entry_list = new_table->free_entry_list;
    894   /* table->n_entries already holds its value.  */
    895 #if USE_OBSTACK
    896   table->entry_stack = new_table->entry_stack;
    897 #endif
    898   free (new_table);
    899 
    900   return true;
    901 }
    902 
    903 /* If ENTRY matches an entry already in the hash table, return the pointer
    904    to the entry from the table.  Otherwise, insert ENTRY and return ENTRY.
    905    Return NULL if the storage required for insertion cannot be allocated.  */
    906 
    907 void *
    908 hash_insert (Hash_table *table, const void *entry)
    909 {
    910   void *data;
    911   struct hash_entry *bucket;
    912 
    913   /* The caller cannot insert a NULL entry.  */
    914   if (! entry)
    915     abort ();
    916 
    917   /* If there's a matching entry already in the table, return that.  */
    918   if ((data = hash_find_entry (table, entry, &bucket, false)) != NULL)
    919     return data;
    920 
    921   /* ENTRY is not matched, it should be inserted.  */
    922 
    923   if (bucket->data)
    924     {
    925       struct hash_entry *new_entry = allocate_entry (table);
    926 
    927       if (new_entry == NULL)
    928 	return NULL;
    929 
    930       /* Add ENTRY in the overflow of the bucket.  */
    931 
    932       new_entry->data = (void *) entry;
    933       new_entry->next = bucket->next;
    934       bucket->next = new_entry;
    935       table->n_entries++;
    936       return (void *) entry;
    937     }
    938 
    939   /* Add ENTRY right in the bucket head.  */
    940 
    941   bucket->data = (void *) entry;
    942   table->n_entries++;
    943   table->n_buckets_used++;
    944 
    945   /* If the growth threshold of the buckets in use has been reached, increase
    946      the table size and rehash.  There's no point in checking the number of
    947      entries:  if the hashing function is ill-conditioned, rehashing is not
    948      likely to improve it.  */
    949 
    950   if (table->n_buckets_used
    951       > table->tuning->growth_threshold * table->n_buckets)
    952     {
    953       /* Check more fully, before starting real work.  If tuning arguments
    954 	 became invalid, the second check will rely on proper defaults.  */
    955       check_tuning (table);
    956       if (table->n_buckets_used
    957 	  > table->tuning->growth_threshold * table->n_buckets)
    958 	{
    959 	  const Hash_tuning *tuning = table->tuning;
    960 	  float candidate =
    961 	    (tuning->is_n_buckets
    962 	     ? (table->n_buckets * tuning->growth_factor)
    963 	     : (table->n_buckets * tuning->growth_factor
    964 		* tuning->growth_threshold));
    965 
    966 	  if (SIZE_MAX <= candidate)
    967 	    return NULL;
    968 
    969 	  /* If the rehash fails, arrange to return NULL.  */
    970 	  if (!hash_rehash (table, candidate))
    971 	    entry = NULL;
    972 	}
    973     }
    974 
    975   return (void *) entry;
    976 }
    977 
    978 /* If ENTRY is already in the table, remove it and return the just-deleted
    979    data (the user may want to deallocate its storage).  If ENTRY is not in the
    980    table, don't modify the table and return NULL.  */
    981 
    982 void *
    983 hash_delete (Hash_table *table, const void *entry)
    984 {
    985   void *data;
    986   struct hash_entry *bucket;
    987 
    988   data = hash_find_entry (table, entry, &bucket, true);
    989   if (!data)
    990     return NULL;
    991 
    992   table->n_entries--;
    993   if (!bucket->data)
    994     {
    995       table->n_buckets_used--;
    996 
    997       /* If the shrink threshold of the buckets in use has been reached,
    998 	 rehash into a smaller table.  */
    999 
   1000       if (table->n_buckets_used
   1001 	  < table->tuning->shrink_threshold * table->n_buckets)
   1002 	{
   1003 	  /* Check more fully, before starting real work.  If tuning arguments
   1004 	     became invalid, the second check will rely on proper defaults.  */
   1005 	  check_tuning (table);
   1006 	  if (table->n_buckets_used
   1007 	      < table->tuning->shrink_threshold * table->n_buckets)
   1008 	    {
   1009 	      const Hash_tuning *tuning = table->tuning;
   1010 	      size_t candidate =
   1011 		(tuning->is_n_buckets
   1012 		 ? table->n_buckets * tuning->shrink_factor
   1013 		 : (table->n_buckets * tuning->shrink_factor
   1014 		    * tuning->growth_threshold));
   1015 
   1016 	      hash_rehash (table, candidate);
   1017 	    }
   1018 	}
   1019     }
   1020 
   1021   return data;
   1022 }
   1023 
   1024 /* Testing.  */
   1025 
   1026 #if TESTING
   1027 
   1028 void
   1029 hash_print (const Hash_table *table)
   1030 {
   1031   struct hash_entry const *bucket;
   1032 
   1033   for (bucket = table->bucket; bucket < table->bucket_limit; bucket++)
   1034     {
   1035       struct hash_entry *cursor;
   1036 
   1037       if (bucket)
   1038 	printf ("%lu:\n", (unsigned long int) (bucket - table->bucket));
   1039 
   1040       for (cursor = bucket; cursor; cursor = cursor->next)
   1041 	{
   1042 	  char const *s = cursor->data;
   1043 	  /* FIXME */
   1044 	  if (s)
   1045 	    printf ("  %s\n", s);
   1046 	}
   1047     }
   1048 }
   1049 
   1050 #endif /* TESTING */
   1051