Home | History | Annotate | Download | only in Core
      1 //== RegionStore.cpp - Field-sensitive store model --------------*- C++ -*--==//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines a basic region store model. In this model, we do have field
     11 // sensitivity. But we assume nothing about the heap shape. So recursive data
     12 // structures are largely ignored. Basically we do 1-limiting analysis.
     13 // Parameter pointers are assumed with no aliasing. Pointee objects of
     14 // parameters are created lazily.
     15 //
     16 //===----------------------------------------------------------------------===//
     17 #include "clang/AST/CharUnits.h"
     18 #include "clang/AST/DeclCXX.h"
     19 #include "clang/AST/ExprCXX.h"
     20 #include "clang/Analysis/Analyses/LiveVariables.h"
     21 #include "clang/Analysis/AnalysisContext.h"
     22 #include "clang/Basic/TargetInfo.h"
     23 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
     24 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
     25 #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
     26 #include "llvm/ADT/ImmutableList.h"
     27 #include "llvm/ADT/ImmutableMap.h"
     28 #include "llvm/ADT/Optional.h"
     29 #include "llvm/Support/raw_ostream.h"
     30 
     31 using namespace clang;
     32 using namespace ento;
     33 using llvm::Optional;
     34 
     35 //===----------------------------------------------------------------------===//
     36 // Representation of binding keys.
     37 //===----------------------------------------------------------------------===//
     38 
     39 namespace {
     40 class BindingKey {
     41 public:
     42   enum Kind { Direct = 0x0, Default = 0x1 };
     43 private:
     44   llvm ::PointerIntPair<const MemRegion*, 1> P;
     45   uint64_t Offset;
     46 
     47   explicit BindingKey(const MemRegion *r, uint64_t offset, Kind k)
     48     : P(r, (unsigned) k), Offset(offset) {}
     49 public:
     50 
     51   bool isDirect() const { return P.getInt() == Direct; }
     52 
     53   const MemRegion *getRegion() const { return P.getPointer(); }
     54   uint64_t getOffset() const { return Offset; }
     55 
     56   void Profile(llvm::FoldingSetNodeID& ID) const {
     57     ID.AddPointer(P.getOpaqueValue());
     58     ID.AddInteger(Offset);
     59   }
     60 
     61   static BindingKey Make(const MemRegion *R, Kind k);
     62 
     63   bool operator<(const BindingKey &X) const {
     64     if (P.getOpaqueValue() < X.P.getOpaqueValue())
     65       return true;
     66     if (P.getOpaqueValue() > X.P.getOpaqueValue())
     67       return false;
     68     return Offset < X.Offset;
     69   }
     70 
     71   bool operator==(const BindingKey &X) const {
     72     return P.getOpaqueValue() == X.P.getOpaqueValue() &&
     73            Offset == X.Offset;
     74   }
     75 
     76   bool isValid() const {
     77     return getRegion() != NULL;
     78   }
     79 };
     80 } // end anonymous namespace
     81 
     82 BindingKey BindingKey::Make(const MemRegion *R, Kind k) {
     83   if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) {
     84     const RegionRawOffset &O = ER->getAsArrayOffset();
     85 
     86     // FIXME: There are some ElementRegions for which we cannot compute
     87     // raw offsets yet, including regions with symbolic offsets. These will be
     88     // ignored by the store.
     89     return BindingKey(O.getRegion(), O.getOffset().getQuantity(), k);
     90   }
     91 
     92   return BindingKey(R, 0, k);
     93 }
     94 
     95 namespace llvm {
     96   static inline
     97   raw_ostream &operator<<(raw_ostream &os, BindingKey K) {
     98     os << '(' << K.getRegion() << ',' << K.getOffset()
     99        << ',' << (K.isDirect() ? "direct" : "default")
    100        << ')';
    101     return os;
    102   }
    103 } // end llvm namespace
    104 
    105 //===----------------------------------------------------------------------===//
    106 // Actual Store type.
    107 //===----------------------------------------------------------------------===//
    108 
    109 typedef llvm::ImmutableMap<BindingKey, SVal> RegionBindings;
    110 
    111 //===----------------------------------------------------------------------===//
    112 // Fine-grained control of RegionStoreManager.
    113 //===----------------------------------------------------------------------===//
    114 
    115 namespace {
    116 struct minimal_features_tag {};
    117 struct maximal_features_tag {};
    118 
    119 class RegionStoreFeatures {
    120   bool SupportsFields;
    121 public:
    122   RegionStoreFeatures(minimal_features_tag) :
    123     SupportsFields(false) {}
    124 
    125   RegionStoreFeatures(maximal_features_tag) :
    126     SupportsFields(true) {}
    127 
    128   void enableFields(bool t) { SupportsFields = t; }
    129 
    130   bool supportsFields() const { return SupportsFields; }
    131 };
    132 }
    133 
    134 //===----------------------------------------------------------------------===//
    135 // Main RegionStore logic.
    136 //===----------------------------------------------------------------------===//
    137 
    138 namespace {
    139 
    140 class RegionStoreSubRegionMap : public SubRegionMap {
    141 public:
    142   typedef llvm::ImmutableSet<const MemRegion*> Set;
    143   typedef llvm::DenseMap<const MemRegion*, Set> Map;
    144 private:
    145   Set::Factory F;
    146   Map M;
    147 public:
    148   bool add(const MemRegion* Parent, const MemRegion* SubRegion) {
    149     Map::iterator I = M.find(Parent);
    150 
    151     if (I == M.end()) {
    152       M.insert(std::make_pair(Parent, F.add(F.getEmptySet(), SubRegion)));
    153       return true;
    154     }
    155 
    156     I->second = F.add(I->second, SubRegion);
    157     return false;
    158   }
    159 
    160   void process(SmallVectorImpl<const SubRegion*> &WL, const SubRegion *R);
    161 
    162   ~RegionStoreSubRegionMap() {}
    163 
    164   const Set *getSubRegions(const MemRegion *Parent) const {
    165     Map::const_iterator I = M.find(Parent);
    166     return I == M.end() ? NULL : &I->second;
    167   }
    168 
    169   bool iterSubRegions(const MemRegion* Parent, Visitor& V) const {
    170     Map::const_iterator I = M.find(Parent);
    171 
    172     if (I == M.end())
    173       return true;
    174 
    175     Set S = I->second;
    176     for (Set::iterator SI=S.begin(),SE=S.end(); SI != SE; ++SI) {
    177       if (!V.Visit(Parent, *SI))
    178         return false;
    179     }
    180 
    181     return true;
    182   }
    183 };
    184 
    185 void
    186 RegionStoreSubRegionMap::process(SmallVectorImpl<const SubRegion*> &WL,
    187                                  const SubRegion *R) {
    188   const MemRegion *superR = R->getSuperRegion();
    189   if (add(superR, R))
    190     if (const SubRegion *sr = dyn_cast<SubRegion>(superR))
    191       WL.push_back(sr);
    192 }
    193 
    194 class RegionStoreManager : public StoreManager {
    195   const RegionStoreFeatures Features;
    196   RegionBindings::Factory RBFactory;
    197 
    198 public:
    199   RegionStoreManager(ProgramStateManager& mgr, const RegionStoreFeatures &f)
    200     : StoreManager(mgr),
    201       Features(f),
    202       RBFactory(mgr.getAllocator()) {}
    203 
    204   SubRegionMap *getSubRegionMap(Store store) {
    205     return getRegionStoreSubRegionMap(store);
    206   }
    207 
    208   RegionStoreSubRegionMap *getRegionStoreSubRegionMap(Store store);
    209 
    210   Optional<SVal> getDirectBinding(RegionBindings B, const MemRegion *R);
    211   /// getDefaultBinding - Returns an SVal* representing an optional default
    212   ///  binding associated with a region and its subregions.
    213   Optional<SVal> getDefaultBinding(RegionBindings B, const MemRegion *R);
    214 
    215   /// setImplicitDefaultValue - Set the default binding for the provided
    216   ///  MemRegion to the value implicitly defined for compound literals when
    217   ///  the value is not specified.
    218   StoreRef setImplicitDefaultValue(Store store, const MemRegion *R, QualType T);
    219 
    220   /// ArrayToPointer - Emulates the "decay" of an array to a pointer
    221   ///  type.  'Array' represents the lvalue of the array being decayed
    222   ///  to a pointer, and the returned SVal represents the decayed
    223   ///  version of that lvalue (i.e., a pointer to the first element of
    224   ///  the array).  This is called by ExprEngine when evaluating
    225   ///  casts from arrays to pointers.
    226   SVal ArrayToPointer(Loc Array);
    227 
    228   /// For DerivedToBase casts, create a CXXBaseObjectRegion and return it.
    229   virtual SVal evalDerivedToBase(SVal derived, QualType basePtrType);
    230 
    231   StoreRef getInitialStore(const LocationContext *InitLoc) {
    232     return StoreRef(RBFactory.getEmptyMap().getRootWithoutRetain(), *this);
    233   }
    234 
    235   //===-------------------------------------------------------------------===//
    236   // Binding values to regions.
    237   //===-------------------------------------------------------------------===//
    238 
    239   StoreRef invalidateRegions(Store store, ArrayRef<const MemRegion *> Regions,
    240                              const Expr *E, unsigned Count,
    241                              InvalidatedSymbols &IS,
    242                              bool invalidateGlobals,
    243                              InvalidatedRegions *Invalidated);
    244 
    245 public:   // Made public for helper classes.
    246 
    247   void RemoveSubRegionBindings(RegionBindings &B, const MemRegion *R,
    248                                RegionStoreSubRegionMap &M);
    249 
    250   RegionBindings addBinding(RegionBindings B, BindingKey K, SVal V);
    251 
    252   RegionBindings addBinding(RegionBindings B, const MemRegion *R,
    253                      BindingKey::Kind k, SVal V);
    254 
    255   const SVal *lookup(RegionBindings B, BindingKey K);
    256   const SVal *lookup(RegionBindings B, const MemRegion *R, BindingKey::Kind k);
    257 
    258   RegionBindings removeBinding(RegionBindings B, BindingKey K);
    259   RegionBindings removeBinding(RegionBindings B, const MemRegion *R,
    260                         BindingKey::Kind k);
    261 
    262   RegionBindings removeBinding(RegionBindings B, const MemRegion *R) {
    263     return removeBinding(removeBinding(B, R, BindingKey::Direct), R,
    264                         BindingKey::Default);
    265   }
    266 
    267 public: // Part of public interface to class.
    268 
    269   StoreRef Bind(Store store, Loc LV, SVal V);
    270 
    271   // BindDefault is only used to initialize a region with a default value.
    272   StoreRef BindDefault(Store store, const MemRegion *R, SVal V) {
    273     RegionBindings B = GetRegionBindings(store);
    274     assert(!lookup(B, R, BindingKey::Default));
    275     assert(!lookup(B, R, BindingKey::Direct));
    276     return StoreRef(addBinding(B, R, BindingKey::Default, V).getRootWithoutRetain(), *this);
    277   }
    278 
    279   StoreRef BindCompoundLiteral(Store store, const CompoundLiteralExpr *CL,
    280                                const LocationContext *LC, SVal V);
    281 
    282   StoreRef BindDecl(Store store, const VarRegion *VR, SVal InitVal);
    283 
    284   StoreRef BindDeclWithNoInit(Store store, const VarRegion *) {
    285     return StoreRef(store, *this);
    286   }
    287 
    288   /// BindStruct - Bind a compound value to a structure.
    289   StoreRef BindStruct(Store store, const TypedValueRegion* R, SVal V);
    290 
    291   StoreRef BindArray(Store store, const TypedValueRegion* R, SVal V);
    292 
    293   /// KillStruct - Set the entire struct to unknown.
    294   StoreRef KillStruct(Store store, const TypedRegion* R, SVal DefaultVal);
    295 
    296   StoreRef Remove(Store store, Loc LV);
    297 
    298   void incrementReferenceCount(Store store) {
    299     GetRegionBindings(store).manualRetain();
    300   }
    301 
    302   /// If the StoreManager supports it, decrement the reference count of
    303   /// the specified Store object.  If the reference count hits 0, the memory
    304   /// associated with the object is recycled.
    305   void decrementReferenceCount(Store store) {
    306     GetRegionBindings(store).manualRelease();
    307   }
    308 
    309   bool includedInBindings(Store store, const MemRegion *region) const;
    310 
    311   //===------------------------------------------------------------------===//
    312   // Loading values from regions.
    313   //===------------------------------------------------------------------===//
    314 
    315   /// The high level logic for this method is this:
    316   /// Retrieve (L)
    317   ///   if L has binding
    318   ///     return L's binding
    319   ///   else if L is in killset
    320   ///     return unknown
    321   ///   else
    322   ///     if L is on stack or heap
    323   ///       return undefined
    324   ///     else
    325   ///       return symbolic
    326   SVal Retrieve(Store store, Loc L, QualType T = QualType());
    327 
    328   SVal RetrieveElement(Store store, const ElementRegion *R);
    329 
    330   SVal RetrieveField(Store store, const FieldRegion *R);
    331 
    332   SVal RetrieveObjCIvar(Store store, const ObjCIvarRegion *R);
    333 
    334   SVal RetrieveVar(Store store, const VarRegion *R);
    335 
    336   SVal RetrieveLazySymbol(const TypedValueRegion *R);
    337 
    338   SVal RetrieveFieldOrElementCommon(Store store, const TypedValueRegion *R,
    339                                     QualType Ty, const MemRegion *superR);
    340 
    341   SVal RetrieveLazyBinding(const MemRegion *lazyBindingRegion,
    342                            Store lazyBindingStore);
    343 
    344   /// Retrieve the values in a struct and return a CompoundVal, used when doing
    345   /// struct copy:
    346   /// struct s x, y;
    347   /// x = y;
    348   /// y's value is retrieved by this method.
    349   SVal RetrieveStruct(Store store, const TypedValueRegion* R);
    350 
    351   SVal RetrieveArray(Store store, const TypedValueRegion* R);
    352 
    353   /// Used to lazily generate derived symbols for bindings that are defined
    354   ///  implicitly by default bindings in a super region.
    355   Optional<SVal> RetrieveDerivedDefaultValue(RegionBindings B,
    356                                              const MemRegion *superR,
    357                                              const TypedValueRegion *R,
    358                                              QualType Ty);
    359 
    360   /// Get the state and region whose binding this region R corresponds to.
    361   std::pair<Store, const MemRegion*>
    362   GetLazyBinding(RegionBindings B, const MemRegion *R,
    363                  const MemRegion *originalRegion);
    364 
    365   StoreRef CopyLazyBindings(nonloc::LazyCompoundVal V, Store store,
    366                             const TypedRegion *R);
    367 
    368   //===------------------------------------------------------------------===//
    369   // State pruning.
    370   //===------------------------------------------------------------------===//
    371 
    372   /// removeDeadBindings - Scans the RegionStore of 'state' for dead values.
    373   ///  It returns a new Store with these values removed.
    374   StoreRef removeDeadBindings(Store store, const StackFrameContext *LCtx,
    375                               SymbolReaper& SymReaper);
    376 
    377   StoreRef enterStackFrame(const ProgramState *state,
    378                            const StackFrameContext *frame);
    379 
    380   //===------------------------------------------------------------------===//
    381   // Region "extents".
    382   //===------------------------------------------------------------------===//
    383 
    384   // FIXME: This method will soon be eliminated; see the note in Store.h.
    385   DefinedOrUnknownSVal getSizeInElements(const ProgramState *state,
    386                                          const MemRegion* R, QualType EleTy);
    387 
    388   //===------------------------------------------------------------------===//
    389   // Utility methods.
    390   //===------------------------------------------------------------------===//
    391 
    392   static inline RegionBindings GetRegionBindings(Store store) {
    393     return RegionBindings(static_cast<const RegionBindings::TreeTy*>(store));
    394   }
    395 
    396   void print(Store store, raw_ostream &Out, const char* nl,
    397              const char *sep);
    398 
    399   void iterBindings(Store store, BindingsHandler& f) {
    400     RegionBindings B = GetRegionBindings(store);
    401     for (RegionBindings::iterator I=B.begin(), E=B.end(); I!=E; ++I) {
    402       const BindingKey &K = I.getKey();
    403       if (!K.isDirect())
    404         continue;
    405       if (const SubRegion *R = dyn_cast<SubRegion>(I.getKey().getRegion())) {
    406         // FIXME: Possibly incorporate the offset?
    407         if (!f.HandleBinding(*this, store, R, I.getData()))
    408           return;
    409       }
    410     }
    411   }
    412 };
    413 
    414 } // end anonymous namespace
    415 
    416 //===----------------------------------------------------------------------===//
    417 // RegionStore creation.
    418 //===----------------------------------------------------------------------===//
    419 
    420 StoreManager *ento::CreateRegionStoreManager(ProgramStateManager& StMgr) {
    421   RegionStoreFeatures F = maximal_features_tag();
    422   return new RegionStoreManager(StMgr, F);
    423 }
    424 
    425 StoreManager *ento::CreateFieldsOnlyRegionStoreManager(ProgramStateManager &StMgr) {
    426   RegionStoreFeatures F = minimal_features_tag();
    427   F.enableFields(true);
    428   return new RegionStoreManager(StMgr, F);
    429 }
    430 
    431 
    432 RegionStoreSubRegionMap*
    433 RegionStoreManager::getRegionStoreSubRegionMap(Store store) {
    434   RegionBindings B = GetRegionBindings(store);
    435   RegionStoreSubRegionMap *M = new RegionStoreSubRegionMap();
    436 
    437   SmallVector<const SubRegion*, 10> WL;
    438 
    439   for (RegionBindings::iterator I=B.begin(), E=B.end(); I!=E; ++I)
    440     if (const SubRegion *R = dyn_cast<SubRegion>(I.getKey().getRegion()))
    441       M->process(WL, R);
    442 
    443   // We also need to record in the subregion map "intermediate" regions that
    444   // don't have direct bindings but are super regions of those that do.
    445   while (!WL.empty()) {
    446     const SubRegion *R = WL.back();
    447     WL.pop_back();
    448     M->process(WL, R);
    449   }
    450 
    451   return M;
    452 }
    453 
    454 //===----------------------------------------------------------------------===//
    455 // Region Cluster analysis.
    456 //===----------------------------------------------------------------------===//
    457 
    458 namespace {
    459 template <typename DERIVED>
    460 class ClusterAnalysis  {
    461 protected:
    462   typedef BumpVector<BindingKey> RegionCluster;
    463   typedef llvm::DenseMap<const MemRegion *, RegionCluster *> ClusterMap;
    464   llvm::DenseMap<const RegionCluster*, unsigned> Visited;
    465   typedef SmallVector<std::pair<const MemRegion *, RegionCluster*>, 10>
    466     WorkList;
    467 
    468   BumpVectorContext BVC;
    469   ClusterMap ClusterM;
    470   WorkList WL;
    471 
    472   RegionStoreManager &RM;
    473   ASTContext &Ctx;
    474   SValBuilder &svalBuilder;
    475 
    476   RegionBindings B;
    477 
    478   const bool includeGlobals;
    479 
    480 public:
    481   ClusterAnalysis(RegionStoreManager &rm, ProgramStateManager &StateMgr,
    482                   RegionBindings b, const bool includeGlobals)
    483     : RM(rm), Ctx(StateMgr.getContext()),
    484       svalBuilder(StateMgr.getSValBuilder()),
    485       B(b), includeGlobals(includeGlobals) {}
    486 
    487   RegionBindings getRegionBindings() const { return B; }
    488 
    489   RegionCluster &AddToCluster(BindingKey K) {
    490     const MemRegion *R = K.getRegion();
    491     const MemRegion *baseR = R->getBaseRegion();
    492     RegionCluster &C = getCluster(baseR);
    493     C.push_back(K, BVC);
    494     static_cast<DERIVED*>(this)->VisitAddedToCluster(baseR, C);
    495     return C;
    496   }
    497 
    498   bool isVisited(const MemRegion *R) {
    499     return (bool) Visited[&getCluster(R->getBaseRegion())];
    500   }
    501 
    502   RegionCluster& getCluster(const MemRegion *R) {
    503     RegionCluster *&CRef = ClusterM[R];
    504     if (!CRef) {
    505       void *Mem = BVC.getAllocator().template Allocate<RegionCluster>();
    506       CRef = new (Mem) RegionCluster(BVC, 10);
    507     }
    508     return *CRef;
    509   }
    510 
    511   void GenerateClusters() {
    512       // Scan the entire set of bindings and make the region clusters.
    513     for (RegionBindings::iterator RI = B.begin(), RE = B.end(); RI != RE; ++RI){
    514       RegionCluster &C = AddToCluster(RI.getKey());
    515       if (const MemRegion *R = RI.getData().getAsRegion()) {
    516         // Generate a cluster, but don't add the region to the cluster
    517         // if there aren't any bindings.
    518         getCluster(R->getBaseRegion());
    519       }
    520       if (includeGlobals) {
    521         const MemRegion *R = RI.getKey().getRegion();
    522         if (isa<NonStaticGlobalSpaceRegion>(R->getMemorySpace()))
    523           AddToWorkList(R, C);
    524       }
    525     }
    526   }
    527 
    528   bool AddToWorkList(const MemRegion *R, RegionCluster &C) {
    529     if (unsigned &visited = Visited[&C])
    530       return false;
    531     else
    532       visited = 1;
    533 
    534     WL.push_back(std::make_pair(R, &C));
    535     return true;
    536   }
    537 
    538   bool AddToWorkList(BindingKey K) {
    539     return AddToWorkList(K.getRegion());
    540   }
    541 
    542   bool AddToWorkList(const MemRegion *R) {
    543     const MemRegion *baseR = R->getBaseRegion();
    544     return AddToWorkList(baseR, getCluster(baseR));
    545   }
    546 
    547   void RunWorkList() {
    548     while (!WL.empty()) {
    549       const MemRegion *baseR;
    550       RegionCluster *C;
    551       llvm::tie(baseR, C) = WL.back();
    552       WL.pop_back();
    553 
    554         // First visit the cluster.
    555       static_cast<DERIVED*>(this)->VisitCluster(baseR, C->begin(), C->end());
    556 
    557         // Next, visit the base region.
    558       static_cast<DERIVED*>(this)->VisitBaseRegion(baseR);
    559     }
    560   }
    561 
    562 public:
    563   void VisitAddedToCluster(const MemRegion *baseR, RegionCluster &C) {}
    564   void VisitCluster(const MemRegion *baseR, BindingKey *I, BindingKey *E) {}
    565   void VisitBaseRegion(const MemRegion *baseR) {}
    566 };
    567 }
    568 
    569 //===----------------------------------------------------------------------===//
    570 // Binding invalidation.
    571 //===----------------------------------------------------------------------===//
    572 
    573 void RegionStoreManager::RemoveSubRegionBindings(RegionBindings &B,
    574                                                  const MemRegion *R,
    575                                                  RegionStoreSubRegionMap &M) {
    576 
    577   if (const RegionStoreSubRegionMap::Set *S = M.getSubRegions(R))
    578     for (RegionStoreSubRegionMap::Set::iterator I = S->begin(), E = S->end();
    579          I != E; ++I)
    580       RemoveSubRegionBindings(B, *I, M);
    581 
    582   B = removeBinding(B, R);
    583 }
    584 
    585 namespace {
    586 class invalidateRegionsWorker : public ClusterAnalysis<invalidateRegionsWorker>
    587 {
    588   const Expr *Ex;
    589   unsigned Count;
    590   StoreManager::InvalidatedSymbols &IS;
    591   StoreManager::InvalidatedRegions *Regions;
    592 public:
    593   invalidateRegionsWorker(RegionStoreManager &rm,
    594                           ProgramStateManager &stateMgr,
    595                           RegionBindings b,
    596                           const Expr *ex, unsigned count,
    597                           StoreManager::InvalidatedSymbols &is,
    598                           StoreManager::InvalidatedRegions *r,
    599                           bool includeGlobals)
    600     : ClusterAnalysis<invalidateRegionsWorker>(rm, stateMgr, b, includeGlobals),
    601       Ex(ex), Count(count), IS(is), Regions(r) {}
    602 
    603   void VisitCluster(const MemRegion *baseR, BindingKey *I, BindingKey *E);
    604   void VisitBaseRegion(const MemRegion *baseR);
    605 
    606 private:
    607   void VisitBinding(SVal V);
    608 };
    609 }
    610 
    611 void invalidateRegionsWorker::VisitBinding(SVal V) {
    612   // A symbol?  Mark it touched by the invalidation.
    613   if (SymbolRef Sym = V.getAsSymbol())
    614     IS.insert(Sym);
    615 
    616   if (const MemRegion *R = V.getAsRegion()) {
    617     AddToWorkList(R);
    618     return;
    619   }
    620 
    621   // Is it a LazyCompoundVal?  All references get invalidated as well.
    622   if (const nonloc::LazyCompoundVal *LCS =
    623         dyn_cast<nonloc::LazyCompoundVal>(&V)) {
    624 
    625     const MemRegion *LazyR = LCS->getRegion();
    626     RegionBindings B = RegionStoreManager::GetRegionBindings(LCS->getStore());
    627 
    628     for (RegionBindings::iterator RI = B.begin(), RE = B.end(); RI != RE; ++RI){
    629       const SubRegion *baseR = dyn_cast<SubRegion>(RI.getKey().getRegion());
    630       if (baseR && baseR->isSubRegionOf(LazyR))
    631         VisitBinding(RI.getData());
    632     }
    633 
    634     return;
    635   }
    636 }
    637 
    638 void invalidateRegionsWorker::VisitCluster(const MemRegion *baseR,
    639                                            BindingKey *I, BindingKey *E) {
    640   for ( ; I != E; ++I) {
    641     // Get the old binding.  Is it a region?  If so, add it to the worklist.
    642     const BindingKey &K = *I;
    643     if (const SVal *V = RM.lookup(B, K))
    644       VisitBinding(*V);
    645 
    646     B = RM.removeBinding(B, K);
    647   }
    648 }
    649 
    650 void invalidateRegionsWorker::VisitBaseRegion(const MemRegion *baseR) {
    651   // Symbolic region?  Mark that symbol touched by the invalidation.
    652   if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(baseR))
    653     IS.insert(SR->getSymbol());
    654 
    655   // BlockDataRegion?  If so, invalidate captured variables that are passed
    656   // by reference.
    657   if (const BlockDataRegion *BR = dyn_cast<BlockDataRegion>(baseR)) {
    658     for (BlockDataRegion::referenced_vars_iterator
    659          BI = BR->referenced_vars_begin(), BE = BR->referenced_vars_end() ;
    660          BI != BE; ++BI) {
    661       const VarRegion *VR = *BI;
    662       const VarDecl *VD = VR->getDecl();
    663       if (VD->getAttr<BlocksAttr>() || !VD->hasLocalStorage())
    664         AddToWorkList(VR);
    665     }
    666     return;
    667   }
    668 
    669   // Otherwise, we have a normal data region. Record that we touched the region.
    670   if (Regions)
    671     Regions->push_back(baseR);
    672 
    673   if (isa<AllocaRegion>(baseR) || isa<SymbolicRegion>(baseR)) {
    674     // Invalidate the region by setting its default value to
    675     // conjured symbol. The type of the symbol is irrelavant.
    676     DefinedOrUnknownSVal V =
    677       svalBuilder.getConjuredSymbolVal(baseR, Ex, Ctx.IntTy, Count);
    678     B = RM.addBinding(B, baseR, BindingKey::Default, V);
    679     return;
    680   }
    681 
    682   if (!baseR->isBoundable())
    683     return;
    684 
    685   const TypedValueRegion *TR = cast<TypedValueRegion>(baseR);
    686   QualType T = TR->getValueType();
    687 
    688     // Invalidate the binding.
    689   if (T->isStructureOrClassType()) {
    690     // Invalidate the region by setting its default value to
    691     // conjured symbol. The type of the symbol is irrelavant.
    692     DefinedOrUnknownSVal V =
    693       svalBuilder.getConjuredSymbolVal(baseR, Ex, Ctx.IntTy, Count);
    694     B = RM.addBinding(B, baseR, BindingKey::Default, V);
    695     return;
    696   }
    697 
    698   if (const ArrayType *AT = Ctx.getAsArrayType(T)) {
    699       // Set the default value of the array to conjured symbol.
    700     DefinedOrUnknownSVal V =
    701     svalBuilder.getConjuredSymbolVal(baseR, Ex, AT->getElementType(), Count);
    702     B = RM.addBinding(B, baseR, BindingKey::Default, V);
    703     return;
    704   }
    705 
    706   if (includeGlobals &&
    707       isa<NonStaticGlobalSpaceRegion>(baseR->getMemorySpace())) {
    708     // If the region is a global and we are invalidating all globals,
    709     // just erase the entry.  This causes all globals to be lazily
    710     // symbolicated from the same base symbol.
    711     B = RM.removeBinding(B, baseR);
    712     return;
    713   }
    714 
    715 
    716   DefinedOrUnknownSVal V = svalBuilder.getConjuredSymbolVal(baseR, Ex, T, Count);
    717   assert(SymbolManager::canSymbolicate(T) || V.isUnknown());
    718   B = RM.addBinding(B, baseR, BindingKey::Direct, V);
    719 }
    720 
    721 StoreRef RegionStoreManager::invalidateRegions(Store store,
    722                                             ArrayRef<const MemRegion *> Regions,
    723                                                const Expr *Ex, unsigned Count,
    724                                                InvalidatedSymbols &IS,
    725                                                bool invalidateGlobals,
    726                                               InvalidatedRegions *Invalidated) {
    727   invalidateRegionsWorker W(*this, StateMgr,
    728                             RegionStoreManager::GetRegionBindings(store),
    729                             Ex, Count, IS, Invalidated, invalidateGlobals);
    730 
    731   // Scan the bindings and generate the clusters.
    732   W.GenerateClusters();
    733 
    734   // Add the regions to the worklist.
    735   for (ArrayRef<const MemRegion *>::iterator
    736        I = Regions.begin(), E = Regions.end(); I != E; ++I)
    737     W.AddToWorkList(*I);
    738 
    739   W.RunWorkList();
    740 
    741   // Return the new bindings.
    742   RegionBindings B = W.getRegionBindings();
    743 
    744   if (invalidateGlobals) {
    745     // Bind the non-static globals memory space to a new symbol that we will
    746     // use to derive the bindings for all non-static globals.
    747     const GlobalsSpaceRegion *GS = MRMgr.getGlobalsRegion();
    748     SVal V =
    749       svalBuilder.getConjuredSymbolVal(/* SymbolTag = */ (void*) GS, Ex,
    750                                   /* symbol type, doesn't matter */ Ctx.IntTy,
    751                                   Count);
    752     B = addBinding(B, BindingKey::Make(GS, BindingKey::Default), V);
    753 
    754     // Even if there are no bindings in the global scope, we still need to
    755     // record that we touched it.
    756     if (Invalidated)
    757       Invalidated->push_back(GS);
    758   }
    759 
    760   return StoreRef(B.getRootWithoutRetain(), *this);
    761 }
    762 
    763 //===----------------------------------------------------------------------===//
    764 // Extents for regions.
    765 //===----------------------------------------------------------------------===//
    766 
    767 DefinedOrUnknownSVal RegionStoreManager::getSizeInElements(const ProgramState *state,
    768                                                            const MemRegion *R,
    769                                                            QualType EleTy) {
    770   SVal Size = cast<SubRegion>(R)->getExtent(svalBuilder);
    771   const llvm::APSInt *SizeInt = svalBuilder.getKnownValue(state, Size);
    772   if (!SizeInt)
    773     return UnknownVal();
    774 
    775   CharUnits RegionSize = CharUnits::fromQuantity(SizeInt->getSExtValue());
    776 
    777   if (Ctx.getAsVariableArrayType(EleTy)) {
    778     // FIXME: We need to track extra state to properly record the size
    779     // of VLAs.  Returning UnknownVal here, however, is a stop-gap so that
    780     // we don't have a divide-by-zero below.
    781     return UnknownVal();
    782   }
    783 
    784   CharUnits EleSize = Ctx.getTypeSizeInChars(EleTy);
    785 
    786   // If a variable is reinterpreted as a type that doesn't fit into a larger
    787   // type evenly, round it down.
    788   // This is a signed value, since it's used in arithmetic with signed indices.
    789   return svalBuilder.makeIntVal(RegionSize / EleSize, false);
    790 }
    791 
    792 //===----------------------------------------------------------------------===//
    793 // Location and region casting.
    794 //===----------------------------------------------------------------------===//
    795 
    796 /// ArrayToPointer - Emulates the "decay" of an array to a pointer
    797 ///  type.  'Array' represents the lvalue of the array being decayed
    798 ///  to a pointer, and the returned SVal represents the decayed
    799 ///  version of that lvalue (i.e., a pointer to the first element of
    800 ///  the array).  This is called by ExprEngine when evaluating casts
    801 ///  from arrays to pointers.
    802 SVal RegionStoreManager::ArrayToPointer(Loc Array) {
    803   if (!isa<loc::MemRegionVal>(Array))
    804     return UnknownVal();
    805 
    806   const MemRegion* R = cast<loc::MemRegionVal>(&Array)->getRegion();
    807   const TypedValueRegion* ArrayR = dyn_cast<TypedValueRegion>(R);
    808 
    809   if (!ArrayR)
    810     return UnknownVal();
    811 
    812   // Strip off typedefs from the ArrayRegion's ValueType.
    813   QualType T = ArrayR->getValueType().getDesugaredType(Ctx);
    814   const ArrayType *AT = cast<ArrayType>(T);
    815   T = AT->getElementType();
    816 
    817   NonLoc ZeroIdx = svalBuilder.makeZeroArrayIndex();
    818   return loc::MemRegionVal(MRMgr.getElementRegion(T, ZeroIdx, ArrayR, Ctx));
    819 }
    820 
    821 SVal RegionStoreManager::evalDerivedToBase(SVal derived, QualType baseType) {
    822   const CXXRecordDecl *baseDecl;
    823   if (baseType->isPointerType())
    824     baseDecl = baseType->getCXXRecordDeclForPointerType();
    825   else
    826     baseDecl = baseType->getAsCXXRecordDecl();
    827 
    828   assert(baseDecl && "not a CXXRecordDecl?");
    829 
    830   loc::MemRegionVal *derivedRegVal = dyn_cast<loc::MemRegionVal>(&derived);
    831   if (!derivedRegVal)
    832     return derived;
    833 
    834   const MemRegion *baseReg =
    835     MRMgr.getCXXBaseObjectRegion(baseDecl, derivedRegVal->getRegion());
    836 
    837   return loc::MemRegionVal(baseReg);
    838 }
    839 
    840 //===----------------------------------------------------------------------===//
    841 // Loading values from regions.
    842 //===----------------------------------------------------------------------===//
    843 
    844 Optional<SVal> RegionStoreManager::getDirectBinding(RegionBindings B,
    845                                                     const MemRegion *R) {
    846 
    847   if (const SVal *V = lookup(B, R, BindingKey::Direct))
    848     return *V;
    849 
    850   return Optional<SVal>();
    851 }
    852 
    853 Optional<SVal> RegionStoreManager::getDefaultBinding(RegionBindings B,
    854                                                      const MemRegion *R) {
    855   if (R->isBoundable())
    856     if (const TypedValueRegion *TR = dyn_cast<TypedValueRegion>(R))
    857       if (TR->getValueType()->isUnionType())
    858         return UnknownVal();
    859 
    860   if (const SVal *V = lookup(B, R, BindingKey::Default))
    861     return *V;
    862 
    863   return Optional<SVal>();
    864 }
    865 
    866 SVal RegionStoreManager::Retrieve(Store store, Loc L, QualType T) {
    867   assert(!isa<UnknownVal>(L) && "location unknown");
    868   assert(!isa<UndefinedVal>(L) && "location undefined");
    869 
    870   // For access to concrete addresses, return UnknownVal.  Checks
    871   // for null dereferences (and similar errors) are done by checkers, not
    872   // the Store.
    873   // FIXME: We can consider lazily symbolicating such memory, but we really
    874   // should defer this when we can reason easily about symbolicating arrays
    875   // of bytes.
    876   if (isa<loc::ConcreteInt>(L)) {
    877     return UnknownVal();
    878   }
    879   if (!isa<loc::MemRegionVal>(L)) {
    880     return UnknownVal();
    881   }
    882 
    883   const MemRegion *MR = cast<loc::MemRegionVal>(L).getRegion();
    884 
    885   if (isa<AllocaRegion>(MR) || isa<SymbolicRegion>(MR)) {
    886     if (T.isNull()) {
    887       const SymbolicRegion *SR = cast<SymbolicRegion>(MR);
    888       T = SR->getSymbol()->getType(Ctx);
    889     }
    890     MR = GetElementZeroRegion(MR, T);
    891   }
    892 
    893   if (isa<CodeTextRegion>(MR)) {
    894     llvm_unreachable("Why load from a code text region?");
    895   }
    896 
    897   // FIXME: Perhaps this method should just take a 'const MemRegion*' argument
    898   //  instead of 'Loc', and have the other Loc cases handled at a higher level.
    899   const TypedValueRegion *R = cast<TypedValueRegion>(MR);
    900   QualType RTy = R->getValueType();
    901 
    902   // FIXME: We should eventually handle funny addressing.  e.g.:
    903   //
    904   //   int x = ...;
    905   //   int *p = &x;
    906   //   char *q = (char*) p;
    907   //   char c = *q;  // returns the first byte of 'x'.
    908   //
    909   // Such funny addressing will occur due to layering of regions.
    910 
    911   if (RTy->isStructureOrClassType())
    912     return RetrieveStruct(store, R);
    913 
    914   // FIXME: Handle unions.
    915   if (RTy->isUnionType())
    916     return UnknownVal();
    917 
    918   if (RTy->isArrayType())
    919     return RetrieveArray(store, R);
    920 
    921   // FIXME: handle Vector types.
    922   if (RTy->isVectorType())
    923     return UnknownVal();
    924 
    925   if (const FieldRegion* FR = dyn_cast<FieldRegion>(R))
    926     return CastRetrievedVal(RetrieveField(store, FR), FR, T, false);
    927 
    928   if (const ElementRegion* ER = dyn_cast<ElementRegion>(R)) {
    929     // FIXME: Here we actually perform an implicit conversion from the loaded
    930     // value to the element type.  Eventually we want to compose these values
    931     // more intelligently.  For example, an 'element' can encompass multiple
    932     // bound regions (e.g., several bound bytes), or could be a subset of
    933     // a larger value.
    934     return CastRetrievedVal(RetrieveElement(store, ER), ER, T, false);
    935   }
    936 
    937   if (const ObjCIvarRegion *IVR = dyn_cast<ObjCIvarRegion>(R)) {
    938     // FIXME: Here we actually perform an implicit conversion from the loaded
    939     // value to the ivar type.  What we should model is stores to ivars
    940     // that blow past the extent of the ivar.  If the address of the ivar is
    941     // reinterpretted, it is possible we stored a different value that could
    942     // fit within the ivar.  Either we need to cast these when storing them
    943     // or reinterpret them lazily (as we do here).
    944     return CastRetrievedVal(RetrieveObjCIvar(store, IVR), IVR, T, false);
    945   }
    946 
    947   if (const VarRegion *VR = dyn_cast<VarRegion>(R)) {
    948     // FIXME: Here we actually perform an implicit conversion from the loaded
    949     // value to the variable type.  What we should model is stores to variables
    950     // that blow past the extent of the variable.  If the address of the
    951     // variable is reinterpretted, it is possible we stored a different value
    952     // that could fit within the variable.  Either we need to cast these when
    953     // storing them or reinterpret them lazily (as we do here).
    954     return CastRetrievedVal(RetrieveVar(store, VR), VR, T, false);
    955   }
    956 
    957   RegionBindings B = GetRegionBindings(store);
    958   const SVal *V = lookup(B, R, BindingKey::Direct);
    959 
    960   // Check if the region has a binding.
    961   if (V)
    962     return *V;
    963 
    964   // The location does not have a bound value.  This means that it has
    965   // the value it had upon its creation and/or entry to the analyzed
    966   // function/method.  These are either symbolic values or 'undefined'.
    967   if (R->hasStackNonParametersStorage()) {
    968     // All stack variables are considered to have undefined values
    969     // upon creation.  All heap allocated blocks are considered to
    970     // have undefined values as well unless they are explicitly bound
    971     // to specific values.
    972     return UndefinedVal();
    973   }
    974 
    975   // All other values are symbolic.
    976   return svalBuilder.getRegionValueSymbolVal(R);
    977 }
    978 
    979 std::pair<Store, const MemRegion *>
    980 RegionStoreManager::GetLazyBinding(RegionBindings B, const MemRegion *R,
    981                                    const MemRegion *originalRegion) {
    982 
    983   if (originalRegion != R) {
    984     if (Optional<SVal> OV = getDefaultBinding(B, R)) {
    985       if (const nonloc::LazyCompoundVal *V =
    986           dyn_cast<nonloc::LazyCompoundVal>(OV.getPointer()))
    987         return std::make_pair(V->getStore(), V->getRegion());
    988     }
    989   }
    990 
    991   if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) {
    992     const std::pair<Store, const MemRegion *> &X =
    993       GetLazyBinding(B, ER->getSuperRegion(), originalRegion);
    994 
    995     if (X.second)
    996       return std::make_pair(X.first,
    997                             MRMgr.getElementRegionWithSuper(ER, X.second));
    998   }
    999   else if (const FieldRegion *FR = dyn_cast<FieldRegion>(R)) {
   1000     const std::pair<Store, const MemRegion *> &X =
   1001       GetLazyBinding(B, FR->getSuperRegion(), originalRegion);
   1002 
   1003     if (X.second)
   1004       return std::make_pair(X.first,
   1005                             MRMgr.getFieldRegionWithSuper(FR, X.second));
   1006   }
   1007   // C++ base object region is another kind of region that we should blast
   1008   // through to look for lazy compound value. It is like a field region.
   1009   else if (const CXXBaseObjectRegion *baseReg =
   1010                             dyn_cast<CXXBaseObjectRegion>(R)) {
   1011     const std::pair<Store, const MemRegion *> &X =
   1012       GetLazyBinding(B, baseReg->getSuperRegion(), originalRegion);
   1013 
   1014     if (X.second)
   1015       return std::make_pair(X.first,
   1016                      MRMgr.getCXXBaseObjectRegionWithSuper(baseReg, X.second));
   1017   }
   1018 
   1019   // The NULL MemRegion indicates an non-existent lazy binding. A NULL Store is
   1020   // possible for a valid lazy binding.
   1021   return std::make_pair((Store) 0, (const MemRegion *) 0);
   1022 }
   1023 
   1024 SVal RegionStoreManager::RetrieveElement(Store store,
   1025                                          const ElementRegion* R) {
   1026   // Check if the region has a binding.
   1027   RegionBindings B = GetRegionBindings(store);
   1028   if (const Optional<SVal> &V = getDirectBinding(B, R))
   1029     return *V;
   1030 
   1031   const MemRegion* superR = R->getSuperRegion();
   1032 
   1033   // Check if the region is an element region of a string literal.
   1034   if (const StringRegion *StrR=dyn_cast<StringRegion>(superR)) {
   1035     // FIXME: Handle loads from strings where the literal is treated as
   1036     // an integer, e.g., *((unsigned int*)"hello")
   1037     QualType T = Ctx.getAsArrayType(StrR->getValueType())->getElementType();
   1038     if (T != Ctx.getCanonicalType(R->getElementType()))
   1039       return UnknownVal();
   1040 
   1041     const StringLiteral *Str = StrR->getStringLiteral();
   1042     SVal Idx = R->getIndex();
   1043     if (nonloc::ConcreteInt *CI = dyn_cast<nonloc::ConcreteInt>(&Idx)) {
   1044       int64_t i = CI->getValue().getSExtValue();
   1045       // Abort on string underrun.  This can be possible by arbitrary
   1046       // clients of RetrieveElement().
   1047       if (i < 0)
   1048         return UndefinedVal();
   1049       int64_t byteLength = Str->getByteLength();
   1050       // Technically, only i == byteLength is guaranteed to be null.
   1051       // However, such overflows should be caught before reaching this point;
   1052       // the only time such an access would be made is if a string literal was
   1053       // used to initialize a larger array.
   1054       char c = (i >= byteLength) ? '\0' : Str->getString()[i];
   1055       return svalBuilder.makeIntVal(c, T);
   1056     }
   1057   }
   1058 
   1059   // Check for loads from a code text region.  For such loads, just give up.
   1060   if (isa<CodeTextRegion>(superR))
   1061     return UnknownVal();
   1062 
   1063   // Handle the case where we are indexing into a larger scalar object.
   1064   // For example, this handles:
   1065   //   int x = ...
   1066   //   char *y = &x;
   1067   //   return *y;
   1068   // FIXME: This is a hack, and doesn't do anything really intelligent yet.
   1069   const RegionRawOffset &O = R->getAsArrayOffset();
   1070 
   1071   // If we cannot reason about the offset, return an unknown value.
   1072   if (!O.getRegion())
   1073     return UnknownVal();
   1074 
   1075   if (const TypedValueRegion *baseR =
   1076         dyn_cast_or_null<TypedValueRegion>(O.getRegion())) {
   1077     QualType baseT = baseR->getValueType();
   1078     if (baseT->isScalarType()) {
   1079       QualType elemT = R->getElementType();
   1080       if (elemT->isScalarType()) {
   1081         if (Ctx.getTypeSizeInChars(baseT) >= Ctx.getTypeSizeInChars(elemT)) {
   1082           if (const Optional<SVal> &V = getDirectBinding(B, superR)) {
   1083             if (SymbolRef parentSym = V->getAsSymbol())
   1084               return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
   1085 
   1086             if (V->isUnknownOrUndef())
   1087               return *V;
   1088             // Other cases: give up.  We are indexing into a larger object
   1089             // that has some value, but we don't know how to handle that yet.
   1090             return UnknownVal();
   1091           }
   1092         }
   1093       }
   1094     }
   1095   }
   1096   return RetrieveFieldOrElementCommon(store, R, R->getElementType(), superR);
   1097 }
   1098 
   1099 SVal RegionStoreManager::RetrieveField(Store store,
   1100                                        const FieldRegion* R) {
   1101 
   1102   // Check if the region has a binding.
   1103   RegionBindings B = GetRegionBindings(store);
   1104   if (const Optional<SVal> &V = getDirectBinding(B, R))
   1105     return *V;
   1106 
   1107   QualType Ty = R->getValueType();
   1108   return RetrieveFieldOrElementCommon(store, R, Ty, R->getSuperRegion());
   1109 }
   1110 
   1111 Optional<SVal>
   1112 RegionStoreManager::RetrieveDerivedDefaultValue(RegionBindings B,
   1113                                                 const MemRegion *superR,
   1114                                                 const TypedValueRegion *R,
   1115                                                 QualType Ty) {
   1116 
   1117   if (const Optional<SVal> &D = getDefaultBinding(B, superR)) {
   1118     const SVal &val = D.getValue();
   1119     if (SymbolRef parentSym = val.getAsSymbol())
   1120       return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
   1121 
   1122     if (val.isZeroConstant())
   1123       return svalBuilder.makeZeroVal(Ty);
   1124 
   1125     if (val.isUnknownOrUndef())
   1126       return val;
   1127 
   1128     // Lazy bindings are handled later.
   1129     if (isa<nonloc::LazyCompoundVal>(val))
   1130       return Optional<SVal>();
   1131 
   1132     llvm_unreachable("Unknown default value");
   1133   }
   1134 
   1135   return Optional<SVal>();
   1136 }
   1137 
   1138 SVal RegionStoreManager::RetrieveLazyBinding(const MemRegion *lazyBindingRegion,
   1139                                              Store lazyBindingStore) {
   1140   if (const ElementRegion *ER = dyn_cast<ElementRegion>(lazyBindingRegion))
   1141     return RetrieveElement(lazyBindingStore, ER);
   1142 
   1143   return RetrieveField(lazyBindingStore,
   1144                        cast<FieldRegion>(lazyBindingRegion));
   1145 }
   1146 
   1147 SVal RegionStoreManager::RetrieveFieldOrElementCommon(Store store,
   1148                                                       const TypedValueRegion *R,
   1149                                                       QualType Ty,
   1150                                                       const MemRegion *superR) {
   1151 
   1152   // At this point we have already checked in either RetrieveElement or
   1153   // RetrieveField if 'R' has a direct binding.
   1154 
   1155   RegionBindings B = GetRegionBindings(store);
   1156 
   1157   while (superR) {
   1158     if (const Optional<SVal> &D =
   1159         RetrieveDerivedDefaultValue(B, superR, R, Ty))
   1160       return *D;
   1161 
   1162     // If our super region is a field or element itself, walk up the region
   1163     // hierarchy to see if there is a default value installed in an ancestor.
   1164     if (const SubRegion *SR = dyn_cast<SubRegion>(superR)) {
   1165       superR = SR->getSuperRegion();
   1166       continue;
   1167     }
   1168     break;
   1169   }
   1170 
   1171   // Lazy binding?
   1172   Store lazyBindingStore = NULL;
   1173   const MemRegion *lazyBindingRegion = NULL;
   1174   llvm::tie(lazyBindingStore, lazyBindingRegion) = GetLazyBinding(B, R, R);
   1175 
   1176   if (lazyBindingRegion)
   1177     return RetrieveLazyBinding(lazyBindingRegion, lazyBindingStore);
   1178 
   1179   if (R->hasStackNonParametersStorage()) {
   1180     if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) {
   1181       // Currently we don't reason specially about Clang-style vectors.  Check
   1182       // if superR is a vector and if so return Unknown.
   1183       if (const TypedValueRegion *typedSuperR =
   1184             dyn_cast<TypedValueRegion>(superR)) {
   1185         if (typedSuperR->getValueType()->isVectorType())
   1186           return UnknownVal();
   1187       }
   1188 
   1189       // FIXME: We also need to take ElementRegions with symbolic indexes into
   1190       // account.
   1191       if (!ER->getIndex().isConstant())
   1192         return UnknownVal();
   1193     }
   1194 
   1195     return UndefinedVal();
   1196   }
   1197 
   1198   // All other values are symbolic.
   1199   return svalBuilder.getRegionValueSymbolVal(R);
   1200 }
   1201 
   1202 SVal RegionStoreManager::RetrieveObjCIvar(Store store, const ObjCIvarRegion* R){
   1203 
   1204     // Check if the region has a binding.
   1205   RegionBindings B = GetRegionBindings(store);
   1206 
   1207   if (const Optional<SVal> &V = getDirectBinding(B, R))
   1208     return *V;
   1209 
   1210   const MemRegion *superR = R->getSuperRegion();
   1211 
   1212   // Check if the super region has a default binding.
   1213   if (const Optional<SVal> &V = getDefaultBinding(B, superR)) {
   1214     if (SymbolRef parentSym = V->getAsSymbol())
   1215       return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
   1216 
   1217     // Other cases: give up.
   1218     return UnknownVal();
   1219   }
   1220 
   1221   return RetrieveLazySymbol(R);
   1222 }
   1223 
   1224 SVal RegionStoreManager::RetrieveVar(Store store, const VarRegion *R) {
   1225 
   1226   // Check if the region has a binding.
   1227   RegionBindings B = GetRegionBindings(store);
   1228 
   1229   if (const Optional<SVal> &V = getDirectBinding(B, R))
   1230     return *V;
   1231 
   1232   // Lazily derive a value for the VarRegion.
   1233   const VarDecl *VD = R->getDecl();
   1234   QualType T = VD->getType();
   1235   const MemSpaceRegion *MS = R->getMemorySpace();
   1236 
   1237   if (isa<UnknownSpaceRegion>(MS) ||
   1238       isa<StackArgumentsSpaceRegion>(MS))
   1239     return svalBuilder.getRegionValueSymbolVal(R);
   1240 
   1241   if (isa<GlobalsSpaceRegion>(MS)) {
   1242     if (isa<NonStaticGlobalSpaceRegion>(MS)) {
   1243       // Is 'VD' declared constant?  If so, retrieve the constant value.
   1244       QualType CT = Ctx.getCanonicalType(T);
   1245       if (CT.isConstQualified()) {
   1246         const Expr *Init = VD->getInit();
   1247         // Do the null check first, as we want to call 'IgnoreParenCasts'.
   1248         if (Init)
   1249           if (const IntegerLiteral *IL =
   1250               dyn_cast<IntegerLiteral>(Init->IgnoreParenCasts())) {
   1251             const nonloc::ConcreteInt &V = svalBuilder.makeIntVal(IL);
   1252             return svalBuilder.evalCast(V, Init->getType(), IL->getType());
   1253           }
   1254       }
   1255 
   1256       if (const Optional<SVal> &V = RetrieveDerivedDefaultValue(B, MS, R, CT))
   1257         return V.getValue();
   1258 
   1259       return svalBuilder.getRegionValueSymbolVal(R);
   1260     }
   1261 
   1262     if (T->isIntegerType())
   1263       return svalBuilder.makeIntVal(0, T);
   1264     if (T->isPointerType())
   1265       return svalBuilder.makeNull();
   1266 
   1267     return UnknownVal();
   1268   }
   1269 
   1270   return UndefinedVal();
   1271 }
   1272 
   1273 SVal RegionStoreManager::RetrieveLazySymbol(const TypedValueRegion *R) {
   1274   // All other values are symbolic.
   1275   return svalBuilder.getRegionValueSymbolVal(R);
   1276 }
   1277 
   1278 SVal RegionStoreManager::RetrieveStruct(Store store,
   1279                                         const TypedValueRegion* R) {
   1280   QualType T = R->getValueType();
   1281   assert(T->isStructureOrClassType());
   1282   return svalBuilder.makeLazyCompoundVal(StoreRef(store, *this), R);
   1283 }
   1284 
   1285 SVal RegionStoreManager::RetrieveArray(Store store,
   1286                                        const TypedValueRegion * R) {
   1287   assert(Ctx.getAsConstantArrayType(R->getValueType()));
   1288   return svalBuilder.makeLazyCompoundVal(StoreRef(store, *this), R);
   1289 }
   1290 
   1291 bool RegionStoreManager::includedInBindings(Store store,
   1292                                             const MemRegion *region) const {
   1293   RegionBindings B = GetRegionBindings(store);
   1294   region = region->getBaseRegion();
   1295 
   1296   for (RegionBindings::iterator it = B.begin(), ei = B.end(); it != ei; ++it) {
   1297     const BindingKey &K = it.getKey();
   1298     if (region == K.getRegion())
   1299       return true;
   1300     const SVal &D = it.getData();
   1301     if (const MemRegion *r = D.getAsRegion())
   1302       if (r == region)
   1303         return true;
   1304   }
   1305   return false;
   1306 }
   1307 
   1308 //===----------------------------------------------------------------------===//
   1309 // Binding values to regions.
   1310 //===----------------------------------------------------------------------===//
   1311 
   1312 StoreRef RegionStoreManager::Remove(Store store, Loc L) {
   1313   if (isa<loc::MemRegionVal>(L))
   1314     if (const MemRegion* R = cast<loc::MemRegionVal>(L).getRegion())
   1315       return StoreRef(removeBinding(GetRegionBindings(store),
   1316                                     R).getRootWithoutRetain(),
   1317                       *this);
   1318 
   1319   return StoreRef(store, *this);
   1320 }
   1321 
   1322 StoreRef RegionStoreManager::Bind(Store store, Loc L, SVal V) {
   1323   if (isa<loc::ConcreteInt>(L))
   1324     return StoreRef(store, *this);
   1325 
   1326   // If we get here, the location should be a region.
   1327   const MemRegion *R = cast<loc::MemRegionVal>(L).getRegion();
   1328 
   1329   // Check if the region is a struct region.
   1330   if (const TypedValueRegion* TR = dyn_cast<TypedValueRegion>(R))
   1331     if (TR->getValueType()->isStructureOrClassType())
   1332       return BindStruct(store, TR, V);
   1333 
   1334   if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) {
   1335     if (ER->getIndex().isZeroConstant()) {
   1336       if (const TypedValueRegion *superR =
   1337             dyn_cast<TypedValueRegion>(ER->getSuperRegion())) {
   1338         QualType superTy = superR->getValueType();
   1339         // For now, just invalidate the fields of the struct/union/class.
   1340         // This is for test rdar_test_7185607 in misc-ps-region-store.m.
   1341         // FIXME: Precisely handle the fields of the record.
   1342         if (superTy->isStructureOrClassType())
   1343           return KillStruct(store, superR, UnknownVal());
   1344       }
   1345     }
   1346   }
   1347   else if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R)) {
   1348     // Binding directly to a symbolic region should be treated as binding
   1349     // to element 0.
   1350     QualType T = SR->getSymbol()->getType(Ctx);
   1351 
   1352     // FIXME: Is this the right way to handle symbols that are references?
   1353     if (const PointerType *PT = T->getAs<PointerType>())
   1354       T = PT->getPointeeType();
   1355     else
   1356       T = T->getAs<ReferenceType>()->getPointeeType();
   1357 
   1358     R = GetElementZeroRegion(SR, T);
   1359   }
   1360 
   1361   // Perform the binding.
   1362   RegionBindings B = GetRegionBindings(store);
   1363   return StoreRef(addBinding(B, R, BindingKey::Direct,
   1364                              V).getRootWithoutRetain(), *this);
   1365 }
   1366 
   1367 StoreRef RegionStoreManager::BindDecl(Store store, const VarRegion *VR,
   1368                                       SVal InitVal) {
   1369 
   1370   QualType T = VR->getDecl()->getType();
   1371 
   1372   if (T->isArrayType())
   1373     return BindArray(store, VR, InitVal);
   1374   if (T->isStructureOrClassType())
   1375     return BindStruct(store, VR, InitVal);
   1376 
   1377   return Bind(store, svalBuilder.makeLoc(VR), InitVal);
   1378 }
   1379 
   1380 // FIXME: this method should be merged into Bind().
   1381 StoreRef RegionStoreManager::BindCompoundLiteral(Store store,
   1382                                                  const CompoundLiteralExpr *CL,
   1383                                                  const LocationContext *LC,
   1384                                                  SVal V) {
   1385   return Bind(store, loc::MemRegionVal(MRMgr.getCompoundLiteralRegion(CL, LC)),
   1386               V);
   1387 }
   1388 
   1389 StoreRef RegionStoreManager::setImplicitDefaultValue(Store store,
   1390                                                      const MemRegion *R,
   1391                                                      QualType T) {
   1392   RegionBindings B = GetRegionBindings(store);
   1393   SVal V;
   1394 
   1395   if (Loc::isLocType(T))
   1396     V = svalBuilder.makeNull();
   1397   else if (T->isIntegerType())
   1398     V = svalBuilder.makeZeroVal(T);
   1399   else if (T->isStructureOrClassType() || T->isArrayType()) {
   1400     // Set the default value to a zero constant when it is a structure
   1401     // or array.  The type doesn't really matter.
   1402     V = svalBuilder.makeZeroVal(Ctx.IntTy);
   1403   }
   1404   else {
   1405     // We can't represent values of this type, but we still need to set a value
   1406     // to record that the region has been initialized.
   1407     // If this assertion ever fires, a new case should be added above -- we
   1408     // should know how to default-initialize any value we can symbolicate.
   1409     assert(!SymbolManager::canSymbolicate(T) && "This type is representable");
   1410     V = UnknownVal();
   1411   }
   1412 
   1413   return StoreRef(addBinding(B, R, BindingKey::Default,
   1414                              V).getRootWithoutRetain(), *this);
   1415 }
   1416 
   1417 StoreRef RegionStoreManager::BindArray(Store store, const TypedValueRegion* R,
   1418                                        SVal Init) {
   1419 
   1420   const ArrayType *AT =cast<ArrayType>(Ctx.getCanonicalType(R->getValueType()));
   1421   QualType ElementTy = AT->getElementType();
   1422   Optional<uint64_t> Size;
   1423 
   1424   if (const ConstantArrayType* CAT = dyn_cast<ConstantArrayType>(AT))
   1425     Size = CAT->getSize().getZExtValue();
   1426 
   1427   // Check if the init expr is a string literal.
   1428   if (loc::MemRegionVal *MRV = dyn_cast<loc::MemRegionVal>(&Init)) {
   1429     const StringRegion *S = cast<StringRegion>(MRV->getRegion());
   1430 
   1431     // Treat the string as a lazy compound value.
   1432     nonloc::LazyCompoundVal LCV =
   1433       cast<nonloc::LazyCompoundVal>(svalBuilder.
   1434                                 makeLazyCompoundVal(StoreRef(store, *this), S));
   1435     return CopyLazyBindings(LCV, store, R);
   1436   }
   1437 
   1438   // Handle lazy compound values.
   1439   if (nonloc::LazyCompoundVal *LCV = dyn_cast<nonloc::LazyCompoundVal>(&Init))
   1440     return CopyLazyBindings(*LCV, store, R);
   1441 
   1442   // Remaining case: explicit compound values.
   1443 
   1444   if (Init.isUnknown())
   1445     return setImplicitDefaultValue(store, R, ElementTy);
   1446 
   1447   nonloc::CompoundVal& CV = cast<nonloc::CompoundVal>(Init);
   1448   nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
   1449   uint64_t i = 0;
   1450 
   1451   StoreRef newStore(store, *this);
   1452   for (; Size.hasValue() ? i < Size.getValue() : true ; ++i, ++VI) {
   1453     // The init list might be shorter than the array length.
   1454     if (VI == VE)
   1455       break;
   1456 
   1457     const NonLoc &Idx = svalBuilder.makeArrayIndex(i);
   1458     const ElementRegion *ER = MRMgr.getElementRegion(ElementTy, Idx, R, Ctx);
   1459 
   1460     if (ElementTy->isStructureOrClassType())
   1461       newStore = BindStruct(newStore.getStore(), ER, *VI);
   1462     else if (ElementTy->isArrayType())
   1463       newStore = BindArray(newStore.getStore(), ER, *VI);
   1464     else
   1465       newStore = Bind(newStore.getStore(), svalBuilder.makeLoc(ER), *VI);
   1466   }
   1467 
   1468   // If the init list is shorter than the array length, set the
   1469   // array default value.
   1470   if (Size.hasValue() && i < Size.getValue())
   1471     newStore = setImplicitDefaultValue(newStore.getStore(), R, ElementTy);
   1472 
   1473   return newStore;
   1474 }
   1475 
   1476 StoreRef RegionStoreManager::BindStruct(Store store, const TypedValueRegion* R,
   1477                                         SVal V) {
   1478 
   1479   if (!Features.supportsFields())
   1480     return StoreRef(store, *this);
   1481 
   1482   QualType T = R->getValueType();
   1483   assert(T->isStructureOrClassType());
   1484 
   1485   const RecordType* RT = T->getAs<RecordType>();
   1486   RecordDecl *RD = RT->getDecl();
   1487 
   1488   if (!RD->isCompleteDefinition())
   1489     return StoreRef(store, *this);
   1490 
   1491   // Handle lazy compound values.
   1492   if (const nonloc::LazyCompoundVal *LCV=dyn_cast<nonloc::LazyCompoundVal>(&V))
   1493     return CopyLazyBindings(*LCV, store, R);
   1494 
   1495   // We may get non-CompoundVal accidentally due to imprecise cast logic or
   1496   // that we are binding symbolic struct value. Kill the field values, and if
   1497   // the value is symbolic go and bind it as a "default" binding.
   1498   if (V.isUnknown() || !isa<nonloc::CompoundVal>(V)) {
   1499     SVal SV = isa<nonloc::SymbolVal>(V) ? V : UnknownVal();
   1500     return KillStruct(store, R, SV);
   1501   }
   1502 
   1503   nonloc::CompoundVal& CV = cast<nonloc::CompoundVal>(V);
   1504   nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
   1505 
   1506   RecordDecl::field_iterator FI, FE;
   1507   StoreRef newStore(store, *this);
   1508 
   1509   for (FI = RD->field_begin(), FE = RD->field_end(); FI != FE; ++FI, ++VI) {
   1510 
   1511     if (VI == VE)
   1512       break;
   1513 
   1514     QualType FTy = (*FI)->getType();
   1515     const FieldRegion* FR = MRMgr.getFieldRegion(*FI, R);
   1516 
   1517     if (FTy->isArrayType())
   1518       newStore = BindArray(newStore.getStore(), FR, *VI);
   1519     else if (FTy->isStructureOrClassType())
   1520       newStore = BindStruct(newStore.getStore(), FR, *VI);
   1521     else
   1522       newStore = Bind(newStore.getStore(), svalBuilder.makeLoc(FR), *VI);
   1523   }
   1524 
   1525   // There may be fewer values in the initialize list than the fields of struct.
   1526   if (FI != FE) {
   1527     RegionBindings B = GetRegionBindings(newStore.getStore());
   1528     B = addBinding(B, R, BindingKey::Default, svalBuilder.makeIntVal(0, false));
   1529     newStore = StoreRef(B.getRootWithoutRetain(), *this);
   1530   }
   1531 
   1532   return newStore;
   1533 }
   1534 
   1535 StoreRef RegionStoreManager::KillStruct(Store store, const TypedRegion* R,
   1536                                      SVal DefaultVal) {
   1537   BindingKey key = BindingKey::Make(R, BindingKey::Default);
   1538 
   1539   // The BindingKey may be "invalid" if we cannot handle the region binding
   1540   // explicitly.  One example is something like array[index], where index
   1541   // is a symbolic value.  In such cases, we want to invalidate the entire
   1542   // array, as the index assignment could have been to any element.  In
   1543   // the case of nested symbolic indices, we need to march up the region
   1544   // hierarchy untile we reach a region whose binding we can reason about.
   1545   const SubRegion *subReg = R;
   1546 
   1547   while (!key.isValid()) {
   1548     if (const SubRegion *tmp = dyn_cast<SubRegion>(subReg->getSuperRegion())) {
   1549       subReg = tmp;
   1550       key = BindingKey::Make(tmp, BindingKey::Default);
   1551     }
   1552     else
   1553       break;
   1554   }
   1555 
   1556   // Remove the old bindings, using 'subReg' as the root of all regions
   1557   // we will invalidate.
   1558   RegionBindings B = GetRegionBindings(store);
   1559   llvm::OwningPtr<RegionStoreSubRegionMap>
   1560     SubRegions(getRegionStoreSubRegionMap(store));
   1561   RemoveSubRegionBindings(B, subReg, *SubRegions);
   1562 
   1563   // Set the default value of the struct region to "unknown".
   1564   if (!key.isValid())
   1565     return StoreRef(B.getRootWithoutRetain(), *this);
   1566 
   1567   return StoreRef(addBinding(B, key, DefaultVal).getRootWithoutRetain(), *this);
   1568 }
   1569 
   1570 StoreRef RegionStoreManager::CopyLazyBindings(nonloc::LazyCompoundVal V,
   1571                                               Store store,
   1572                                               const TypedRegion *R) {
   1573 
   1574   // Nuke the old bindings stemming from R.
   1575   RegionBindings B = GetRegionBindings(store);
   1576 
   1577   llvm::OwningPtr<RegionStoreSubRegionMap>
   1578     SubRegions(getRegionStoreSubRegionMap(store));
   1579 
   1580   // B and DVM are updated after the call to RemoveSubRegionBindings.
   1581   RemoveSubRegionBindings(B, R, *SubRegions.get());
   1582 
   1583   // Now copy the bindings.  This amounts to just binding 'V' to 'R'.  This
   1584   // results in a zero-copy algorithm.
   1585   return StoreRef(addBinding(B, R, BindingKey::Default,
   1586                              V).getRootWithoutRetain(), *this);
   1587 }
   1588 
   1589 //===----------------------------------------------------------------------===//
   1590 // "Raw" retrievals and bindings.
   1591 //===----------------------------------------------------------------------===//
   1592 
   1593 
   1594 RegionBindings RegionStoreManager::addBinding(RegionBindings B, BindingKey K,
   1595                                               SVal V) {
   1596   if (!K.isValid())
   1597     return B;
   1598   return RBFactory.add(B, K, V);
   1599 }
   1600 
   1601 RegionBindings RegionStoreManager::addBinding(RegionBindings B,
   1602                                               const MemRegion *R,
   1603                                               BindingKey::Kind k, SVal V) {
   1604   return addBinding(B, BindingKey::Make(R, k), V);
   1605 }
   1606 
   1607 const SVal *RegionStoreManager::lookup(RegionBindings B, BindingKey K) {
   1608   if (!K.isValid())
   1609     return NULL;
   1610   return B.lookup(K);
   1611 }
   1612 
   1613 const SVal *RegionStoreManager::lookup(RegionBindings B,
   1614                                        const MemRegion *R,
   1615                                        BindingKey::Kind k) {
   1616   return lookup(B, BindingKey::Make(R, k));
   1617 }
   1618 
   1619 RegionBindings RegionStoreManager::removeBinding(RegionBindings B,
   1620                                                  BindingKey K) {
   1621   if (!K.isValid())
   1622     return B;
   1623   return RBFactory.remove(B, K);
   1624 }
   1625 
   1626 RegionBindings RegionStoreManager::removeBinding(RegionBindings B,
   1627                                                  const MemRegion *R,
   1628                                                 BindingKey::Kind k){
   1629   return removeBinding(B, BindingKey::Make(R, k));
   1630 }
   1631 
   1632 //===----------------------------------------------------------------------===//
   1633 // State pruning.
   1634 //===----------------------------------------------------------------------===//
   1635 
   1636 namespace {
   1637 class removeDeadBindingsWorker :
   1638   public ClusterAnalysis<removeDeadBindingsWorker> {
   1639   SmallVector<const SymbolicRegion*, 12> Postponed;
   1640   SymbolReaper &SymReaper;
   1641   const StackFrameContext *CurrentLCtx;
   1642 
   1643 public:
   1644   removeDeadBindingsWorker(RegionStoreManager &rm, ProgramStateManager &stateMgr,
   1645                            RegionBindings b, SymbolReaper &symReaper,
   1646                            const StackFrameContext *LCtx)
   1647     : ClusterAnalysis<removeDeadBindingsWorker>(rm, stateMgr, b,
   1648                                                 /* includeGlobals = */ false),
   1649       SymReaper(symReaper), CurrentLCtx(LCtx) {}
   1650 
   1651   // Called by ClusterAnalysis.
   1652   void VisitAddedToCluster(const MemRegion *baseR, RegionCluster &C);
   1653   void VisitCluster(const MemRegion *baseR, BindingKey *I, BindingKey *E);
   1654 
   1655   void VisitBindingKey(BindingKey K);
   1656   bool UpdatePostponed();
   1657   void VisitBinding(SVal V);
   1658 };
   1659 }
   1660 
   1661 void removeDeadBindingsWorker::VisitAddedToCluster(const MemRegion *baseR,
   1662                                                    RegionCluster &C) {
   1663 
   1664   if (const VarRegion *VR = dyn_cast<VarRegion>(baseR)) {
   1665     if (SymReaper.isLive(VR))
   1666       AddToWorkList(baseR, C);
   1667 
   1668     return;
   1669   }
   1670 
   1671   if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(baseR)) {
   1672     if (SymReaper.isLive(SR->getSymbol()))
   1673       AddToWorkList(SR, C);
   1674     else
   1675       Postponed.push_back(SR);
   1676 
   1677     return;
   1678   }
   1679 
   1680   if (isa<NonStaticGlobalSpaceRegion>(baseR)) {
   1681     AddToWorkList(baseR, C);
   1682     return;
   1683   }
   1684 
   1685   // CXXThisRegion in the current or parent location context is live.
   1686   if (const CXXThisRegion *TR = dyn_cast<CXXThisRegion>(baseR)) {
   1687     const StackArgumentsSpaceRegion *StackReg =
   1688       cast<StackArgumentsSpaceRegion>(TR->getSuperRegion());
   1689     const StackFrameContext *RegCtx = StackReg->getStackFrame();
   1690     if (RegCtx == CurrentLCtx || RegCtx->isParentOf(CurrentLCtx))
   1691       AddToWorkList(TR, C);
   1692   }
   1693 }
   1694 
   1695 void removeDeadBindingsWorker::VisitCluster(const MemRegion *baseR,
   1696                                             BindingKey *I, BindingKey *E) {
   1697   for ( ; I != E; ++I)
   1698     VisitBindingKey(*I);
   1699 }
   1700 
   1701 void removeDeadBindingsWorker::VisitBinding(SVal V) {
   1702   // Is it a LazyCompoundVal?  All referenced regions are live as well.
   1703   if (const nonloc::LazyCompoundVal *LCS =
   1704       dyn_cast<nonloc::LazyCompoundVal>(&V)) {
   1705 
   1706     const MemRegion *LazyR = LCS->getRegion();
   1707     RegionBindings B = RegionStoreManager::GetRegionBindings(LCS->getStore());
   1708     for (RegionBindings::iterator RI = B.begin(), RE = B.end(); RI != RE; ++RI){
   1709       const SubRegion *baseR = dyn_cast<SubRegion>(RI.getKey().getRegion());
   1710       if (baseR && baseR->isSubRegionOf(LazyR))
   1711         VisitBinding(RI.getData());
   1712     }
   1713     return;
   1714   }
   1715 
   1716   // If V is a region, then add it to the worklist.
   1717   if (const MemRegion *R = V.getAsRegion())
   1718     AddToWorkList(R);
   1719 
   1720     // Update the set of live symbols.
   1721   for (SVal::symbol_iterator SI=V.symbol_begin(), SE=V.symbol_end();
   1722        SI!=SE;++SI)
   1723     SymReaper.markLive(*SI);
   1724 }
   1725 
   1726 void removeDeadBindingsWorker::VisitBindingKey(BindingKey K) {
   1727   const MemRegion *R = K.getRegion();
   1728 
   1729   // Mark this region "live" by adding it to the worklist.  This will cause
   1730   // use to visit all regions in the cluster (if we haven't visited them
   1731   // already).
   1732   if (AddToWorkList(R)) {
   1733     // Mark the symbol for any live SymbolicRegion as "live".  This means we
   1734     // should continue to track that symbol.
   1735     if (const SymbolicRegion *SymR = dyn_cast<SymbolicRegion>(R))
   1736       SymReaper.markLive(SymR->getSymbol());
   1737 
   1738     // For BlockDataRegions, enqueue the VarRegions for variables marked
   1739     // with __block (passed-by-reference).
   1740     // via BlockDeclRefExprs.
   1741     if (const BlockDataRegion *BD = dyn_cast<BlockDataRegion>(R)) {
   1742       for (BlockDataRegion::referenced_vars_iterator
   1743            RI = BD->referenced_vars_begin(), RE = BD->referenced_vars_end();
   1744            RI != RE; ++RI) {
   1745         if ((*RI)->getDecl()->getAttr<BlocksAttr>())
   1746           AddToWorkList(*RI);
   1747       }
   1748 
   1749       // No possible data bindings on a BlockDataRegion.
   1750       return;
   1751     }
   1752   }
   1753 
   1754   // Visit the data binding for K.
   1755   if (const SVal *V = RM.lookup(B, K))
   1756     VisitBinding(*V);
   1757 }
   1758 
   1759 bool removeDeadBindingsWorker::UpdatePostponed() {
   1760   // See if any postponed SymbolicRegions are actually live now, after
   1761   // having done a scan.
   1762   bool changed = false;
   1763 
   1764   for (SmallVectorImpl<const SymbolicRegion*>::iterator
   1765         I = Postponed.begin(), E = Postponed.end() ; I != E ; ++I) {
   1766     if (const SymbolicRegion *SR = cast_or_null<SymbolicRegion>(*I)) {
   1767       if (SymReaper.isLive(SR->getSymbol())) {
   1768         changed |= AddToWorkList(SR);
   1769         *I = NULL;
   1770       }
   1771     }
   1772   }
   1773 
   1774   return changed;
   1775 }
   1776 
   1777 StoreRef RegionStoreManager::removeDeadBindings(Store store,
   1778                                                 const StackFrameContext *LCtx,
   1779                                                 SymbolReaper& SymReaper) {
   1780   RegionBindings B = GetRegionBindings(store);
   1781   removeDeadBindingsWorker W(*this, StateMgr, B, SymReaper, LCtx);
   1782   W.GenerateClusters();
   1783 
   1784   // Enqueue the region roots onto the worklist.
   1785   for (SymbolReaper::region_iterator I = SymReaper.region_begin(),
   1786        E = SymReaper.region_end(); I != E; ++I) {
   1787     W.AddToWorkList(*I);
   1788   }
   1789 
   1790   do W.RunWorkList(); while (W.UpdatePostponed());
   1791 
   1792   // We have now scanned the store, marking reachable regions and symbols
   1793   // as live.  We now remove all the regions that are dead from the store
   1794   // as well as update DSymbols with the set symbols that are now dead.
   1795   for (RegionBindings::iterator I = B.begin(), E = B.end(); I != E; ++I) {
   1796     const BindingKey &K = I.getKey();
   1797 
   1798     // If the cluster has been visited, we know the region has been marked.
   1799     if (W.isVisited(K.getRegion()))
   1800       continue;
   1801 
   1802     // Remove the dead entry.
   1803     B = removeBinding(B, K);
   1804 
   1805     // Mark all non-live symbols that this binding references as dead.
   1806     if (const SymbolicRegion* SymR = dyn_cast<SymbolicRegion>(K.getRegion()))
   1807       SymReaper.maybeDead(SymR->getSymbol());
   1808 
   1809     SVal X = I.getData();
   1810     SVal::symbol_iterator SI = X.symbol_begin(), SE = X.symbol_end();
   1811     for (; SI != SE; ++SI)
   1812       SymReaper.maybeDead(*SI);
   1813   }
   1814 
   1815   return StoreRef(B.getRootWithoutRetain(), *this);
   1816 }
   1817 
   1818 
   1819 StoreRef RegionStoreManager::enterStackFrame(const ProgramState *state,
   1820                                              const StackFrameContext *frame) {
   1821   FunctionDecl const *FD = cast<FunctionDecl>(frame->getDecl());
   1822   FunctionDecl::param_const_iterator PI = FD->param_begin(),
   1823                                      PE = FD->param_end();
   1824   StoreRef store = StoreRef(state->getStore(), *this);
   1825 
   1826   if (CallExpr const *CE = dyn_cast<CallExpr>(frame->getCallSite())) {
   1827     CallExpr::const_arg_iterator AI = CE->arg_begin(), AE = CE->arg_end();
   1828 
   1829     // Copy the arg expression value to the arg variables.  We check that
   1830     // PI != PE because the actual number of arguments may be different than
   1831     // the function declaration.
   1832     for (; AI != AE && PI != PE; ++AI, ++PI) {
   1833       SVal ArgVal = state->getSVal(*AI);
   1834       store = Bind(store.getStore(),
   1835                    svalBuilder.makeLoc(MRMgr.getVarRegion(*PI, frame)), ArgVal);
   1836     }
   1837   } else if (const CXXConstructExpr *CE =
   1838                dyn_cast<CXXConstructExpr>(frame->getCallSite())) {
   1839     CXXConstructExpr::const_arg_iterator AI = CE->arg_begin(),
   1840       AE = CE->arg_end();
   1841 
   1842     // Copy the arg expression value to the arg variables.
   1843     for (; AI != AE; ++AI, ++PI) {
   1844       SVal ArgVal = state->getSVal(*AI);
   1845       store = Bind(store.getStore(),
   1846                    svalBuilder.makeLoc(MRMgr.getVarRegion(*PI,frame)), ArgVal);
   1847     }
   1848   } else
   1849     assert(isa<CXXDestructorDecl>(frame->getDecl()));
   1850 
   1851   return store;
   1852 }
   1853 
   1854 //===----------------------------------------------------------------------===//
   1855 // Utility methods.
   1856 //===----------------------------------------------------------------------===//
   1857 
   1858 void RegionStoreManager::print(Store store, raw_ostream &OS,
   1859                                const char* nl, const char *sep) {
   1860   RegionBindings B = GetRegionBindings(store);
   1861   OS << "Store (direct and default bindings):" << nl;
   1862 
   1863   for (RegionBindings::iterator I = B.begin(), E = B.end(); I != E; ++I)
   1864     OS << ' ' << I.getKey() << " : " << I.getData() << nl;
   1865 }
   1866