1 /* -*- c++ -*- */ 2 /* 3 * Copyright 2010 Intel Corporation 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice (including the next 13 * paragraph) shall be included in all copies or substantial portions of the 14 * Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 22 * DEALINGS IN THE SOFTWARE. 23 */ 24 25 #pragma once 26 #ifndef IR_H 27 #define IR_H 28 29 #include <cstdio> 30 #include <cstdlib> 31 32 extern "C" { 33 #include <hieralloc.h> 34 } 35 36 #include "glsl_types.h" 37 #include "list.h" 38 #include "ir_visitor.h" 39 #include "ir_hierarchical_visitor.h" 40 41 /** 42 * \defgroup IR Intermediate representation nodes 43 * 44 * @{ 45 */ 46 47 /** 48 * Class tags 49 * 50 * Each concrete class derived from \c ir_instruction has a value in this 51 * enumerant. The value for the type is stored in \c ir_instruction::ir_type 52 * by the constructor. While using type tags is not very C++, it is extremely 53 * convenient. For example, during debugging you can simply inspect 54 * \c ir_instruction::ir_type to find out the actual type of the object. 55 * 56 * In addition, it is possible to use a switch-statement based on \c 57 * \c ir_instruction::ir_type to select different behavior for different object 58 * types. For functions that have only slight differences for several object 59 * types, this allows writing very straightforward, readable code. 60 */ 61 enum ir_node_type { 62 /** 63 * Zero is unused so that the IR validator can detect cases where 64 * \c ir_instruction::ir_type has not been initialized. 65 */ 66 ir_type_unset, 67 ir_type_variable, 68 ir_type_assignment, 69 ir_type_call, 70 ir_type_constant, 71 ir_type_dereference_array, 72 ir_type_dereference_record, 73 ir_type_dereference_variable, 74 ir_type_discard, 75 ir_type_expression, 76 ir_type_function, 77 ir_type_function_signature, 78 ir_type_if, 79 ir_type_loop, 80 ir_type_loop_jump, 81 ir_type_return, 82 ir_type_swizzle, 83 ir_type_texture, 84 ir_type_max /**< maximum ir_type enum number, for validation */ 85 }; 86 87 /** 88 * Base class of all IR instructions 89 */ 90 class ir_instruction : public exec_node { 91 public: 92 enum ir_node_type ir_type; 93 const struct glsl_type *type; 94 95 /** ir_print_visitor helper for debugging. */ 96 void print(void) const; 97 98 virtual void accept(ir_visitor *) = 0; 99 virtual ir_visitor_status accept(ir_hierarchical_visitor *) = 0; 100 virtual ir_instruction *clone(void *mem_ctx, 101 struct hash_table *ht) const = 0; 102 103 /** 104 * \name IR instruction downcast functions 105 * 106 * These functions either cast the object to a derived class or return 107 * \c NULL if the object's type does not match the specified derived class. 108 * Additional downcast functions will be added as needed. 109 */ 110 /*@{*/ 111 virtual class ir_variable * as_variable() { return NULL; } 112 virtual class ir_function * as_function() { return NULL; } 113 virtual class ir_dereference * as_dereference() { return NULL; } 114 virtual class ir_dereference_array * as_dereference_array() { return NULL; } 115 virtual class ir_dereference_variable *as_dereference_variable() { return NULL; } 116 virtual class ir_expression * as_expression() { return NULL; } 117 virtual class ir_rvalue * as_rvalue() { return NULL; } 118 virtual class ir_loop * as_loop() { return NULL; } 119 virtual class ir_assignment * as_assignment() { return NULL; } 120 virtual class ir_call * as_call() { return NULL; } 121 virtual class ir_return * as_return() { return NULL; } 122 virtual class ir_if * as_if() { return NULL; } 123 virtual class ir_swizzle * as_swizzle() { return NULL; } 124 virtual class ir_constant * as_constant() { return NULL; } 125 virtual class ir_discard * as_discard() { return NULL; } 126 /*@}*/ 127 128 protected: 129 ir_instruction() 130 { 131 ir_type = ir_type_unset; 132 type = NULL; 133 } 134 135 virtual ~ir_instruction() { } // GCC error about accessible nonvirtual dctor 136 137 138 }; 139 140 141 class ir_rvalue : public ir_instruction { 142 public: 143 virtual ir_rvalue *clone(void *mem_ctx, struct hash_table *) const = 0; 144 145 virtual ir_constant *constant_expression_value() = 0; 146 147 virtual ir_rvalue * as_rvalue() 148 { 149 return this; 150 } 151 152 ir_rvalue *as_rvalue_to_saturate(); 153 154 virtual bool is_lvalue() 155 { 156 return false; 157 } 158 159 /** 160 * Get the variable that is ultimately referenced by an r-value 161 */ 162 virtual ir_variable *variable_referenced() 163 { 164 return NULL; 165 } 166 167 168 /** 169 * If an r-value is a reference to a whole variable, get that variable 170 * 171 * \return 172 * Pointer to a variable that is completely dereferenced by the r-value. If 173 * the r-value is not a dereference or the dereference does not access the 174 * entire variable (i.e., it's just one array element, struct field), \c NULL 175 * is returned. 176 */ 177 virtual ir_variable *whole_variable_referenced() 178 { 179 return NULL; 180 } 181 182 /** 183 * Determine if an r-value has the value zero 184 * 185 * The base implementation of this function always returns \c false. The 186 * \c ir_constant class over-rides this function to return \c true \b only 187 * for vector and scalar types that have all elements set to the value 188 * zero (or \c false for booleans). 189 * 190 * \sa ir_constant::has_value, ir_rvalue::is_one, ir_rvalue::is_negative_one 191 */ 192 virtual bool is_zero() const; 193 194 /** 195 * Determine if an r-value has the value one 196 * 197 * The base implementation of this function always returns \c false. The 198 * \c ir_constant class over-rides this function to return \c true \b only 199 * for vector and scalar types that have all elements set to the value 200 * one (or \c true for booleans). 201 * 202 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_negative_one 203 */ 204 virtual bool is_one() const; 205 206 /** 207 * Determine if an r-value has the value negative one 208 * 209 * The base implementation of this function always returns \c false. The 210 * \c ir_constant class over-rides this function to return \c true \b only 211 * for vector and scalar types that have all elements set to the value 212 * negative one. For boolean times, the result is always \c false. 213 * 214 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_one 215 */ 216 virtual bool is_negative_one() const; 217 218 protected: 219 ir_rvalue(); 220 }; 221 222 223 /** 224 * Variable storage classes 225 */ 226 enum ir_variable_mode { 227 ir_var_auto = 0, /**< Function local variables and globals. */ 228 ir_var_uniform, /**< Variable declared as a uniform. */ 229 ir_var_in, 230 ir_var_out, 231 ir_var_inout, 232 ir_var_temporary /**< Temporary variable generated during compilation. */ 233 }; 234 235 enum ir_variable_interpolation { 236 ir_var_smooth = 0, 237 ir_var_flat, 238 ir_var_noperspective 239 }; 240 241 242 class ir_variable : public ir_instruction { 243 public: 244 ir_variable(const struct glsl_type *, const char *, ir_variable_mode); 245 246 virtual ir_variable *clone(void *mem_ctx, struct hash_table *ht) const; 247 248 virtual ir_variable *as_variable() 249 { 250 return this; 251 } 252 253 virtual void accept(ir_visitor *v) 254 { 255 v->visit(this); 256 } 257 258 virtual ir_visitor_status accept(ir_hierarchical_visitor *); 259 260 261 /** 262 * Get the string value for the interpolation qualifier 263 * 264 * \return The string that would be used in a shader to specify \c 265 * mode will be returned. 266 * 267 * This function should only be used on a shader input or output variable. 268 */ 269 const char *interpolation_string() const; 270 271 /** 272 * Calculate the number of slots required to hold this variable 273 * 274 * This is used to determine how many uniform or varying locations a variable 275 * occupies. The count is in units of floating point components. 276 */ 277 unsigned component_slots() const; 278 279 /** 280 * Delcared name of the variable 281 */ 282 const char *name; 283 284 /** 285 * Highest element accessed with a constant expression array index 286 * 287 * Not used for non-array variables. 288 */ 289 unsigned max_array_access; 290 291 /** 292 * Is the variable read-only? 293 * 294 * This is set for variables declared as \c const, shader inputs, 295 * and uniforms. 296 */ 297 unsigned read_only:1; 298 unsigned centroid:1; 299 unsigned invariant:1; 300 301 /** 302 * Storage class of the variable. 303 * 304 * \sa ir_variable_mode 305 */ 306 unsigned mode:3; 307 308 /** 309 * Interpolation mode for shader inputs / outputs 310 * 311 * \sa ir_variable_interpolation 312 */ 313 unsigned interpolation:2; 314 315 /** 316 * Flag that the whole array is assignable 317 * 318 * In GLSL 1.20 and later whole arrays are assignable (and comparable for 319 * equality). This flag enables this behavior. 320 */ 321 unsigned array_lvalue:1; 322 323 /** 324 * \name ARB_fragment_coord_conventions 325 * @{ 326 */ 327 unsigned origin_upper_left:1; 328 unsigned pixel_center_integer:1; 329 /*@}*/ 330 331 /** 332 * Was the location explicitly set in the shader? 333 * 334 * If the location is explicitly set in the shader, it \b cannot be changed 335 * by the linker or by the API (e.g., calls to \c glBindAttribLocation have 336 * no effect). 337 */ 338 unsigned explicit_location:1; 339 340 /** 341 * Storage location of the base of this variable 342 * 343 * The precise meaning of this field depends on the nature of the variable. 344 * 345 * - Vertex shader input: one of the values from \c gl_vert_attrib. 346 * - Vertex shader output: one of the values from \c gl_vert_result. 347 * - Fragment shader input: one of the values from \c gl_frag_attrib. 348 * - Fragment shader output: one of the values from \c gl_frag_result. 349 * - Uniforms: Per-stage uniform slot number. 350 * - Other: This field is not currently used. 351 * 352 * If the variable is a uniform, shader input, or shader output, and the 353 * slot has not been assigned, the value will be -1. 354 */ 355 int location; 356 357 /** 358 * Emit a warning if this variable is accessed. 359 */ 360 const char *warn_extension; 361 362 /** 363 * Value assigned in the initializer of a variable declared "const" 364 */ 365 ir_constant *constant_value; 366 }; 367 368 369 /*@{*/ 370 /** 371 * The representation of a function instance; may be the full definition or 372 * simply a prototype. 373 */ 374 class ir_function_signature : public ir_instruction { 375 /* An ir_function_signature will be part of the list of signatures in 376 * an ir_function. 377 */ 378 public: 379 ir_function_signature(const glsl_type *return_type); 380 381 virtual ir_function_signature *clone(void *mem_ctx, 382 struct hash_table *ht) const; 383 ir_function_signature *clone_prototype(void *mem_ctx, 384 struct hash_table *ht) const; 385 386 virtual void accept(ir_visitor *v) 387 { 388 v->visit(this); 389 } 390 391 virtual ir_visitor_status accept(ir_hierarchical_visitor *); 392 393 /** 394 * Get the name of the function for which this is a signature 395 */ 396 const char *function_name() const; 397 398 /** 399 * Get a handle to the function for which this is a signature 400 * 401 * There is no setter function, this function returns a \c const pointer, 402 * and \c ir_function_signature::_function is private for a reason. The 403 * only way to make a connection between a function and function signature 404 * is via \c ir_function::add_signature. This helps ensure that certain 405 * invariants (i.e., a function signature is in the list of signatures for 406 * its \c _function) are met. 407 * 408 * \sa ir_function::add_signature 409 */ 410 inline const class ir_function *function() const 411 { 412 return this->_function; 413 } 414 415 /** 416 * Check whether the qualifiers match between this signature's parameters 417 * and the supplied parameter list. If not, returns the name of the first 418 * parameter with mismatched qualifiers (for use in error messages). 419 */ 420 const char *qualifiers_match(exec_list *params); 421 422 /** 423 * Replace the current parameter list with the given one. This is useful 424 * if the current information came from a prototype, and either has invalid 425 * or missing parameter names. 426 */ 427 void replace_parameters(exec_list *new_params); 428 429 /** 430 * Function return type. 431 * 432 * \note This discards the optional precision qualifier. 433 */ 434 const struct glsl_type *return_type; 435 436 /** 437 * List of ir_variable of function parameters. 438 * 439 * This represents the storage. The paramaters passed in a particular 440 * call will be in ir_call::actual_paramaters. 441 */ 442 struct exec_list parameters; 443 444 /** Whether or not this function has a body (which may be empty). */ 445 unsigned is_defined:1; 446 447 /** Whether or not this function signature is a built-in. */ 448 unsigned is_builtin:1; 449 450 /** Body of instructions in the function. */ 451 struct exec_list body; 452 453 private: 454 /** Function of which this signature is one overload. */ 455 class ir_function *_function; 456 457 friend class ir_function; 458 }; 459 460 461 /** 462 * Header for tracking multiple overloaded functions with the same name. 463 * Contains a list of ir_function_signatures representing each of the 464 * actual functions. 465 */ 466 class ir_function : public ir_instruction { 467 public: 468 ir_function(const char *name); 469 470 virtual ir_function *clone(void *mem_ctx, struct hash_table *ht) const; 471 472 virtual ir_function *as_function() 473 { 474 return this; 475 } 476 477 virtual void accept(ir_visitor *v) 478 { 479 v->visit(this); 480 } 481 482 virtual ir_visitor_status accept(ir_hierarchical_visitor *); 483 484 void add_signature(ir_function_signature *sig) 485 { 486 sig->_function = this; 487 this->signatures.push_tail(sig); 488 } 489 490 /** 491 * Get an iterator for the set of function signatures 492 */ 493 exec_list_iterator iterator() 494 { 495 return signatures.iterator(); 496 } 497 498 /** 499 * Find a signature that matches a set of actual parameters, taking implicit 500 * conversions into account. 501 */ 502 ir_function_signature *matching_signature(const exec_list *actual_param); 503 504 /** 505 * Find a signature that exactly matches a set of actual parameters without 506 * any implicit type conversions. 507 */ 508 ir_function_signature *exact_matching_signature(const exec_list *actual_ps); 509 510 /** 511 * Name of the function. 512 */ 513 const char *name; 514 515 /** Whether or not this function has a signature that isn't a built-in. */ 516 bool has_user_signature(); 517 518 /** 519 * List of ir_function_signature for each overloaded function with this name. 520 */ 521 struct exec_list signatures; 522 }; 523 524 inline const char *ir_function_signature::function_name() const 525 { 526 return this->_function->name; 527 } 528 /*@}*/ 529 530 531 /** 532 * IR instruction representing high-level if-statements 533 */ 534 class ir_if : public ir_instruction { 535 public: 536 ir_if(ir_rvalue *condition) 537 : condition(condition) 538 { 539 ir_type = ir_type_if; 540 } 541 542 virtual ir_if *clone(void *mem_ctx, struct hash_table *ht) const; 543 544 virtual ir_if *as_if() 545 { 546 return this; 547 } 548 549 virtual void accept(ir_visitor *v) 550 { 551 v->visit(this); 552 } 553 554 virtual ir_visitor_status accept(ir_hierarchical_visitor *); 555 556 ir_rvalue *condition; 557 /** List of ir_instruction for the body of the then branch */ 558 exec_list then_instructions; 559 /** List of ir_instruction for the body of the else branch */ 560 exec_list else_instructions; 561 }; 562 563 564 /** 565 * IR instruction representing a high-level loop structure. 566 */ 567 class ir_loop : public ir_instruction { 568 public: 569 ir_loop(); 570 571 virtual ir_loop *clone(void *mem_ctx, struct hash_table *ht) const; 572 573 virtual void accept(ir_visitor *v) 574 { 575 v->visit(this); 576 } 577 578 virtual ir_visitor_status accept(ir_hierarchical_visitor *); 579 580 virtual ir_loop *as_loop() 581 { 582 return this; 583 } 584 585 /** 586 * Get an iterator for the instructions of the loop body 587 */ 588 exec_list_iterator iterator() 589 { 590 return body_instructions.iterator(); 591 } 592 593 /** List of ir_instruction that make up the body of the loop. */ 594 exec_list body_instructions; 595 596 /** 597 * \name Loop counter and controls 598 * 599 * Represents a loop like a FORTRAN \c do-loop. 600 * 601 * \note 602 * If \c from and \c to are the same value, the loop will execute once. 603 */ 604 /*@{*/ 605 ir_rvalue *from; /** Value of the loop counter on the first 606 * iteration of the loop. 607 */ 608 ir_rvalue *to; /** Value of the loop counter on the last 609 * iteration of the loop. 610 */ 611 ir_rvalue *increment; 612 ir_variable *counter; 613 614 /** 615 * Comparison operation in the loop terminator. 616 * 617 * If any of the loop control fields are non-\c NULL, this field must be 618 * one of \c ir_binop_less, \c ir_binop_greater, \c ir_binop_lequal, 619 * \c ir_binop_gequal, \c ir_binop_equal, or \c ir_binop_nequal. 620 */ 621 int cmp; 622 /*@}*/ 623 }; 624 625 626 class ir_assignment : public ir_instruction { 627 public: 628 ir_assignment(ir_rvalue *lhs, ir_rvalue *rhs, ir_rvalue *condition); 629 630 /** 631 * Construct an assignment with an explicit write mask 632 * 633 * \note 634 * Since a write mask is supplied, the LHS must already be a bare 635 * \c ir_dereference. The cannot be any swizzles in the LHS. 636 */ 637 ir_assignment(ir_dereference *lhs, ir_rvalue *rhs, ir_rvalue *condition, 638 unsigned write_mask); 639 640 virtual ir_assignment *clone(void *mem_ctx, struct hash_table *ht) const; 641 642 virtual ir_constant *constant_expression_value(); 643 644 virtual void accept(ir_visitor *v) 645 { 646 v->visit(this); 647 } 648 649 virtual ir_visitor_status accept(ir_hierarchical_visitor *); 650 651 virtual ir_assignment * as_assignment() 652 { 653 return this; 654 } 655 656 /** 657 * Get a whole variable written by an assignment 658 * 659 * If the LHS of the assignment writes a whole variable, the variable is 660 * returned. Otherwise \c NULL is returned. Examples of whole-variable 661 * assignment are: 662 * 663 * - Assigning to a scalar 664 * - Assigning to all components of a vector 665 * - Whole array (or matrix) assignment 666 * - Whole structure assignment 667 */ 668 ir_variable *whole_variable_written(); 669 670 /** 671 * Set the LHS of an assignment 672 */ 673 void set_lhs(ir_rvalue *lhs); 674 675 /** 676 * Left-hand side of the assignment. 677 * 678 * This should be treated as read only. If you need to set the LHS of an 679 * assignment, use \c ir_assignment::set_lhs. 680 */ 681 ir_dereference *lhs; 682 683 /** 684 * Value being assigned 685 */ 686 ir_rvalue *rhs; 687 688 /** 689 * Optional condition for the assignment. 690 */ 691 ir_rvalue *condition; 692 693 694 /** 695 * Component mask written 696 * 697 * For non-vector types in the LHS, this field will be zero. For vector 698 * types, a bit will be set for each component that is written. Note that 699 * for \c vec2 and \c vec3 types only the lower bits will ever be set. 700 * 701 * A partially-set write mask means that each enabled channel gets 702 * the value from a consecutive channel of the rhs. For example, 703 * to write just .xyw of gl_FrontColor with color: 704 * 705 * (assign (constant bool (1)) (xyw) 706 * (var_ref gl_FragColor) 707 * (swiz xyw (var_ref color))) 708 */ 709 unsigned write_mask:4; 710 }; 711 712 /* Update ir_expression::num_operands() and operator_strs when 713 * updating this list. 714 */ 715 enum ir_expression_operation { 716 ir_unop_bit_not, 717 ir_unop_logic_not, 718 ir_unop_neg, 719 ir_unop_abs, 720 ir_unop_sign, 721 ir_unop_rcp, 722 ir_unop_rsq, 723 ir_unop_sqrt, 724 ir_unop_exp, /**< Log base e on gentype */ 725 ir_unop_log, /**< Natural log on gentype */ 726 ir_unop_exp2, 727 ir_unop_log2, 728 ir_unop_f2i, /**< Float-to-integer conversion. */ 729 ir_unop_i2f, /**< Integer-to-float conversion. */ 730 ir_unop_f2b, /**< Float-to-boolean conversion */ 731 ir_unop_b2f, /**< Boolean-to-float conversion */ 732 ir_unop_i2b, /**< int-to-boolean conversion */ 733 ir_unop_b2i, /**< Boolean-to-int conversion */ 734 ir_unop_u2f, /**< Unsigned-to-float conversion. */ 735 ir_unop_any, 736 737 /** 738 * \name Unary floating-point rounding operations. 739 */ 740 /*@{*/ 741 ir_unop_trunc, 742 ir_unop_ceil, 743 ir_unop_floor, 744 ir_unop_fract, 745 ir_unop_round_even, 746 /*@}*/ 747 748 /** 749 * \name Trigonometric operations. 750 */ 751 /*@{*/ 752 ir_unop_sin, 753 ir_unop_cos, 754 ir_unop_sin_reduced, /**< Reduced range sin. [-pi, pi] */ 755 ir_unop_cos_reduced, /**< Reduced range cos. [-pi, pi] */ 756 /*@}*/ 757 758 /** 759 * \name Partial derivatives. 760 */ 761 /*@{*/ 762 ir_unop_dFdx, 763 ir_unop_dFdy, 764 /*@}*/ 765 766 ir_unop_noise, 767 768 /** 769 * A sentinel marking the last of the unary operations. 770 */ 771 ir_last_unop = ir_unop_noise, 772 773 ir_binop_add, 774 ir_binop_sub, 775 ir_binop_mul, 776 ir_binop_div, 777 778 /** 779 * Takes one of two combinations of arguments: 780 * 781 * - mod(vecN, vecN) 782 * - mod(vecN, float) 783 * 784 * Does not take integer types. 785 */ 786 ir_binop_mod, 787 788 /** 789 * \name Binary comparison operators which return a boolean vector. 790 * The type of both operands must be equal. 791 */ 792 /*@{*/ 793 ir_binop_less, 794 ir_binop_greater, 795 ir_binop_lequal, 796 ir_binop_gequal, 797 ir_binop_equal, 798 ir_binop_nequal, 799 /** 800 * Returns single boolean for whether all components of operands[0] 801 * equal the components of operands[1]. 802 */ 803 ir_binop_all_equal, 804 /** 805 * Returns single boolean for whether any component of operands[0] 806 * is not equal to the corresponding component of operands[1]. 807 */ 808 ir_binop_any_nequal, 809 /*@}*/ 810 811 /** 812 * \name Bit-wise binary operations. 813 */ 814 /*@{*/ 815 ir_binop_lshift, 816 ir_binop_rshift, 817 ir_binop_bit_and, 818 ir_binop_bit_xor, 819 ir_binop_bit_or, 820 /*@}*/ 821 822 ir_binop_logic_and, 823 ir_binop_logic_xor, 824 ir_binop_logic_or, 825 826 ir_binop_dot, 827 ir_binop_min, 828 ir_binop_max, 829 830 ir_binop_pow, 831 832 /** 833 * A sentinel marking the last of the binary operations. 834 */ 835 ir_last_binop = ir_binop_pow, 836 837 ir_quadop_vector, 838 839 /** 840 * A sentinel marking the last of all operations. 841 */ 842 ir_last_opcode = ir_last_binop 843 }; 844 845 class ir_expression : public ir_rvalue { 846 public: 847 /** 848 * Constructor for unary operation expressions 849 */ 850 ir_expression(int op, const struct glsl_type *type, ir_rvalue *); 851 ir_expression(int op, ir_rvalue *); 852 853 /** 854 * Constructor for binary operation expressions 855 */ 856 ir_expression(int op, const struct glsl_type *type, 857 ir_rvalue *, ir_rvalue *); 858 ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1); 859 860 /** 861 * Constructor for quad operator expressions 862 */ 863 ir_expression(int op, const struct glsl_type *type, 864 ir_rvalue *, ir_rvalue *, ir_rvalue *, ir_rvalue *); 865 866 virtual ir_expression *as_expression() 867 { 868 return this; 869 } 870 871 virtual ir_expression *clone(void *mem_ctx, struct hash_table *ht) const; 872 873 /** 874 * Attempt to constant-fold the expression 875 * 876 * If the expression cannot be constant folded, this method will return 877 * \c NULL. 878 */ 879 virtual ir_constant *constant_expression_value(); 880 881 /** 882 * Determine the number of operands used by an expression 883 */ 884 static unsigned int get_num_operands(ir_expression_operation); 885 886 /** 887 * Determine the number of operands used by an expression 888 */ 889 unsigned int get_num_operands() const 890 { 891 return (this->operation == ir_quadop_vector) 892 ? this->type->vector_elements : get_num_operands(operation); 893 } 894 895 /** 896 * Return a string representing this expression's operator. 897 */ 898 const char *operator_string(); 899 900 /** 901 * Return a string representing this expression's operator. 902 */ 903 static const char *operator_string(ir_expression_operation); 904 905 906 /** 907 * Do a reverse-lookup to translate the given string into an operator. 908 */ 909 static ir_expression_operation get_operator(const char *); 910 911 virtual void accept(ir_visitor *v) 912 { 913 v->visit(this); 914 } 915 916 virtual ir_visitor_status accept(ir_hierarchical_visitor *); 917 918 ir_expression_operation operation; 919 ir_rvalue *operands[4]; 920 }; 921 922 923 /** 924 * IR instruction representing a function call 925 */ 926 class ir_call : public ir_rvalue { 927 public: 928 ir_call(ir_function_signature *callee, exec_list *actual_parameters) 929 : callee(callee) 930 { 931 ir_type = ir_type_call; 932 assert(callee->return_type != NULL); 933 type = callee->return_type; 934 actual_parameters->move_nodes_to(& this->actual_parameters); 935 } 936 937 virtual ir_call *clone(void *mem_ctx, struct hash_table *ht) const; 938 939 virtual ir_constant *constant_expression_value(); 940 941 virtual ir_call *as_call() 942 { 943 return this; 944 } 945 946 virtual void accept(ir_visitor *v) 947 { 948 v->visit(this); 949 } 950 951 virtual ir_visitor_status accept(ir_hierarchical_visitor *); 952 953 /** 954 * Get a generic ir_call object when an error occurs 955 * 956 * Any allocation will be performed with 'ctx' as hieralloc owner. 957 */ 958 static ir_call *get_error_instruction(void *ctx); 959 960 /** 961 * Get an iterator for the set of acutal parameters 962 */ 963 exec_list_iterator iterator() 964 { 965 return actual_parameters.iterator(); 966 } 967 968 /** 969 * Get the name of the function being called. 970 */ 971 const char *callee_name() const 972 { 973 return callee->function_name(); 974 } 975 976 /** 977 * Get the function signature bound to this function call 978 */ 979 ir_function_signature *get_callee() 980 { 981 return callee; 982 } 983 984 /** 985 * Set the function call target 986 */ 987 void set_callee(ir_function_signature *sig); 988 989 /** 990 * Generates an inline version of the function before @ir, 991 * returning the return value of the function. 992 */ 993 ir_rvalue *generate_inline(ir_instruction *ir); 994 995 /* List of ir_rvalue of paramaters passed in this call. */ 996 exec_list actual_parameters; 997 998 private: 999 ir_call() 1000 : callee(NULL) 1001 { 1002 this->ir_type = ir_type_call; 1003 } 1004 1005 ir_function_signature *callee; 1006 }; 1007 1008 1009 /** 1010 * \name Jump-like IR instructions. 1011 * 1012 * These include \c break, \c continue, \c return, and \c discard. 1013 */ 1014 /*@{*/ 1015 class ir_jump : public ir_instruction { 1016 protected: 1017 ir_jump() 1018 { 1019 ir_type = ir_type_unset; 1020 } 1021 }; 1022 1023 class ir_return : public ir_jump { 1024 public: 1025 ir_return() 1026 : value(NULL) 1027 { 1028 this->ir_type = ir_type_return; 1029 } 1030 1031 ir_return(ir_rvalue *value) 1032 : value(value) 1033 { 1034 this->ir_type = ir_type_return; 1035 } 1036 1037 virtual ir_return *clone(void *mem_ctx, struct hash_table *) const; 1038 1039 virtual ir_return *as_return() 1040 { 1041 return this; 1042 } 1043 1044 ir_rvalue *get_value() const 1045 { 1046 return value; 1047 } 1048 1049 virtual void accept(ir_visitor *v) 1050 { 1051 v->visit(this); 1052 } 1053 1054 virtual ir_visitor_status accept(ir_hierarchical_visitor *); 1055 1056 ir_rvalue *value; 1057 }; 1058 1059 1060 /** 1061 * Jump instructions used inside loops 1062 * 1063 * These include \c break and \c continue. The \c break within a loop is 1064 * different from the \c break within a switch-statement. 1065 * 1066 * \sa ir_switch_jump 1067 */ 1068 class ir_loop_jump : public ir_jump { 1069 public: 1070 enum jump_mode { 1071 jump_break, 1072 jump_continue 1073 }; 1074 1075 ir_loop_jump(jump_mode mode) 1076 { 1077 this->ir_type = ir_type_loop_jump; 1078 this->mode = mode; 1079 this->loop = loop; 1080 } 1081 1082 virtual ir_loop_jump *clone(void *mem_ctx, struct hash_table *) const; 1083 1084 virtual void accept(ir_visitor *v) 1085 { 1086 v->visit(this); 1087 } 1088 1089 virtual ir_visitor_status accept(ir_hierarchical_visitor *); 1090 1091 bool is_break() const 1092 { 1093 return mode == jump_break; 1094 } 1095 1096 bool is_continue() const 1097 { 1098 return mode == jump_continue; 1099 } 1100 1101 /** Mode selector for the jump instruction. */ 1102 enum jump_mode mode; 1103 private: 1104 /** Loop containing this break instruction. */ 1105 ir_loop *loop; 1106 }; 1107 1108 /** 1109 * IR instruction representing discard statements. 1110 */ 1111 class ir_discard : public ir_jump { 1112 public: 1113 ir_discard() 1114 { 1115 this->ir_type = ir_type_discard; 1116 this->condition = NULL; 1117 } 1118 1119 ir_discard(ir_rvalue *cond) 1120 { 1121 this->ir_type = ir_type_discard; 1122 this->condition = cond; 1123 } 1124 1125 virtual ir_discard *clone(void *mem_ctx, struct hash_table *ht) const; 1126 1127 virtual void accept(ir_visitor *v) 1128 { 1129 v->visit(this); 1130 } 1131 1132 virtual ir_visitor_status accept(ir_hierarchical_visitor *); 1133 1134 virtual ir_discard *as_discard() 1135 { 1136 return this; 1137 } 1138 1139 ir_rvalue *condition; 1140 }; 1141 /*@}*/ 1142 1143 1144 /** 1145 * Texture sampling opcodes used in ir_texture 1146 */ 1147 enum ir_texture_opcode { 1148 ir_tex, /**< Regular texture look-up */ 1149 ir_txb, /**< Texture look-up with LOD bias */ 1150 ir_txl, /**< Texture look-up with explicit LOD */ 1151 ir_txd, /**< Texture look-up with partial derivatvies */ 1152 ir_txf /**< Texel fetch with explicit LOD */ 1153 }; 1154 1155 1156 /** 1157 * IR instruction to sample a texture 1158 * 1159 * The specific form of the IR instruction depends on the \c mode value 1160 * selected from \c ir_texture_opcodes. In the printed IR, these will 1161 * appear as: 1162 * 1163 * Texel offset 1164 * | Projection divisor 1165 * | | Shadow comparitor 1166 * | | | 1167 * v v v 1168 * (tex (sampler) (coordinate) (0 0 0) (1) ( )) 1169 * (txb (sampler) (coordinate) (0 0 0) (1) ( ) (bias)) 1170 * (txl (sampler) (coordinate) (0 0 0) (1) ( ) (lod)) 1171 * (txd (sampler) (coordinate) (0 0 0) (1) ( ) (dPdx dPdy)) 1172 * (txf (sampler) (coordinate) (0 0 0) (lod)) 1173 */ 1174 class ir_texture : public ir_rvalue { 1175 public: 1176 ir_texture(enum ir_texture_opcode op) 1177 : op(op), projector(NULL), shadow_comparitor(NULL) 1178 { 1179 this->ir_type = ir_type_texture; 1180 } 1181 1182 virtual ir_texture *clone(void *mem_ctx, struct hash_table *) const; 1183 1184 virtual ir_constant *constant_expression_value(); 1185 1186 virtual void accept(ir_visitor *v) 1187 { 1188 v->visit(this); 1189 } 1190 1191 virtual ir_visitor_status accept(ir_hierarchical_visitor *); 1192 1193 /** 1194 * Return a string representing the ir_texture_opcode. 1195 */ 1196 const char *opcode_string(); 1197 1198 /** Set the sampler and infer the type. */ 1199 void set_sampler(ir_dereference *sampler); 1200 1201 /** 1202 * Do a reverse-lookup to translate a string into an ir_texture_opcode. 1203 */ 1204 static ir_texture_opcode get_opcode(const char *); 1205 1206 enum ir_texture_opcode op; 1207 1208 /** Sampler to use for the texture access. */ 1209 ir_dereference *sampler; 1210 1211 /** Texture coordinate to sample */ 1212 ir_rvalue *coordinate; 1213 1214 /** 1215 * Value used for projective divide. 1216 * 1217 * If there is no projective divide (the common case), this will be 1218 * \c NULL. Optimization passes should check for this to point to a constant 1219 * of 1.0 and replace that with \c NULL. 1220 */ 1221 ir_rvalue *projector; 1222 1223 /** 1224 * Coordinate used for comparison on shadow look-ups. 1225 * 1226 * If there is no shadow comparison, this will be \c NULL. For the 1227 * \c ir_txf opcode, this *must* be \c NULL. 1228 */ 1229 ir_rvalue *shadow_comparitor; 1230 1231 /** Explicit texel offsets. */ 1232 signed char offsets[3]; 1233 1234 union { 1235 ir_rvalue *lod; /**< Floating point LOD */ 1236 ir_rvalue *bias; /**< Floating point LOD bias */ 1237 struct { 1238 ir_rvalue *dPdx; /**< Partial derivative of coordinate wrt X */ 1239 ir_rvalue *dPdy; /**< Partial derivative of coordinate wrt Y */ 1240 } grad; 1241 } lod_info; 1242 }; 1243 1244 1245 struct ir_swizzle_mask { 1246 unsigned x:2; 1247 unsigned y:2; 1248 unsigned z:2; 1249 unsigned w:2; 1250 1251 /** 1252 * Number of components in the swizzle. 1253 */ 1254 unsigned num_components:3; 1255 1256 /** 1257 * Does the swizzle contain duplicate components? 1258 * 1259 * L-value swizzles cannot contain duplicate components. 1260 */ 1261 unsigned has_duplicates:1; 1262 }; 1263 1264 1265 class ir_swizzle : public ir_rvalue { 1266 public: 1267 ir_swizzle(ir_rvalue *, unsigned x, unsigned y, unsigned z, unsigned w, 1268 unsigned count); 1269 1270 ir_swizzle(ir_rvalue *val, const unsigned *components, unsigned count); 1271 1272 ir_swizzle(ir_rvalue *val, ir_swizzle_mask mask); 1273 1274 virtual ir_swizzle *clone(void *mem_ctx, struct hash_table *) const; 1275 1276 virtual ir_constant *constant_expression_value(); 1277 1278 virtual ir_swizzle *as_swizzle() 1279 { 1280 return this; 1281 } 1282 1283 /** 1284 * Construct an ir_swizzle from the textual representation. Can fail. 1285 */ 1286 static ir_swizzle *create(ir_rvalue *, const char *, unsigned vector_length); 1287 1288 virtual void accept(ir_visitor *v) 1289 { 1290 v->visit(this); 1291 } 1292 1293 virtual ir_visitor_status accept(ir_hierarchical_visitor *); 1294 1295 bool is_lvalue() 1296 { 1297 return val->is_lvalue() && !mask.has_duplicates; 1298 } 1299 1300 /** 1301 * Get the variable that is ultimately referenced by an r-value 1302 */ 1303 virtual ir_variable *variable_referenced(); 1304 1305 ir_rvalue *val; 1306 ir_swizzle_mask mask; 1307 1308 private: 1309 /** 1310 * Initialize the mask component of a swizzle 1311 * 1312 * This is used by the \c ir_swizzle constructors. 1313 */ 1314 void init_mask(const unsigned *components, unsigned count); 1315 }; 1316 1317 1318 class ir_dereference : public ir_rvalue { 1319 public: 1320 virtual ir_dereference *clone(void *mem_ctx, struct hash_table *) const = 0; 1321 1322 virtual ir_dereference *as_dereference() 1323 { 1324 return this; 1325 } 1326 1327 bool is_lvalue(); 1328 1329 /** 1330 * Get the variable that is ultimately referenced by an r-value 1331 */ 1332 virtual ir_variable *variable_referenced() = 0; 1333 }; 1334 1335 1336 class ir_dereference_variable : public ir_dereference { 1337 public: 1338 ir_dereference_variable(ir_variable *var); 1339 1340 virtual ir_dereference_variable *clone(void *mem_ctx, 1341 struct hash_table *) const; 1342 1343 virtual ir_constant *constant_expression_value(); 1344 1345 virtual ir_dereference_variable *as_dereference_variable() 1346 { 1347 return this; 1348 } 1349 1350 /** 1351 * Get the variable that is ultimately referenced by an r-value 1352 */ 1353 virtual ir_variable *variable_referenced() 1354 { 1355 return this->var; 1356 } 1357 1358 virtual ir_variable *whole_variable_referenced() 1359 { 1360 /* ir_dereference_variable objects always dereference the entire 1361 * variable. However, if this dereference is dereferenced by anything 1362 * else, the complete deferefernce chain is not a whole-variable 1363 * dereference. This method should only be called on the top most 1364 * ir_rvalue in a dereference chain. 1365 */ 1366 return this->var; 1367 } 1368 1369 virtual void accept(ir_visitor *v) 1370 { 1371 v->visit(this); 1372 } 1373 1374 virtual ir_visitor_status accept(ir_hierarchical_visitor *); 1375 1376 /** 1377 * Object being dereferenced. 1378 */ 1379 ir_variable *var; 1380 }; 1381 1382 1383 class ir_dereference_array : public ir_dereference { 1384 public: 1385 ir_dereference_array(ir_rvalue *value, ir_rvalue *array_index); 1386 1387 ir_dereference_array(ir_variable *var, ir_rvalue *array_index); 1388 1389 virtual ir_dereference_array *clone(void *mem_ctx, 1390 struct hash_table *) const; 1391 1392 virtual ir_constant *constant_expression_value(); 1393 1394 virtual ir_dereference_array *as_dereference_array() 1395 { 1396 return this; 1397 } 1398 1399 /** 1400 * Get the variable that is ultimately referenced by an r-value 1401 */ 1402 virtual ir_variable *variable_referenced() 1403 { 1404 return this->array->variable_referenced(); 1405 } 1406 1407 virtual void accept(ir_visitor *v) 1408 { 1409 v->visit(this); 1410 } 1411 1412 virtual ir_visitor_status accept(ir_hierarchical_visitor *); 1413 1414 ir_rvalue *array; 1415 ir_rvalue *array_index; 1416 1417 private: 1418 void set_array(ir_rvalue *value); 1419 }; 1420 1421 1422 class ir_dereference_record : public ir_dereference { 1423 public: 1424 ir_dereference_record(ir_rvalue *value, const char *field); 1425 1426 ir_dereference_record(ir_variable *var, const char *field); 1427 1428 virtual ir_dereference_record *clone(void *mem_ctx, 1429 struct hash_table *) const; 1430 1431 virtual ir_constant *constant_expression_value(); 1432 1433 /** 1434 * Get the variable that is ultimately referenced by an r-value 1435 */ 1436 virtual ir_variable *variable_referenced() 1437 { 1438 return this->record->variable_referenced(); 1439 } 1440 1441 virtual void accept(ir_visitor *v) 1442 { 1443 v->visit(this); 1444 } 1445 1446 virtual ir_visitor_status accept(ir_hierarchical_visitor *); 1447 1448 ir_rvalue *record; 1449 const char *field; 1450 }; 1451 1452 1453 /** 1454 * Data stored in an ir_constant 1455 */ 1456 union ir_constant_data { 1457 unsigned u[16]; 1458 int i[16]; 1459 float f[16]; 1460 bool b[16]; 1461 }; 1462 1463 1464 class ir_constant : public ir_rvalue { 1465 public: 1466 ir_constant(const struct glsl_type *type, const ir_constant_data *data); 1467 ir_constant(bool b); 1468 ir_constant(unsigned int u); 1469 ir_constant(int i); 1470 ir_constant(float f); 1471 1472 /** 1473 * Construct an ir_constant from a list of ir_constant values 1474 */ 1475 ir_constant(const struct glsl_type *type, exec_list *values); 1476 1477 /** 1478 * Construct an ir_constant from a scalar component of another ir_constant 1479 * 1480 * The new \c ir_constant inherits the type of the component from the 1481 * source constant. 1482 * 1483 * \note 1484 * In the case of a matrix constant, the new constant is a scalar, \b not 1485 * a vector. 1486 */ 1487 ir_constant(const ir_constant *c, unsigned i); 1488 1489 /** 1490 * Return a new ir_constant of the specified type containing all zeros. 1491 */ 1492 static ir_constant *zero(void *mem_ctx, const glsl_type *type); 1493 1494 virtual ir_constant *clone(void *mem_ctx, struct hash_table *) const; 1495 1496 virtual ir_constant *constant_expression_value(); 1497 1498 virtual ir_constant *as_constant() 1499 { 1500 return this; 1501 } 1502 1503 virtual void accept(ir_visitor *v) 1504 { 1505 v->visit(this); 1506 } 1507 1508 virtual ir_visitor_status accept(ir_hierarchical_visitor *); 1509 1510 /** 1511 * Get a particular component of a constant as a specific type 1512 * 1513 * This is useful, for example, to get a value from an integer constant 1514 * as a float or bool. This appears frequently when constructors are 1515 * called with all constant parameters. 1516 */ 1517 /*@{*/ 1518 bool get_bool_component(unsigned i) const; 1519 float get_float_component(unsigned i) const; 1520 int get_int_component(unsigned i) const; 1521 unsigned get_uint_component(unsigned i) const; 1522 /*@}*/ 1523 1524 ir_constant *get_array_element(unsigned i) const; 1525 1526 ir_constant *get_record_field(const char *name); 1527 1528 /** 1529 * Determine whether a constant has the same value as another constant 1530 * 1531 * \sa ir_constant::is_zero, ir_constant::is_one, 1532 * ir_constant::is_negative_one 1533 */ 1534 bool has_value(const ir_constant *) const; 1535 1536 virtual bool is_zero() const; 1537 virtual bool is_one() const; 1538 virtual bool is_negative_one() const; 1539 1540 /** 1541 * Value of the constant. 1542 * 1543 * The field used to back the values supplied by the constant is determined 1544 * by the type associated with the \c ir_instruction. Constants may be 1545 * scalars, vectors, or matrices. 1546 */ 1547 union ir_constant_data value; 1548 1549 /* Array elements */ 1550 ir_constant **array_elements; 1551 1552 /* Structure fields */ 1553 exec_list components; 1554 1555 private: 1556 /** 1557 * Parameterless constructor only used by the clone method 1558 */ 1559 ir_constant(void); 1560 }; 1561 1562 /*@}*/ 1563 1564 /** 1565 * Apply a visitor to each IR node in a list 1566 */ 1567 void 1568 visit_exec_list(exec_list *list, ir_visitor *visitor); 1569 1570 /** 1571 * Validate invariants on each IR node in a list 1572 */ 1573 void validate_ir_tree(exec_list *instructions); 1574 1575 /** 1576 * Make a clone of each IR instruction in a list 1577 * 1578 * \param in List of IR instructions that are to be cloned 1579 * \param out List to hold the cloned instructions 1580 */ 1581 void 1582 clone_ir_list(void *mem_ctx, exec_list *out, const exec_list *in); 1583 1584 extern void 1585 _mesa_glsl_initialize_variables(exec_list *instructions, 1586 struct _mesa_glsl_parse_state *state); 1587 1588 extern void 1589 _mesa_glsl_initialize_functions(exec_list *instructions, 1590 struct _mesa_glsl_parse_state *state); 1591 1592 extern void 1593 _mesa_glsl_release_functions(void); 1594 1595 extern void 1596 reparent_ir(exec_list *list, void *mem_ctx); 1597 1598 struct glsl_symbol_table; 1599 1600 extern void 1601 import_prototypes(const exec_list *source, exec_list *dest, 1602 struct glsl_symbol_table *symbols, void *mem_ctx); 1603 1604 extern bool 1605 ir_has_call(ir_instruction *ir); 1606 1607 extern void 1608 do_set_program_inouts(exec_list *instructions, struct gl_program *prog); 1609 1610 #endif /* IR_H */ 1611