Home | History | Annotate | Download | only in test
      1 // Copyright 2005, Google Inc.
      2 // All rights reserved.
      3 //
      4 // Redistribution and use in source and binary forms, with or without
      5 // modification, are permitted provided that the following conditions are
      6 // met:
      7 //
      8 //     * Redistributions of source code must retain the above copyright
      9 // notice, this list of conditions and the following disclaimer.
     10 //     * Redistributions in binary form must reproduce the above
     11 // copyright notice, this list of conditions and the following disclaimer
     12 // in the documentation and/or other materials provided with the
     13 // distribution.
     14 //     * Neither the name of Google Inc. nor the names of its
     15 // contributors may be used to endorse or promote products derived from
     16 // this software without specific prior written permission.
     17 //
     18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     29 //
     30 // Author: wan (at) google.com (Zhanyong Wan)
     31 //
     32 // Tests for Google Test itself.  This verifies that the basic constructs of
     33 // Google Test work.
     34 
     35 #include "gtest/gtest.h"
     36 #include <vector>
     37 #include <ostream>
     38 
     39 // Verifies that the command line flag variables can be accessed
     40 // in code once <gtest/gtest.h> has been #included.
     41 // Do not move it after other #includes.
     42 TEST(CommandLineFlagsTest, CanBeAccessedInCodeOnceGTestHIsIncluded) {
     43   bool dummy = testing::GTEST_FLAG(also_run_disabled_tests)
     44       || testing::GTEST_FLAG(break_on_failure)
     45       || testing::GTEST_FLAG(catch_exceptions)
     46       || testing::GTEST_FLAG(color) != "unknown"
     47       || testing::GTEST_FLAG(filter) != "unknown"
     48       || testing::GTEST_FLAG(list_tests)
     49       || testing::GTEST_FLAG(output) != "unknown"
     50       || testing::GTEST_FLAG(print_time)
     51       || testing::GTEST_FLAG(random_seed)
     52       || testing::GTEST_FLAG(repeat) > 0
     53       || testing::GTEST_FLAG(show_internal_stack_frames)
     54       || testing::GTEST_FLAG(shuffle)
     55       || testing::GTEST_FLAG(stack_trace_depth) > 0
     56       || testing::GTEST_FLAG(stream_result_to) != "unknown"
     57       || testing::GTEST_FLAG(throw_on_failure);
     58   EXPECT_TRUE(dummy || !dummy);  // Suppresses warning that dummy is unused.
     59 }
     60 
     61 #include "gtest/gtest-spi.h"
     62 
     63 // Indicates that this translation unit is part of Google Test's
     64 // implementation.  It must come before gtest-internal-inl.h is
     65 // included, or there will be a compiler error.  This trick is to
     66 // prevent a user from accidentally including gtest-internal-inl.h in
     67 // his code.
     68 #define GTEST_IMPLEMENTATION_ 1
     69 #include "src/gtest-internal-inl.h"
     70 #undef GTEST_IMPLEMENTATION_
     71 
     72 #include <limits.h>  // For INT_MAX.
     73 #include <stdlib.h>
     74 #include <time.h>
     75 
     76 #include <map>
     77 
     78 namespace testing {
     79 namespace internal {
     80 
     81 // Provides access to otherwise private parts of the TestEventListeners class
     82 // that are needed to test it.
     83 class TestEventListenersAccessor {
     84  public:
     85   static TestEventListener* GetRepeater(TestEventListeners* listeners) {
     86     return listeners->repeater();
     87   }
     88 
     89   static void SetDefaultResultPrinter(TestEventListeners* listeners,
     90                                       TestEventListener* listener) {
     91     listeners->SetDefaultResultPrinter(listener);
     92   }
     93   static void SetDefaultXmlGenerator(TestEventListeners* listeners,
     94                                      TestEventListener* listener) {
     95     listeners->SetDefaultXmlGenerator(listener);
     96   }
     97 
     98   static bool EventForwardingEnabled(const TestEventListeners& listeners) {
     99     return listeners.EventForwardingEnabled();
    100   }
    101 
    102   static void SuppressEventForwarding(TestEventListeners* listeners) {
    103     listeners->SuppressEventForwarding();
    104   }
    105 };
    106 
    107 }  // namespace internal
    108 }  // namespace testing
    109 
    110 using testing::AssertionFailure;
    111 using testing::AssertionResult;
    112 using testing::AssertionSuccess;
    113 using testing::DoubleLE;
    114 using testing::EmptyTestEventListener;
    115 using testing::FloatLE;
    116 using testing::GTEST_FLAG(also_run_disabled_tests);
    117 using testing::GTEST_FLAG(break_on_failure);
    118 using testing::GTEST_FLAG(catch_exceptions);
    119 using testing::GTEST_FLAG(color);
    120 using testing::GTEST_FLAG(death_test_use_fork);
    121 using testing::GTEST_FLAG(filter);
    122 using testing::GTEST_FLAG(list_tests);
    123 using testing::GTEST_FLAG(output);
    124 using testing::GTEST_FLAG(print_time);
    125 using testing::GTEST_FLAG(random_seed);
    126 using testing::GTEST_FLAG(repeat);
    127 using testing::GTEST_FLAG(show_internal_stack_frames);
    128 using testing::GTEST_FLAG(shuffle);
    129 using testing::GTEST_FLAG(stack_trace_depth);
    130 using testing::GTEST_FLAG(stream_result_to);
    131 using testing::GTEST_FLAG(throw_on_failure);
    132 using testing::IsNotSubstring;
    133 using testing::IsSubstring;
    134 using testing::Message;
    135 using testing::ScopedFakeTestPartResultReporter;
    136 using testing::StaticAssertTypeEq;
    137 using testing::Test;
    138 using testing::TestCase;
    139 using testing::TestEventListeners;
    140 using testing::TestPartResult;
    141 using testing::TestPartResultArray;
    142 using testing::TestProperty;
    143 using testing::TestResult;
    144 using testing::UnitTest;
    145 using testing::kMaxStackTraceDepth;
    146 using testing::internal::AddReference;
    147 using testing::internal::AlwaysFalse;
    148 using testing::internal::AlwaysTrue;
    149 using testing::internal::AppendUserMessage;
    150 using testing::internal::ArrayAwareFind;
    151 using testing::internal::ArrayEq;
    152 using testing::internal::CodePointToUtf8;
    153 using testing::internal::CompileAssertTypesEqual;
    154 using testing::internal::CopyArray;
    155 using testing::internal::CountIf;
    156 using testing::internal::EqFailure;
    157 using testing::internal::FloatingPoint;
    158 using testing::internal::ForEach;
    159 using testing::internal::FormatTimeInMillisAsSeconds;
    160 using testing::internal::GTestFlagSaver;
    161 using testing::internal::GetCurrentOsStackTraceExceptTop;
    162 using testing::internal::GetElementOr;
    163 using testing::internal::GetNextRandomSeed;
    164 using testing::internal::GetRandomSeedFromFlag;
    165 using testing::internal::GetTestTypeId;
    166 using testing::internal::GetTypeId;
    167 using testing::internal::GetUnitTestImpl;
    168 using testing::internal::ImplicitlyConvertible;
    169 using testing::internal::Int32;
    170 using testing::internal::Int32FromEnvOrDie;
    171 using testing::internal::IsAProtocolMessage;
    172 using testing::internal::IsContainer;
    173 using testing::internal::IsContainerTest;
    174 using testing::internal::IsNotContainer;
    175 using testing::internal::NativeArray;
    176 using testing::internal::ParseInt32Flag;
    177 using testing::internal::RemoveConst;
    178 using testing::internal::RemoveReference;
    179 using testing::internal::ShouldRunTestOnShard;
    180 using testing::internal::ShouldShard;
    181 using testing::internal::ShouldUseColor;
    182 using testing::internal::Shuffle;
    183 using testing::internal::ShuffleRange;
    184 using testing::internal::SkipPrefix;
    185 using testing::internal::StreamableToString;
    186 using testing::internal::String;
    187 using testing::internal::TestEventListenersAccessor;
    188 using testing::internal::TestResultAccessor;
    189 using testing::internal::UInt32;
    190 using testing::internal::WideStringToUtf8;
    191 using testing::internal::kCopy;
    192 using testing::internal::kMaxRandomSeed;
    193 using testing::internal::kReference;
    194 using testing::internal::kTestTypeIdInGoogleTest;
    195 using testing::internal::scoped_ptr;
    196 
    197 #if GTEST_HAS_STREAM_REDIRECTION
    198 using testing::internal::CaptureStdout;
    199 using testing::internal::GetCapturedStdout;
    200 #endif
    201 
    202 #if GTEST_IS_THREADSAFE
    203 using testing::internal::ThreadWithParam;
    204 #endif
    205 
    206 class TestingVector : public std::vector<int> {
    207 };
    208 
    209 ::std::ostream& operator<<(::std::ostream& os,
    210                            const TestingVector& vector) {
    211   os << "{ ";
    212   for (size_t i = 0; i < vector.size(); i++) {
    213     os << vector[i] << " ";
    214   }
    215   os << "}";
    216   return os;
    217 }
    218 
    219 // This line tests that we can define tests in an unnamed namespace.
    220 namespace {
    221 
    222 TEST(GetRandomSeedFromFlagTest, HandlesZero) {
    223   const int seed = GetRandomSeedFromFlag(0);
    224   EXPECT_LE(1, seed);
    225   EXPECT_LE(seed, static_cast<int>(kMaxRandomSeed));
    226 }
    227 
    228 TEST(GetRandomSeedFromFlagTest, PreservesValidSeed) {
    229   EXPECT_EQ(1, GetRandomSeedFromFlag(1));
    230   EXPECT_EQ(2, GetRandomSeedFromFlag(2));
    231   EXPECT_EQ(kMaxRandomSeed - 1, GetRandomSeedFromFlag(kMaxRandomSeed - 1));
    232   EXPECT_EQ(static_cast<int>(kMaxRandomSeed),
    233             GetRandomSeedFromFlag(kMaxRandomSeed));
    234 }
    235 
    236 TEST(GetRandomSeedFromFlagTest, NormalizesInvalidSeed) {
    237   const int seed1 = GetRandomSeedFromFlag(-1);
    238   EXPECT_LE(1, seed1);
    239   EXPECT_LE(seed1, static_cast<int>(kMaxRandomSeed));
    240 
    241   const int seed2 = GetRandomSeedFromFlag(kMaxRandomSeed + 1);
    242   EXPECT_LE(1, seed2);
    243   EXPECT_LE(seed2, static_cast<int>(kMaxRandomSeed));
    244 }
    245 
    246 TEST(GetNextRandomSeedTest, WorksForValidInput) {
    247   EXPECT_EQ(2, GetNextRandomSeed(1));
    248   EXPECT_EQ(3, GetNextRandomSeed(2));
    249   EXPECT_EQ(static_cast<int>(kMaxRandomSeed),
    250             GetNextRandomSeed(kMaxRandomSeed - 1));
    251   EXPECT_EQ(1, GetNextRandomSeed(kMaxRandomSeed));
    252 
    253   // We deliberately don't test GetNextRandomSeed() with invalid
    254   // inputs, as that requires death tests, which are expensive.  This
    255   // is fine as GetNextRandomSeed() is internal and has a
    256   // straightforward definition.
    257 }
    258 
    259 static void ClearCurrentTestPartResults() {
    260   TestResultAccessor::ClearTestPartResults(
    261       GetUnitTestImpl()->current_test_result());
    262 }
    263 
    264 // Tests GetTypeId.
    265 
    266 TEST(GetTypeIdTest, ReturnsSameValueForSameType) {
    267   EXPECT_EQ(GetTypeId<int>(), GetTypeId<int>());
    268   EXPECT_EQ(GetTypeId<Test>(), GetTypeId<Test>());
    269 }
    270 
    271 class SubClassOfTest : public Test {};
    272 class AnotherSubClassOfTest : public Test {};
    273 
    274 TEST(GetTypeIdTest, ReturnsDifferentValuesForDifferentTypes) {
    275   EXPECT_NE(GetTypeId<int>(), GetTypeId<const int>());
    276   EXPECT_NE(GetTypeId<int>(), GetTypeId<char>());
    277   EXPECT_NE(GetTypeId<int>(), GetTestTypeId());
    278   EXPECT_NE(GetTypeId<SubClassOfTest>(), GetTestTypeId());
    279   EXPECT_NE(GetTypeId<AnotherSubClassOfTest>(), GetTestTypeId());
    280   EXPECT_NE(GetTypeId<AnotherSubClassOfTest>(), GetTypeId<SubClassOfTest>());
    281 }
    282 
    283 // Verifies that GetTestTypeId() returns the same value, no matter it
    284 // is called from inside Google Test or outside of it.
    285 TEST(GetTestTypeIdTest, ReturnsTheSameValueInsideOrOutsideOfGoogleTest) {
    286   EXPECT_EQ(kTestTypeIdInGoogleTest, GetTestTypeId());
    287 }
    288 
    289 // Tests FormatTimeInMillisAsSeconds().
    290 
    291 TEST(FormatTimeInMillisAsSecondsTest, FormatsZero) {
    292   EXPECT_EQ("0", FormatTimeInMillisAsSeconds(0));
    293 }
    294 
    295 TEST(FormatTimeInMillisAsSecondsTest, FormatsPositiveNumber) {
    296   EXPECT_EQ("0.003", FormatTimeInMillisAsSeconds(3));
    297   EXPECT_EQ("0.01", FormatTimeInMillisAsSeconds(10));
    298   EXPECT_EQ("0.2", FormatTimeInMillisAsSeconds(200));
    299   EXPECT_EQ("1.2", FormatTimeInMillisAsSeconds(1200));
    300   EXPECT_EQ("3", FormatTimeInMillisAsSeconds(3000));
    301 }
    302 
    303 TEST(FormatTimeInMillisAsSecondsTest, FormatsNegativeNumber) {
    304   EXPECT_EQ("-0.003", FormatTimeInMillisAsSeconds(-3));
    305   EXPECT_EQ("-0.01", FormatTimeInMillisAsSeconds(-10));
    306   EXPECT_EQ("-0.2", FormatTimeInMillisAsSeconds(-200));
    307   EXPECT_EQ("-1.2", FormatTimeInMillisAsSeconds(-1200));
    308   EXPECT_EQ("-3", FormatTimeInMillisAsSeconds(-3000));
    309 }
    310 
    311 #if GTEST_CAN_COMPARE_NULL
    312 
    313 # ifdef __BORLANDC__
    314 // Silences warnings: "Condition is always true", "Unreachable code"
    315 #  pragma option push -w-ccc -w-rch
    316 # endif
    317 
    318 // Tests that GTEST_IS_NULL_LITERAL_(x) is true when x is a null
    319 // pointer literal.
    320 TEST(NullLiteralTest, IsTrueForNullLiterals) {
    321   EXPECT_TRUE(GTEST_IS_NULL_LITERAL_(NULL));
    322   EXPECT_TRUE(GTEST_IS_NULL_LITERAL_(0));
    323   EXPECT_TRUE(GTEST_IS_NULL_LITERAL_(0U));
    324   EXPECT_TRUE(GTEST_IS_NULL_LITERAL_(0L));
    325 
    326 # ifndef __BORLANDC__
    327 
    328   // Some compilers may fail to detect some null pointer literals;
    329   // as long as users of the framework don't use such literals, this
    330   // is harmless.
    331   EXPECT_TRUE(GTEST_IS_NULL_LITERAL_(1 - 1));
    332 
    333 # endif
    334 }
    335 
    336 // Tests that GTEST_IS_NULL_LITERAL_(x) is false when x is not a null
    337 // pointer literal.
    338 TEST(NullLiteralTest, IsFalseForNonNullLiterals) {
    339   EXPECT_FALSE(GTEST_IS_NULL_LITERAL_(1));
    340   EXPECT_FALSE(GTEST_IS_NULL_LITERAL_(0.0));
    341   EXPECT_FALSE(GTEST_IS_NULL_LITERAL_('a'));
    342   EXPECT_FALSE(GTEST_IS_NULL_LITERAL_(static_cast<void*>(NULL)));
    343 }
    344 
    345 # ifdef __BORLANDC__
    346 // Restores warnings after previous "#pragma option push" suppressed them.
    347 #  pragma option pop
    348 # endif
    349 
    350 #endif  // GTEST_CAN_COMPARE_NULL
    351 //
    352 // Tests CodePointToUtf8().
    353 
    354 // Tests that the NUL character L'\0' is encoded correctly.
    355 TEST(CodePointToUtf8Test, CanEncodeNul) {
    356   char buffer[32];
    357   EXPECT_STREQ("", CodePointToUtf8(L'\0', buffer));
    358 }
    359 
    360 // Tests that ASCII characters are encoded correctly.
    361 TEST(CodePointToUtf8Test, CanEncodeAscii) {
    362   char buffer[32];
    363   EXPECT_STREQ("a", CodePointToUtf8(L'a', buffer));
    364   EXPECT_STREQ("Z", CodePointToUtf8(L'Z', buffer));
    365   EXPECT_STREQ("&", CodePointToUtf8(L'&', buffer));
    366   EXPECT_STREQ("\x7F", CodePointToUtf8(L'\x7F', buffer));
    367 }
    368 
    369 // Tests that Unicode code-points that have 8 to 11 bits are encoded
    370 // as 110xxxxx 10xxxxxx.
    371 TEST(CodePointToUtf8Test, CanEncode8To11Bits) {
    372   char buffer[32];
    373   // 000 1101 0011 => 110-00011 10-010011
    374   EXPECT_STREQ("\xC3\x93", CodePointToUtf8(L'\xD3', buffer));
    375 
    376   // 101 0111 0110 => 110-10101 10-110110
    377   // Some compilers (e.g., GCC on MinGW) cannot handle non-ASCII codepoints
    378   // in wide strings and wide chars. In order to accomodate them, we have to
    379   // introduce such character constants as integers.
    380   EXPECT_STREQ("\xD5\xB6",
    381                CodePointToUtf8(static_cast<wchar_t>(0x576), buffer));
    382 }
    383 
    384 // Tests that Unicode code-points that have 12 to 16 bits are encoded
    385 // as 1110xxxx 10xxxxxx 10xxxxxx.
    386 TEST(CodePointToUtf8Test, CanEncode12To16Bits) {
    387   char buffer[32];
    388   // 0000 1000 1101 0011 => 1110-0000 10-100011 10-010011
    389   EXPECT_STREQ("\xE0\xA3\x93",
    390                CodePointToUtf8(static_cast<wchar_t>(0x8D3), buffer));
    391 
    392   // 1100 0111 0100 1101 => 1110-1100 10-011101 10-001101
    393   EXPECT_STREQ("\xEC\x9D\x8D",
    394                CodePointToUtf8(static_cast<wchar_t>(0xC74D), buffer));
    395 }
    396 
    397 #if !GTEST_WIDE_STRING_USES_UTF16_
    398 // Tests in this group require a wchar_t to hold > 16 bits, and thus
    399 // are skipped on Windows, Cygwin, and Symbian, where a wchar_t is
    400 // 16-bit wide. This code may not compile on those systems.
    401 
    402 // Tests that Unicode code-points that have 17 to 21 bits are encoded
    403 // as 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx.
    404 TEST(CodePointToUtf8Test, CanEncode17To21Bits) {
    405   char buffer[32];
    406   // 0 0001 0000 1000 1101 0011 => 11110-000 10-010000 10-100011 10-010011
    407   EXPECT_STREQ("\xF0\x90\xA3\x93", CodePointToUtf8(L'\x108D3', buffer));
    408 
    409   // 0 0001 0000 0100 0000 0000 => 11110-000 10-010000 10-010000 10-000000
    410   EXPECT_STREQ("\xF0\x90\x90\x80", CodePointToUtf8(L'\x10400', buffer));
    411 
    412   // 1 0000 1000 0110 0011 0100 => 11110-100 10-001000 10-011000 10-110100
    413   EXPECT_STREQ("\xF4\x88\x98\xB4", CodePointToUtf8(L'\x108634', buffer));
    414 }
    415 
    416 // Tests that encoding an invalid code-point generates the expected result.
    417 TEST(CodePointToUtf8Test, CanEncodeInvalidCodePoint) {
    418   char buffer[32];
    419   EXPECT_STREQ("(Invalid Unicode 0x1234ABCD)",
    420                CodePointToUtf8(L'\x1234ABCD', buffer));
    421 }
    422 
    423 #endif  // !GTEST_WIDE_STRING_USES_UTF16_
    424 
    425 // Tests WideStringToUtf8().
    426 
    427 // Tests that the NUL character L'\0' is encoded correctly.
    428 TEST(WideStringToUtf8Test, CanEncodeNul) {
    429   EXPECT_STREQ("", WideStringToUtf8(L"", 0).c_str());
    430   EXPECT_STREQ("", WideStringToUtf8(L"", -1).c_str());
    431 }
    432 
    433 // Tests that ASCII strings are encoded correctly.
    434 TEST(WideStringToUtf8Test, CanEncodeAscii) {
    435   EXPECT_STREQ("a", WideStringToUtf8(L"a", 1).c_str());
    436   EXPECT_STREQ("ab", WideStringToUtf8(L"ab", 2).c_str());
    437   EXPECT_STREQ("a", WideStringToUtf8(L"a", -1).c_str());
    438   EXPECT_STREQ("ab", WideStringToUtf8(L"ab", -1).c_str());
    439 }
    440 
    441 // Tests that Unicode code-points that have 8 to 11 bits are encoded
    442 // as 110xxxxx 10xxxxxx.
    443 TEST(WideStringToUtf8Test, CanEncode8To11Bits) {
    444   // 000 1101 0011 => 110-00011 10-010011
    445   EXPECT_STREQ("\xC3\x93", WideStringToUtf8(L"\xD3", 1).c_str());
    446   EXPECT_STREQ("\xC3\x93", WideStringToUtf8(L"\xD3", -1).c_str());
    447 
    448   // 101 0111 0110 => 110-10101 10-110110
    449   const wchar_t s[] = { 0x576, '\0' };
    450   EXPECT_STREQ("\xD5\xB6", WideStringToUtf8(s, 1).c_str());
    451   EXPECT_STREQ("\xD5\xB6", WideStringToUtf8(s, -1).c_str());
    452 }
    453 
    454 // Tests that Unicode code-points that have 12 to 16 bits are encoded
    455 // as 1110xxxx 10xxxxxx 10xxxxxx.
    456 TEST(WideStringToUtf8Test, CanEncode12To16Bits) {
    457   // 0000 1000 1101 0011 => 1110-0000 10-100011 10-010011
    458   const wchar_t s1[] = { 0x8D3, '\0' };
    459   EXPECT_STREQ("\xE0\xA3\x93", WideStringToUtf8(s1, 1).c_str());
    460   EXPECT_STREQ("\xE0\xA3\x93", WideStringToUtf8(s1, -1).c_str());
    461 
    462   // 1100 0111 0100 1101 => 1110-1100 10-011101 10-001101
    463   const wchar_t s2[] = { 0xC74D, '\0' };
    464   EXPECT_STREQ("\xEC\x9D\x8D", WideStringToUtf8(s2, 1).c_str());
    465   EXPECT_STREQ("\xEC\x9D\x8D", WideStringToUtf8(s2, -1).c_str());
    466 }
    467 
    468 // Tests that the conversion stops when the function encounters \0 character.
    469 TEST(WideStringToUtf8Test, StopsOnNulCharacter) {
    470   EXPECT_STREQ("ABC", WideStringToUtf8(L"ABC\0XYZ", 100).c_str());
    471 }
    472 
    473 // Tests that the conversion stops when the function reaches the limit
    474 // specified by the 'length' parameter.
    475 TEST(WideStringToUtf8Test, StopsWhenLengthLimitReached) {
    476   EXPECT_STREQ("ABC", WideStringToUtf8(L"ABCDEF", 3).c_str());
    477 }
    478 
    479 #if !GTEST_WIDE_STRING_USES_UTF16_
    480 // Tests that Unicode code-points that have 17 to 21 bits are encoded
    481 // as 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx. This code may not compile
    482 // on the systems using UTF-16 encoding.
    483 TEST(WideStringToUtf8Test, CanEncode17To21Bits) {
    484   // 0 0001 0000 1000 1101 0011 => 11110-000 10-010000 10-100011 10-010011
    485   EXPECT_STREQ("\xF0\x90\xA3\x93", WideStringToUtf8(L"\x108D3", 1).c_str());
    486   EXPECT_STREQ("\xF0\x90\xA3\x93", WideStringToUtf8(L"\x108D3", -1).c_str());
    487 
    488   // 1 0000 1000 0110 0011 0100 => 11110-100 10-001000 10-011000 10-110100
    489   EXPECT_STREQ("\xF4\x88\x98\xB4", WideStringToUtf8(L"\x108634", 1).c_str());
    490   EXPECT_STREQ("\xF4\x88\x98\xB4", WideStringToUtf8(L"\x108634", -1).c_str());
    491 }
    492 
    493 // Tests that encoding an invalid code-point generates the expected result.
    494 TEST(WideStringToUtf8Test, CanEncodeInvalidCodePoint) {
    495   EXPECT_STREQ("(Invalid Unicode 0xABCDFF)",
    496                WideStringToUtf8(L"\xABCDFF", -1).c_str());
    497 }
    498 #else  // !GTEST_WIDE_STRING_USES_UTF16_
    499 // Tests that surrogate pairs are encoded correctly on the systems using
    500 // UTF-16 encoding in the wide strings.
    501 TEST(WideStringToUtf8Test, CanEncodeValidUtf16SUrrogatePairs) {
    502   const wchar_t s[] = { 0xD801, 0xDC00, '\0' };
    503   EXPECT_STREQ("\xF0\x90\x90\x80", WideStringToUtf8(s, -1).c_str());
    504 }
    505 
    506 // Tests that encoding an invalid UTF-16 surrogate pair
    507 // generates the expected result.
    508 TEST(WideStringToUtf8Test, CanEncodeInvalidUtf16SurrogatePair) {
    509   // Leading surrogate is at the end of the string.
    510   const wchar_t s1[] = { 0xD800, '\0' };
    511   EXPECT_STREQ("\xED\xA0\x80", WideStringToUtf8(s1, -1).c_str());
    512   // Leading surrogate is not followed by the trailing surrogate.
    513   const wchar_t s2[] = { 0xD800, 'M', '\0' };
    514   EXPECT_STREQ("\xED\xA0\x80M", WideStringToUtf8(s2, -1).c_str());
    515   // Trailing surrogate appearas without a leading surrogate.
    516   const wchar_t s3[] = { 0xDC00, 'P', 'Q', 'R', '\0' };
    517   EXPECT_STREQ("\xED\xB0\x80PQR", WideStringToUtf8(s3, -1).c_str());
    518 }
    519 #endif  // !GTEST_WIDE_STRING_USES_UTF16_
    520 
    521 // Tests that codepoint concatenation works correctly.
    522 #if !GTEST_WIDE_STRING_USES_UTF16_
    523 TEST(WideStringToUtf8Test, ConcatenatesCodepointsCorrectly) {
    524   const wchar_t s[] = { 0x108634, 0xC74D, '\n', 0x576, 0x8D3, 0x108634, '\0'};
    525   EXPECT_STREQ(
    526       "\xF4\x88\x98\xB4"
    527           "\xEC\x9D\x8D"
    528           "\n"
    529           "\xD5\xB6"
    530           "\xE0\xA3\x93"
    531           "\xF4\x88\x98\xB4",
    532       WideStringToUtf8(s, -1).c_str());
    533 }
    534 #else
    535 TEST(WideStringToUtf8Test, ConcatenatesCodepointsCorrectly) {
    536   const wchar_t s[] = { 0xC74D, '\n', 0x576, 0x8D3, '\0'};
    537   EXPECT_STREQ(
    538       "\xEC\x9D\x8D" "\n" "\xD5\xB6" "\xE0\xA3\x93",
    539       WideStringToUtf8(s, -1).c_str());
    540 }
    541 #endif  // !GTEST_WIDE_STRING_USES_UTF16_
    542 
    543 // Tests the Random class.
    544 
    545 TEST(RandomDeathTest, GeneratesCrashesOnInvalidRange) {
    546   testing::internal::Random random(42);
    547   EXPECT_DEATH_IF_SUPPORTED(
    548       random.Generate(0),
    549       "Cannot generate a number in the range \\[0, 0\\)");
    550   EXPECT_DEATH_IF_SUPPORTED(
    551       random.Generate(testing::internal::Random::kMaxRange + 1),
    552       "Generation of a number in \\[0, 2147483649\\) was requested, "
    553       "but this can only generate numbers in \\[0, 2147483648\\)");
    554 }
    555 
    556 TEST(RandomTest, GeneratesNumbersWithinRange) {
    557   const UInt32 kRange = 10000;
    558   testing::internal::Random random(12345);
    559   for (int i = 0; i < 10; i++) {
    560     EXPECT_LT(random.Generate(kRange), kRange) << " for iteration " << i;
    561   }
    562 
    563   testing::internal::Random random2(testing::internal::Random::kMaxRange);
    564   for (int i = 0; i < 10; i++) {
    565     EXPECT_LT(random2.Generate(kRange), kRange) << " for iteration " << i;
    566   }
    567 }
    568 
    569 TEST(RandomTest, RepeatsWhenReseeded) {
    570   const int kSeed = 123;
    571   const int kArraySize = 10;
    572   const UInt32 kRange = 10000;
    573   UInt32 values[kArraySize];
    574 
    575   testing::internal::Random random(kSeed);
    576   for (int i = 0; i < kArraySize; i++) {
    577     values[i] = random.Generate(kRange);
    578   }
    579 
    580   random.Reseed(kSeed);
    581   for (int i = 0; i < kArraySize; i++) {
    582     EXPECT_EQ(values[i], random.Generate(kRange)) << " for iteration " << i;
    583   }
    584 }
    585 
    586 // Tests STL container utilities.
    587 
    588 // Tests CountIf().
    589 
    590 static bool IsPositive(int n) { return n > 0; }
    591 
    592 TEST(ContainerUtilityTest, CountIf) {
    593   std::vector<int> v;
    594   EXPECT_EQ(0, CountIf(v, IsPositive));  // Works for an empty container.
    595 
    596   v.push_back(-1);
    597   v.push_back(0);
    598   EXPECT_EQ(0, CountIf(v, IsPositive));  // Works when no value satisfies.
    599 
    600   v.push_back(2);
    601   v.push_back(-10);
    602   v.push_back(10);
    603   EXPECT_EQ(2, CountIf(v, IsPositive));
    604 }
    605 
    606 // Tests ForEach().
    607 
    608 static int g_sum = 0;
    609 static void Accumulate(int n) { g_sum += n; }
    610 
    611 TEST(ContainerUtilityTest, ForEach) {
    612   std::vector<int> v;
    613   g_sum = 0;
    614   ForEach(v, Accumulate);
    615   EXPECT_EQ(0, g_sum);  // Works for an empty container;
    616 
    617   g_sum = 0;
    618   v.push_back(1);
    619   ForEach(v, Accumulate);
    620   EXPECT_EQ(1, g_sum);  // Works for a container with one element.
    621 
    622   g_sum = 0;
    623   v.push_back(20);
    624   v.push_back(300);
    625   ForEach(v, Accumulate);
    626   EXPECT_EQ(321, g_sum);
    627 }
    628 
    629 // Tests GetElementOr().
    630 TEST(ContainerUtilityTest, GetElementOr) {
    631   std::vector<char> a;
    632   EXPECT_EQ('x', GetElementOr(a, 0, 'x'));
    633 
    634   a.push_back('a');
    635   a.push_back('b');
    636   EXPECT_EQ('a', GetElementOr(a, 0, 'x'));
    637   EXPECT_EQ('b', GetElementOr(a, 1, 'x'));
    638   EXPECT_EQ('x', GetElementOr(a, -2, 'x'));
    639   EXPECT_EQ('x', GetElementOr(a, 2, 'x'));
    640 }
    641 
    642 TEST(ContainerUtilityDeathTest, ShuffleRange) {
    643   std::vector<int> a;
    644   a.push_back(0);
    645   a.push_back(1);
    646   a.push_back(2);
    647   testing::internal::Random random(1);
    648 
    649   EXPECT_DEATH_IF_SUPPORTED(
    650       ShuffleRange(&random, -1, 1, &a),
    651       "Invalid shuffle range start -1: must be in range \\[0, 3\\]");
    652   EXPECT_DEATH_IF_SUPPORTED(
    653       ShuffleRange(&random, 4, 4, &a),
    654       "Invalid shuffle range start 4: must be in range \\[0, 3\\]");
    655   EXPECT_DEATH_IF_SUPPORTED(
    656       ShuffleRange(&random, 3, 2, &a),
    657       "Invalid shuffle range finish 2: must be in range \\[3, 3\\]");
    658   EXPECT_DEATH_IF_SUPPORTED(
    659       ShuffleRange(&random, 3, 4, &a),
    660       "Invalid shuffle range finish 4: must be in range \\[3, 3\\]");
    661 }
    662 
    663 class VectorShuffleTest : public Test {
    664  protected:
    665   static const int kVectorSize = 20;
    666 
    667   VectorShuffleTest() : random_(1) {
    668     for (int i = 0; i < kVectorSize; i++) {
    669       vector_.push_back(i);
    670     }
    671   }
    672 
    673   static bool VectorIsCorrupt(const TestingVector& vector) {
    674     if (kVectorSize != static_cast<int>(vector.size())) {
    675       return true;
    676     }
    677 
    678     bool found_in_vector[kVectorSize] = { false };
    679     for (size_t i = 0; i < vector.size(); i++) {
    680       const int e = vector[i];
    681       if (e < 0 || e >= kVectorSize || found_in_vector[e]) {
    682         return true;
    683       }
    684       found_in_vector[e] = true;
    685     }
    686 
    687     // Vector size is correct, elements' range is correct, no
    688     // duplicate elements.  Therefore no corruption has occurred.
    689     return false;
    690   }
    691 
    692   static bool VectorIsNotCorrupt(const TestingVector& vector) {
    693     return !VectorIsCorrupt(vector);
    694   }
    695 
    696   static bool RangeIsShuffled(const TestingVector& vector, int begin, int end) {
    697     for (int i = begin; i < end; i++) {
    698       if (i != vector[i]) {
    699         return true;
    700       }
    701     }
    702     return false;
    703   }
    704 
    705   static bool RangeIsUnshuffled(
    706       const TestingVector& vector, int begin, int end) {
    707     return !RangeIsShuffled(vector, begin, end);
    708   }
    709 
    710   static bool VectorIsShuffled(const TestingVector& vector) {
    711     return RangeIsShuffled(vector, 0, static_cast<int>(vector.size()));
    712   }
    713 
    714   static bool VectorIsUnshuffled(const TestingVector& vector) {
    715     return !VectorIsShuffled(vector);
    716   }
    717 
    718   testing::internal::Random random_;
    719   TestingVector vector_;
    720 };  // class VectorShuffleTest
    721 
    722 const int VectorShuffleTest::kVectorSize;
    723 
    724 TEST_F(VectorShuffleTest, HandlesEmptyRange) {
    725   // Tests an empty range at the beginning...
    726   ShuffleRange(&random_, 0, 0, &vector_);
    727   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
    728   ASSERT_PRED1(VectorIsUnshuffled, vector_);
    729 
    730   // ...in the middle...
    731   ShuffleRange(&random_, kVectorSize/2, kVectorSize/2, &vector_);
    732   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
    733   ASSERT_PRED1(VectorIsUnshuffled, vector_);
    734 
    735   // ...at the end...
    736   ShuffleRange(&random_, kVectorSize - 1, kVectorSize - 1, &vector_);
    737   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
    738   ASSERT_PRED1(VectorIsUnshuffled, vector_);
    739 
    740   // ...and past the end.
    741   ShuffleRange(&random_, kVectorSize, kVectorSize, &vector_);
    742   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
    743   ASSERT_PRED1(VectorIsUnshuffled, vector_);
    744 }
    745 
    746 TEST_F(VectorShuffleTest, HandlesRangeOfSizeOne) {
    747   // Tests a size one range at the beginning...
    748   ShuffleRange(&random_, 0, 1, &vector_);
    749   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
    750   ASSERT_PRED1(VectorIsUnshuffled, vector_);
    751 
    752   // ...in the middle...
    753   ShuffleRange(&random_, kVectorSize/2, kVectorSize/2 + 1, &vector_);
    754   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
    755   ASSERT_PRED1(VectorIsUnshuffled, vector_);
    756 
    757   // ...and at the end.
    758   ShuffleRange(&random_, kVectorSize - 1, kVectorSize, &vector_);
    759   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
    760   ASSERT_PRED1(VectorIsUnshuffled, vector_);
    761 }
    762 
    763 // Because we use our own random number generator and a fixed seed,
    764 // we can guarantee that the following "random" tests will succeed.
    765 
    766 TEST_F(VectorShuffleTest, ShufflesEntireVector) {
    767   Shuffle(&random_, &vector_);
    768   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
    769   EXPECT_FALSE(VectorIsUnshuffled(vector_)) << vector_;
    770 
    771   // Tests the first and last elements in particular to ensure that
    772   // there are no off-by-one problems in our shuffle algorithm.
    773   EXPECT_NE(0, vector_[0]);
    774   EXPECT_NE(kVectorSize - 1, vector_[kVectorSize - 1]);
    775 }
    776 
    777 TEST_F(VectorShuffleTest, ShufflesStartOfVector) {
    778   const int kRangeSize = kVectorSize/2;
    779 
    780   ShuffleRange(&random_, 0, kRangeSize, &vector_);
    781 
    782   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
    783   EXPECT_PRED3(RangeIsShuffled, vector_, 0, kRangeSize);
    784   EXPECT_PRED3(RangeIsUnshuffled, vector_, kRangeSize, kVectorSize);
    785 }
    786 
    787 TEST_F(VectorShuffleTest, ShufflesEndOfVector) {
    788   const int kRangeSize = kVectorSize / 2;
    789   ShuffleRange(&random_, kRangeSize, kVectorSize, &vector_);
    790 
    791   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
    792   EXPECT_PRED3(RangeIsUnshuffled, vector_, 0, kRangeSize);
    793   EXPECT_PRED3(RangeIsShuffled, vector_, kRangeSize, kVectorSize);
    794 }
    795 
    796 TEST_F(VectorShuffleTest, ShufflesMiddleOfVector) {
    797   int kRangeSize = kVectorSize/3;
    798   ShuffleRange(&random_, kRangeSize, 2*kRangeSize, &vector_);
    799 
    800   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
    801   EXPECT_PRED3(RangeIsUnshuffled, vector_, 0, kRangeSize);
    802   EXPECT_PRED3(RangeIsShuffled, vector_, kRangeSize, 2*kRangeSize);
    803   EXPECT_PRED3(RangeIsUnshuffled, vector_, 2*kRangeSize, kVectorSize);
    804 }
    805 
    806 TEST_F(VectorShuffleTest, ShufflesRepeatably) {
    807   TestingVector vector2;
    808   for (int i = 0; i < kVectorSize; i++) {
    809     vector2.push_back(i);
    810   }
    811 
    812   random_.Reseed(1234);
    813   Shuffle(&random_, &vector_);
    814   random_.Reseed(1234);
    815   Shuffle(&random_, &vector2);
    816 
    817   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
    818   ASSERT_PRED1(VectorIsNotCorrupt, vector2);
    819 
    820   for (int i = 0; i < kVectorSize; i++) {
    821     EXPECT_EQ(vector_[i], vector2[i]) << " where i is " << i;
    822   }
    823 }
    824 
    825 // Tests the size of the AssertHelper class.
    826 
    827 TEST(AssertHelperTest, AssertHelperIsSmall) {
    828   // To avoid breaking clients that use lots of assertions in one
    829   // function, we cannot grow the size of AssertHelper.
    830   EXPECT_LE(sizeof(testing::internal::AssertHelper), sizeof(void*));
    831 }
    832 
    833 // Tests the String class.
    834 
    835 // Tests String's constructors.
    836 TEST(StringTest, Constructors) {
    837   // Default ctor.
    838   String s1;
    839   // We aren't using EXPECT_EQ(NULL, s1.c_str()) because comparing
    840   // pointers with NULL isn't supported on all platforms.
    841   EXPECT_EQ(0U, s1.length());
    842   EXPECT_TRUE(NULL == s1.c_str());
    843 
    844   // Implicitly constructs from a C-string.
    845   String s2 = "Hi";
    846   EXPECT_EQ(2U, s2.length());
    847   EXPECT_STREQ("Hi", s2.c_str());
    848 
    849   // Constructs from a C-string and a length.
    850   String s3("hello", 3);
    851   EXPECT_EQ(3U, s3.length());
    852   EXPECT_STREQ("hel", s3.c_str());
    853 
    854   // The empty String should be created when String is constructed with
    855   // a NULL pointer and length 0.
    856   EXPECT_EQ(0U, String(NULL, 0).length());
    857   EXPECT_FALSE(String(NULL, 0).c_str() == NULL);
    858 
    859   // Constructs a String that contains '\0'.
    860   String s4("a\0bcd", 4);
    861   EXPECT_EQ(4U, s4.length());
    862   EXPECT_EQ('a', s4.c_str()[0]);
    863   EXPECT_EQ('\0', s4.c_str()[1]);
    864   EXPECT_EQ('b', s4.c_str()[2]);
    865   EXPECT_EQ('c', s4.c_str()[3]);
    866 
    867   // Copy ctor where the source is NULL.
    868   const String null_str;
    869   String s5 = null_str;
    870   EXPECT_TRUE(s5.c_str() == NULL);
    871 
    872   // Copy ctor where the source isn't NULL.
    873   String s6 = s3;
    874   EXPECT_EQ(3U, s6.length());
    875   EXPECT_STREQ("hel", s6.c_str());
    876 
    877   // Copy ctor where the source contains '\0'.
    878   String s7 = s4;
    879   EXPECT_EQ(4U, s7.length());
    880   EXPECT_EQ('a', s7.c_str()[0]);
    881   EXPECT_EQ('\0', s7.c_str()[1]);
    882   EXPECT_EQ('b', s7.c_str()[2]);
    883   EXPECT_EQ('c', s7.c_str()[3]);
    884 }
    885 
    886 TEST(StringTest, ConvertsFromStdString) {
    887   // An empty std::string.
    888   const std::string src1("");
    889   const String dest1 = src1;
    890   EXPECT_EQ(0U, dest1.length());
    891   EXPECT_STREQ("", dest1.c_str());
    892 
    893   // A normal std::string.
    894   const std::string src2("Hi");
    895   const String dest2 = src2;
    896   EXPECT_EQ(2U, dest2.length());
    897   EXPECT_STREQ("Hi", dest2.c_str());
    898 
    899   // An std::string with an embedded NUL character.
    900   const char src3[] = "a\0b";
    901   const String dest3 = std::string(src3, sizeof(src3));
    902   EXPECT_EQ(sizeof(src3), dest3.length());
    903   EXPECT_EQ('a', dest3.c_str()[0]);
    904   EXPECT_EQ('\0', dest3.c_str()[1]);
    905   EXPECT_EQ('b', dest3.c_str()[2]);
    906 }
    907 
    908 TEST(StringTest, ConvertsToStdString) {
    909   // An empty String.
    910   const String src1("");
    911   const std::string dest1 = src1;
    912   EXPECT_EQ("", dest1);
    913 
    914   // A normal String.
    915   const String src2("Hi");
    916   const std::string dest2 = src2;
    917   EXPECT_EQ("Hi", dest2);
    918 
    919   // A String containing a '\0'.
    920   const String src3("x\0y", 3);
    921   const std::string dest3 = src3;
    922   EXPECT_EQ(std::string("x\0y", 3), dest3);
    923 }
    924 
    925 #if GTEST_HAS_GLOBAL_STRING
    926 
    927 TEST(StringTest, ConvertsFromGlobalString) {
    928   // An empty ::string.
    929   const ::string src1("");
    930   const String dest1 = src1;
    931   EXPECT_EQ(0U, dest1.length());
    932   EXPECT_STREQ("", dest1.c_str());
    933 
    934   // A normal ::string.
    935   const ::string src2("Hi");
    936   const String dest2 = src2;
    937   EXPECT_EQ(2U, dest2.length());
    938   EXPECT_STREQ("Hi", dest2.c_str());
    939 
    940   // An ::string with an embedded NUL character.
    941   const char src3[] = "x\0y";
    942   const String dest3 = ::string(src3, sizeof(src3));
    943   EXPECT_EQ(sizeof(src3), dest3.length());
    944   EXPECT_EQ('x', dest3.c_str()[0]);
    945   EXPECT_EQ('\0', dest3.c_str()[1]);
    946   EXPECT_EQ('y', dest3.c_str()[2]);
    947 }
    948 
    949 TEST(StringTest, ConvertsToGlobalString) {
    950   // An empty String.
    951   const String src1("");
    952   const ::string dest1 = src1;
    953   EXPECT_EQ("", dest1);
    954 
    955   // A normal String.
    956   const String src2("Hi");
    957   const ::string dest2 = src2;
    958   EXPECT_EQ("Hi", dest2);
    959 
    960   const String src3("x\0y", 3);
    961   const ::string dest3 = src3;
    962   EXPECT_EQ(::string("x\0y", 3), dest3);
    963 }
    964 
    965 #endif  // GTEST_HAS_GLOBAL_STRING
    966 
    967 // Tests String::ShowCStringQuoted().
    968 TEST(StringTest, ShowCStringQuoted) {
    969   EXPECT_STREQ("(null)",
    970                String::ShowCStringQuoted(NULL).c_str());
    971   EXPECT_STREQ("\"\"",
    972                String::ShowCStringQuoted("").c_str());
    973   EXPECT_STREQ("\"foo\"",
    974                String::ShowCStringQuoted("foo").c_str());
    975 }
    976 
    977 // Tests String::empty().
    978 TEST(StringTest, Empty) {
    979   EXPECT_TRUE(String("").empty());
    980   EXPECT_FALSE(String().empty());
    981   EXPECT_FALSE(String(NULL).empty());
    982   EXPECT_FALSE(String("a").empty());
    983   EXPECT_FALSE(String("\0", 1).empty());
    984 }
    985 
    986 // Tests String::Compare().
    987 TEST(StringTest, Compare) {
    988   // NULL vs NULL.
    989   EXPECT_EQ(0, String().Compare(String()));
    990 
    991   // NULL vs non-NULL.
    992   EXPECT_EQ(-1, String().Compare(String("")));
    993 
    994   // Non-NULL vs NULL.
    995   EXPECT_EQ(1, String("").Compare(String()));
    996 
    997   // The following covers non-NULL vs non-NULL.
    998 
    999   // "" vs "".
   1000   EXPECT_EQ(0, String("").Compare(String("")));
   1001 
   1002   // "" vs non-"".
   1003   EXPECT_EQ(-1, String("").Compare(String("\0", 1)));
   1004   EXPECT_EQ(-1, String("").Compare(" "));
   1005 
   1006   // Non-"" vs "".
   1007   EXPECT_EQ(1, String("a").Compare(String("")));
   1008 
   1009   // The following covers non-"" vs non-"".
   1010 
   1011   // Same length and equal.
   1012   EXPECT_EQ(0, String("a").Compare(String("a")));
   1013 
   1014   // Same length and different.
   1015   EXPECT_EQ(-1, String("a\0b", 3).Compare(String("a\0c", 3)));
   1016   EXPECT_EQ(1, String("b").Compare(String("a")));
   1017 
   1018   // Different lengths.
   1019   EXPECT_EQ(-1, String("a").Compare(String("ab")));
   1020   EXPECT_EQ(-1, String("a").Compare(String("a\0", 2)));
   1021   EXPECT_EQ(1, String("abc").Compare(String("aacd")));
   1022 }
   1023 
   1024 // Tests String::operator==().
   1025 TEST(StringTest, Equals) {
   1026   const String null(NULL);
   1027   EXPECT_TRUE(null == NULL);  // NOLINT
   1028   EXPECT_FALSE(null == "");  // NOLINT
   1029   EXPECT_FALSE(null == "bar");  // NOLINT
   1030 
   1031   const String empty("");
   1032   EXPECT_FALSE(empty == NULL);  // NOLINT
   1033   EXPECT_TRUE(empty == "");  // NOLINT
   1034   EXPECT_FALSE(empty == "bar");  // NOLINT
   1035 
   1036   const String foo("foo");
   1037   EXPECT_FALSE(foo == NULL);  // NOLINT
   1038   EXPECT_FALSE(foo == "");  // NOLINT
   1039   EXPECT_FALSE(foo == "bar");  // NOLINT
   1040   EXPECT_TRUE(foo == "foo");  // NOLINT
   1041 
   1042   const String bar("x\0y", 3);
   1043   EXPECT_FALSE(bar == "x");
   1044 }
   1045 
   1046 // Tests String::operator!=().
   1047 TEST(StringTest, NotEquals) {
   1048   const String null(NULL);
   1049   EXPECT_FALSE(null != NULL);  // NOLINT
   1050   EXPECT_TRUE(null != "");  // NOLINT
   1051   EXPECT_TRUE(null != "bar");  // NOLINT
   1052 
   1053   const String empty("");
   1054   EXPECT_TRUE(empty != NULL);  // NOLINT
   1055   EXPECT_FALSE(empty != "");  // NOLINT
   1056   EXPECT_TRUE(empty != "bar");  // NOLINT
   1057 
   1058   const String foo("foo");
   1059   EXPECT_TRUE(foo != NULL);  // NOLINT
   1060   EXPECT_TRUE(foo != "");  // NOLINT
   1061   EXPECT_TRUE(foo != "bar");  // NOLINT
   1062   EXPECT_FALSE(foo != "foo");  // NOLINT
   1063 
   1064   const String bar("x\0y", 3);
   1065   EXPECT_TRUE(bar != "x");
   1066 }
   1067 
   1068 // Tests String::length().
   1069 TEST(StringTest, Length) {
   1070   EXPECT_EQ(0U, String().length());
   1071   EXPECT_EQ(0U, String("").length());
   1072   EXPECT_EQ(2U, String("ab").length());
   1073   EXPECT_EQ(3U, String("a\0b", 3).length());
   1074 }
   1075 
   1076 // Tests String::EndsWith().
   1077 TEST(StringTest, EndsWith) {
   1078   EXPECT_TRUE(String("foobar").EndsWith("bar"));
   1079   EXPECT_TRUE(String("foobar").EndsWith(""));
   1080   EXPECT_TRUE(String("").EndsWith(""));
   1081 
   1082   EXPECT_FALSE(String("foobar").EndsWith("foo"));
   1083   EXPECT_FALSE(String("").EndsWith("foo"));
   1084 }
   1085 
   1086 // Tests String::EndsWithCaseInsensitive().
   1087 TEST(StringTest, EndsWithCaseInsensitive) {
   1088   EXPECT_TRUE(String("foobar").EndsWithCaseInsensitive("BAR"));
   1089   EXPECT_TRUE(String("foobaR").EndsWithCaseInsensitive("bar"));
   1090   EXPECT_TRUE(String("foobar").EndsWithCaseInsensitive(""));
   1091   EXPECT_TRUE(String("").EndsWithCaseInsensitive(""));
   1092 
   1093   EXPECT_FALSE(String("Foobar").EndsWithCaseInsensitive("foo"));
   1094   EXPECT_FALSE(String("foobar").EndsWithCaseInsensitive("Foo"));
   1095   EXPECT_FALSE(String("").EndsWithCaseInsensitive("foo"));
   1096 }
   1097 
   1098 // C++Builder's preprocessor is buggy; it fails to expand macros that
   1099 // appear in macro parameters after wide char literals.  Provide an alias
   1100 // for NULL as a workaround.
   1101 static const wchar_t* const kNull = NULL;
   1102 
   1103 // Tests String::CaseInsensitiveWideCStringEquals
   1104 TEST(StringTest, CaseInsensitiveWideCStringEquals) {
   1105   EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(NULL, NULL));
   1106   EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(kNull, L""));
   1107   EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(L"", kNull));
   1108   EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(kNull, L"foobar"));
   1109   EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(L"foobar", kNull));
   1110   EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(L"foobar", L"foobar"));
   1111   EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(L"foobar", L"FOOBAR"));
   1112   EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(L"FOOBAR", L"foobar"));
   1113 }
   1114 
   1115 // Tests that NULL can be assigned to a String.
   1116 TEST(StringTest, CanBeAssignedNULL) {
   1117   const String src(NULL);
   1118   String dest;
   1119 
   1120   dest = src;
   1121   EXPECT_STREQ(NULL, dest.c_str());
   1122 }
   1123 
   1124 // Tests that the empty string "" can be assigned to a String.
   1125 TEST(StringTest, CanBeAssignedEmpty) {
   1126   const String src("");
   1127   String dest;
   1128 
   1129   dest = src;
   1130   EXPECT_STREQ("", dest.c_str());
   1131 }
   1132 
   1133 // Tests that a non-empty string can be assigned to a String.
   1134 TEST(StringTest, CanBeAssignedNonEmpty) {
   1135   const String src("hello");
   1136   String dest;
   1137   dest = src;
   1138   EXPECT_EQ(5U, dest.length());
   1139   EXPECT_STREQ("hello", dest.c_str());
   1140 
   1141   const String src2("x\0y", 3);
   1142   String dest2;
   1143   dest2 = src2;
   1144   EXPECT_EQ(3U, dest2.length());
   1145   EXPECT_EQ('x', dest2.c_str()[0]);
   1146   EXPECT_EQ('\0', dest2.c_str()[1]);
   1147   EXPECT_EQ('y', dest2.c_str()[2]);
   1148 }
   1149 
   1150 // Tests that a String can be assigned to itself.
   1151 TEST(StringTest, CanBeAssignedSelf) {
   1152   String dest("hello");
   1153 
   1154   // Use explicit function call notation here to suppress self-assign warning.
   1155   dest.operator=(dest);
   1156   EXPECT_STREQ("hello", dest.c_str());
   1157 }
   1158 
   1159 // Sun Studio < 12 incorrectly rejects this code due to an overloading
   1160 // ambiguity.
   1161 #if !(defined(__SUNPRO_CC) && __SUNPRO_CC < 0x590)
   1162 // Tests streaming a String.
   1163 TEST(StringTest, Streams) {
   1164   EXPECT_EQ(StreamableToString(String()), "(null)");
   1165   EXPECT_EQ(StreamableToString(String("")), "");
   1166   EXPECT_EQ(StreamableToString(String("a\0b", 3)), "a\\0b");
   1167 }
   1168 #endif
   1169 
   1170 // Tests that String::Format() works.
   1171 TEST(StringTest, FormatWorks) {
   1172   // Normal case: the format spec is valid, the arguments match the
   1173   // spec, and the result is < 4095 characters.
   1174   EXPECT_STREQ("Hello, 42", String::Format("%s, %d", "Hello", 42).c_str());
   1175 
   1176   // Edge case: the result is 4095 characters.
   1177   char buffer[4096];
   1178   const size_t kSize = sizeof(buffer);
   1179   memset(buffer, 'a', kSize - 1);
   1180   buffer[kSize - 1] = '\0';
   1181   EXPECT_STREQ(buffer, String::Format("%s", buffer).c_str());
   1182 
   1183   // The result needs to be 4096 characters, exceeding Format()'s limit.
   1184   EXPECT_STREQ("<formatting error or buffer exceeded>",
   1185                String::Format("x%s", buffer).c_str());
   1186 
   1187 #if GTEST_OS_LINUX
   1188   // On Linux, invalid format spec should lead to an error message.
   1189   // In other environment (e.g. MSVC on Windows), String::Format() may
   1190   // simply ignore a bad format spec, so this assertion is run on
   1191   // Linux only.
   1192   EXPECT_STREQ("<formatting error or buffer exceeded>",
   1193                String::Format("%").c_str());
   1194 #endif
   1195 }
   1196 
   1197 #if GTEST_OS_WINDOWS
   1198 
   1199 // Tests String::ShowWideCString().
   1200 TEST(StringTest, ShowWideCString) {
   1201   EXPECT_STREQ("(null)",
   1202                String::ShowWideCString(NULL).c_str());
   1203   EXPECT_STREQ("", String::ShowWideCString(L"").c_str());
   1204   EXPECT_STREQ("foo", String::ShowWideCString(L"foo").c_str());
   1205 }
   1206 
   1207 // Tests String::ShowWideCStringQuoted().
   1208 TEST(StringTest, ShowWideCStringQuoted) {
   1209   EXPECT_STREQ("(null)",
   1210                String::ShowWideCStringQuoted(NULL).c_str());
   1211   EXPECT_STREQ("L\"\"",
   1212                String::ShowWideCStringQuoted(L"").c_str());
   1213   EXPECT_STREQ("L\"foo\"",
   1214                String::ShowWideCStringQuoted(L"foo").c_str());
   1215 }
   1216 
   1217 # if GTEST_OS_WINDOWS_MOBILE
   1218 TEST(StringTest, AnsiAndUtf16Null) {
   1219   EXPECT_EQ(NULL, String::AnsiToUtf16(NULL));
   1220   EXPECT_EQ(NULL, String::Utf16ToAnsi(NULL));
   1221 }
   1222 
   1223 TEST(StringTest, AnsiAndUtf16ConvertBasic) {
   1224   const char* ansi = String::Utf16ToAnsi(L"str");
   1225   EXPECT_STREQ("str", ansi);
   1226   delete [] ansi;
   1227   const WCHAR* utf16 = String::AnsiToUtf16("str");
   1228   EXPECT_EQ(0, wcsncmp(L"str", utf16, 3));
   1229   delete [] utf16;
   1230 }
   1231 
   1232 TEST(StringTest, AnsiAndUtf16ConvertPathChars) {
   1233   const char* ansi = String::Utf16ToAnsi(L".:\\ \"*?");
   1234   EXPECT_STREQ(".:\\ \"*?", ansi);
   1235   delete [] ansi;
   1236   const WCHAR* utf16 = String::AnsiToUtf16(".:\\ \"*?");
   1237   EXPECT_EQ(0, wcsncmp(L".:\\ \"*?", utf16, 3));
   1238   delete [] utf16;
   1239 }
   1240 # endif  // GTEST_OS_WINDOWS_MOBILE
   1241 
   1242 #endif  // GTEST_OS_WINDOWS
   1243 
   1244 // Tests TestProperty construction.
   1245 TEST(TestPropertyTest, StringValue) {
   1246   TestProperty property("key", "1");
   1247   EXPECT_STREQ("key", property.key());
   1248   EXPECT_STREQ("1", property.value());
   1249 }
   1250 
   1251 // Tests TestProperty replacing a value.
   1252 TEST(TestPropertyTest, ReplaceStringValue) {
   1253   TestProperty property("key", "1");
   1254   EXPECT_STREQ("1", property.value());
   1255   property.SetValue("2");
   1256   EXPECT_STREQ("2", property.value());
   1257 }
   1258 
   1259 // AddFatalFailure() and AddNonfatalFailure() must be stand-alone
   1260 // functions (i.e. their definitions cannot be inlined at the call
   1261 // sites), or C++Builder won't compile the code.
   1262 static void AddFatalFailure() {
   1263   FAIL() << "Expected fatal failure.";
   1264 }
   1265 
   1266 static void AddNonfatalFailure() {
   1267   ADD_FAILURE() << "Expected non-fatal failure.";
   1268 }
   1269 
   1270 class ScopedFakeTestPartResultReporterTest : public Test {
   1271  public:  // Must be public and not protected due to a bug in g++ 3.4.2.
   1272   enum FailureMode {
   1273     FATAL_FAILURE,
   1274     NONFATAL_FAILURE
   1275   };
   1276   static void AddFailure(FailureMode failure) {
   1277     if (failure == FATAL_FAILURE) {
   1278       AddFatalFailure();
   1279     } else {
   1280       AddNonfatalFailure();
   1281     }
   1282   }
   1283 };
   1284 
   1285 // Tests that ScopedFakeTestPartResultReporter intercepts test
   1286 // failures.
   1287 TEST_F(ScopedFakeTestPartResultReporterTest, InterceptsTestFailures) {
   1288   TestPartResultArray results;
   1289   {
   1290     ScopedFakeTestPartResultReporter reporter(
   1291         ScopedFakeTestPartResultReporter::INTERCEPT_ONLY_CURRENT_THREAD,
   1292         &results);
   1293     AddFailure(NONFATAL_FAILURE);
   1294     AddFailure(FATAL_FAILURE);
   1295   }
   1296 
   1297   EXPECT_EQ(2, results.size());
   1298   EXPECT_TRUE(results.GetTestPartResult(0).nonfatally_failed());
   1299   EXPECT_TRUE(results.GetTestPartResult(1).fatally_failed());
   1300 }
   1301 
   1302 TEST_F(ScopedFakeTestPartResultReporterTest, DeprecatedConstructor) {
   1303   TestPartResultArray results;
   1304   {
   1305     // Tests, that the deprecated constructor still works.
   1306     ScopedFakeTestPartResultReporter reporter(&results);
   1307     AddFailure(NONFATAL_FAILURE);
   1308   }
   1309   EXPECT_EQ(1, results.size());
   1310 }
   1311 
   1312 #if GTEST_IS_THREADSAFE
   1313 
   1314 class ScopedFakeTestPartResultReporterWithThreadsTest
   1315   : public ScopedFakeTestPartResultReporterTest {
   1316  protected:
   1317   static void AddFailureInOtherThread(FailureMode failure) {
   1318     ThreadWithParam<FailureMode> thread(&AddFailure, failure, NULL);
   1319     thread.Join();
   1320   }
   1321 };
   1322 
   1323 TEST_F(ScopedFakeTestPartResultReporterWithThreadsTest,
   1324        InterceptsTestFailuresInAllThreads) {
   1325   TestPartResultArray results;
   1326   {
   1327     ScopedFakeTestPartResultReporter reporter(
   1328         ScopedFakeTestPartResultReporter::INTERCEPT_ALL_THREADS, &results);
   1329     AddFailure(NONFATAL_FAILURE);
   1330     AddFailure(FATAL_FAILURE);
   1331     AddFailureInOtherThread(NONFATAL_FAILURE);
   1332     AddFailureInOtherThread(FATAL_FAILURE);
   1333   }
   1334 
   1335   EXPECT_EQ(4, results.size());
   1336   EXPECT_TRUE(results.GetTestPartResult(0).nonfatally_failed());
   1337   EXPECT_TRUE(results.GetTestPartResult(1).fatally_failed());
   1338   EXPECT_TRUE(results.GetTestPartResult(2).nonfatally_failed());
   1339   EXPECT_TRUE(results.GetTestPartResult(3).fatally_failed());
   1340 }
   1341 
   1342 #endif  // GTEST_IS_THREADSAFE
   1343 
   1344 // Tests EXPECT_FATAL_FAILURE{,ON_ALL_THREADS}.  Makes sure that they
   1345 // work even if the failure is generated in a called function rather than
   1346 // the current context.
   1347 
   1348 typedef ScopedFakeTestPartResultReporterTest ExpectFatalFailureTest;
   1349 
   1350 TEST_F(ExpectFatalFailureTest, CatchesFatalFaliure) {
   1351   EXPECT_FATAL_FAILURE(AddFatalFailure(), "Expected fatal failure.");
   1352 }
   1353 
   1354 #if GTEST_HAS_GLOBAL_STRING
   1355 TEST_F(ExpectFatalFailureTest, AcceptsStringObject) {
   1356   EXPECT_FATAL_FAILURE(AddFatalFailure(), ::string("Expected fatal failure."));
   1357 }
   1358 #endif
   1359 
   1360 TEST_F(ExpectFatalFailureTest, AcceptsStdStringObject) {
   1361   EXPECT_FATAL_FAILURE(AddFatalFailure(),
   1362                        ::std::string("Expected fatal failure."));
   1363 }
   1364 
   1365 TEST_F(ExpectFatalFailureTest, CatchesFatalFailureOnAllThreads) {
   1366   // We have another test below to verify that the macro catches fatal
   1367   // failures generated on another thread.
   1368   EXPECT_FATAL_FAILURE_ON_ALL_THREADS(AddFatalFailure(),
   1369                                       "Expected fatal failure.");
   1370 }
   1371 
   1372 #ifdef __BORLANDC__
   1373 // Silences warnings: "Condition is always true"
   1374 # pragma option push -w-ccc
   1375 #endif
   1376 
   1377 // Tests that EXPECT_FATAL_FAILURE() can be used in a non-void
   1378 // function even when the statement in it contains ASSERT_*.
   1379 
   1380 int NonVoidFunction() {
   1381   EXPECT_FATAL_FAILURE(ASSERT_TRUE(false), "");
   1382   EXPECT_FATAL_FAILURE_ON_ALL_THREADS(FAIL(), "");
   1383   return 0;
   1384 }
   1385 
   1386 TEST_F(ExpectFatalFailureTest, CanBeUsedInNonVoidFunction) {
   1387   NonVoidFunction();
   1388 }
   1389 
   1390 // Tests that EXPECT_FATAL_FAILURE(statement, ...) doesn't abort the
   1391 // current function even though 'statement' generates a fatal failure.
   1392 
   1393 void DoesNotAbortHelper(bool* aborted) {
   1394   EXPECT_FATAL_FAILURE(ASSERT_TRUE(false), "");
   1395   EXPECT_FATAL_FAILURE_ON_ALL_THREADS(FAIL(), "");
   1396 
   1397   *aborted = false;
   1398 }
   1399 
   1400 #ifdef __BORLANDC__
   1401 // Restores warnings after previous "#pragma option push" suppressed them.
   1402 # pragma option pop
   1403 #endif
   1404 
   1405 TEST_F(ExpectFatalFailureTest, DoesNotAbort) {
   1406   bool aborted = true;
   1407   DoesNotAbortHelper(&aborted);
   1408   EXPECT_FALSE(aborted);
   1409 }
   1410 
   1411 // Tests that the EXPECT_FATAL_FAILURE{,_ON_ALL_THREADS} accepts a
   1412 // statement that contains a macro which expands to code containing an
   1413 // unprotected comma.
   1414 
   1415 static int global_var = 0;
   1416 #define GTEST_USE_UNPROTECTED_COMMA_ global_var++, global_var++
   1417 
   1418 TEST_F(ExpectFatalFailureTest, AcceptsMacroThatExpandsToUnprotectedComma) {
   1419 #ifndef __BORLANDC__
   1420   // ICE's in C++Builder.
   1421   EXPECT_FATAL_FAILURE({
   1422     GTEST_USE_UNPROTECTED_COMMA_;
   1423     AddFatalFailure();
   1424   }, "");
   1425 #endif
   1426 
   1427   EXPECT_FATAL_FAILURE_ON_ALL_THREADS({
   1428     GTEST_USE_UNPROTECTED_COMMA_;
   1429     AddFatalFailure();
   1430   }, "");
   1431 }
   1432 
   1433 // Tests EXPECT_NONFATAL_FAILURE{,ON_ALL_THREADS}.
   1434 
   1435 typedef ScopedFakeTestPartResultReporterTest ExpectNonfatalFailureTest;
   1436 
   1437 TEST_F(ExpectNonfatalFailureTest, CatchesNonfatalFailure) {
   1438   EXPECT_NONFATAL_FAILURE(AddNonfatalFailure(),
   1439                           "Expected non-fatal failure.");
   1440 }
   1441 
   1442 #if GTEST_HAS_GLOBAL_STRING
   1443 TEST_F(ExpectNonfatalFailureTest, AcceptsStringObject) {
   1444   EXPECT_NONFATAL_FAILURE(AddNonfatalFailure(),
   1445                           ::string("Expected non-fatal failure."));
   1446 }
   1447 #endif
   1448 
   1449 TEST_F(ExpectNonfatalFailureTest, AcceptsStdStringObject) {
   1450   EXPECT_NONFATAL_FAILURE(AddNonfatalFailure(),
   1451                           ::std::string("Expected non-fatal failure."));
   1452 }
   1453 
   1454 TEST_F(ExpectNonfatalFailureTest, CatchesNonfatalFailureOnAllThreads) {
   1455   // We have another test below to verify that the macro catches
   1456   // non-fatal failures generated on another thread.
   1457   EXPECT_NONFATAL_FAILURE_ON_ALL_THREADS(AddNonfatalFailure(),
   1458                                          "Expected non-fatal failure.");
   1459 }
   1460 
   1461 // Tests that the EXPECT_NONFATAL_FAILURE{,_ON_ALL_THREADS} accepts a
   1462 // statement that contains a macro which expands to code containing an
   1463 // unprotected comma.
   1464 TEST_F(ExpectNonfatalFailureTest, AcceptsMacroThatExpandsToUnprotectedComma) {
   1465   EXPECT_NONFATAL_FAILURE({
   1466     GTEST_USE_UNPROTECTED_COMMA_;
   1467     AddNonfatalFailure();
   1468   }, "");
   1469 
   1470   EXPECT_NONFATAL_FAILURE_ON_ALL_THREADS({
   1471     GTEST_USE_UNPROTECTED_COMMA_;
   1472     AddNonfatalFailure();
   1473   }, "");
   1474 }
   1475 
   1476 #if GTEST_IS_THREADSAFE
   1477 
   1478 typedef ScopedFakeTestPartResultReporterWithThreadsTest
   1479     ExpectFailureWithThreadsTest;
   1480 
   1481 TEST_F(ExpectFailureWithThreadsTest, ExpectFatalFailureOnAllThreads) {
   1482   EXPECT_FATAL_FAILURE_ON_ALL_THREADS(AddFailureInOtherThread(FATAL_FAILURE),
   1483                                       "Expected fatal failure.");
   1484 }
   1485 
   1486 TEST_F(ExpectFailureWithThreadsTest, ExpectNonFatalFailureOnAllThreads) {
   1487   EXPECT_NONFATAL_FAILURE_ON_ALL_THREADS(
   1488       AddFailureInOtherThread(NONFATAL_FAILURE), "Expected non-fatal failure.");
   1489 }
   1490 
   1491 #endif  // GTEST_IS_THREADSAFE
   1492 
   1493 // Tests the TestProperty class.
   1494 
   1495 TEST(TestPropertyTest, ConstructorWorks) {
   1496   const TestProperty property("key", "value");
   1497   EXPECT_STREQ("key", property.key());
   1498   EXPECT_STREQ("value", property.value());
   1499 }
   1500 
   1501 TEST(TestPropertyTest, SetValue) {
   1502   TestProperty property("key", "value_1");
   1503   EXPECT_STREQ("key", property.key());
   1504   property.SetValue("value_2");
   1505   EXPECT_STREQ("key", property.key());
   1506   EXPECT_STREQ("value_2", property.value());
   1507 }
   1508 
   1509 // Tests the TestResult class
   1510 
   1511 // The test fixture for testing TestResult.
   1512 class TestResultTest : public Test {
   1513  protected:
   1514   typedef std::vector<TestPartResult> TPRVector;
   1515 
   1516   // We make use of 2 TestPartResult objects,
   1517   TestPartResult * pr1, * pr2;
   1518 
   1519   // ... and 3 TestResult objects.
   1520   TestResult * r0, * r1, * r2;
   1521 
   1522   virtual void SetUp() {
   1523     // pr1 is for success.
   1524     pr1 = new TestPartResult(TestPartResult::kSuccess,
   1525                              "foo/bar.cc",
   1526                              10,
   1527                              "Success!");
   1528 
   1529     // pr2 is for fatal failure.
   1530     pr2 = new TestPartResult(TestPartResult::kFatalFailure,
   1531                              "foo/bar.cc",
   1532                              -1,  // This line number means "unknown"
   1533                              "Failure!");
   1534 
   1535     // Creates the TestResult objects.
   1536     r0 = new TestResult();
   1537     r1 = new TestResult();
   1538     r2 = new TestResult();
   1539 
   1540     // In order to test TestResult, we need to modify its internal
   1541     // state, in particular the TestPartResult vector it holds.
   1542     // test_part_results() returns a const reference to this vector.
   1543     // We cast it to a non-const object s.t. it can be modified (yes,
   1544     // this is a hack).
   1545     TPRVector* results1 = const_cast<TPRVector*>(
   1546         &TestResultAccessor::test_part_results(*r1));
   1547     TPRVector* results2 = const_cast<TPRVector*>(
   1548         &TestResultAccessor::test_part_results(*r2));
   1549 
   1550     // r0 is an empty TestResult.
   1551 
   1552     // r1 contains a single SUCCESS TestPartResult.
   1553     results1->push_back(*pr1);
   1554 
   1555     // r2 contains a SUCCESS, and a FAILURE.
   1556     results2->push_back(*pr1);
   1557     results2->push_back(*pr2);
   1558   }
   1559 
   1560   virtual void TearDown() {
   1561     delete pr1;
   1562     delete pr2;
   1563 
   1564     delete r0;
   1565     delete r1;
   1566     delete r2;
   1567   }
   1568 
   1569   // Helper that compares two two TestPartResults.
   1570   static void CompareTestPartResult(const TestPartResult& expected,
   1571                                     const TestPartResult& actual) {
   1572     EXPECT_EQ(expected.type(), actual.type());
   1573     EXPECT_STREQ(expected.file_name(), actual.file_name());
   1574     EXPECT_EQ(expected.line_number(), actual.line_number());
   1575     EXPECT_STREQ(expected.summary(), actual.summary());
   1576     EXPECT_STREQ(expected.message(), actual.message());
   1577     EXPECT_EQ(expected.passed(), actual.passed());
   1578     EXPECT_EQ(expected.failed(), actual.failed());
   1579     EXPECT_EQ(expected.nonfatally_failed(), actual.nonfatally_failed());
   1580     EXPECT_EQ(expected.fatally_failed(), actual.fatally_failed());
   1581   }
   1582 };
   1583 
   1584 // Tests TestResult::total_part_count().
   1585 TEST_F(TestResultTest, total_part_count) {
   1586   ASSERT_EQ(0, r0->total_part_count());
   1587   ASSERT_EQ(1, r1->total_part_count());
   1588   ASSERT_EQ(2, r2->total_part_count());
   1589 }
   1590 
   1591 // Tests TestResult::Passed().
   1592 TEST_F(TestResultTest, Passed) {
   1593   ASSERT_TRUE(r0->Passed());
   1594   ASSERT_TRUE(r1->Passed());
   1595   ASSERT_FALSE(r2->Passed());
   1596 }
   1597 
   1598 // Tests TestResult::Failed().
   1599 TEST_F(TestResultTest, Failed) {
   1600   ASSERT_FALSE(r0->Failed());
   1601   ASSERT_FALSE(r1->Failed());
   1602   ASSERT_TRUE(r2->Failed());
   1603 }
   1604 
   1605 // Tests TestResult::GetTestPartResult().
   1606 
   1607 typedef TestResultTest TestResultDeathTest;
   1608 
   1609 TEST_F(TestResultDeathTest, GetTestPartResult) {
   1610   CompareTestPartResult(*pr1, r2->GetTestPartResult(0));
   1611   CompareTestPartResult(*pr2, r2->GetTestPartResult(1));
   1612   EXPECT_DEATH_IF_SUPPORTED(r2->GetTestPartResult(2), "");
   1613   EXPECT_DEATH_IF_SUPPORTED(r2->GetTestPartResult(-1), "");
   1614 }
   1615 
   1616 // Tests TestResult has no properties when none are added.
   1617 TEST(TestResultPropertyTest, NoPropertiesFoundWhenNoneAreAdded) {
   1618   TestResult test_result;
   1619   ASSERT_EQ(0, test_result.test_property_count());
   1620 }
   1621 
   1622 // Tests TestResult has the expected property when added.
   1623 TEST(TestResultPropertyTest, OnePropertyFoundWhenAdded) {
   1624   TestResult test_result;
   1625   TestProperty property("key_1", "1");
   1626   TestResultAccessor::RecordProperty(&test_result, property);
   1627   ASSERT_EQ(1, test_result.test_property_count());
   1628   const TestProperty& actual_property = test_result.GetTestProperty(0);
   1629   EXPECT_STREQ("key_1", actual_property.key());
   1630   EXPECT_STREQ("1", actual_property.value());
   1631 }
   1632 
   1633 // Tests TestResult has multiple properties when added.
   1634 TEST(TestResultPropertyTest, MultiplePropertiesFoundWhenAdded) {
   1635   TestResult test_result;
   1636   TestProperty property_1("key_1", "1");
   1637   TestProperty property_2("key_2", "2");
   1638   TestResultAccessor::RecordProperty(&test_result, property_1);
   1639   TestResultAccessor::RecordProperty(&test_result, property_2);
   1640   ASSERT_EQ(2, test_result.test_property_count());
   1641   const TestProperty& actual_property_1 = test_result.GetTestProperty(0);
   1642   EXPECT_STREQ("key_1", actual_property_1.key());
   1643   EXPECT_STREQ("1", actual_property_1.value());
   1644 
   1645   const TestProperty& actual_property_2 = test_result.GetTestProperty(1);
   1646   EXPECT_STREQ("key_2", actual_property_2.key());
   1647   EXPECT_STREQ("2", actual_property_2.value());
   1648 }
   1649 
   1650 // Tests TestResult::RecordProperty() overrides values for duplicate keys.
   1651 TEST(TestResultPropertyTest, OverridesValuesForDuplicateKeys) {
   1652   TestResult test_result;
   1653   TestProperty property_1_1("key_1", "1");
   1654   TestProperty property_2_1("key_2", "2");
   1655   TestProperty property_1_2("key_1", "12");
   1656   TestProperty property_2_2("key_2", "22");
   1657   TestResultAccessor::RecordProperty(&test_result, property_1_1);
   1658   TestResultAccessor::RecordProperty(&test_result, property_2_1);
   1659   TestResultAccessor::RecordProperty(&test_result, property_1_2);
   1660   TestResultAccessor::RecordProperty(&test_result, property_2_2);
   1661 
   1662   ASSERT_EQ(2, test_result.test_property_count());
   1663   const TestProperty& actual_property_1 = test_result.GetTestProperty(0);
   1664   EXPECT_STREQ("key_1", actual_property_1.key());
   1665   EXPECT_STREQ("12", actual_property_1.value());
   1666 
   1667   const TestProperty& actual_property_2 = test_result.GetTestProperty(1);
   1668   EXPECT_STREQ("key_2", actual_property_2.key());
   1669   EXPECT_STREQ("22", actual_property_2.value());
   1670 }
   1671 
   1672 // Tests TestResult::GetTestProperty().
   1673 TEST(TestResultPropertyDeathTest, GetTestProperty) {
   1674   TestResult test_result;
   1675   TestProperty property_1("key_1", "1");
   1676   TestProperty property_2("key_2", "2");
   1677   TestProperty property_3("key_3", "3");
   1678   TestResultAccessor::RecordProperty(&test_result, property_1);
   1679   TestResultAccessor::RecordProperty(&test_result, property_2);
   1680   TestResultAccessor::RecordProperty(&test_result, property_3);
   1681 
   1682   const TestProperty& fetched_property_1 = test_result.GetTestProperty(0);
   1683   const TestProperty& fetched_property_2 = test_result.GetTestProperty(1);
   1684   const TestProperty& fetched_property_3 = test_result.GetTestProperty(2);
   1685 
   1686   EXPECT_STREQ("key_1", fetched_property_1.key());
   1687   EXPECT_STREQ("1", fetched_property_1.value());
   1688 
   1689   EXPECT_STREQ("key_2", fetched_property_2.key());
   1690   EXPECT_STREQ("2", fetched_property_2.value());
   1691 
   1692   EXPECT_STREQ("key_3", fetched_property_3.key());
   1693   EXPECT_STREQ("3", fetched_property_3.value());
   1694 
   1695   EXPECT_DEATH_IF_SUPPORTED(test_result.GetTestProperty(3), "");
   1696   EXPECT_DEATH_IF_SUPPORTED(test_result.GetTestProperty(-1), "");
   1697 }
   1698 
   1699 // When a property using a reserved key is supplied to this function, it tests
   1700 // that a non-fatal failure is added, a fatal failure is not added, and that the
   1701 // property is not recorded.
   1702 void ExpectNonFatalFailureRecordingPropertyWithReservedKey(const char* key) {
   1703   TestResult test_result;
   1704   TestProperty property(key, "1");
   1705   EXPECT_NONFATAL_FAILURE(
   1706       TestResultAccessor::RecordProperty(&test_result, property),
   1707       "Reserved key");
   1708   ASSERT_EQ(0, test_result.test_property_count()) << "Not recorded";
   1709 }
   1710 
   1711 // Attempting to recording a property with the Reserved literal "name"
   1712 // should add a non-fatal failure and the property should not be recorded.
   1713 TEST(TestResultPropertyTest, AddFailureWhenUsingReservedKeyCalledName) {
   1714   ExpectNonFatalFailureRecordingPropertyWithReservedKey("name");
   1715 }
   1716 
   1717 // Attempting to recording a property with the Reserved literal "status"
   1718 // should add a non-fatal failure and the property should not be recorded.
   1719 TEST(TestResultPropertyTest, AddFailureWhenUsingReservedKeyCalledStatus) {
   1720   ExpectNonFatalFailureRecordingPropertyWithReservedKey("status");
   1721 }
   1722 
   1723 // Attempting to recording a property with the Reserved literal "time"
   1724 // should add a non-fatal failure and the property should not be recorded.
   1725 TEST(TestResultPropertyTest, AddFailureWhenUsingReservedKeyCalledTime) {
   1726   ExpectNonFatalFailureRecordingPropertyWithReservedKey("time");
   1727 }
   1728 
   1729 // Attempting to recording a property with the Reserved literal "classname"
   1730 // should add a non-fatal failure and the property should not be recorded.
   1731 TEST(TestResultPropertyTest, AddFailureWhenUsingReservedKeyCalledClassname) {
   1732   ExpectNonFatalFailureRecordingPropertyWithReservedKey("classname");
   1733 }
   1734 
   1735 // Tests that GTestFlagSaver works on Windows and Mac.
   1736 
   1737 class GTestFlagSaverTest : public Test {
   1738  protected:
   1739   // Saves the Google Test flags such that we can restore them later, and
   1740   // then sets them to their default values.  This will be called
   1741   // before the first test in this test case is run.
   1742   static void SetUpTestCase() {
   1743     saver_ = new GTestFlagSaver;
   1744 
   1745     GTEST_FLAG(also_run_disabled_tests) = false;
   1746     GTEST_FLAG(break_on_failure) = false;
   1747     GTEST_FLAG(catch_exceptions) = false;
   1748     GTEST_FLAG(death_test_use_fork) = false;
   1749     GTEST_FLAG(color) = "auto";
   1750     GTEST_FLAG(filter) = "";
   1751     GTEST_FLAG(list_tests) = false;
   1752     GTEST_FLAG(output) = "";
   1753     GTEST_FLAG(print_time) = true;
   1754     GTEST_FLAG(random_seed) = 0;
   1755     GTEST_FLAG(repeat) = 1;
   1756     GTEST_FLAG(shuffle) = false;
   1757     GTEST_FLAG(stack_trace_depth) = kMaxStackTraceDepth;
   1758     GTEST_FLAG(stream_result_to) = "";
   1759     GTEST_FLAG(throw_on_failure) = false;
   1760   }
   1761 
   1762   // Restores the Google Test flags that the tests have modified.  This will
   1763   // be called after the last test in this test case is run.
   1764   static void TearDownTestCase() {
   1765     delete saver_;
   1766     saver_ = NULL;
   1767   }
   1768 
   1769   // Verifies that the Google Test flags have their default values, and then
   1770   // modifies each of them.
   1771   void VerifyAndModifyFlags() {
   1772     EXPECT_FALSE(GTEST_FLAG(also_run_disabled_tests));
   1773     EXPECT_FALSE(GTEST_FLAG(break_on_failure));
   1774     EXPECT_FALSE(GTEST_FLAG(catch_exceptions));
   1775     EXPECT_STREQ("auto", GTEST_FLAG(color).c_str());
   1776     EXPECT_FALSE(GTEST_FLAG(death_test_use_fork));
   1777     EXPECT_STREQ("", GTEST_FLAG(filter).c_str());
   1778     EXPECT_FALSE(GTEST_FLAG(list_tests));
   1779     EXPECT_STREQ("", GTEST_FLAG(output).c_str());
   1780     EXPECT_TRUE(GTEST_FLAG(print_time));
   1781     EXPECT_EQ(0, GTEST_FLAG(random_seed));
   1782     EXPECT_EQ(1, GTEST_FLAG(repeat));
   1783     EXPECT_FALSE(GTEST_FLAG(shuffle));
   1784     EXPECT_EQ(kMaxStackTraceDepth, GTEST_FLAG(stack_trace_depth));
   1785     EXPECT_STREQ("", GTEST_FLAG(stream_result_to).c_str());
   1786     EXPECT_FALSE(GTEST_FLAG(throw_on_failure));
   1787 
   1788     GTEST_FLAG(also_run_disabled_tests) = true;
   1789     GTEST_FLAG(break_on_failure) = true;
   1790     GTEST_FLAG(catch_exceptions) = true;
   1791     GTEST_FLAG(color) = "no";
   1792     GTEST_FLAG(death_test_use_fork) = true;
   1793     GTEST_FLAG(filter) = "abc";
   1794     GTEST_FLAG(list_tests) = true;
   1795     GTEST_FLAG(output) = "xml:foo.xml";
   1796     GTEST_FLAG(print_time) = false;
   1797     GTEST_FLAG(random_seed) = 1;
   1798     GTEST_FLAG(repeat) = 100;
   1799     GTEST_FLAG(shuffle) = true;
   1800     GTEST_FLAG(stack_trace_depth) = 1;
   1801     GTEST_FLAG(stream_result_to) = "localhost:1234";
   1802     GTEST_FLAG(throw_on_failure) = true;
   1803   }
   1804  private:
   1805   // For saving Google Test flags during this test case.
   1806   static GTestFlagSaver* saver_;
   1807 };
   1808 
   1809 GTestFlagSaver* GTestFlagSaverTest::saver_ = NULL;
   1810 
   1811 // Google Test doesn't guarantee the order of tests.  The following two
   1812 // tests are designed to work regardless of their order.
   1813 
   1814 // Modifies the Google Test flags in the test body.
   1815 TEST_F(GTestFlagSaverTest, ModifyGTestFlags) {
   1816   VerifyAndModifyFlags();
   1817 }
   1818 
   1819 // Verifies that the Google Test flags in the body of the previous test were
   1820 // restored to their original values.
   1821 TEST_F(GTestFlagSaverTest, VerifyGTestFlags) {
   1822   VerifyAndModifyFlags();
   1823 }
   1824 
   1825 // Sets an environment variable with the given name to the given
   1826 // value.  If the value argument is "", unsets the environment
   1827 // variable.  The caller must ensure that both arguments are not NULL.
   1828 static void SetEnv(const char* name, const char* value) {
   1829 #if GTEST_OS_WINDOWS_MOBILE
   1830   // Environment variables are not supported on Windows CE.
   1831   return;
   1832 #elif defined(__BORLANDC__) || defined(__SunOS_5_8) || defined(__SunOS_5_9)
   1833   // C++Builder's putenv only stores a pointer to its parameter; we have to
   1834   // ensure that the string remains valid as long as it might be needed.
   1835   // We use an std::map to do so.
   1836   static std::map<String, String*> added_env;
   1837 
   1838   // Because putenv stores a pointer to the string buffer, we can't delete the
   1839   // previous string (if present) until after it's replaced.
   1840   String *prev_env = NULL;
   1841   if (added_env.find(name) != added_env.end()) {
   1842     prev_env = added_env[name];
   1843   }
   1844   added_env[name] = new String((Message() << name << "=" << value).GetString());
   1845 
   1846   // The standard signature of putenv accepts a 'char*' argument. Other
   1847   // implementations, like C++Builder's, accept a 'const char*'.
   1848   // We cast away the 'const' since that would work for both variants.
   1849   putenv(const_cast<char*>(added_env[name]->c_str()));
   1850   delete prev_env;
   1851 #elif GTEST_OS_WINDOWS  // If we are on Windows proper.
   1852   _putenv((Message() << name << "=" << value).GetString().c_str());
   1853 #else
   1854   if (*value == '\0') {
   1855     unsetenv(name);
   1856   } else {
   1857     setenv(name, value, 1);
   1858   }
   1859 #endif  // GTEST_OS_WINDOWS_MOBILE
   1860 }
   1861 
   1862 #if !GTEST_OS_WINDOWS_MOBILE
   1863 // Environment variables are not supported on Windows CE.
   1864 
   1865 using testing::internal::Int32FromGTestEnv;
   1866 
   1867 // Tests Int32FromGTestEnv().
   1868 
   1869 // Tests that Int32FromGTestEnv() returns the default value when the
   1870 // environment variable is not set.
   1871 TEST(Int32FromGTestEnvTest, ReturnsDefaultWhenVariableIsNotSet) {
   1872   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "");
   1873   EXPECT_EQ(10, Int32FromGTestEnv("temp", 10));
   1874 }
   1875 
   1876 // Tests that Int32FromGTestEnv() returns the default value when the
   1877 // environment variable overflows as an Int32.
   1878 TEST(Int32FromGTestEnvTest, ReturnsDefaultWhenValueOverflows) {
   1879   printf("(expecting 2 warnings)\n");
   1880 
   1881   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "12345678987654321");
   1882   EXPECT_EQ(20, Int32FromGTestEnv("temp", 20));
   1883 
   1884   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "-12345678987654321");
   1885   EXPECT_EQ(30, Int32FromGTestEnv("temp", 30));
   1886 }
   1887 
   1888 // Tests that Int32FromGTestEnv() returns the default value when the
   1889 // environment variable does not represent a valid decimal integer.
   1890 TEST(Int32FromGTestEnvTest, ReturnsDefaultWhenValueIsInvalid) {
   1891   printf("(expecting 2 warnings)\n");
   1892 
   1893   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "A1");
   1894   EXPECT_EQ(40, Int32FromGTestEnv("temp", 40));
   1895 
   1896   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "12X");
   1897   EXPECT_EQ(50, Int32FromGTestEnv("temp", 50));
   1898 }
   1899 
   1900 // Tests that Int32FromGTestEnv() parses and returns the value of the
   1901 // environment variable when it represents a valid decimal integer in
   1902 // the range of an Int32.
   1903 TEST(Int32FromGTestEnvTest, ParsesAndReturnsValidValue) {
   1904   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "123");
   1905   EXPECT_EQ(123, Int32FromGTestEnv("temp", 0));
   1906 
   1907   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "-321");
   1908   EXPECT_EQ(-321, Int32FromGTestEnv("temp", 0));
   1909 }
   1910 #endif  // !GTEST_OS_WINDOWS_MOBILE
   1911 
   1912 // Tests ParseInt32Flag().
   1913 
   1914 // Tests that ParseInt32Flag() returns false and doesn't change the
   1915 // output value when the flag has wrong format
   1916 TEST(ParseInt32FlagTest, ReturnsFalseForInvalidFlag) {
   1917   Int32 value = 123;
   1918   EXPECT_FALSE(ParseInt32Flag("--a=100", "b", &value));
   1919   EXPECT_EQ(123, value);
   1920 
   1921   EXPECT_FALSE(ParseInt32Flag("a=100", "a", &value));
   1922   EXPECT_EQ(123, value);
   1923 }
   1924 
   1925 // Tests that ParseInt32Flag() returns false and doesn't change the
   1926 // output value when the flag overflows as an Int32.
   1927 TEST(ParseInt32FlagTest, ReturnsDefaultWhenValueOverflows) {
   1928   printf("(expecting 2 warnings)\n");
   1929 
   1930   Int32 value = 123;
   1931   EXPECT_FALSE(ParseInt32Flag("--abc=12345678987654321", "abc", &value));
   1932   EXPECT_EQ(123, value);
   1933 
   1934   EXPECT_FALSE(ParseInt32Flag("--abc=-12345678987654321", "abc", &value));
   1935   EXPECT_EQ(123, value);
   1936 }
   1937 
   1938 // Tests that ParseInt32Flag() returns false and doesn't change the
   1939 // output value when the flag does not represent a valid decimal
   1940 // integer.
   1941 TEST(ParseInt32FlagTest, ReturnsDefaultWhenValueIsInvalid) {
   1942   printf("(expecting 2 warnings)\n");
   1943 
   1944   Int32 value = 123;
   1945   EXPECT_FALSE(ParseInt32Flag("--abc=A1", "abc", &value));
   1946   EXPECT_EQ(123, value);
   1947 
   1948   EXPECT_FALSE(ParseInt32Flag("--abc=12X", "abc", &value));
   1949   EXPECT_EQ(123, value);
   1950 }
   1951 
   1952 // Tests that ParseInt32Flag() parses the value of the flag and
   1953 // returns true when the flag represents a valid decimal integer in
   1954 // the range of an Int32.
   1955 TEST(ParseInt32FlagTest, ParsesAndReturnsValidValue) {
   1956   Int32 value = 123;
   1957   EXPECT_TRUE(ParseInt32Flag("--" GTEST_FLAG_PREFIX_ "abc=456", "abc", &value));
   1958   EXPECT_EQ(456, value);
   1959 
   1960   EXPECT_TRUE(ParseInt32Flag("--" GTEST_FLAG_PREFIX_ "abc=-789",
   1961                              "abc", &value));
   1962   EXPECT_EQ(-789, value);
   1963 }
   1964 
   1965 // Tests that Int32FromEnvOrDie() parses the value of the var or
   1966 // returns the correct default.
   1967 // Environment variables are not supported on Windows CE.
   1968 #if !GTEST_OS_WINDOWS_MOBILE
   1969 TEST(Int32FromEnvOrDieTest, ParsesAndReturnsValidValue) {
   1970   EXPECT_EQ(333, Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", 333));
   1971   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", "123");
   1972   EXPECT_EQ(123, Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", 333));
   1973   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", "-123");
   1974   EXPECT_EQ(-123, Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", 333));
   1975 }
   1976 #endif  // !GTEST_OS_WINDOWS_MOBILE
   1977 
   1978 // Tests that Int32FromEnvOrDie() aborts with an error message
   1979 // if the variable is not an Int32.
   1980 TEST(Int32FromEnvOrDieDeathTest, AbortsOnFailure) {
   1981   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "VAR", "xxx");
   1982   EXPECT_DEATH_IF_SUPPORTED(
   1983       Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "VAR", 123),
   1984       ".*");
   1985 }
   1986 
   1987 // Tests that Int32FromEnvOrDie() aborts with an error message
   1988 // if the variable cannot be represnted by an Int32.
   1989 TEST(Int32FromEnvOrDieDeathTest, AbortsOnInt32Overflow) {
   1990   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "VAR", "1234567891234567891234");
   1991   EXPECT_DEATH_IF_SUPPORTED(
   1992       Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "VAR", 123),
   1993       ".*");
   1994 }
   1995 
   1996 // Tests that ShouldRunTestOnShard() selects all tests
   1997 // where there is 1 shard.
   1998 TEST(ShouldRunTestOnShardTest, IsPartitionWhenThereIsOneShard) {
   1999   EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 0));
   2000   EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 1));
   2001   EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 2));
   2002   EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 3));
   2003   EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 4));
   2004 }
   2005 
   2006 class ShouldShardTest : public testing::Test {
   2007  protected:
   2008   virtual void SetUp() {
   2009     index_var_ = GTEST_FLAG_PREFIX_UPPER_ "INDEX";
   2010     total_var_ = GTEST_FLAG_PREFIX_UPPER_ "TOTAL";
   2011   }
   2012 
   2013   virtual void TearDown() {
   2014     SetEnv(index_var_, "");
   2015     SetEnv(total_var_, "");
   2016   }
   2017 
   2018   const char* index_var_;
   2019   const char* total_var_;
   2020 };
   2021 
   2022 // Tests that sharding is disabled if neither of the environment variables
   2023 // are set.
   2024 TEST_F(ShouldShardTest, ReturnsFalseWhenNeitherEnvVarIsSet) {
   2025   SetEnv(index_var_, "");
   2026   SetEnv(total_var_, "");
   2027 
   2028   EXPECT_FALSE(ShouldShard(total_var_, index_var_, false));
   2029   EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
   2030 }
   2031 
   2032 // Tests that sharding is not enabled if total_shards  == 1.
   2033 TEST_F(ShouldShardTest, ReturnsFalseWhenTotalShardIsOne) {
   2034   SetEnv(index_var_, "0");
   2035   SetEnv(total_var_, "1");
   2036   EXPECT_FALSE(ShouldShard(total_var_, index_var_, false));
   2037   EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
   2038 }
   2039 
   2040 // Tests that sharding is enabled if total_shards > 1 and
   2041 // we are not in a death test subprocess.
   2042 // Environment variables are not supported on Windows CE.
   2043 #if !GTEST_OS_WINDOWS_MOBILE
   2044 TEST_F(ShouldShardTest, WorksWhenShardEnvVarsAreValid) {
   2045   SetEnv(index_var_, "4");
   2046   SetEnv(total_var_, "22");
   2047   EXPECT_TRUE(ShouldShard(total_var_, index_var_, false));
   2048   EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
   2049 
   2050   SetEnv(index_var_, "8");
   2051   SetEnv(total_var_, "9");
   2052   EXPECT_TRUE(ShouldShard(total_var_, index_var_, false));
   2053   EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
   2054 
   2055   SetEnv(index_var_, "0");
   2056   SetEnv(total_var_, "9");
   2057   EXPECT_TRUE(ShouldShard(total_var_, index_var_, false));
   2058   EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
   2059 }
   2060 #endif  // !GTEST_OS_WINDOWS_MOBILE
   2061 
   2062 // Tests that we exit in error if the sharding values are not valid.
   2063 
   2064 typedef ShouldShardTest ShouldShardDeathTest;
   2065 
   2066 TEST_F(ShouldShardDeathTest, AbortsWhenShardingEnvVarsAreInvalid) {
   2067   SetEnv(index_var_, "4");
   2068   SetEnv(total_var_, "4");
   2069   EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*");
   2070 
   2071   SetEnv(index_var_, "4");
   2072   SetEnv(total_var_, "-2");
   2073   EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*");
   2074 
   2075   SetEnv(index_var_, "5");
   2076   SetEnv(total_var_, "");
   2077   EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*");
   2078 
   2079   SetEnv(index_var_, "");
   2080   SetEnv(total_var_, "5");
   2081   EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*");
   2082 }
   2083 
   2084 // Tests that ShouldRunTestOnShard is a partition when 5
   2085 // shards are used.
   2086 TEST(ShouldRunTestOnShardTest, IsPartitionWhenThereAreFiveShards) {
   2087   // Choose an arbitrary number of tests and shards.
   2088   const int num_tests = 17;
   2089   const int num_shards = 5;
   2090 
   2091   // Check partitioning: each test should be on exactly 1 shard.
   2092   for (int test_id = 0; test_id < num_tests; test_id++) {
   2093     int prev_selected_shard_index = -1;
   2094     for (int shard_index = 0; shard_index < num_shards; shard_index++) {
   2095       if (ShouldRunTestOnShard(num_shards, shard_index, test_id)) {
   2096         if (prev_selected_shard_index < 0) {
   2097           prev_selected_shard_index = shard_index;
   2098         } else {
   2099           ADD_FAILURE() << "Shard " << prev_selected_shard_index << " and "
   2100             << shard_index << " are both selected to run test " << test_id;
   2101         }
   2102       }
   2103     }
   2104   }
   2105 
   2106   // Check balance: This is not required by the sharding protocol, but is a
   2107   // desirable property for performance.
   2108   for (int shard_index = 0; shard_index < num_shards; shard_index++) {
   2109     int num_tests_on_shard = 0;
   2110     for (int test_id = 0; test_id < num_tests; test_id++) {
   2111       num_tests_on_shard +=
   2112         ShouldRunTestOnShard(num_shards, shard_index, test_id);
   2113     }
   2114     EXPECT_GE(num_tests_on_shard, num_tests / num_shards);
   2115   }
   2116 }
   2117 
   2118 // For the same reason we are not explicitly testing everything in the
   2119 // Test class, there are no separate tests for the following classes
   2120 // (except for some trivial cases):
   2121 //
   2122 //   TestCase, UnitTest, UnitTestResultPrinter.
   2123 //
   2124 // Similarly, there are no separate tests for the following macros:
   2125 //
   2126 //   TEST, TEST_F, RUN_ALL_TESTS
   2127 
   2128 TEST(UnitTestTest, CanGetOriginalWorkingDir) {
   2129   ASSERT_TRUE(UnitTest::GetInstance()->original_working_dir() != NULL);
   2130   EXPECT_STRNE(UnitTest::GetInstance()->original_working_dir(), "");
   2131 }
   2132 
   2133 // This group of tests is for predicate assertions (ASSERT_PRED*, etc)
   2134 // of various arities.  They do not attempt to be exhaustive.  Rather,
   2135 // view them as smoke tests that can be easily reviewed and verified.
   2136 // A more complete set of tests for predicate assertions can be found
   2137 // in gtest_pred_impl_unittest.cc.
   2138 
   2139 // First, some predicates and predicate-formatters needed by the tests.
   2140 
   2141 // Returns true iff the argument is an even number.
   2142 bool IsEven(int n) {
   2143   return (n % 2) == 0;
   2144 }
   2145 
   2146 // A functor that returns true iff the argument is an even number.
   2147 struct IsEvenFunctor {
   2148   bool operator()(int n) { return IsEven(n); }
   2149 };
   2150 
   2151 // A predicate-formatter function that asserts the argument is an even
   2152 // number.
   2153 AssertionResult AssertIsEven(const char* expr, int n) {
   2154   if (IsEven(n)) {
   2155     return AssertionSuccess();
   2156   }
   2157 
   2158   Message msg;
   2159   msg << expr << " evaluates to " << n << ", which is not even.";
   2160   return AssertionFailure(msg);
   2161 }
   2162 
   2163 // A predicate function that returns AssertionResult for use in
   2164 // EXPECT/ASSERT_TRUE/FALSE.
   2165 AssertionResult ResultIsEven(int n) {
   2166   if (IsEven(n))
   2167     return AssertionSuccess() << n << " is even";
   2168   else
   2169     return AssertionFailure() << n << " is odd";
   2170 }
   2171 
   2172 // A predicate function that returns AssertionResult but gives no
   2173 // explanation why it succeeds. Needed for testing that
   2174 // EXPECT/ASSERT_FALSE handles such functions correctly.
   2175 AssertionResult ResultIsEvenNoExplanation(int n) {
   2176   if (IsEven(n))
   2177     return AssertionSuccess();
   2178   else
   2179     return AssertionFailure() << n << " is odd";
   2180 }
   2181 
   2182 // A predicate-formatter functor that asserts the argument is an even
   2183 // number.
   2184 struct AssertIsEvenFunctor {
   2185   AssertionResult operator()(const char* expr, int n) {
   2186     return AssertIsEven(expr, n);
   2187   }
   2188 };
   2189 
   2190 // Returns true iff the sum of the arguments is an even number.
   2191 bool SumIsEven2(int n1, int n2) {
   2192   return IsEven(n1 + n2);
   2193 }
   2194 
   2195 // A functor that returns true iff the sum of the arguments is an even
   2196 // number.
   2197 struct SumIsEven3Functor {
   2198   bool operator()(int n1, int n2, int n3) {
   2199     return IsEven(n1 + n2 + n3);
   2200   }
   2201 };
   2202 
   2203 // A predicate-formatter function that asserts the sum of the
   2204 // arguments is an even number.
   2205 AssertionResult AssertSumIsEven4(
   2206     const char* e1, const char* e2, const char* e3, const char* e4,
   2207     int n1, int n2, int n3, int n4) {
   2208   const int sum = n1 + n2 + n3 + n4;
   2209   if (IsEven(sum)) {
   2210     return AssertionSuccess();
   2211   }
   2212 
   2213   Message msg;
   2214   msg << e1 << " + " << e2 << " + " << e3 << " + " << e4
   2215       << " (" << n1 << " + " << n2 << " + " << n3 << " + " << n4
   2216       << ") evaluates to " << sum << ", which is not even.";
   2217   return AssertionFailure(msg);
   2218 }
   2219 
   2220 // A predicate-formatter functor that asserts the sum of the arguments
   2221 // is an even number.
   2222 struct AssertSumIsEven5Functor {
   2223   AssertionResult operator()(
   2224       const char* e1, const char* e2, const char* e3, const char* e4,
   2225       const char* e5, int n1, int n2, int n3, int n4, int n5) {
   2226     const int sum = n1 + n2 + n3 + n4 + n5;
   2227     if (IsEven(sum)) {
   2228       return AssertionSuccess();
   2229     }
   2230 
   2231     Message msg;
   2232     msg << e1 << " + " << e2 << " + " << e3 << " + " << e4 << " + " << e5
   2233         << " ("
   2234         << n1 << " + " << n2 << " + " << n3 << " + " << n4 << " + " << n5
   2235         << ") evaluates to " << sum << ", which is not even.";
   2236     return AssertionFailure(msg);
   2237   }
   2238 };
   2239 
   2240 
   2241 // Tests unary predicate assertions.
   2242 
   2243 // Tests unary predicate assertions that don't use a custom formatter.
   2244 TEST(Pred1Test, WithoutFormat) {
   2245   // Success cases.
   2246   EXPECT_PRED1(IsEvenFunctor(), 2) << "This failure is UNEXPECTED!";
   2247   ASSERT_PRED1(IsEven, 4);
   2248 
   2249   // Failure cases.
   2250   EXPECT_NONFATAL_FAILURE({  // NOLINT
   2251     EXPECT_PRED1(IsEven, 5) << "This failure is expected.";
   2252   }, "This failure is expected.");
   2253   EXPECT_FATAL_FAILURE(ASSERT_PRED1(IsEvenFunctor(), 5),
   2254                        "evaluates to false");
   2255 }
   2256 
   2257 // Tests unary predicate assertions that use a custom formatter.
   2258 TEST(Pred1Test, WithFormat) {
   2259   // Success cases.
   2260   EXPECT_PRED_FORMAT1(AssertIsEven, 2);
   2261   ASSERT_PRED_FORMAT1(AssertIsEvenFunctor(), 4)
   2262     << "This failure is UNEXPECTED!";
   2263 
   2264   // Failure cases.
   2265   const int n = 5;
   2266   EXPECT_NONFATAL_FAILURE(EXPECT_PRED_FORMAT1(AssertIsEvenFunctor(), n),
   2267                           "n evaluates to 5, which is not even.");
   2268   EXPECT_FATAL_FAILURE({  // NOLINT
   2269     ASSERT_PRED_FORMAT1(AssertIsEven, 5) << "This failure is expected.";
   2270   }, "This failure is expected.");
   2271 }
   2272 
   2273 // Tests that unary predicate assertions evaluates their arguments
   2274 // exactly once.
   2275 TEST(Pred1Test, SingleEvaluationOnFailure) {
   2276   // A success case.
   2277   static int n = 0;
   2278   EXPECT_PRED1(IsEven, n++);
   2279   EXPECT_EQ(1, n) << "The argument is not evaluated exactly once.";
   2280 
   2281   // A failure case.
   2282   EXPECT_FATAL_FAILURE({  // NOLINT
   2283     ASSERT_PRED_FORMAT1(AssertIsEvenFunctor(), n++)
   2284         << "This failure is expected.";
   2285   }, "This failure is expected.");
   2286   EXPECT_EQ(2, n) << "The argument is not evaluated exactly once.";
   2287 }
   2288 
   2289 
   2290 // Tests predicate assertions whose arity is >= 2.
   2291 
   2292 // Tests predicate assertions that don't use a custom formatter.
   2293 TEST(PredTest, WithoutFormat) {
   2294   // Success cases.
   2295   ASSERT_PRED2(SumIsEven2, 2, 4) << "This failure is UNEXPECTED!";
   2296   EXPECT_PRED3(SumIsEven3Functor(), 4, 6, 8);
   2297 
   2298   // Failure cases.
   2299   const int n1 = 1;
   2300   const int n2 = 2;
   2301   EXPECT_NONFATAL_FAILURE({  // NOLINT
   2302     EXPECT_PRED2(SumIsEven2, n1, n2) << "This failure is expected.";
   2303   }, "This failure is expected.");
   2304   EXPECT_FATAL_FAILURE({  // NOLINT
   2305     ASSERT_PRED3(SumIsEven3Functor(), 1, 2, 4);
   2306   }, "evaluates to false");
   2307 }
   2308 
   2309 // Tests predicate assertions that use a custom formatter.
   2310 TEST(PredTest, WithFormat) {
   2311   // Success cases.
   2312   ASSERT_PRED_FORMAT4(AssertSumIsEven4, 4, 6, 8, 10) <<
   2313     "This failure is UNEXPECTED!";
   2314   EXPECT_PRED_FORMAT5(AssertSumIsEven5Functor(), 2, 4, 6, 8, 10);
   2315 
   2316   // Failure cases.
   2317   const int n1 = 1;
   2318   const int n2 = 2;
   2319   const int n3 = 4;
   2320   const int n4 = 6;
   2321   EXPECT_NONFATAL_FAILURE({  // NOLINT
   2322     EXPECT_PRED_FORMAT4(AssertSumIsEven4, n1, n2, n3, n4);
   2323   }, "evaluates to 13, which is not even.");
   2324   EXPECT_FATAL_FAILURE({  // NOLINT
   2325     ASSERT_PRED_FORMAT5(AssertSumIsEven5Functor(), 1, 2, 4, 6, 8)
   2326         << "This failure is expected.";
   2327   }, "This failure is expected.");
   2328 }
   2329 
   2330 // Tests that predicate assertions evaluates their arguments
   2331 // exactly once.
   2332 TEST(PredTest, SingleEvaluationOnFailure) {
   2333   // A success case.
   2334   int n1 = 0;
   2335   int n2 = 0;
   2336   EXPECT_PRED2(SumIsEven2, n1++, n2++);
   2337   EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once.";
   2338   EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once.";
   2339 
   2340   // Another success case.
   2341   n1 = n2 = 0;
   2342   int n3 = 0;
   2343   int n4 = 0;
   2344   int n5 = 0;
   2345   ASSERT_PRED_FORMAT5(AssertSumIsEven5Functor(),
   2346                       n1++, n2++, n3++, n4++, n5++)
   2347                         << "This failure is UNEXPECTED!";
   2348   EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once.";
   2349   EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once.";
   2350   EXPECT_EQ(1, n3) << "Argument 3 is not evaluated exactly once.";
   2351   EXPECT_EQ(1, n4) << "Argument 4 is not evaluated exactly once.";
   2352   EXPECT_EQ(1, n5) << "Argument 5 is not evaluated exactly once.";
   2353 
   2354   // A failure case.
   2355   n1 = n2 = n3 = 0;
   2356   EXPECT_NONFATAL_FAILURE({  // NOLINT
   2357     EXPECT_PRED3(SumIsEven3Functor(), ++n1, n2++, n3++)
   2358         << "This failure is expected.";
   2359   }, "This failure is expected.");
   2360   EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once.";
   2361   EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once.";
   2362   EXPECT_EQ(1, n3) << "Argument 3 is not evaluated exactly once.";
   2363 
   2364   // Another failure case.
   2365   n1 = n2 = n3 = n4 = 0;
   2366   EXPECT_NONFATAL_FAILURE({  // NOLINT
   2367     EXPECT_PRED_FORMAT4(AssertSumIsEven4, ++n1, n2++, n3++, n4++);
   2368   }, "evaluates to 1, which is not even.");
   2369   EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once.";
   2370   EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once.";
   2371   EXPECT_EQ(1, n3) << "Argument 3 is not evaluated exactly once.";
   2372   EXPECT_EQ(1, n4) << "Argument 4 is not evaluated exactly once.";
   2373 }
   2374 
   2375 
   2376 // Some helper functions for testing using overloaded/template
   2377 // functions with ASSERT_PREDn and EXPECT_PREDn.
   2378 
   2379 bool IsPositive(double x) {
   2380   return x > 0;
   2381 }
   2382 
   2383 template <typename T>
   2384 bool IsNegative(T x) {
   2385   return x < 0;
   2386 }
   2387 
   2388 template <typename T1, typename T2>
   2389 bool GreaterThan(T1 x1, T2 x2) {
   2390   return x1 > x2;
   2391 }
   2392 
   2393 // Tests that overloaded functions can be used in *_PRED* as long as
   2394 // their types are explicitly specified.
   2395 TEST(PredicateAssertionTest, AcceptsOverloadedFunction) {
   2396   // C++Builder requires C-style casts rather than static_cast.
   2397   EXPECT_PRED1((bool (*)(int))(IsPositive), 5);  // NOLINT
   2398   ASSERT_PRED1((bool (*)(double))(IsPositive), 6.0);  // NOLINT
   2399 }
   2400 
   2401 // Tests that template functions can be used in *_PRED* as long as
   2402 // their types are explicitly specified.
   2403 TEST(PredicateAssertionTest, AcceptsTemplateFunction) {
   2404   EXPECT_PRED1(IsNegative<int>, -5);
   2405   // Makes sure that we can handle templates with more than one
   2406   // parameter.
   2407   ASSERT_PRED2((GreaterThan<int, int>), 5, 0);
   2408 }
   2409 
   2410 
   2411 // Some helper functions for testing using overloaded/template
   2412 // functions with ASSERT_PRED_FORMATn and EXPECT_PRED_FORMATn.
   2413 
   2414 AssertionResult IsPositiveFormat(const char* /* expr */, int n) {
   2415   return n > 0 ? AssertionSuccess() :
   2416       AssertionFailure(Message() << "Failure");
   2417 }
   2418 
   2419 AssertionResult IsPositiveFormat(const char* /* expr */, double x) {
   2420   return x > 0 ? AssertionSuccess() :
   2421       AssertionFailure(Message() << "Failure");
   2422 }
   2423 
   2424 template <typename T>
   2425 AssertionResult IsNegativeFormat(const char* /* expr */, T x) {
   2426   return x < 0 ? AssertionSuccess() :
   2427       AssertionFailure(Message() << "Failure");
   2428 }
   2429 
   2430 template <typename T1, typename T2>
   2431 AssertionResult EqualsFormat(const char* /* expr1 */, const char* /* expr2 */,
   2432                              const T1& x1, const T2& x2) {
   2433   return x1 == x2 ? AssertionSuccess() :
   2434       AssertionFailure(Message() << "Failure");
   2435 }
   2436 
   2437 // Tests that overloaded functions can be used in *_PRED_FORMAT*
   2438 // without explicitly specifying their types.
   2439 TEST(PredicateFormatAssertionTest, AcceptsOverloadedFunction) {
   2440   EXPECT_PRED_FORMAT1(IsPositiveFormat, 5);
   2441   ASSERT_PRED_FORMAT1(IsPositiveFormat, 6.0);
   2442 }
   2443 
   2444 // Tests that template functions can be used in *_PRED_FORMAT* without
   2445 // explicitly specifying their types.
   2446 TEST(PredicateFormatAssertionTest, AcceptsTemplateFunction) {
   2447   EXPECT_PRED_FORMAT1(IsNegativeFormat, -5);
   2448   ASSERT_PRED_FORMAT2(EqualsFormat, 3, 3);
   2449 }
   2450 
   2451 
   2452 // Tests string assertions.
   2453 
   2454 // Tests ASSERT_STREQ with non-NULL arguments.
   2455 TEST(StringAssertionTest, ASSERT_STREQ) {
   2456   const char * const p1 = "good";
   2457   ASSERT_STREQ(p1, p1);
   2458 
   2459   // Let p2 have the same content as p1, but be at a different address.
   2460   const char p2[] = "good";
   2461   ASSERT_STREQ(p1, p2);
   2462 
   2463   EXPECT_FATAL_FAILURE(ASSERT_STREQ("bad", "good"),
   2464                        "Expected: \"bad\"");
   2465 }
   2466 
   2467 // Tests ASSERT_STREQ with NULL arguments.
   2468 TEST(StringAssertionTest, ASSERT_STREQ_Null) {
   2469   ASSERT_STREQ(static_cast<const char *>(NULL), NULL);
   2470   EXPECT_FATAL_FAILURE(ASSERT_STREQ(NULL, "non-null"),
   2471                        "non-null");
   2472 }
   2473 
   2474 // Tests ASSERT_STREQ with NULL arguments.
   2475 TEST(StringAssertionTest, ASSERT_STREQ_Null2) {
   2476   EXPECT_FATAL_FAILURE(ASSERT_STREQ("non-null", NULL),
   2477                        "non-null");
   2478 }
   2479 
   2480 // Tests ASSERT_STRNE.
   2481 TEST(StringAssertionTest, ASSERT_STRNE) {
   2482   ASSERT_STRNE("hi", "Hi");
   2483   ASSERT_STRNE("Hi", NULL);
   2484   ASSERT_STRNE(NULL, "Hi");
   2485   ASSERT_STRNE("", NULL);
   2486   ASSERT_STRNE(NULL, "");
   2487   ASSERT_STRNE("", "Hi");
   2488   ASSERT_STRNE("Hi", "");
   2489   EXPECT_FATAL_FAILURE(ASSERT_STRNE("Hi", "Hi"),
   2490                        "\"Hi\" vs \"Hi\"");
   2491 }
   2492 
   2493 // Tests ASSERT_STRCASEEQ.
   2494 TEST(StringAssertionTest, ASSERT_STRCASEEQ) {
   2495   ASSERT_STRCASEEQ("hi", "Hi");
   2496   ASSERT_STRCASEEQ(static_cast<const char *>(NULL), NULL);
   2497 
   2498   ASSERT_STRCASEEQ("", "");
   2499   EXPECT_FATAL_FAILURE(ASSERT_STRCASEEQ("Hi", "hi2"),
   2500                        "(ignoring case)");
   2501 }
   2502 
   2503 // Tests ASSERT_STRCASENE.
   2504 TEST(StringAssertionTest, ASSERT_STRCASENE) {
   2505   ASSERT_STRCASENE("hi1", "Hi2");
   2506   ASSERT_STRCASENE("Hi", NULL);
   2507   ASSERT_STRCASENE(NULL, "Hi");
   2508   ASSERT_STRCASENE("", NULL);
   2509   ASSERT_STRCASENE(NULL, "");
   2510   ASSERT_STRCASENE("", "Hi");
   2511   ASSERT_STRCASENE("Hi", "");
   2512   EXPECT_FATAL_FAILURE(ASSERT_STRCASENE("Hi", "hi"),
   2513                        "(ignoring case)");
   2514 }
   2515 
   2516 // Tests *_STREQ on wide strings.
   2517 TEST(StringAssertionTest, STREQ_Wide) {
   2518   // NULL strings.
   2519   ASSERT_STREQ(static_cast<const wchar_t *>(NULL), NULL);
   2520 
   2521   // Empty strings.
   2522   ASSERT_STREQ(L"", L"");
   2523 
   2524   // Non-null vs NULL.
   2525   EXPECT_NONFATAL_FAILURE(EXPECT_STREQ(L"non-null", NULL),
   2526                           "non-null");
   2527 
   2528   // Equal strings.
   2529   EXPECT_STREQ(L"Hi", L"Hi");
   2530 
   2531   // Unequal strings.
   2532   EXPECT_NONFATAL_FAILURE(EXPECT_STREQ(L"abc", L"Abc"),
   2533                           "Abc");
   2534 
   2535   // Strings containing wide characters.
   2536   EXPECT_NONFATAL_FAILURE(EXPECT_STREQ(L"abc\x8119", L"abc\x8120"),
   2537                           "abc");
   2538 }
   2539 
   2540 // Tests *_STRNE on wide strings.
   2541 TEST(StringAssertionTest, STRNE_Wide) {
   2542   // NULL strings.
   2543   EXPECT_NONFATAL_FAILURE({  // NOLINT
   2544     EXPECT_STRNE(static_cast<const wchar_t *>(NULL), NULL);
   2545   }, "");
   2546 
   2547   // Empty strings.
   2548   EXPECT_NONFATAL_FAILURE(EXPECT_STRNE(L"", L""),
   2549                           "L\"\"");
   2550 
   2551   // Non-null vs NULL.
   2552   ASSERT_STRNE(L"non-null", NULL);
   2553 
   2554   // Equal strings.
   2555   EXPECT_NONFATAL_FAILURE(EXPECT_STRNE(L"Hi", L"Hi"),
   2556                           "L\"Hi\"");
   2557 
   2558   // Unequal strings.
   2559   EXPECT_STRNE(L"abc", L"Abc");
   2560 
   2561   // Strings containing wide characters.
   2562   EXPECT_NONFATAL_FAILURE(EXPECT_STRNE(L"abc\x8119", L"abc\x8119"),
   2563                           "abc");
   2564 }
   2565 
   2566 // Tests for ::testing::IsSubstring().
   2567 
   2568 // Tests that IsSubstring() returns the correct result when the input
   2569 // argument type is const char*.
   2570 TEST(IsSubstringTest, ReturnsCorrectResultForCString) {
   2571   EXPECT_FALSE(IsSubstring("", "", NULL, "a"));
   2572   EXPECT_FALSE(IsSubstring("", "", "b", NULL));
   2573   EXPECT_FALSE(IsSubstring("", "", "needle", "haystack"));
   2574 
   2575   EXPECT_TRUE(IsSubstring("", "", static_cast<const char*>(NULL), NULL));
   2576   EXPECT_TRUE(IsSubstring("", "", "needle", "two needles"));
   2577 }
   2578 
   2579 // Tests that IsSubstring() returns the correct result when the input
   2580 // argument type is const wchar_t*.
   2581 TEST(IsSubstringTest, ReturnsCorrectResultForWideCString) {
   2582   EXPECT_FALSE(IsSubstring("", "", kNull, L"a"));
   2583   EXPECT_FALSE(IsSubstring("", "", L"b", kNull));
   2584   EXPECT_FALSE(IsSubstring("", "", L"needle", L"haystack"));
   2585 
   2586   EXPECT_TRUE(IsSubstring("", "", static_cast<const wchar_t*>(NULL), NULL));
   2587   EXPECT_TRUE(IsSubstring("", "", L"needle", L"two needles"));
   2588 }
   2589 
   2590 // Tests that IsSubstring() generates the correct message when the input
   2591 // argument type is const char*.
   2592 TEST(IsSubstringTest, GeneratesCorrectMessageForCString) {
   2593   EXPECT_STREQ("Value of: needle_expr\n"
   2594                "  Actual: \"needle\"\n"
   2595                "Expected: a substring of haystack_expr\n"
   2596                "Which is: \"haystack\"",
   2597                IsSubstring("needle_expr", "haystack_expr",
   2598                            "needle", "haystack").failure_message());
   2599 }
   2600 
   2601 // Tests that IsSubstring returns the correct result when the input
   2602 // argument type is ::std::string.
   2603 TEST(IsSubstringTest, ReturnsCorrectResultsForStdString) {
   2604   EXPECT_TRUE(IsSubstring("", "", std::string("hello"), "ahellob"));
   2605   EXPECT_FALSE(IsSubstring("", "", "hello", std::string("world")));
   2606 }
   2607 
   2608 #if GTEST_HAS_STD_WSTRING
   2609 // Tests that IsSubstring returns the correct result when the input
   2610 // argument type is ::std::wstring.
   2611 TEST(IsSubstringTest, ReturnsCorrectResultForStdWstring) {
   2612   EXPECT_TRUE(IsSubstring("", "", ::std::wstring(L"needle"), L"two needles"));
   2613   EXPECT_FALSE(IsSubstring("", "", L"needle", ::std::wstring(L"haystack")));
   2614 }
   2615 
   2616 // Tests that IsSubstring() generates the correct message when the input
   2617 // argument type is ::std::wstring.
   2618 TEST(IsSubstringTest, GeneratesCorrectMessageForWstring) {
   2619   EXPECT_STREQ("Value of: needle_expr\n"
   2620                "  Actual: L\"needle\"\n"
   2621                "Expected: a substring of haystack_expr\n"
   2622                "Which is: L\"haystack\"",
   2623                IsSubstring(
   2624                    "needle_expr", "haystack_expr",
   2625                    ::std::wstring(L"needle"), L"haystack").failure_message());
   2626 }
   2627 
   2628 #endif  // GTEST_HAS_STD_WSTRING
   2629 
   2630 // Tests for ::testing::IsNotSubstring().
   2631 
   2632 // Tests that IsNotSubstring() returns the correct result when the input
   2633 // argument type is const char*.
   2634 TEST(IsNotSubstringTest, ReturnsCorrectResultForCString) {
   2635   EXPECT_TRUE(IsNotSubstring("", "", "needle", "haystack"));
   2636   EXPECT_FALSE(IsNotSubstring("", "", "needle", "two needles"));
   2637 }
   2638 
   2639 // Tests that IsNotSubstring() returns the correct result when the input
   2640 // argument type is const wchar_t*.
   2641 TEST(IsNotSubstringTest, ReturnsCorrectResultForWideCString) {
   2642   EXPECT_TRUE(IsNotSubstring("", "", L"needle", L"haystack"));
   2643   EXPECT_FALSE(IsNotSubstring("", "", L"needle", L"two needles"));
   2644 }
   2645 
   2646 // Tests that IsNotSubstring() generates the correct message when the input
   2647 // argument type is const wchar_t*.
   2648 TEST(IsNotSubstringTest, GeneratesCorrectMessageForWideCString) {
   2649   EXPECT_STREQ("Value of: needle_expr\n"
   2650                "  Actual: L\"needle\"\n"
   2651                "Expected: not a substring of haystack_expr\n"
   2652                "Which is: L\"two needles\"",
   2653                IsNotSubstring(
   2654                    "needle_expr", "haystack_expr",
   2655                    L"needle", L"two needles").failure_message());
   2656 }
   2657 
   2658 // Tests that IsNotSubstring returns the correct result when the input
   2659 // argument type is ::std::string.
   2660 TEST(IsNotSubstringTest, ReturnsCorrectResultsForStdString) {
   2661   EXPECT_FALSE(IsNotSubstring("", "", std::string("hello"), "ahellob"));
   2662   EXPECT_TRUE(IsNotSubstring("", "", "hello", std::string("world")));
   2663 }
   2664 
   2665 // Tests that IsNotSubstring() generates the correct message when the input
   2666 // argument type is ::std::string.
   2667 TEST(IsNotSubstringTest, GeneratesCorrectMessageForStdString) {
   2668   EXPECT_STREQ("Value of: needle_expr\n"
   2669                "  Actual: \"needle\"\n"
   2670                "Expected: not a substring of haystack_expr\n"
   2671                "Which is: \"two needles\"",
   2672                IsNotSubstring(
   2673                    "needle_expr", "haystack_expr",
   2674                    ::std::string("needle"), "two needles").failure_message());
   2675 }
   2676 
   2677 #if GTEST_HAS_STD_WSTRING
   2678 
   2679 // Tests that IsNotSubstring returns the correct result when the input
   2680 // argument type is ::std::wstring.
   2681 TEST(IsNotSubstringTest, ReturnsCorrectResultForStdWstring) {
   2682   EXPECT_FALSE(
   2683       IsNotSubstring("", "", ::std::wstring(L"needle"), L"two needles"));
   2684   EXPECT_TRUE(IsNotSubstring("", "", L"needle", ::std::wstring(L"haystack")));
   2685 }
   2686 
   2687 #endif  // GTEST_HAS_STD_WSTRING
   2688 
   2689 // Tests floating-point assertions.
   2690 
   2691 template <typename RawType>
   2692 class FloatingPointTest : public Test {
   2693  protected:
   2694 
   2695   // Pre-calculated numbers to be used by the tests.
   2696   struct TestValues {
   2697     RawType close_to_positive_zero;
   2698     RawType close_to_negative_zero;
   2699     RawType further_from_negative_zero;
   2700 
   2701     RawType close_to_one;
   2702     RawType further_from_one;
   2703 
   2704     RawType infinity;
   2705     RawType close_to_infinity;
   2706     RawType further_from_infinity;
   2707 
   2708     RawType nan1;
   2709     RawType nan2;
   2710   };
   2711 
   2712   typedef typename testing::internal::FloatingPoint<RawType> Floating;
   2713   typedef typename Floating::Bits Bits;
   2714 
   2715   virtual void SetUp() {
   2716     const size_t max_ulps = Floating::kMaxUlps;
   2717 
   2718     // The bits that represent 0.0.
   2719     const Bits zero_bits = Floating(0).bits();
   2720 
   2721     // Makes some numbers close to 0.0.
   2722     values_.close_to_positive_zero = Floating::ReinterpretBits(
   2723         zero_bits + max_ulps/2);
   2724     values_.close_to_negative_zero = -Floating::ReinterpretBits(
   2725         zero_bits + max_ulps - max_ulps/2);
   2726     values_.further_from_negative_zero = -Floating::ReinterpretBits(
   2727         zero_bits + max_ulps + 1 - max_ulps/2);
   2728 
   2729     // The bits that represent 1.0.
   2730     const Bits one_bits = Floating(1).bits();
   2731 
   2732     // Makes some numbers close to 1.0.
   2733     values_.close_to_one = Floating::ReinterpretBits(one_bits + max_ulps);
   2734     values_.further_from_one = Floating::ReinterpretBits(
   2735         one_bits + max_ulps + 1);
   2736 
   2737     // +infinity.
   2738     values_.infinity = Floating::Infinity();
   2739 
   2740     // The bits that represent +infinity.
   2741     const Bits infinity_bits = Floating(values_.infinity).bits();
   2742 
   2743     // Makes some numbers close to infinity.
   2744     values_.close_to_infinity = Floating::ReinterpretBits(
   2745         infinity_bits - max_ulps);
   2746     values_.further_from_infinity = Floating::ReinterpretBits(
   2747         infinity_bits - max_ulps - 1);
   2748 
   2749     // Makes some NAN's.  Sets the most significant bit of the fraction so that
   2750     // our NaN's are quiet; trying to process a signaling NaN would raise an
   2751     // exception if our environment enables floating point exceptions.
   2752     values_.nan1 = Floating::ReinterpretBits(Floating::kExponentBitMask
   2753         | (static_cast<Bits>(1) << (Floating::kFractionBitCount - 1)) | 1);
   2754     values_.nan2 = Floating::ReinterpretBits(Floating::kExponentBitMask
   2755         | (static_cast<Bits>(1) << (Floating::kFractionBitCount - 1)) | 200);
   2756   }
   2757 
   2758   void TestSize() {
   2759     EXPECT_EQ(sizeof(RawType), sizeof(Bits));
   2760   }
   2761 
   2762   static TestValues values_;
   2763 };
   2764 
   2765 template <typename RawType>
   2766 typename FloatingPointTest<RawType>::TestValues
   2767     FloatingPointTest<RawType>::values_;
   2768 
   2769 // Instantiates FloatingPointTest for testing *_FLOAT_EQ.
   2770 typedef FloatingPointTest<float> FloatTest;
   2771 
   2772 // Tests that the size of Float::Bits matches the size of float.
   2773 TEST_F(FloatTest, Size) {
   2774   TestSize();
   2775 }
   2776 
   2777 // Tests comparing with +0 and -0.
   2778 TEST_F(FloatTest, Zeros) {
   2779   EXPECT_FLOAT_EQ(0.0, -0.0);
   2780   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(-0.0, 1.0),
   2781                           "1.0");
   2782   EXPECT_FATAL_FAILURE(ASSERT_FLOAT_EQ(0.0, 1.5),
   2783                        "1.5");
   2784 }
   2785 
   2786 // Tests comparing numbers close to 0.
   2787 //
   2788 // This ensures that *_FLOAT_EQ handles the sign correctly and no
   2789 // overflow occurs when comparing numbers whose absolute value is very
   2790 // small.
   2791 TEST_F(FloatTest, AlmostZeros) {
   2792   // In C++Builder, names within local classes (such as used by
   2793   // EXPECT_FATAL_FAILURE) cannot be resolved against static members of the
   2794   // scoping class.  Use a static local alias as a workaround.
   2795   // We use the assignment syntax since some compilers, like Sun Studio,
   2796   // don't allow initializing references using construction syntax
   2797   // (parentheses).
   2798   static const FloatTest::TestValues& v = this->values_;
   2799 
   2800   EXPECT_FLOAT_EQ(0.0, v.close_to_positive_zero);
   2801   EXPECT_FLOAT_EQ(-0.0, v.close_to_negative_zero);
   2802   EXPECT_FLOAT_EQ(v.close_to_positive_zero, v.close_to_negative_zero);
   2803 
   2804   EXPECT_FATAL_FAILURE({  // NOLINT
   2805     ASSERT_FLOAT_EQ(v.close_to_positive_zero,
   2806                     v.further_from_negative_zero);
   2807   }, "v.further_from_negative_zero");
   2808 }
   2809 
   2810 // Tests comparing numbers close to each other.
   2811 TEST_F(FloatTest, SmallDiff) {
   2812   EXPECT_FLOAT_EQ(1.0, values_.close_to_one);
   2813   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(1.0, values_.further_from_one),
   2814                           "values_.further_from_one");
   2815 }
   2816 
   2817 // Tests comparing numbers far apart.
   2818 TEST_F(FloatTest, LargeDiff) {
   2819   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(2.5, 3.0),
   2820                           "3.0");
   2821 }
   2822 
   2823 // Tests comparing with infinity.
   2824 //
   2825 // This ensures that no overflow occurs when comparing numbers whose
   2826 // absolute value is very large.
   2827 TEST_F(FloatTest, Infinity) {
   2828   EXPECT_FLOAT_EQ(values_.infinity, values_.close_to_infinity);
   2829   EXPECT_FLOAT_EQ(-values_.infinity, -values_.close_to_infinity);
   2830 #if !GTEST_OS_SYMBIAN
   2831   // Nokia's STLport crashes if we try to output infinity or NaN.
   2832   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(values_.infinity, -values_.infinity),
   2833                           "-values_.infinity");
   2834 
   2835   // This is interesting as the representations of infinity and nan1
   2836   // are only 1 DLP apart.
   2837   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(values_.infinity, values_.nan1),
   2838                           "values_.nan1");
   2839 #endif  // !GTEST_OS_SYMBIAN
   2840 }
   2841 
   2842 // Tests that comparing with NAN always returns false.
   2843 TEST_F(FloatTest, NaN) {
   2844 #if !GTEST_OS_SYMBIAN
   2845 // Nokia's STLport crashes if we try to output infinity or NaN.
   2846 
   2847   // In C++Builder, names within local classes (such as used by
   2848   // EXPECT_FATAL_FAILURE) cannot be resolved against static members of the
   2849   // scoping class.  Use a static local alias as a workaround.
   2850   // We use the assignment syntax since some compilers, like Sun Studio,
   2851   // don't allow initializing references using construction syntax
   2852   // (parentheses).
   2853   static const FloatTest::TestValues& v = this->values_;
   2854 
   2855   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(v.nan1, v.nan1),
   2856                           "v.nan1");
   2857   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(v.nan1, v.nan2),
   2858                           "v.nan2");
   2859   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(1.0, v.nan1),
   2860                           "v.nan1");
   2861 
   2862   EXPECT_FATAL_FAILURE(ASSERT_FLOAT_EQ(v.nan1, v.infinity),
   2863                        "v.infinity");
   2864 #endif  // !GTEST_OS_SYMBIAN
   2865 }
   2866 
   2867 // Tests that *_FLOAT_EQ are reflexive.
   2868 TEST_F(FloatTest, Reflexive) {
   2869   EXPECT_FLOAT_EQ(0.0, 0.0);
   2870   EXPECT_FLOAT_EQ(1.0, 1.0);
   2871   ASSERT_FLOAT_EQ(values_.infinity, values_.infinity);
   2872 }
   2873 
   2874 // Tests that *_FLOAT_EQ are commutative.
   2875 TEST_F(FloatTest, Commutative) {
   2876   // We already tested EXPECT_FLOAT_EQ(1.0, values_.close_to_one).
   2877   EXPECT_FLOAT_EQ(values_.close_to_one, 1.0);
   2878 
   2879   // We already tested EXPECT_FLOAT_EQ(1.0, values_.further_from_one).
   2880   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(values_.further_from_one, 1.0),
   2881                           "1.0");
   2882 }
   2883 
   2884 // Tests EXPECT_NEAR.
   2885 TEST_F(FloatTest, EXPECT_NEAR) {
   2886   EXPECT_NEAR(-1.0f, -1.1f, 0.2f);
   2887   EXPECT_NEAR(2.0f, 3.0f, 1.0f);
   2888   EXPECT_NONFATAL_FAILURE(EXPECT_NEAR(1.0f,1.5f, 0.25f),  // NOLINT
   2889                           "The difference between 1.0f and 1.5f is 0.5, "
   2890                           "which exceeds 0.25f");
   2891   // To work around a bug in gcc 2.95.0, there is intentionally no
   2892   // space after the first comma in the previous line.
   2893 }
   2894 
   2895 // Tests ASSERT_NEAR.
   2896 TEST_F(FloatTest, ASSERT_NEAR) {
   2897   ASSERT_NEAR(-1.0f, -1.1f, 0.2f);
   2898   ASSERT_NEAR(2.0f, 3.0f, 1.0f);
   2899   EXPECT_FATAL_FAILURE(ASSERT_NEAR(1.0f,1.5f, 0.25f),  // NOLINT
   2900                        "The difference between 1.0f and 1.5f is 0.5, "
   2901                        "which exceeds 0.25f");
   2902   // To work around a bug in gcc 2.95.0, there is intentionally no
   2903   // space after the first comma in the previous line.
   2904 }
   2905 
   2906 // Tests the cases where FloatLE() should succeed.
   2907 TEST_F(FloatTest, FloatLESucceeds) {
   2908   EXPECT_PRED_FORMAT2(FloatLE, 1.0f, 2.0f);  // When val1 < val2,
   2909   ASSERT_PRED_FORMAT2(FloatLE, 1.0f, 1.0f);  // val1 == val2,
   2910 
   2911   // or when val1 is greater than, but almost equals to, val2.
   2912   EXPECT_PRED_FORMAT2(FloatLE, values_.close_to_positive_zero, 0.0f);
   2913 }
   2914 
   2915 // Tests the cases where FloatLE() should fail.
   2916 TEST_F(FloatTest, FloatLEFails) {
   2917   // When val1 is greater than val2 by a large margin,
   2918   EXPECT_NONFATAL_FAILURE(EXPECT_PRED_FORMAT2(FloatLE, 2.0f, 1.0f),
   2919                           "(2.0f) <= (1.0f)");
   2920 
   2921   // or by a small yet non-negligible margin,
   2922   EXPECT_NONFATAL_FAILURE({  // NOLINT
   2923     EXPECT_PRED_FORMAT2(FloatLE, values_.further_from_one, 1.0f);
   2924   }, "(values_.further_from_one) <= (1.0f)");
   2925 
   2926 #if !GTEST_OS_SYMBIAN && !defined(__BORLANDC__)
   2927   // Nokia's STLport crashes if we try to output infinity or NaN.
   2928   // C++Builder gives bad results for ordered comparisons involving NaNs
   2929   // due to compiler bugs.
   2930   EXPECT_NONFATAL_FAILURE({  // NOLINT
   2931     EXPECT_PRED_FORMAT2(FloatLE, values_.nan1, values_.infinity);
   2932   }, "(values_.nan1) <= (values_.infinity)");
   2933   EXPECT_NONFATAL_FAILURE({  // NOLINT
   2934     EXPECT_PRED_FORMAT2(FloatLE, -values_.infinity, values_.nan1);
   2935   }, "(-values_.infinity) <= (values_.nan1)");
   2936   EXPECT_FATAL_FAILURE({  // NOLINT
   2937     ASSERT_PRED_FORMAT2(FloatLE, values_.nan1, values_.nan1);
   2938   }, "(values_.nan1) <= (values_.nan1)");
   2939 #endif  // !GTEST_OS_SYMBIAN && !defined(__BORLANDC__)
   2940 }
   2941 
   2942 // Instantiates FloatingPointTest for testing *_DOUBLE_EQ.
   2943 typedef FloatingPointTest<double> DoubleTest;
   2944 
   2945 // Tests that the size of Double::Bits matches the size of double.
   2946 TEST_F(DoubleTest, Size) {
   2947   TestSize();
   2948 }
   2949 
   2950 // Tests comparing with +0 and -0.
   2951 TEST_F(DoubleTest, Zeros) {
   2952   EXPECT_DOUBLE_EQ(0.0, -0.0);
   2953   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(-0.0, 1.0),
   2954                           "1.0");
   2955   EXPECT_FATAL_FAILURE(ASSERT_DOUBLE_EQ(0.0, 1.0),
   2956                        "1.0");
   2957 }
   2958 
   2959 // Tests comparing numbers close to 0.
   2960 //
   2961 // This ensures that *_DOUBLE_EQ handles the sign correctly and no
   2962 // overflow occurs when comparing numbers whose absolute value is very
   2963 // small.
   2964 TEST_F(DoubleTest, AlmostZeros) {
   2965   // In C++Builder, names within local classes (such as used by
   2966   // EXPECT_FATAL_FAILURE) cannot be resolved against static members of the
   2967   // scoping class.  Use a static local alias as a workaround.
   2968   // We use the assignment syntax since some compilers, like Sun Studio,
   2969   // don't allow initializing references using construction syntax
   2970   // (parentheses).
   2971   static const DoubleTest::TestValues& v = this->values_;
   2972 
   2973   EXPECT_DOUBLE_EQ(0.0, v.close_to_positive_zero);
   2974   EXPECT_DOUBLE_EQ(-0.0, v.close_to_negative_zero);
   2975   EXPECT_DOUBLE_EQ(v.close_to_positive_zero, v.close_to_negative_zero);
   2976 
   2977   EXPECT_FATAL_FAILURE({  // NOLINT
   2978     ASSERT_DOUBLE_EQ(v.close_to_positive_zero,
   2979                      v.further_from_negative_zero);
   2980   }, "v.further_from_negative_zero");
   2981 }
   2982 
   2983 // Tests comparing numbers close to each other.
   2984 TEST_F(DoubleTest, SmallDiff) {
   2985   EXPECT_DOUBLE_EQ(1.0, values_.close_to_one);
   2986   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(1.0, values_.further_from_one),
   2987                           "values_.further_from_one");
   2988 }
   2989 
   2990 // Tests comparing numbers far apart.
   2991 TEST_F(DoubleTest, LargeDiff) {
   2992   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(2.0, 3.0),
   2993                           "3.0");
   2994 }
   2995 
   2996 // Tests comparing with infinity.
   2997 //
   2998 // This ensures that no overflow occurs when comparing numbers whose
   2999 // absolute value is very large.
   3000 TEST_F(DoubleTest, Infinity) {
   3001   EXPECT_DOUBLE_EQ(values_.infinity, values_.close_to_infinity);
   3002   EXPECT_DOUBLE_EQ(-values_.infinity, -values_.close_to_infinity);
   3003 #if !GTEST_OS_SYMBIAN
   3004   // Nokia's STLport crashes if we try to output infinity or NaN.
   3005   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(values_.infinity, -values_.infinity),
   3006                           "-values_.infinity");
   3007 
   3008   // This is interesting as the representations of infinity_ and nan1_
   3009   // are only 1 DLP apart.
   3010   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(values_.infinity, values_.nan1),
   3011                           "values_.nan1");
   3012 #endif  // !GTEST_OS_SYMBIAN
   3013 }
   3014 
   3015 // Tests that comparing with NAN always returns false.
   3016 TEST_F(DoubleTest, NaN) {
   3017 #if !GTEST_OS_SYMBIAN
   3018   // In C++Builder, names within local classes (such as used by
   3019   // EXPECT_FATAL_FAILURE) cannot be resolved against static members of the
   3020   // scoping class.  Use a static local alias as a workaround.
   3021   // We use the assignment syntax since some compilers, like Sun Studio,
   3022   // don't allow initializing references using construction syntax
   3023   // (parentheses).
   3024   static const DoubleTest::TestValues& v = this->values_;
   3025 
   3026   // Nokia's STLport crashes if we try to output infinity or NaN.
   3027   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(v.nan1, v.nan1),
   3028                           "v.nan1");
   3029   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(v.nan1, v.nan2), "v.nan2");
   3030   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(1.0, v.nan1), "v.nan1");
   3031   EXPECT_FATAL_FAILURE(ASSERT_DOUBLE_EQ(v.nan1, v.infinity),
   3032                        "v.infinity");
   3033 #endif  // !GTEST_OS_SYMBIAN
   3034 }
   3035 
   3036 // Tests that *_DOUBLE_EQ are reflexive.
   3037 TEST_F(DoubleTest, Reflexive) {
   3038   EXPECT_DOUBLE_EQ(0.0, 0.0);
   3039   EXPECT_DOUBLE_EQ(1.0, 1.0);
   3040 #if !GTEST_OS_SYMBIAN
   3041   // Nokia's STLport crashes if we try to output infinity or NaN.
   3042   ASSERT_DOUBLE_EQ(values_.infinity, values_.infinity);
   3043 #endif  // !GTEST_OS_SYMBIAN
   3044 }
   3045 
   3046 // Tests that *_DOUBLE_EQ are commutative.
   3047 TEST_F(DoubleTest, Commutative) {
   3048   // We already tested EXPECT_DOUBLE_EQ(1.0, values_.close_to_one).
   3049   EXPECT_DOUBLE_EQ(values_.close_to_one, 1.0);
   3050 
   3051   // We already tested EXPECT_DOUBLE_EQ(1.0, values_.further_from_one).
   3052   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(values_.further_from_one, 1.0),
   3053                           "1.0");
   3054 }
   3055 
   3056 // Tests EXPECT_NEAR.
   3057 TEST_F(DoubleTest, EXPECT_NEAR) {
   3058   EXPECT_NEAR(-1.0, -1.1, 0.2);
   3059   EXPECT_NEAR(2.0, 3.0, 1.0);
   3060   EXPECT_NONFATAL_FAILURE(EXPECT_NEAR(1.0, 1.5, 0.25),  // NOLINT
   3061                           "The difference between 1.0 and 1.5 is 0.5, "
   3062                           "which exceeds 0.25");
   3063   // To work around a bug in gcc 2.95.0, there is intentionally no
   3064   // space after the first comma in the previous statement.
   3065 }
   3066 
   3067 // Tests ASSERT_NEAR.
   3068 TEST_F(DoubleTest, ASSERT_NEAR) {
   3069   ASSERT_NEAR(-1.0, -1.1, 0.2);
   3070   ASSERT_NEAR(2.0, 3.0, 1.0);
   3071   EXPECT_FATAL_FAILURE(ASSERT_NEAR(1.0, 1.5, 0.25),  // NOLINT
   3072                        "The difference between 1.0 and 1.5 is 0.5, "
   3073                        "which exceeds 0.25");
   3074   // To work around a bug in gcc 2.95.0, there is intentionally no
   3075   // space after the first comma in the previous statement.
   3076 }
   3077 
   3078 // Tests the cases where DoubleLE() should succeed.
   3079 TEST_F(DoubleTest, DoubleLESucceeds) {
   3080   EXPECT_PRED_FORMAT2(DoubleLE, 1.0, 2.0);  // When val1 < val2,
   3081   ASSERT_PRED_FORMAT2(DoubleLE, 1.0, 1.0);  // val1 == val2,
   3082 
   3083   // or when val1 is greater than, but almost equals to, val2.
   3084   EXPECT_PRED_FORMAT2(DoubleLE, values_.close_to_positive_zero, 0.0);
   3085 }
   3086 
   3087 // Tests the cases where DoubleLE() should fail.
   3088 TEST_F(DoubleTest, DoubleLEFails) {
   3089   // When val1 is greater than val2 by a large margin,
   3090   EXPECT_NONFATAL_FAILURE(EXPECT_PRED_FORMAT2(DoubleLE, 2.0, 1.0),
   3091                           "(2.0) <= (1.0)");
   3092 
   3093   // or by a small yet non-negligible margin,
   3094   EXPECT_NONFATAL_FAILURE({  // NOLINT
   3095     EXPECT_PRED_FORMAT2(DoubleLE, values_.further_from_one, 1.0);
   3096   }, "(values_.further_from_one) <= (1.0)");
   3097 
   3098 #if !GTEST_OS_SYMBIAN && !defined(__BORLANDC__)
   3099   // Nokia's STLport crashes if we try to output infinity or NaN.
   3100   // C++Builder gives bad results for ordered comparisons involving NaNs
   3101   // due to compiler bugs.
   3102   EXPECT_NONFATAL_FAILURE({  // NOLINT
   3103     EXPECT_PRED_FORMAT2(DoubleLE, values_.nan1, values_.infinity);
   3104   }, "(values_.nan1) <= (values_.infinity)");
   3105   EXPECT_NONFATAL_FAILURE({  // NOLINT
   3106     EXPECT_PRED_FORMAT2(DoubleLE, -values_.infinity, values_.nan1);
   3107   }, " (-values_.infinity) <= (values_.nan1)");
   3108   EXPECT_FATAL_FAILURE({  // NOLINT
   3109     ASSERT_PRED_FORMAT2(DoubleLE, values_.nan1, values_.nan1);
   3110   }, "(values_.nan1) <= (values_.nan1)");
   3111 #endif  // !GTEST_OS_SYMBIAN && !defined(__BORLANDC__)
   3112 }
   3113 
   3114 
   3115 // Verifies that a test or test case whose name starts with DISABLED_ is
   3116 // not run.
   3117 
   3118 // A test whose name starts with DISABLED_.
   3119 // Should not run.
   3120 TEST(DisabledTest, DISABLED_TestShouldNotRun) {
   3121   FAIL() << "Unexpected failure: Disabled test should not be run.";
   3122 }
   3123 
   3124 // A test whose name does not start with DISABLED_.
   3125 // Should run.
   3126 TEST(DisabledTest, NotDISABLED_TestShouldRun) {
   3127   EXPECT_EQ(1, 1);
   3128 }
   3129 
   3130 // A test case whose name starts with DISABLED_.
   3131 // Should not run.
   3132 TEST(DISABLED_TestCase, TestShouldNotRun) {
   3133   FAIL() << "Unexpected failure: Test in disabled test case should not be run.";
   3134 }
   3135 
   3136 // A test case and test whose names start with DISABLED_.
   3137 // Should not run.
   3138 TEST(DISABLED_TestCase, DISABLED_TestShouldNotRun) {
   3139   FAIL() << "Unexpected failure: Test in disabled test case should not be run.";
   3140 }
   3141 
   3142 // Check that when all tests in a test case are disabled, SetupTestCase() and
   3143 // TearDownTestCase() are not called.
   3144 class DisabledTestsTest : public Test {
   3145  protected:
   3146   static void SetUpTestCase() {
   3147     FAIL() << "Unexpected failure: All tests disabled in test case. "
   3148               "SetupTestCase() should not be called.";
   3149   }
   3150 
   3151   static void TearDownTestCase() {
   3152     FAIL() << "Unexpected failure: All tests disabled in test case. "
   3153               "TearDownTestCase() should not be called.";
   3154   }
   3155 };
   3156 
   3157 TEST_F(DisabledTestsTest, DISABLED_TestShouldNotRun_1) {
   3158   FAIL() << "Unexpected failure: Disabled test should not be run.";
   3159 }
   3160 
   3161 TEST_F(DisabledTestsTest, DISABLED_TestShouldNotRun_2) {
   3162   FAIL() << "Unexpected failure: Disabled test should not be run.";
   3163 }
   3164 
   3165 // Tests that disabled typed tests aren't run.
   3166 
   3167 #if GTEST_HAS_TYPED_TEST
   3168 
   3169 template <typename T>
   3170 class TypedTest : public Test {
   3171 };
   3172 
   3173 typedef testing::Types<int, double> NumericTypes;
   3174 TYPED_TEST_CASE(TypedTest, NumericTypes);
   3175 
   3176 TYPED_TEST(TypedTest, DISABLED_ShouldNotRun) {
   3177   FAIL() << "Unexpected failure: Disabled typed test should not run.";
   3178 }
   3179 
   3180 template <typename T>
   3181 class DISABLED_TypedTest : public Test {
   3182 };
   3183 
   3184 TYPED_TEST_CASE(DISABLED_TypedTest, NumericTypes);
   3185 
   3186 TYPED_TEST(DISABLED_TypedTest, ShouldNotRun) {
   3187   FAIL() << "Unexpected failure: Disabled typed test should not run.";
   3188 }
   3189 
   3190 #endif  // GTEST_HAS_TYPED_TEST
   3191 
   3192 // Tests that disabled type-parameterized tests aren't run.
   3193 
   3194 #if GTEST_HAS_TYPED_TEST_P
   3195 
   3196 template <typename T>
   3197 class TypedTestP : public Test {
   3198 };
   3199 
   3200 TYPED_TEST_CASE_P(TypedTestP);
   3201 
   3202 TYPED_TEST_P(TypedTestP, DISABLED_ShouldNotRun) {
   3203   FAIL() << "Unexpected failure: "
   3204          << "Disabled type-parameterized test should not run.";
   3205 }
   3206 
   3207 REGISTER_TYPED_TEST_CASE_P(TypedTestP, DISABLED_ShouldNotRun);
   3208 
   3209 INSTANTIATE_TYPED_TEST_CASE_P(My, TypedTestP, NumericTypes);
   3210 
   3211 template <typename T>
   3212 class DISABLED_TypedTestP : public Test {
   3213 };
   3214 
   3215 TYPED_TEST_CASE_P(DISABLED_TypedTestP);
   3216 
   3217 TYPED_TEST_P(DISABLED_TypedTestP, ShouldNotRun) {
   3218   FAIL() << "Unexpected failure: "
   3219          << "Disabled type-parameterized test should not run.";
   3220 }
   3221 
   3222 REGISTER_TYPED_TEST_CASE_P(DISABLED_TypedTestP, ShouldNotRun);
   3223 
   3224 INSTANTIATE_TYPED_TEST_CASE_P(My, DISABLED_TypedTestP, NumericTypes);
   3225 
   3226 #endif  // GTEST_HAS_TYPED_TEST_P
   3227 
   3228 // Tests that assertion macros evaluate their arguments exactly once.
   3229 
   3230 class SingleEvaluationTest : public Test {
   3231  public:  // Must be public and not protected due to a bug in g++ 3.4.2.
   3232   // This helper function is needed by the FailedASSERT_STREQ test
   3233   // below.  It's public to work around C++Builder's bug with scoping local
   3234   // classes.
   3235   static void CompareAndIncrementCharPtrs() {
   3236     ASSERT_STREQ(p1_++, p2_++);
   3237   }
   3238 
   3239   // This helper function is needed by the FailedASSERT_NE test below.  It's
   3240   // public to work around C++Builder's bug with scoping local classes.
   3241   static void CompareAndIncrementInts() {
   3242     ASSERT_NE(a_++, b_++);
   3243   }
   3244 
   3245  protected:
   3246   SingleEvaluationTest() {
   3247     p1_ = s1_;
   3248     p2_ = s2_;
   3249     a_ = 0;
   3250     b_ = 0;
   3251   }
   3252 
   3253   static const char* const s1_;
   3254   static const char* const s2_;
   3255   static const char* p1_;
   3256   static const char* p2_;
   3257 
   3258   static int a_;
   3259   static int b_;
   3260 };
   3261 
   3262 const char* const SingleEvaluationTest::s1_ = "01234";
   3263 const char* const SingleEvaluationTest::s2_ = "abcde";
   3264 const char* SingleEvaluationTest::p1_;
   3265 const char* SingleEvaluationTest::p2_;
   3266 int SingleEvaluationTest::a_;
   3267 int SingleEvaluationTest::b_;
   3268 
   3269 // Tests that when ASSERT_STREQ fails, it evaluates its arguments
   3270 // exactly once.
   3271 TEST_F(SingleEvaluationTest, FailedASSERT_STREQ) {
   3272   EXPECT_FATAL_FAILURE(SingleEvaluationTest::CompareAndIncrementCharPtrs(),
   3273                        "p2_++");
   3274   EXPECT_EQ(s1_ + 1, p1_);
   3275   EXPECT_EQ(s2_ + 1, p2_);
   3276 }
   3277 
   3278 // Tests that string assertion arguments are evaluated exactly once.
   3279 TEST_F(SingleEvaluationTest, ASSERT_STR) {
   3280   // successful EXPECT_STRNE
   3281   EXPECT_STRNE(p1_++, p2_++);
   3282   EXPECT_EQ(s1_ + 1, p1_);
   3283   EXPECT_EQ(s2_ + 1, p2_);
   3284 
   3285   // failed EXPECT_STRCASEEQ
   3286   EXPECT_NONFATAL_FAILURE(EXPECT_STRCASEEQ(p1_++, p2_++),
   3287                           "ignoring case");
   3288   EXPECT_EQ(s1_ + 2, p1_);
   3289   EXPECT_EQ(s2_ + 2, p2_);
   3290 }
   3291 
   3292 // Tests that when ASSERT_NE fails, it evaluates its arguments exactly
   3293 // once.
   3294 TEST_F(SingleEvaluationTest, FailedASSERT_NE) {
   3295   EXPECT_FATAL_FAILURE(SingleEvaluationTest::CompareAndIncrementInts(),
   3296                        "(a_++) != (b_++)");
   3297   EXPECT_EQ(1, a_);
   3298   EXPECT_EQ(1, b_);
   3299 }
   3300 
   3301 // Tests that assertion arguments are evaluated exactly once.
   3302 TEST_F(SingleEvaluationTest, OtherCases) {
   3303   // successful EXPECT_TRUE
   3304   EXPECT_TRUE(0 == a_++);  // NOLINT
   3305   EXPECT_EQ(1, a_);
   3306 
   3307   // failed EXPECT_TRUE
   3308   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(-1 == a_++), "-1 == a_++");
   3309   EXPECT_EQ(2, a_);
   3310 
   3311   // successful EXPECT_GT
   3312   EXPECT_GT(a_++, b_++);
   3313   EXPECT_EQ(3, a_);
   3314   EXPECT_EQ(1, b_);
   3315 
   3316   // failed EXPECT_LT
   3317   EXPECT_NONFATAL_FAILURE(EXPECT_LT(a_++, b_++), "(a_++) < (b_++)");
   3318   EXPECT_EQ(4, a_);
   3319   EXPECT_EQ(2, b_);
   3320 
   3321   // successful ASSERT_TRUE
   3322   ASSERT_TRUE(0 < a_++);  // NOLINT
   3323   EXPECT_EQ(5, a_);
   3324 
   3325   // successful ASSERT_GT
   3326   ASSERT_GT(a_++, b_++);
   3327   EXPECT_EQ(6, a_);
   3328   EXPECT_EQ(3, b_);
   3329 }
   3330 
   3331 #if GTEST_HAS_EXCEPTIONS
   3332 
   3333 void ThrowAnInteger() {
   3334   throw 1;
   3335 }
   3336 
   3337 // Tests that assertion arguments are evaluated exactly once.
   3338 TEST_F(SingleEvaluationTest, ExceptionTests) {
   3339   // successful EXPECT_THROW
   3340   EXPECT_THROW({  // NOLINT
   3341     a_++;
   3342     ThrowAnInteger();
   3343   }, int);
   3344   EXPECT_EQ(1, a_);
   3345 
   3346   // failed EXPECT_THROW, throws different
   3347   EXPECT_NONFATAL_FAILURE(EXPECT_THROW({  // NOLINT
   3348     a_++;
   3349     ThrowAnInteger();
   3350   }, bool), "throws a different type");
   3351   EXPECT_EQ(2, a_);
   3352 
   3353   // failed EXPECT_THROW, throws nothing
   3354   EXPECT_NONFATAL_FAILURE(EXPECT_THROW(a_++, bool), "throws nothing");
   3355   EXPECT_EQ(3, a_);
   3356 
   3357   // successful EXPECT_NO_THROW
   3358   EXPECT_NO_THROW(a_++);
   3359   EXPECT_EQ(4, a_);
   3360 
   3361   // failed EXPECT_NO_THROW
   3362   EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW({  // NOLINT
   3363     a_++;
   3364     ThrowAnInteger();
   3365   }), "it throws");
   3366   EXPECT_EQ(5, a_);
   3367 
   3368   // successful EXPECT_ANY_THROW
   3369   EXPECT_ANY_THROW({  // NOLINT
   3370     a_++;
   3371     ThrowAnInteger();
   3372   });
   3373   EXPECT_EQ(6, a_);
   3374 
   3375   // failed EXPECT_ANY_THROW
   3376   EXPECT_NONFATAL_FAILURE(EXPECT_ANY_THROW(a_++), "it doesn't");
   3377   EXPECT_EQ(7, a_);
   3378 }
   3379 
   3380 #endif  // GTEST_HAS_EXCEPTIONS
   3381 
   3382 // Tests {ASSERT|EXPECT}_NO_FATAL_FAILURE.
   3383 class NoFatalFailureTest : public Test {
   3384  protected:
   3385   void Succeeds() {}
   3386   void FailsNonFatal() {
   3387     ADD_FAILURE() << "some non-fatal failure";
   3388   }
   3389   void Fails() {
   3390     FAIL() << "some fatal failure";
   3391   }
   3392 
   3393   void DoAssertNoFatalFailureOnFails() {
   3394     ASSERT_NO_FATAL_FAILURE(Fails());
   3395     ADD_FAILURE() << "shold not reach here.";
   3396   }
   3397 
   3398   void DoExpectNoFatalFailureOnFails() {
   3399     EXPECT_NO_FATAL_FAILURE(Fails());
   3400     ADD_FAILURE() << "other failure";
   3401   }
   3402 };
   3403 
   3404 TEST_F(NoFatalFailureTest, NoFailure) {
   3405   EXPECT_NO_FATAL_FAILURE(Succeeds());
   3406   ASSERT_NO_FATAL_FAILURE(Succeeds());
   3407 }
   3408 
   3409 TEST_F(NoFatalFailureTest, NonFatalIsNoFailure) {
   3410   EXPECT_NONFATAL_FAILURE(
   3411       EXPECT_NO_FATAL_FAILURE(FailsNonFatal()),
   3412       "some non-fatal failure");
   3413   EXPECT_NONFATAL_FAILURE(
   3414       ASSERT_NO_FATAL_FAILURE(FailsNonFatal()),
   3415       "some non-fatal failure");
   3416 }
   3417 
   3418 TEST_F(NoFatalFailureTest, AssertNoFatalFailureOnFatalFailure) {
   3419   TestPartResultArray gtest_failures;
   3420   {
   3421     ScopedFakeTestPartResultReporter gtest_reporter(&gtest_failures);
   3422     DoAssertNoFatalFailureOnFails();
   3423   }
   3424   ASSERT_EQ(2, gtest_failures.size());
   3425   EXPECT_EQ(TestPartResult::kFatalFailure,
   3426             gtest_failures.GetTestPartResult(0).type());
   3427   EXPECT_EQ(TestPartResult::kFatalFailure,
   3428             gtest_failures.GetTestPartResult(1).type());
   3429   EXPECT_PRED_FORMAT2(testing::IsSubstring, "some fatal failure",
   3430                       gtest_failures.GetTestPartResult(0).message());
   3431   EXPECT_PRED_FORMAT2(testing::IsSubstring, "it does",
   3432                       gtest_failures.GetTestPartResult(1).message());
   3433 }
   3434 
   3435 TEST_F(NoFatalFailureTest, ExpectNoFatalFailureOnFatalFailure) {
   3436   TestPartResultArray gtest_failures;
   3437   {
   3438     ScopedFakeTestPartResultReporter gtest_reporter(&gtest_failures);
   3439     DoExpectNoFatalFailureOnFails();
   3440   }
   3441   ASSERT_EQ(3, gtest_failures.size());
   3442   EXPECT_EQ(TestPartResult::kFatalFailure,
   3443             gtest_failures.GetTestPartResult(0).type());
   3444   EXPECT_EQ(TestPartResult::kNonFatalFailure,
   3445             gtest_failures.GetTestPartResult(1).type());
   3446   EXPECT_EQ(TestPartResult::kNonFatalFailure,
   3447             gtest_failures.GetTestPartResult(2).type());
   3448   EXPECT_PRED_FORMAT2(testing::IsSubstring, "some fatal failure",
   3449                       gtest_failures.GetTestPartResult(0).message());
   3450   EXPECT_PRED_FORMAT2(testing::IsSubstring, "it does",
   3451                       gtest_failures.GetTestPartResult(1).message());
   3452   EXPECT_PRED_FORMAT2(testing::IsSubstring, "other failure",
   3453                       gtest_failures.GetTestPartResult(2).message());
   3454 }
   3455 
   3456 TEST_F(NoFatalFailureTest, MessageIsStreamable) {
   3457   TestPartResultArray gtest_failures;
   3458   {
   3459     ScopedFakeTestPartResultReporter gtest_reporter(&gtest_failures);
   3460     EXPECT_NO_FATAL_FAILURE(FAIL() << "foo") << "my message";
   3461   }
   3462   ASSERT_EQ(2, gtest_failures.size());
   3463   EXPECT_EQ(TestPartResult::kNonFatalFailure,
   3464             gtest_failures.GetTestPartResult(0).type());
   3465   EXPECT_EQ(TestPartResult::kNonFatalFailure,
   3466             gtest_failures.GetTestPartResult(1).type());
   3467   EXPECT_PRED_FORMAT2(testing::IsSubstring, "foo",
   3468                       gtest_failures.GetTestPartResult(0).message());
   3469   EXPECT_PRED_FORMAT2(testing::IsSubstring, "my message",
   3470                       gtest_failures.GetTestPartResult(1).message());
   3471 }
   3472 
   3473 // Tests non-string assertions.
   3474 
   3475 // Tests EqFailure(), used for implementing *EQ* assertions.
   3476 TEST(AssertionTest, EqFailure) {
   3477   const String foo_val("5"), bar_val("6");
   3478   const String msg1(
   3479       EqFailure("foo", "bar", foo_val, bar_val, false)
   3480       .failure_message());
   3481   EXPECT_STREQ(
   3482       "Value of: bar\n"
   3483       "  Actual: 6\n"
   3484       "Expected: foo\n"
   3485       "Which is: 5",
   3486       msg1.c_str());
   3487 
   3488   const String msg2(
   3489       EqFailure("foo", "6", foo_val, bar_val, false)
   3490       .failure_message());
   3491   EXPECT_STREQ(
   3492       "Value of: 6\n"
   3493       "Expected: foo\n"
   3494       "Which is: 5",
   3495       msg2.c_str());
   3496 
   3497   const String msg3(
   3498       EqFailure("5", "bar", foo_val, bar_val, false)
   3499       .failure_message());
   3500   EXPECT_STREQ(
   3501       "Value of: bar\n"
   3502       "  Actual: 6\n"
   3503       "Expected: 5",
   3504       msg3.c_str());
   3505 
   3506   const String msg4(
   3507       EqFailure("5", "6", foo_val, bar_val, false).failure_message());
   3508   EXPECT_STREQ(
   3509       "Value of: 6\n"
   3510       "Expected: 5",
   3511       msg4.c_str());
   3512 
   3513   const String msg5(
   3514       EqFailure("foo", "bar",
   3515                 String("\"x\""), String("\"y\""),
   3516                 true).failure_message());
   3517   EXPECT_STREQ(
   3518       "Value of: bar\n"
   3519       "  Actual: \"y\"\n"
   3520       "Expected: foo (ignoring case)\n"
   3521       "Which is: \"x\"",
   3522       msg5.c_str());
   3523 }
   3524 
   3525 // Tests AppendUserMessage(), used for implementing the *EQ* macros.
   3526 TEST(AssertionTest, AppendUserMessage) {
   3527   const String foo("foo");
   3528 
   3529   Message msg;
   3530   EXPECT_STREQ("foo",
   3531                AppendUserMessage(foo, msg).c_str());
   3532 
   3533   msg << "bar";
   3534   EXPECT_STREQ("foo\nbar",
   3535                AppendUserMessage(foo, msg).c_str());
   3536 }
   3537 
   3538 #ifdef __BORLANDC__
   3539 // Silences warnings: "Condition is always true", "Unreachable code"
   3540 # pragma option push -w-ccc -w-rch
   3541 #endif
   3542 
   3543 // Tests ASSERT_TRUE.
   3544 TEST(AssertionTest, ASSERT_TRUE) {
   3545   ASSERT_TRUE(2 > 1);  // NOLINT
   3546   EXPECT_FATAL_FAILURE(ASSERT_TRUE(2 < 1),
   3547                        "2 < 1");
   3548 }
   3549 
   3550 // Tests ASSERT_TRUE(predicate) for predicates returning AssertionResult.
   3551 TEST(AssertionTest, AssertTrueWithAssertionResult) {
   3552   ASSERT_TRUE(ResultIsEven(2));
   3553 #ifndef __BORLANDC__
   3554   // ICE's in C++Builder.
   3555   EXPECT_FATAL_FAILURE(ASSERT_TRUE(ResultIsEven(3)),
   3556                        "Value of: ResultIsEven(3)\n"
   3557                        "  Actual: false (3 is odd)\n"
   3558                        "Expected: true");
   3559 #endif
   3560   ASSERT_TRUE(ResultIsEvenNoExplanation(2));
   3561   EXPECT_FATAL_FAILURE(ASSERT_TRUE(ResultIsEvenNoExplanation(3)),
   3562                        "Value of: ResultIsEvenNoExplanation(3)\n"
   3563                        "  Actual: false (3 is odd)\n"
   3564                        "Expected: true");
   3565 }
   3566 
   3567 // Tests ASSERT_FALSE.
   3568 TEST(AssertionTest, ASSERT_FALSE) {
   3569   ASSERT_FALSE(2 < 1);  // NOLINT
   3570   EXPECT_FATAL_FAILURE(ASSERT_FALSE(2 > 1),
   3571                        "Value of: 2 > 1\n"
   3572                        "  Actual: true\n"
   3573                        "Expected: false");
   3574 }
   3575 
   3576 // Tests ASSERT_FALSE(predicate) for predicates returning AssertionResult.
   3577 TEST(AssertionTest, AssertFalseWithAssertionResult) {
   3578   ASSERT_FALSE(ResultIsEven(3));
   3579 #ifndef __BORLANDC__
   3580   // ICE's in C++Builder.
   3581   EXPECT_FATAL_FAILURE(ASSERT_FALSE(ResultIsEven(2)),
   3582                        "Value of: ResultIsEven(2)\n"
   3583                        "  Actual: true (2 is even)\n"
   3584                        "Expected: false");
   3585 #endif
   3586   ASSERT_FALSE(ResultIsEvenNoExplanation(3));
   3587   EXPECT_FATAL_FAILURE(ASSERT_FALSE(ResultIsEvenNoExplanation(2)),
   3588                        "Value of: ResultIsEvenNoExplanation(2)\n"
   3589                        "  Actual: true\n"
   3590                        "Expected: false");
   3591 }
   3592 
   3593 #ifdef __BORLANDC__
   3594 // Restores warnings after previous "#pragma option push" supressed them
   3595 # pragma option pop
   3596 #endif
   3597 
   3598 // Tests using ASSERT_EQ on double values.  The purpose is to make
   3599 // sure that the specialization we did for integer and anonymous enums
   3600 // isn't used for double arguments.
   3601 TEST(ExpectTest, ASSERT_EQ_Double) {
   3602   // A success.
   3603   ASSERT_EQ(5.6, 5.6);
   3604 
   3605   // A failure.
   3606   EXPECT_FATAL_FAILURE(ASSERT_EQ(5.1, 5.2),
   3607                        "5.1");
   3608 }
   3609 
   3610 // Tests ASSERT_EQ.
   3611 TEST(AssertionTest, ASSERT_EQ) {
   3612   ASSERT_EQ(5, 2 + 3);
   3613   EXPECT_FATAL_FAILURE(ASSERT_EQ(5, 2*3),
   3614                        "Value of: 2*3\n"
   3615                        "  Actual: 6\n"
   3616                        "Expected: 5");
   3617 }
   3618 
   3619 // Tests ASSERT_EQ(NULL, pointer).
   3620 #if GTEST_CAN_COMPARE_NULL
   3621 TEST(AssertionTest, ASSERT_EQ_NULL) {
   3622   // A success.
   3623   const char* p = NULL;
   3624   // Some older GCC versions may issue a spurious waring in this or the next
   3625   // assertion statement. This warning should not be suppressed with
   3626   // static_cast since the test verifies the ability to use bare NULL as the
   3627   // expected parameter to the macro.
   3628   ASSERT_EQ(NULL, p);
   3629 
   3630   // A failure.
   3631   static int n = 0;
   3632   EXPECT_FATAL_FAILURE(ASSERT_EQ(NULL, &n),
   3633                        "Value of: &n\n");
   3634 }
   3635 #endif  // GTEST_CAN_COMPARE_NULL
   3636 
   3637 // Tests ASSERT_EQ(0, non_pointer).  Since the literal 0 can be
   3638 // treated as a null pointer by the compiler, we need to make sure
   3639 // that ASSERT_EQ(0, non_pointer) isn't interpreted by Google Test as
   3640 // ASSERT_EQ(static_cast<void*>(NULL), non_pointer).
   3641 TEST(ExpectTest, ASSERT_EQ_0) {
   3642   int n = 0;
   3643 
   3644   // A success.
   3645   ASSERT_EQ(0, n);
   3646 
   3647   // A failure.
   3648   EXPECT_FATAL_FAILURE(ASSERT_EQ(0, 5.6),
   3649                        "Expected: 0");
   3650 }
   3651 
   3652 // Tests ASSERT_NE.
   3653 TEST(AssertionTest, ASSERT_NE) {
   3654   ASSERT_NE(6, 7);
   3655   EXPECT_FATAL_FAILURE(ASSERT_NE('a', 'a'),
   3656                        "Expected: ('a') != ('a'), "
   3657                        "actual: 'a' (97, 0x61) vs 'a' (97, 0x61)");
   3658 }
   3659 
   3660 // Tests ASSERT_LE.
   3661 TEST(AssertionTest, ASSERT_LE) {
   3662   ASSERT_LE(2, 3);
   3663   ASSERT_LE(2, 2);
   3664   EXPECT_FATAL_FAILURE(ASSERT_LE(2, 0),
   3665                        "Expected: (2) <= (0), actual: 2 vs 0");
   3666 }
   3667 
   3668 // Tests ASSERT_LT.
   3669 TEST(AssertionTest, ASSERT_LT) {
   3670   ASSERT_LT(2, 3);
   3671   EXPECT_FATAL_FAILURE(ASSERT_LT(2, 2),
   3672                        "Expected: (2) < (2), actual: 2 vs 2");
   3673 }
   3674 
   3675 // Tests ASSERT_GE.
   3676 TEST(AssertionTest, ASSERT_GE) {
   3677   ASSERT_GE(2, 1);
   3678   ASSERT_GE(2, 2);
   3679   EXPECT_FATAL_FAILURE(ASSERT_GE(2, 3),
   3680                        "Expected: (2) >= (3), actual: 2 vs 3");
   3681 }
   3682 
   3683 // Tests ASSERT_GT.
   3684 TEST(AssertionTest, ASSERT_GT) {
   3685   ASSERT_GT(2, 1);
   3686   EXPECT_FATAL_FAILURE(ASSERT_GT(2, 2),
   3687                        "Expected: (2) > (2), actual: 2 vs 2");
   3688 }
   3689 
   3690 #if GTEST_HAS_EXCEPTIONS
   3691 
   3692 void ThrowNothing() {}
   3693 
   3694 // Tests ASSERT_THROW.
   3695 TEST(AssertionTest, ASSERT_THROW) {
   3696   ASSERT_THROW(ThrowAnInteger(), int);
   3697 
   3698 # ifndef __BORLANDC__
   3699 
   3700   // ICE's in C++Builder 2007 and 2009.
   3701   EXPECT_FATAL_FAILURE(
   3702       ASSERT_THROW(ThrowAnInteger(), bool),
   3703       "Expected: ThrowAnInteger() throws an exception of type bool.\n"
   3704       "  Actual: it throws a different type.");
   3705 # endif
   3706 
   3707   EXPECT_FATAL_FAILURE(
   3708       ASSERT_THROW(ThrowNothing(), bool),
   3709       "Expected: ThrowNothing() throws an exception of type bool.\n"
   3710       "  Actual: it throws nothing.");
   3711 }
   3712 
   3713 // Tests ASSERT_NO_THROW.
   3714 TEST(AssertionTest, ASSERT_NO_THROW) {
   3715   ASSERT_NO_THROW(ThrowNothing());
   3716   EXPECT_FATAL_FAILURE(ASSERT_NO_THROW(ThrowAnInteger()),
   3717                        "Expected: ThrowAnInteger() doesn't throw an exception."
   3718                        "\n  Actual: it throws.");
   3719 }
   3720 
   3721 // Tests ASSERT_ANY_THROW.
   3722 TEST(AssertionTest, ASSERT_ANY_THROW) {
   3723   ASSERT_ANY_THROW(ThrowAnInteger());
   3724   EXPECT_FATAL_FAILURE(
   3725       ASSERT_ANY_THROW(ThrowNothing()),
   3726       "Expected: ThrowNothing() throws an exception.\n"
   3727       "  Actual: it doesn't.");
   3728 }
   3729 
   3730 #endif  // GTEST_HAS_EXCEPTIONS
   3731 
   3732 // Makes sure we deal with the precedence of <<.  This test should
   3733 // compile.
   3734 TEST(AssertionTest, AssertPrecedence) {
   3735   ASSERT_EQ(1 < 2, true);
   3736   bool false_value = false;
   3737   ASSERT_EQ(true && false_value, false);
   3738 }
   3739 
   3740 // A subroutine used by the following test.
   3741 void TestEq1(int x) {
   3742   ASSERT_EQ(1, x);
   3743 }
   3744 
   3745 // Tests calling a test subroutine that's not part of a fixture.
   3746 TEST(AssertionTest, NonFixtureSubroutine) {
   3747   EXPECT_FATAL_FAILURE(TestEq1(2),
   3748                        "Value of: x");
   3749 }
   3750 
   3751 // An uncopyable class.
   3752 class Uncopyable {
   3753  public:
   3754   explicit Uncopyable(int a_value) : value_(a_value) {}
   3755 
   3756   int value() const { return value_; }
   3757   bool operator==(const Uncopyable& rhs) const {
   3758     return value() == rhs.value();
   3759   }
   3760  private:
   3761   // This constructor deliberately has no implementation, as we don't
   3762   // want this class to be copyable.
   3763   Uncopyable(const Uncopyable&);  // NOLINT
   3764 
   3765   int value_;
   3766 };
   3767 
   3768 ::std::ostream& operator<<(::std::ostream& os, const Uncopyable& value) {
   3769   return os << value.value();
   3770 }
   3771 
   3772 
   3773 bool IsPositiveUncopyable(const Uncopyable& x) {
   3774   return x.value() > 0;
   3775 }
   3776 
   3777 // A subroutine used by the following test.
   3778 void TestAssertNonPositive() {
   3779   Uncopyable y(-1);
   3780   ASSERT_PRED1(IsPositiveUncopyable, y);
   3781 }
   3782 // A subroutine used by the following test.
   3783 void TestAssertEqualsUncopyable() {
   3784   Uncopyable x(5);
   3785   Uncopyable y(-1);
   3786   ASSERT_EQ(x, y);
   3787 }
   3788 
   3789 // Tests that uncopyable objects can be used in assertions.
   3790 TEST(AssertionTest, AssertWorksWithUncopyableObject) {
   3791   Uncopyable x(5);
   3792   ASSERT_PRED1(IsPositiveUncopyable, x);
   3793   ASSERT_EQ(x, x);
   3794   EXPECT_FATAL_FAILURE(TestAssertNonPositive(),
   3795     "IsPositiveUncopyable(y) evaluates to false, where\ny evaluates to -1");
   3796   EXPECT_FATAL_FAILURE(TestAssertEqualsUncopyable(),
   3797     "Value of: y\n  Actual: -1\nExpected: x\nWhich is: 5");
   3798 }
   3799 
   3800 // Tests that uncopyable objects can be used in expects.
   3801 TEST(AssertionTest, ExpectWorksWithUncopyableObject) {
   3802   Uncopyable x(5);
   3803   EXPECT_PRED1(IsPositiveUncopyable, x);
   3804   Uncopyable y(-1);
   3805   EXPECT_NONFATAL_FAILURE(EXPECT_PRED1(IsPositiveUncopyable, y),
   3806     "IsPositiveUncopyable(y) evaluates to false, where\ny evaluates to -1");
   3807   EXPECT_EQ(x, x);
   3808   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(x, y),
   3809     "Value of: y\n  Actual: -1\nExpected: x\nWhich is: 5");
   3810 }
   3811 
   3812 enum NamedEnum {
   3813   kE1 = 0,
   3814   kE2 = 1
   3815 };
   3816 
   3817 TEST(AssertionTest, NamedEnum) {
   3818   EXPECT_EQ(kE1, kE1);
   3819   EXPECT_LT(kE1, kE2);
   3820   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(kE1, kE2), "Which is: 0");
   3821   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(kE1, kE2), "Actual: 1");
   3822 }
   3823 
   3824 // The version of gcc used in XCode 2.2 has a bug and doesn't allow
   3825 // anonymous enums in assertions.  Therefore the following test is not
   3826 // done on Mac.
   3827 // Sun Studio also rejects this code.
   3828 #if !GTEST_OS_MAC && !defined(__SUNPRO_CC)
   3829 
   3830 // Tests using assertions with anonymous enums.
   3831 enum {
   3832   kCaseA = -1,
   3833 
   3834 # if GTEST_OS_LINUX
   3835 
   3836   // We want to test the case where the size of the anonymous enum is
   3837   // larger than sizeof(int), to make sure our implementation of the
   3838   // assertions doesn't truncate the enums.  However, MSVC
   3839   // (incorrectly) doesn't allow an enum value to exceed the range of
   3840   // an int, so this has to be conditionally compiled.
   3841   //
   3842   // On Linux, kCaseB and kCaseA have the same value when truncated to
   3843   // int size.  We want to test whether this will confuse the
   3844   // assertions.
   3845   kCaseB = testing::internal::kMaxBiggestInt,
   3846 
   3847 # else
   3848 
   3849   kCaseB = INT_MAX,
   3850 
   3851 # endif  // GTEST_OS_LINUX
   3852 
   3853   kCaseC = 42,
   3854 };
   3855 
   3856 TEST(AssertionTest, AnonymousEnum) {
   3857 # if GTEST_OS_LINUX
   3858 
   3859   EXPECT_EQ(static_cast<int>(kCaseA), static_cast<int>(kCaseB));
   3860 
   3861 # endif  // GTEST_OS_LINUX
   3862 
   3863   EXPECT_EQ(kCaseA, kCaseA);
   3864   EXPECT_NE(kCaseA, kCaseB);
   3865   EXPECT_LT(kCaseA, kCaseB);
   3866   EXPECT_LE(kCaseA, kCaseB);
   3867   EXPECT_GT(kCaseB, kCaseA);
   3868   EXPECT_GE(kCaseA, kCaseA);
   3869   EXPECT_NONFATAL_FAILURE(EXPECT_GE(kCaseA, kCaseB),
   3870                           "(kCaseA) >= (kCaseB)");
   3871   EXPECT_NONFATAL_FAILURE(EXPECT_GE(kCaseA, kCaseC),
   3872                           "-1 vs 42");
   3873 
   3874   ASSERT_EQ(kCaseA, kCaseA);
   3875   ASSERT_NE(kCaseA, kCaseB);
   3876   ASSERT_LT(kCaseA, kCaseB);
   3877   ASSERT_LE(kCaseA, kCaseB);
   3878   ASSERT_GT(kCaseB, kCaseA);
   3879   ASSERT_GE(kCaseA, kCaseA);
   3880 
   3881 # ifndef __BORLANDC__
   3882 
   3883   // ICE's in C++Builder.
   3884   EXPECT_FATAL_FAILURE(ASSERT_EQ(kCaseA, kCaseB),
   3885                        "Value of: kCaseB");
   3886   EXPECT_FATAL_FAILURE(ASSERT_EQ(kCaseA, kCaseC),
   3887                        "Actual: 42");
   3888 # endif
   3889 
   3890   EXPECT_FATAL_FAILURE(ASSERT_EQ(kCaseA, kCaseC),
   3891                        "Which is: -1");
   3892 }
   3893 
   3894 #endif  // !GTEST_OS_MAC && !defined(__SUNPRO_CC)
   3895 
   3896 #if GTEST_OS_WINDOWS
   3897 
   3898 static HRESULT UnexpectedHRESULTFailure() {
   3899   return E_UNEXPECTED;
   3900 }
   3901 
   3902 static HRESULT OkHRESULTSuccess() {
   3903   return S_OK;
   3904 }
   3905 
   3906 static HRESULT FalseHRESULTSuccess() {
   3907   return S_FALSE;
   3908 }
   3909 
   3910 // HRESULT assertion tests test both zero and non-zero
   3911 // success codes as well as failure message for each.
   3912 //
   3913 // Windows CE doesn't support message texts.
   3914 TEST(HRESULTAssertionTest, EXPECT_HRESULT_SUCCEEDED) {
   3915   EXPECT_HRESULT_SUCCEEDED(S_OK);
   3916   EXPECT_HRESULT_SUCCEEDED(S_FALSE);
   3917 
   3918   EXPECT_NONFATAL_FAILURE(EXPECT_HRESULT_SUCCEEDED(UnexpectedHRESULTFailure()),
   3919     "Expected: (UnexpectedHRESULTFailure()) succeeds.\n"
   3920     "  Actual: 0x8000FFFF");
   3921 }
   3922 
   3923 TEST(HRESULTAssertionTest, ASSERT_HRESULT_SUCCEEDED) {
   3924   ASSERT_HRESULT_SUCCEEDED(S_OK);
   3925   ASSERT_HRESULT_SUCCEEDED(S_FALSE);
   3926 
   3927   EXPECT_FATAL_FAILURE(ASSERT_HRESULT_SUCCEEDED(UnexpectedHRESULTFailure()),
   3928     "Expected: (UnexpectedHRESULTFailure()) succeeds.\n"
   3929     "  Actual: 0x8000FFFF");
   3930 }
   3931 
   3932 TEST(HRESULTAssertionTest, EXPECT_HRESULT_FAILED) {
   3933   EXPECT_HRESULT_FAILED(E_UNEXPECTED);
   3934 
   3935   EXPECT_NONFATAL_FAILURE(EXPECT_HRESULT_FAILED(OkHRESULTSuccess()),
   3936     "Expected: (OkHRESULTSuccess()) fails.\n"
   3937     "  Actual: 0x00000000");
   3938   EXPECT_NONFATAL_FAILURE(EXPECT_HRESULT_FAILED(FalseHRESULTSuccess()),
   3939     "Expected: (FalseHRESULTSuccess()) fails.\n"
   3940     "  Actual: 0x00000001");
   3941 }
   3942 
   3943 TEST(HRESULTAssertionTest, ASSERT_HRESULT_FAILED) {
   3944   ASSERT_HRESULT_FAILED(E_UNEXPECTED);
   3945 
   3946 # ifndef __BORLANDC__
   3947 
   3948   // ICE's in C++Builder 2007 and 2009.
   3949   EXPECT_FATAL_FAILURE(ASSERT_HRESULT_FAILED(OkHRESULTSuccess()),
   3950     "Expected: (OkHRESULTSuccess()) fails.\n"
   3951     "  Actual: 0x00000000");
   3952 # endif
   3953 
   3954   EXPECT_FATAL_FAILURE(ASSERT_HRESULT_FAILED(FalseHRESULTSuccess()),
   3955     "Expected: (FalseHRESULTSuccess()) fails.\n"
   3956     "  Actual: 0x00000001");
   3957 }
   3958 
   3959 // Tests that streaming to the HRESULT macros works.
   3960 TEST(HRESULTAssertionTest, Streaming) {
   3961   EXPECT_HRESULT_SUCCEEDED(S_OK) << "unexpected failure";
   3962   ASSERT_HRESULT_SUCCEEDED(S_OK) << "unexpected failure";
   3963   EXPECT_HRESULT_FAILED(E_UNEXPECTED) << "unexpected failure";
   3964   ASSERT_HRESULT_FAILED(E_UNEXPECTED) << "unexpected failure";
   3965 
   3966   EXPECT_NONFATAL_FAILURE(
   3967       EXPECT_HRESULT_SUCCEEDED(E_UNEXPECTED) << "expected failure",
   3968       "expected failure");
   3969 
   3970 # ifndef __BORLANDC__
   3971 
   3972   // ICE's in C++Builder 2007 and 2009.
   3973   EXPECT_FATAL_FAILURE(
   3974       ASSERT_HRESULT_SUCCEEDED(E_UNEXPECTED) << "expected failure",
   3975       "expected failure");
   3976 # endif
   3977 
   3978   EXPECT_NONFATAL_FAILURE(
   3979       EXPECT_HRESULT_FAILED(S_OK) << "expected failure",
   3980       "expected failure");
   3981 
   3982   EXPECT_FATAL_FAILURE(
   3983       ASSERT_HRESULT_FAILED(S_OK) << "expected failure",
   3984       "expected failure");
   3985 }
   3986 
   3987 #endif  // GTEST_OS_WINDOWS
   3988 
   3989 #ifdef __BORLANDC__
   3990 // Silences warnings: "Condition is always true", "Unreachable code"
   3991 # pragma option push -w-ccc -w-rch
   3992 #endif
   3993 
   3994 // Tests that the assertion macros behave like single statements.
   3995 TEST(AssertionSyntaxTest, BasicAssertionsBehavesLikeSingleStatement) {
   3996   if (AlwaysFalse())
   3997     ASSERT_TRUE(false) << "This should never be executed; "
   3998                           "It's a compilation test only.";
   3999 
   4000   if (AlwaysTrue())
   4001     EXPECT_FALSE(false);
   4002   else
   4003     ;  // NOLINT
   4004 
   4005   if (AlwaysFalse())
   4006     ASSERT_LT(1, 3);
   4007 
   4008   if (AlwaysFalse())
   4009     ;  // NOLINT
   4010   else
   4011     EXPECT_GT(3, 2) << "";
   4012 }
   4013 
   4014 #if GTEST_HAS_EXCEPTIONS
   4015 // Tests that the compiler will not complain about unreachable code in the
   4016 // EXPECT_THROW/EXPECT_ANY_THROW/EXPECT_NO_THROW macros.
   4017 TEST(ExpectThrowTest, DoesNotGenerateUnreachableCodeWarning) {
   4018   int n = 0;
   4019 
   4020   EXPECT_THROW(throw 1, int);
   4021   EXPECT_NONFATAL_FAILURE(EXPECT_THROW(n++, int), "");
   4022   EXPECT_NONFATAL_FAILURE(EXPECT_THROW(throw 1, const char*), "");
   4023   EXPECT_NO_THROW(n++);
   4024   EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW(throw 1), "");
   4025   EXPECT_ANY_THROW(throw 1);
   4026   EXPECT_NONFATAL_FAILURE(EXPECT_ANY_THROW(n++), "");
   4027 }
   4028 
   4029 TEST(AssertionSyntaxTest, ExceptionAssertionsBehavesLikeSingleStatement) {
   4030   if (AlwaysFalse())
   4031     EXPECT_THROW(ThrowNothing(), bool);
   4032 
   4033   if (AlwaysTrue())
   4034     EXPECT_THROW(ThrowAnInteger(), int);
   4035   else
   4036     ;  // NOLINT
   4037 
   4038   if (AlwaysFalse())
   4039     EXPECT_NO_THROW(ThrowAnInteger());
   4040 
   4041   if (AlwaysTrue())
   4042     EXPECT_NO_THROW(ThrowNothing());
   4043   else
   4044     ;  // NOLINT
   4045 
   4046   if (AlwaysFalse())
   4047     EXPECT_ANY_THROW(ThrowNothing());
   4048 
   4049   if (AlwaysTrue())
   4050     EXPECT_ANY_THROW(ThrowAnInteger());
   4051   else
   4052     ;  // NOLINT
   4053 }
   4054 #endif  // GTEST_HAS_EXCEPTIONS
   4055 
   4056 TEST(AssertionSyntaxTest, NoFatalFailureAssertionsBehavesLikeSingleStatement) {
   4057   if (AlwaysFalse())
   4058     EXPECT_NO_FATAL_FAILURE(FAIL()) << "This should never be executed. "
   4059                                     << "It's a compilation test only.";
   4060   else
   4061     ;  // NOLINT
   4062 
   4063   if (AlwaysFalse())
   4064     ASSERT_NO_FATAL_FAILURE(FAIL()) << "";
   4065   else
   4066     ;  // NOLINT
   4067 
   4068   if (AlwaysTrue())
   4069     EXPECT_NO_FATAL_FAILURE(SUCCEED());
   4070   else
   4071     ;  // NOLINT
   4072 
   4073   if (AlwaysFalse())
   4074     ;  // NOLINT
   4075   else
   4076     ASSERT_NO_FATAL_FAILURE(SUCCEED());
   4077 }
   4078 
   4079 // Tests that the assertion macros work well with switch statements.
   4080 TEST(AssertionSyntaxTest, WorksWithSwitch) {
   4081   switch (0) {
   4082     case 1:
   4083       break;
   4084     default:
   4085       ASSERT_TRUE(true);
   4086   }
   4087 
   4088   switch (0)
   4089     case 0:
   4090       EXPECT_FALSE(false) << "EXPECT_FALSE failed in switch case";
   4091 
   4092   // Binary assertions are implemented using a different code path
   4093   // than the Boolean assertions.  Hence we test them separately.
   4094   switch (0) {
   4095     case 1:
   4096     default:
   4097       ASSERT_EQ(1, 1) << "ASSERT_EQ failed in default switch handler";
   4098   }
   4099 
   4100   switch (0)
   4101     case 0:
   4102       EXPECT_NE(1, 2);
   4103 }
   4104 
   4105 #if GTEST_HAS_EXCEPTIONS
   4106 
   4107 void ThrowAString() {
   4108     throw "String";
   4109 }
   4110 
   4111 // Test that the exception assertion macros compile and work with const
   4112 // type qualifier.
   4113 TEST(AssertionSyntaxTest, WorksWithConst) {
   4114     ASSERT_THROW(ThrowAString(), const char*);
   4115 
   4116     EXPECT_THROW(ThrowAString(), const char*);
   4117 }
   4118 
   4119 #endif  // GTEST_HAS_EXCEPTIONS
   4120 
   4121 }  // namespace
   4122 
   4123 namespace testing {
   4124 
   4125 // Tests that Google Test tracks SUCCEED*.
   4126 TEST(SuccessfulAssertionTest, SUCCEED) {
   4127   SUCCEED();
   4128   SUCCEED() << "OK";
   4129   EXPECT_EQ(2, GetUnitTestImpl()->current_test_result()->total_part_count());
   4130 }
   4131 
   4132 // Tests that Google Test doesn't track successful EXPECT_*.
   4133 TEST(SuccessfulAssertionTest, EXPECT) {
   4134   EXPECT_TRUE(true);
   4135   EXPECT_EQ(0, GetUnitTestImpl()->current_test_result()->total_part_count());
   4136 }
   4137 
   4138 // Tests that Google Test doesn't track successful EXPECT_STR*.
   4139 TEST(SuccessfulAssertionTest, EXPECT_STR) {
   4140   EXPECT_STREQ("", "");
   4141   EXPECT_EQ(0, GetUnitTestImpl()->current_test_result()->total_part_count());
   4142 }
   4143 
   4144 // Tests that Google Test doesn't track successful ASSERT_*.
   4145 TEST(SuccessfulAssertionTest, ASSERT) {
   4146   ASSERT_TRUE(true);
   4147   EXPECT_EQ(0, GetUnitTestImpl()->current_test_result()->total_part_count());
   4148 }
   4149 
   4150 // Tests that Google Test doesn't track successful ASSERT_STR*.
   4151 TEST(SuccessfulAssertionTest, ASSERT_STR) {
   4152   ASSERT_STREQ("", "");
   4153   EXPECT_EQ(0, GetUnitTestImpl()->current_test_result()->total_part_count());
   4154 }
   4155 
   4156 }  // namespace testing
   4157 
   4158 namespace {
   4159 
   4160 // Tests EXPECT_TRUE.
   4161 TEST(ExpectTest, EXPECT_TRUE) {
   4162   EXPECT_TRUE(2 > 1);  // NOLINT
   4163   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(2 < 1),
   4164                           "Value of: 2 < 1\n"
   4165                           "  Actual: false\n"
   4166                           "Expected: true");
   4167   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(2 > 3),
   4168                           "2 > 3");
   4169 }
   4170 
   4171 // Tests EXPECT_TRUE(predicate) for predicates returning AssertionResult.
   4172 TEST(ExpectTest, ExpectTrueWithAssertionResult) {
   4173   EXPECT_TRUE(ResultIsEven(2));
   4174   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(ResultIsEven(3)),
   4175                           "Value of: ResultIsEven(3)\n"
   4176                           "  Actual: false (3 is odd)\n"
   4177                           "Expected: true");
   4178   EXPECT_TRUE(ResultIsEvenNoExplanation(2));
   4179   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(ResultIsEvenNoExplanation(3)),
   4180                           "Value of: ResultIsEvenNoExplanation(3)\n"
   4181                           "  Actual: false (3 is odd)\n"
   4182                           "Expected: true");
   4183 }
   4184 
   4185 // Tests EXPECT_FALSE.
   4186 TEST(ExpectTest, EXPECT_FALSE) {
   4187   EXPECT_FALSE(2 < 1);  // NOLINT
   4188   EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(2 > 1),
   4189                           "Value of: 2 > 1\n"
   4190                           "  Actual: true\n"
   4191                           "Expected: false");
   4192   EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(2 < 3),
   4193                           "2 < 3");
   4194 }
   4195 
   4196 // Tests EXPECT_FALSE(predicate) for predicates returning AssertionResult.
   4197 TEST(ExpectTest, ExpectFalseWithAssertionResult) {
   4198   EXPECT_FALSE(ResultIsEven(3));
   4199   EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(ResultIsEven(2)),
   4200                           "Value of: ResultIsEven(2)\n"
   4201                           "  Actual: true (2 is even)\n"
   4202                           "Expected: false");
   4203   EXPECT_FALSE(ResultIsEvenNoExplanation(3));
   4204   EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(ResultIsEvenNoExplanation(2)),
   4205                           "Value of: ResultIsEvenNoExplanation(2)\n"
   4206                           "  Actual: true\n"
   4207                           "Expected: false");
   4208 }
   4209 
   4210 #ifdef __BORLANDC__
   4211 // Restores warnings after previous "#pragma option push" supressed them
   4212 # pragma option pop
   4213 #endif
   4214 
   4215 // Tests EXPECT_EQ.
   4216 TEST(ExpectTest, EXPECT_EQ) {
   4217   EXPECT_EQ(5, 2 + 3);
   4218   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(5, 2*3),
   4219                           "Value of: 2*3\n"
   4220                           "  Actual: 6\n"
   4221                           "Expected: 5");
   4222   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(5, 2 - 3),
   4223                           "2 - 3");
   4224 }
   4225 
   4226 // Tests using EXPECT_EQ on double values.  The purpose is to make
   4227 // sure that the specialization we did for integer and anonymous enums
   4228 // isn't used for double arguments.
   4229 TEST(ExpectTest, EXPECT_EQ_Double) {
   4230   // A success.
   4231   EXPECT_EQ(5.6, 5.6);
   4232 
   4233   // A failure.
   4234   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(5.1, 5.2),
   4235                           "5.1");
   4236 }
   4237 
   4238 #if GTEST_CAN_COMPARE_NULL
   4239 // Tests EXPECT_EQ(NULL, pointer).
   4240 TEST(ExpectTest, EXPECT_EQ_NULL) {
   4241   // A success.
   4242   const char* p = NULL;
   4243   // Some older GCC versions may issue a spurious warning in this or the next
   4244   // assertion statement. This warning should not be suppressed with
   4245   // static_cast since the test verifies the ability to use bare NULL as the
   4246   // expected parameter to the macro.
   4247   EXPECT_EQ(NULL, p);
   4248 
   4249   // A failure.
   4250   int n = 0;
   4251   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(NULL, &n),
   4252                           "Value of: &n\n");
   4253 }
   4254 #endif  // GTEST_CAN_COMPARE_NULL
   4255 
   4256 // Tests EXPECT_EQ(0, non_pointer).  Since the literal 0 can be
   4257 // treated as a null pointer by the compiler, we need to make sure
   4258 // that EXPECT_EQ(0, non_pointer) isn't interpreted by Google Test as
   4259 // EXPECT_EQ(static_cast<void*>(NULL), non_pointer).
   4260 TEST(ExpectTest, EXPECT_EQ_0) {
   4261   int n = 0;
   4262 
   4263   // A success.
   4264   EXPECT_EQ(0, n);
   4265 
   4266   // A failure.
   4267   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(0, 5.6),
   4268                           "Expected: 0");
   4269 }
   4270 
   4271 // Tests EXPECT_NE.
   4272 TEST(ExpectTest, EXPECT_NE) {
   4273   EXPECT_NE(6, 7);
   4274 
   4275   EXPECT_NONFATAL_FAILURE(EXPECT_NE('a', 'a'),
   4276                           "Expected: ('a') != ('a'), "
   4277                           "actual: 'a' (97, 0x61) vs 'a' (97, 0x61)");
   4278   EXPECT_NONFATAL_FAILURE(EXPECT_NE(2, 2),
   4279                           "2");
   4280   char* const p0 = NULL;
   4281   EXPECT_NONFATAL_FAILURE(EXPECT_NE(p0, p0),
   4282                           "p0");
   4283   // Only way to get the Nokia compiler to compile the cast
   4284   // is to have a separate void* variable first. Putting
   4285   // the two casts on the same line doesn't work, neither does
   4286   // a direct C-style to char*.
   4287   void* pv1 = (void*)0x1234;  // NOLINT
   4288   char* const p1 = reinterpret_cast<char*>(pv1);
   4289   EXPECT_NONFATAL_FAILURE(EXPECT_NE(p1, p1),
   4290                           "p1");
   4291 }
   4292 
   4293 // Tests EXPECT_LE.
   4294 TEST(ExpectTest, EXPECT_LE) {
   4295   EXPECT_LE(2, 3);
   4296   EXPECT_LE(2, 2);
   4297   EXPECT_NONFATAL_FAILURE(EXPECT_LE(2, 0),
   4298                           "Expected: (2) <= (0), actual: 2 vs 0");
   4299   EXPECT_NONFATAL_FAILURE(EXPECT_LE(1.1, 0.9),
   4300                           "(1.1) <= (0.9)");
   4301 }
   4302 
   4303 // Tests EXPECT_LT.
   4304 TEST(ExpectTest, EXPECT_LT) {
   4305   EXPECT_LT(2, 3);
   4306   EXPECT_NONFATAL_FAILURE(EXPECT_LT(2, 2),
   4307                           "Expected: (2) < (2), actual: 2 vs 2");
   4308   EXPECT_NONFATAL_FAILURE(EXPECT_LT(2, 1),
   4309                           "(2) < (1)");
   4310 }
   4311 
   4312 // Tests EXPECT_GE.
   4313 TEST(ExpectTest, EXPECT_GE) {
   4314   EXPECT_GE(2, 1);
   4315   EXPECT_GE(2, 2);
   4316   EXPECT_NONFATAL_FAILURE(EXPECT_GE(2, 3),
   4317                           "Expected: (2) >= (3), actual: 2 vs 3");
   4318   EXPECT_NONFATAL_FAILURE(EXPECT_GE(0.9, 1.1),
   4319                           "(0.9) >= (1.1)");
   4320 }
   4321 
   4322 // Tests EXPECT_GT.
   4323 TEST(ExpectTest, EXPECT_GT) {
   4324   EXPECT_GT(2, 1);
   4325   EXPECT_NONFATAL_FAILURE(EXPECT_GT(2, 2),
   4326                           "Expected: (2) > (2), actual: 2 vs 2");
   4327   EXPECT_NONFATAL_FAILURE(EXPECT_GT(2, 3),
   4328                           "(2) > (3)");
   4329 }
   4330 
   4331 #if GTEST_HAS_EXCEPTIONS
   4332 
   4333 // Tests EXPECT_THROW.
   4334 TEST(ExpectTest, EXPECT_THROW) {
   4335   EXPECT_THROW(ThrowAnInteger(), int);
   4336   EXPECT_NONFATAL_FAILURE(EXPECT_THROW(ThrowAnInteger(), bool),
   4337                           "Expected: ThrowAnInteger() throws an exception of "
   4338                           "type bool.\n  Actual: it throws a different type.");
   4339   EXPECT_NONFATAL_FAILURE(
   4340       EXPECT_THROW(ThrowNothing(), bool),
   4341       "Expected: ThrowNothing() throws an exception of type bool.\n"
   4342       "  Actual: it throws nothing.");
   4343 }
   4344 
   4345 // Tests EXPECT_NO_THROW.
   4346 TEST(ExpectTest, EXPECT_NO_THROW) {
   4347   EXPECT_NO_THROW(ThrowNothing());
   4348   EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW(ThrowAnInteger()),
   4349                           "Expected: ThrowAnInteger() doesn't throw an "
   4350                           "exception.\n  Actual: it throws.");
   4351 }
   4352 
   4353 // Tests EXPECT_ANY_THROW.
   4354 TEST(ExpectTest, EXPECT_ANY_THROW) {
   4355   EXPECT_ANY_THROW(ThrowAnInteger());
   4356   EXPECT_NONFATAL_FAILURE(
   4357       EXPECT_ANY_THROW(ThrowNothing()),
   4358       "Expected: ThrowNothing() throws an exception.\n"
   4359       "  Actual: it doesn't.");
   4360 }
   4361 
   4362 #endif  // GTEST_HAS_EXCEPTIONS
   4363 
   4364 // Make sure we deal with the precedence of <<.
   4365 TEST(ExpectTest, ExpectPrecedence) {
   4366   EXPECT_EQ(1 < 2, true);
   4367   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(true, true && false),
   4368                           "Value of: true && false");
   4369 }
   4370 
   4371 
   4372 // Tests the StreamableToString() function.
   4373 
   4374 // Tests using StreamableToString() on a scalar.
   4375 TEST(StreamableToStringTest, Scalar) {
   4376   EXPECT_STREQ("5", StreamableToString(5).c_str());
   4377 }
   4378 
   4379 // Tests using StreamableToString() on a non-char pointer.
   4380 TEST(StreamableToStringTest, Pointer) {
   4381   int n = 0;
   4382   int* p = &n;
   4383   EXPECT_STRNE("(null)", StreamableToString(p).c_str());
   4384 }
   4385 
   4386 // Tests using StreamableToString() on a NULL non-char pointer.
   4387 TEST(StreamableToStringTest, NullPointer) {
   4388   int* p = NULL;
   4389   EXPECT_STREQ("(null)", StreamableToString(p).c_str());
   4390 }
   4391 
   4392 // Tests using StreamableToString() on a C string.
   4393 TEST(StreamableToStringTest, CString) {
   4394   EXPECT_STREQ("Foo", StreamableToString("Foo").c_str());
   4395 }
   4396 
   4397 // Tests using StreamableToString() on a NULL C string.
   4398 TEST(StreamableToStringTest, NullCString) {
   4399   char* p = NULL;
   4400   EXPECT_STREQ("(null)", StreamableToString(p).c_str());
   4401 }
   4402 
   4403 // Tests using streamable values as assertion messages.
   4404 
   4405 // Tests using std::string as an assertion message.
   4406 TEST(StreamableTest, string) {
   4407   static const std::string str(
   4408       "This failure message is a std::string, and is expected.");
   4409   EXPECT_FATAL_FAILURE(FAIL() << str,
   4410                        str.c_str());
   4411 }
   4412 
   4413 // Tests that we can output strings containing embedded NULs.
   4414 // Limited to Linux because we can only do this with std::string's.
   4415 TEST(StreamableTest, stringWithEmbeddedNUL) {
   4416   static const char char_array_with_nul[] =
   4417       "Here's a NUL\0 and some more string";
   4418   static const std::string string_with_nul(char_array_with_nul,
   4419                                            sizeof(char_array_with_nul)
   4420                                            - 1);  // drops the trailing NUL
   4421   EXPECT_FATAL_FAILURE(FAIL() << string_with_nul,
   4422                        "Here's a NUL\\0 and some more string");
   4423 }
   4424 
   4425 // Tests that we can output a NUL char.
   4426 TEST(StreamableTest, NULChar) {
   4427   EXPECT_FATAL_FAILURE({  // NOLINT
   4428     FAIL() << "A NUL" << '\0' << " and some more string";
   4429   }, "A NUL\\0 and some more string");
   4430 }
   4431 
   4432 // Tests using int as an assertion message.
   4433 TEST(StreamableTest, int) {
   4434   EXPECT_FATAL_FAILURE(FAIL() << 900913,
   4435                        "900913");
   4436 }
   4437 
   4438 // Tests using NULL char pointer as an assertion message.
   4439 //
   4440 // In MSVC, streaming a NULL char * causes access violation.  Google Test
   4441 // implemented a workaround (substituting "(null)" for NULL).  This
   4442 // tests whether the workaround works.
   4443 TEST(StreamableTest, NullCharPtr) {
   4444   EXPECT_FATAL_FAILURE(FAIL() << static_cast<const char*>(NULL),
   4445                        "(null)");
   4446 }
   4447 
   4448 // Tests that basic IO manipulators (endl, ends, and flush) can be
   4449 // streamed to testing::Message.
   4450 TEST(StreamableTest, BasicIoManip) {
   4451   EXPECT_FATAL_FAILURE({  // NOLINT
   4452     FAIL() << "Line 1." << std::endl
   4453            << "A NUL char " << std::ends << std::flush << " in line 2.";
   4454   }, "Line 1.\nA NUL char \\0 in line 2.");
   4455 }
   4456 
   4457 // Tests the macros that haven't been covered so far.
   4458 
   4459 void AddFailureHelper(bool* aborted) {
   4460   *aborted = true;
   4461   ADD_FAILURE() << "Failure";
   4462   *aborted = false;
   4463 }
   4464 
   4465 // Tests ADD_FAILURE.
   4466 TEST(MacroTest, ADD_FAILURE) {
   4467   bool aborted = true;
   4468   EXPECT_NONFATAL_FAILURE(AddFailureHelper(&aborted),
   4469                           "Failure");
   4470   EXPECT_FALSE(aborted);
   4471 }
   4472 
   4473 // Tests ADD_FAILURE_AT.
   4474 TEST(MacroTest, ADD_FAILURE_AT) {
   4475   // Verifies that ADD_FAILURE_AT does generate a nonfatal failure and
   4476   // the failure message contains the user-streamed part.
   4477   EXPECT_NONFATAL_FAILURE(ADD_FAILURE_AT("foo.cc", 42) << "Wrong!", "Wrong!");
   4478 
   4479   // Verifies that the user-streamed part is optional.
   4480   EXPECT_NONFATAL_FAILURE(ADD_FAILURE_AT("foo.cc", 42), "Failed");
   4481 
   4482   // Unfortunately, we cannot verify that the failure message contains
   4483   // the right file path and line number the same way, as
   4484   // EXPECT_NONFATAL_FAILURE() doesn't get to see the file path and
   4485   // line number.  Instead, we do that in gtest_output_test_.cc.
   4486 }
   4487 
   4488 // Tests FAIL.
   4489 TEST(MacroTest, FAIL) {
   4490   EXPECT_FATAL_FAILURE(FAIL(),
   4491                        "Failed");
   4492   EXPECT_FATAL_FAILURE(FAIL() << "Intentional failure.",
   4493                        "Intentional failure.");
   4494 }
   4495 
   4496 // Tests SUCCEED
   4497 TEST(MacroTest, SUCCEED) {
   4498   SUCCEED();
   4499   SUCCEED() << "Explicit success.";
   4500 }
   4501 
   4502 
   4503 // Tests for EXPECT_EQ() and ASSERT_EQ().
   4504 //
   4505 // These tests fail *intentionally*, s.t. the failure messages can be
   4506 // generated and tested.
   4507 //
   4508 // We have different tests for different argument types.
   4509 
   4510 // Tests using bool values in {EXPECT|ASSERT}_EQ.
   4511 TEST(EqAssertionTest, Bool) {
   4512   EXPECT_EQ(true,  true);
   4513   EXPECT_FATAL_FAILURE({
   4514       bool false_value = false;
   4515       ASSERT_EQ(false_value, true);
   4516     }, "Value of: true");
   4517 }
   4518 
   4519 // Tests using int values in {EXPECT|ASSERT}_EQ.
   4520 TEST(EqAssertionTest, Int) {
   4521   ASSERT_EQ(32, 32);
   4522   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(32, 33),
   4523                           "33");
   4524 }
   4525 
   4526 // Tests using time_t values in {EXPECT|ASSERT}_EQ.
   4527 TEST(EqAssertionTest, Time_T) {
   4528   EXPECT_EQ(static_cast<time_t>(0),
   4529             static_cast<time_t>(0));
   4530   EXPECT_FATAL_FAILURE(ASSERT_EQ(static_cast<time_t>(0),
   4531                                  static_cast<time_t>(1234)),
   4532                        "1234");
   4533 }
   4534 
   4535 // Tests using char values in {EXPECT|ASSERT}_EQ.
   4536 TEST(EqAssertionTest, Char) {
   4537   ASSERT_EQ('z', 'z');
   4538   const char ch = 'b';
   4539   EXPECT_NONFATAL_FAILURE(EXPECT_EQ('\0', ch),
   4540                           "ch");
   4541   EXPECT_NONFATAL_FAILURE(EXPECT_EQ('a', ch),
   4542                           "ch");
   4543 }
   4544 
   4545 // Tests using wchar_t values in {EXPECT|ASSERT}_EQ.
   4546 TEST(EqAssertionTest, WideChar) {
   4547   EXPECT_EQ(L'b', L'b');
   4548 
   4549   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(L'\0', L'x'),
   4550                           "Value of: L'x'\n"
   4551                           "  Actual: L'x' (120, 0x78)\n"
   4552                           "Expected: L'\0'\n"
   4553                           "Which is: L'\0' (0, 0x0)");
   4554 
   4555   static wchar_t wchar;
   4556   wchar = L'b';
   4557   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(L'a', wchar),
   4558                           "wchar");
   4559   wchar = 0x8119;
   4560   EXPECT_FATAL_FAILURE(ASSERT_EQ(static_cast<wchar_t>(0x8120), wchar),
   4561                        "Value of: wchar");
   4562 }
   4563 
   4564 // Tests using ::std::string values in {EXPECT|ASSERT}_EQ.
   4565 TEST(EqAssertionTest, StdString) {
   4566   // Compares a const char* to an std::string that has identical
   4567   // content.
   4568   ASSERT_EQ("Test", ::std::string("Test"));
   4569 
   4570   // Compares two identical std::strings.
   4571   static const ::std::string str1("A * in the middle");
   4572   static const ::std::string str2(str1);
   4573   EXPECT_EQ(str1, str2);
   4574 
   4575   // Compares a const char* to an std::string that has different
   4576   // content
   4577   EXPECT_NONFATAL_FAILURE(EXPECT_EQ("Test", ::std::string("test")),
   4578                           "::std::string(\"test\")");
   4579 
   4580   // Compares an std::string to a char* that has different content.
   4581   char* const p1 = const_cast<char*>("foo");
   4582   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(::std::string("bar"), p1),
   4583                           "p1");
   4584 
   4585   // Compares two std::strings that have different contents, one of
   4586   // which having a NUL character in the middle.  This should fail.
   4587   static ::std::string str3(str1);
   4588   str3.at(2) = '\0';
   4589   EXPECT_FATAL_FAILURE(ASSERT_EQ(str1, str3),
   4590                        "Value of: str3\n"
   4591                        "  Actual: \"A \\0 in the middle\"");
   4592 }
   4593 
   4594 #if GTEST_HAS_STD_WSTRING
   4595 
   4596 // Tests using ::std::wstring values in {EXPECT|ASSERT}_EQ.
   4597 TEST(EqAssertionTest, StdWideString) {
   4598   // Compares two identical std::wstrings.
   4599   const ::std::wstring wstr1(L"A * in the middle");
   4600   const ::std::wstring wstr2(wstr1);
   4601   ASSERT_EQ(wstr1, wstr2);
   4602 
   4603   // Compares an std::wstring to a const wchar_t* that has identical
   4604   // content.
   4605   const wchar_t kTestX8119[] = { 'T', 'e', 's', 't', 0x8119, '\0' };
   4606   EXPECT_EQ(::std::wstring(kTestX8119), kTestX8119);
   4607 
   4608   // Compares an std::wstring to a const wchar_t* that has different
   4609   // content.
   4610   const wchar_t kTestX8120[] = { 'T', 'e', 's', 't', 0x8120, '\0' };
   4611   EXPECT_NONFATAL_FAILURE({  // NOLINT
   4612     EXPECT_EQ(::std::wstring(kTestX8119), kTestX8120);
   4613   }, "kTestX8120");
   4614 
   4615   // Compares two std::wstrings that have different contents, one of
   4616   // which having a NUL character in the middle.
   4617   ::std::wstring wstr3(wstr1);
   4618   wstr3.at(2) = L'\0';
   4619   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(wstr1, wstr3),
   4620                           "wstr3");
   4621 
   4622   // Compares a wchar_t* to an std::wstring that has different
   4623   // content.
   4624   EXPECT_FATAL_FAILURE({  // NOLINT
   4625     ASSERT_EQ(const_cast<wchar_t*>(L"foo"), ::std::wstring(L"bar"));
   4626   }, "");
   4627 }
   4628 
   4629 #endif  // GTEST_HAS_STD_WSTRING
   4630 
   4631 #if GTEST_HAS_GLOBAL_STRING
   4632 // Tests using ::string values in {EXPECT|ASSERT}_EQ.
   4633 TEST(EqAssertionTest, GlobalString) {
   4634   // Compares a const char* to a ::string that has identical content.
   4635   EXPECT_EQ("Test", ::string("Test"));
   4636 
   4637   // Compares two identical ::strings.
   4638   const ::string str1("A * in the middle");
   4639   const ::string str2(str1);
   4640   ASSERT_EQ(str1, str2);
   4641 
   4642   // Compares a ::string to a const char* that has different content.
   4643   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(::string("Test"), "test"),
   4644                           "test");
   4645 
   4646   // Compares two ::strings that have different contents, one of which
   4647   // having a NUL character in the middle.
   4648   ::string str3(str1);
   4649   str3.at(2) = '\0';
   4650   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(str1, str3),
   4651                           "str3");
   4652 
   4653   // Compares a ::string to a char* that has different content.
   4654   EXPECT_FATAL_FAILURE({  // NOLINT
   4655     ASSERT_EQ(::string("bar"), const_cast<char*>("foo"));
   4656   }, "");
   4657 }
   4658 
   4659 #endif  // GTEST_HAS_GLOBAL_STRING
   4660 
   4661 #if GTEST_HAS_GLOBAL_WSTRING
   4662 
   4663 // Tests using ::wstring values in {EXPECT|ASSERT}_EQ.
   4664 TEST(EqAssertionTest, GlobalWideString) {
   4665   // Compares two identical ::wstrings.
   4666   static const ::wstring wstr1(L"A * in the middle");
   4667   static const ::wstring wstr2(wstr1);
   4668   EXPECT_EQ(wstr1, wstr2);
   4669 
   4670   // Compares a const wchar_t* to a ::wstring that has identical content.
   4671   const wchar_t kTestX8119[] = { 'T', 'e', 's', 't', 0x8119, '\0' };
   4672   ASSERT_EQ(kTestX8119, ::wstring(kTestX8119));
   4673 
   4674   // Compares a const wchar_t* to a ::wstring that has different
   4675   // content.
   4676   const wchar_t kTestX8120[] = { 'T', 'e', 's', 't', 0x8120, '\0' };
   4677   EXPECT_NONFATAL_FAILURE({  // NOLINT
   4678     EXPECT_EQ(kTestX8120, ::wstring(kTestX8119));
   4679   }, "Test\\x8119");
   4680 
   4681   // Compares a wchar_t* to a ::wstring that has different content.
   4682   wchar_t* const p1 = const_cast<wchar_t*>(L"foo");
   4683   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p1, ::wstring(L"bar")),
   4684                           "bar");
   4685 
   4686   // Compares two ::wstrings that have different contents, one of which
   4687   // having a NUL character in the middle.
   4688   static ::wstring wstr3;
   4689   wstr3 = wstr1;
   4690   wstr3.at(2) = L'\0';
   4691   EXPECT_FATAL_FAILURE(ASSERT_EQ(wstr1, wstr3),
   4692                        "wstr3");
   4693 }
   4694 
   4695 #endif  // GTEST_HAS_GLOBAL_WSTRING
   4696 
   4697 // Tests using char pointers in {EXPECT|ASSERT}_EQ.
   4698 TEST(EqAssertionTest, CharPointer) {
   4699   char* const p0 = NULL;
   4700   // Only way to get the Nokia compiler to compile the cast
   4701   // is to have a separate void* variable first. Putting
   4702   // the two casts on the same line doesn't work, neither does
   4703   // a direct C-style to char*.
   4704   void* pv1 = (void*)0x1234;  // NOLINT
   4705   void* pv2 = (void*)0xABC0;  // NOLINT
   4706   char* const p1 = reinterpret_cast<char*>(pv1);
   4707   char* const p2 = reinterpret_cast<char*>(pv2);
   4708   ASSERT_EQ(p1, p1);
   4709 
   4710   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p0, p2),
   4711                           "Value of: p2");
   4712   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p1, p2),
   4713                           "p2");
   4714   EXPECT_FATAL_FAILURE(ASSERT_EQ(reinterpret_cast<char*>(0x1234),
   4715                                  reinterpret_cast<char*>(0xABC0)),
   4716                        "ABC0");
   4717 }
   4718 
   4719 // Tests using wchar_t pointers in {EXPECT|ASSERT}_EQ.
   4720 TEST(EqAssertionTest, WideCharPointer) {
   4721   wchar_t* const p0 = NULL;
   4722   // Only way to get the Nokia compiler to compile the cast
   4723   // is to have a separate void* variable first. Putting
   4724   // the two casts on the same line doesn't work, neither does
   4725   // a direct C-style to char*.
   4726   void* pv1 = (void*)0x1234;  // NOLINT
   4727   void* pv2 = (void*)0xABC0;  // NOLINT
   4728   wchar_t* const p1 = reinterpret_cast<wchar_t*>(pv1);
   4729   wchar_t* const p2 = reinterpret_cast<wchar_t*>(pv2);
   4730   EXPECT_EQ(p0, p0);
   4731 
   4732   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p0, p2),
   4733                           "Value of: p2");
   4734   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p1, p2),
   4735                           "p2");
   4736   void* pv3 = (void*)0x1234;  // NOLINT
   4737   void* pv4 = (void*)0xABC0;  // NOLINT
   4738   const wchar_t* p3 = reinterpret_cast<const wchar_t*>(pv3);
   4739   const wchar_t* p4 = reinterpret_cast<const wchar_t*>(pv4);
   4740   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p3, p4),
   4741                           "p4");
   4742 }
   4743 
   4744 // Tests using other types of pointers in {EXPECT|ASSERT}_EQ.
   4745 TEST(EqAssertionTest, OtherPointer) {
   4746   ASSERT_EQ(static_cast<const int*>(NULL),
   4747             static_cast<const int*>(NULL));
   4748   EXPECT_FATAL_FAILURE(ASSERT_EQ(static_cast<const int*>(NULL),
   4749                                  reinterpret_cast<const int*>(0x1234)),
   4750                        "0x1234");
   4751 }
   4752 
   4753 // A class that supports binary comparison operators but not streaming.
   4754 class UnprintableChar {
   4755  public:
   4756   explicit UnprintableChar(char ch) : char_(ch) {}
   4757 
   4758   bool operator==(const UnprintableChar& rhs) const {
   4759     return char_ == rhs.char_;
   4760   }
   4761   bool operator!=(const UnprintableChar& rhs) const {
   4762     return char_ != rhs.char_;
   4763   }
   4764   bool operator<(const UnprintableChar& rhs) const {
   4765     return char_ < rhs.char_;
   4766   }
   4767   bool operator<=(const UnprintableChar& rhs) const {
   4768     return char_ <= rhs.char_;
   4769   }
   4770   bool operator>(const UnprintableChar& rhs) const {
   4771     return char_ > rhs.char_;
   4772   }
   4773   bool operator>=(const UnprintableChar& rhs) const {
   4774     return char_ >= rhs.char_;
   4775   }
   4776 
   4777  private:
   4778   char char_;
   4779 };
   4780 
   4781 // Tests that ASSERT_EQ() and friends don't require the arguments to
   4782 // be printable.
   4783 TEST(ComparisonAssertionTest, AcceptsUnprintableArgs) {
   4784   const UnprintableChar x('x'), y('y');
   4785   ASSERT_EQ(x, x);
   4786   EXPECT_NE(x, y);
   4787   ASSERT_LT(x, y);
   4788   EXPECT_LE(x, y);
   4789   ASSERT_GT(y, x);
   4790   EXPECT_GE(x, x);
   4791 
   4792   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(x, y), "1-byte object <78>");
   4793   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(x, y), "1-byte object <79>");
   4794   EXPECT_NONFATAL_FAILURE(EXPECT_LT(y, y), "1-byte object <79>");
   4795   EXPECT_NONFATAL_FAILURE(EXPECT_GT(x, y), "1-byte object <78>");
   4796   EXPECT_NONFATAL_FAILURE(EXPECT_GT(x, y), "1-byte object <79>");
   4797 
   4798   // Code tested by EXPECT_FATAL_FAILURE cannot reference local
   4799   // variables, so we have to write UnprintableChar('x') instead of x.
   4800 #ifndef __BORLANDC__
   4801   // ICE's in C++Builder.
   4802   EXPECT_FATAL_FAILURE(ASSERT_NE(UnprintableChar('x'), UnprintableChar('x')),
   4803                        "1-byte object <78>");
   4804   EXPECT_FATAL_FAILURE(ASSERT_LE(UnprintableChar('y'), UnprintableChar('x')),
   4805                        "1-byte object <78>");
   4806 #endif
   4807   EXPECT_FATAL_FAILURE(ASSERT_LE(UnprintableChar('y'), UnprintableChar('x')),
   4808                        "1-byte object <79>");
   4809   EXPECT_FATAL_FAILURE(ASSERT_GE(UnprintableChar('x'), UnprintableChar('y')),
   4810                        "1-byte object <78>");
   4811   EXPECT_FATAL_FAILURE(ASSERT_GE(UnprintableChar('x'), UnprintableChar('y')),
   4812                        "1-byte object <79>");
   4813 }
   4814 
   4815 // Tests the FRIEND_TEST macro.
   4816 
   4817 // This class has a private member we want to test.  We will test it
   4818 // both in a TEST and in a TEST_F.
   4819 class Foo {
   4820  public:
   4821   Foo() {}
   4822 
   4823  private:
   4824   int Bar() const { return 1; }
   4825 
   4826   // Declares the friend tests that can access the private member
   4827   // Bar().
   4828   FRIEND_TEST(FRIEND_TEST_Test, TEST);
   4829   FRIEND_TEST(FRIEND_TEST_Test2, TEST_F);
   4830 };
   4831 
   4832 // Tests that the FRIEND_TEST declaration allows a TEST to access a
   4833 // class's private members.  This should compile.
   4834 TEST(FRIEND_TEST_Test, TEST) {
   4835   ASSERT_EQ(1, Foo().Bar());
   4836 }
   4837 
   4838 // The fixture needed to test using FRIEND_TEST with TEST_F.
   4839 class FRIEND_TEST_Test2 : public Test {
   4840  protected:
   4841   Foo foo;
   4842 };
   4843 
   4844 // Tests that the FRIEND_TEST declaration allows a TEST_F to access a
   4845 // class's private members.  This should compile.
   4846 TEST_F(FRIEND_TEST_Test2, TEST_F) {
   4847   ASSERT_EQ(1, foo.Bar());
   4848 }
   4849 
   4850 // Tests the life cycle of Test objects.
   4851 
   4852 // The test fixture for testing the life cycle of Test objects.
   4853 //
   4854 // This class counts the number of live test objects that uses this
   4855 // fixture.
   4856 class TestLifeCycleTest : public Test {
   4857  protected:
   4858   // Constructor.  Increments the number of test objects that uses
   4859   // this fixture.
   4860   TestLifeCycleTest() { count_++; }
   4861 
   4862   // Destructor.  Decrements the number of test objects that uses this
   4863   // fixture.
   4864   ~TestLifeCycleTest() { count_--; }
   4865 
   4866   // Returns the number of live test objects that uses this fixture.
   4867   int count() const { return count_; }
   4868 
   4869  private:
   4870   static int count_;
   4871 };
   4872 
   4873 int TestLifeCycleTest::count_ = 0;
   4874 
   4875 // Tests the life cycle of test objects.
   4876 TEST_F(TestLifeCycleTest, Test1) {
   4877   // There should be only one test object in this test case that's
   4878   // currently alive.
   4879   ASSERT_EQ(1, count());
   4880 }
   4881 
   4882 // Tests the life cycle of test objects.
   4883 TEST_F(TestLifeCycleTest, Test2) {
   4884   // After Test1 is done and Test2 is started, there should still be
   4885   // only one live test object, as the object for Test1 should've been
   4886   // deleted.
   4887   ASSERT_EQ(1, count());
   4888 }
   4889 
   4890 }  // namespace
   4891 
   4892 // Tests that the copy constructor works when it is NOT optimized away by
   4893 // the compiler.
   4894 TEST(AssertionResultTest, CopyConstructorWorksWhenNotOptimied) {
   4895   // Checks that the copy constructor doesn't try to dereference NULL pointers
   4896   // in the source object.
   4897   AssertionResult r1 = AssertionSuccess();
   4898   AssertionResult r2 = r1;
   4899   // The following line is added to prevent the compiler from optimizing
   4900   // away the constructor call.
   4901   r1 << "abc";
   4902 
   4903   AssertionResult r3 = r1;
   4904   EXPECT_EQ(static_cast<bool>(r3), static_cast<bool>(r1));
   4905   EXPECT_STREQ("abc", r1.message());
   4906 }
   4907 
   4908 // Tests that AssertionSuccess and AssertionFailure construct
   4909 // AssertionResult objects as expected.
   4910 TEST(AssertionResultTest, ConstructionWorks) {
   4911   AssertionResult r1 = AssertionSuccess();
   4912   EXPECT_TRUE(r1);
   4913   EXPECT_STREQ("", r1.message());
   4914 
   4915   AssertionResult r2 = AssertionSuccess() << "abc";
   4916   EXPECT_TRUE(r2);
   4917   EXPECT_STREQ("abc", r2.message());
   4918 
   4919   AssertionResult r3 = AssertionFailure();
   4920   EXPECT_FALSE(r3);
   4921   EXPECT_STREQ("", r3.message());
   4922 
   4923   AssertionResult r4 = AssertionFailure() << "def";
   4924   EXPECT_FALSE(r4);
   4925   EXPECT_STREQ("def", r4.message());
   4926 
   4927   AssertionResult r5 = AssertionFailure(Message() << "ghi");
   4928   EXPECT_FALSE(r5);
   4929   EXPECT_STREQ("ghi", r5.message());
   4930 }
   4931 
   4932 // Tests that the negation flips the predicate result but keeps the message.
   4933 TEST(AssertionResultTest, NegationWorks) {
   4934   AssertionResult r1 = AssertionSuccess() << "abc";
   4935   EXPECT_FALSE(!r1);
   4936   EXPECT_STREQ("abc", (!r1).message());
   4937 
   4938   AssertionResult r2 = AssertionFailure() << "def";
   4939   EXPECT_TRUE(!r2);
   4940   EXPECT_STREQ("def", (!r2).message());
   4941 }
   4942 
   4943 TEST(AssertionResultTest, StreamingWorks) {
   4944   AssertionResult r = AssertionSuccess();
   4945   r << "abc" << 'd' << 0 << true;
   4946   EXPECT_STREQ("abcd0true", r.message());
   4947 }
   4948 
   4949 TEST(AssertionResultTest, CanStreamOstreamManipulators) {
   4950   AssertionResult r = AssertionSuccess();
   4951   r << "Data" << std::endl << std::flush << std::ends << "Will be visible";
   4952   EXPECT_STREQ("Data\n\\0Will be visible", r.message());
   4953 }
   4954 
   4955 // Tests streaming a user type whose definition and operator << are
   4956 // both in the global namespace.
   4957 class Base {
   4958  public:
   4959   explicit Base(int an_x) : x_(an_x) {}
   4960   int x() const { return x_; }
   4961  private:
   4962   int x_;
   4963 };
   4964 std::ostream& operator<<(std::ostream& os,
   4965                          const Base& val) {
   4966   return os << val.x();
   4967 }
   4968 std::ostream& operator<<(std::ostream& os,
   4969                          const Base* pointer) {
   4970   return os << "(" << pointer->x() << ")";
   4971 }
   4972 
   4973 TEST(MessageTest, CanStreamUserTypeInGlobalNameSpace) {
   4974   Message msg;
   4975   Base a(1);
   4976 
   4977   msg << a << &a;  // Uses ::operator<<.
   4978   EXPECT_STREQ("1(1)", msg.GetString().c_str());
   4979 }
   4980 
   4981 // Tests streaming a user type whose definition and operator<< are
   4982 // both in an unnamed namespace.
   4983 namespace {
   4984 class MyTypeInUnnamedNameSpace : public Base {
   4985  public:
   4986   explicit MyTypeInUnnamedNameSpace(int an_x): Base(an_x) {}
   4987 };
   4988 std::ostream& operator<<(std::ostream& os,
   4989                          const MyTypeInUnnamedNameSpace& val) {
   4990   return os << val.x();
   4991 }
   4992 std::ostream& operator<<(std::ostream& os,
   4993                          const MyTypeInUnnamedNameSpace* pointer) {
   4994   return os << "(" << pointer->x() << ")";
   4995 }
   4996 }  // namespace
   4997 
   4998 TEST(MessageTest, CanStreamUserTypeInUnnamedNameSpace) {
   4999   Message msg;
   5000   MyTypeInUnnamedNameSpace a(1);
   5001 
   5002   msg << a << &a;  // Uses <unnamed_namespace>::operator<<.
   5003   EXPECT_STREQ("1(1)", msg.GetString().c_str());
   5004 }
   5005 
   5006 // Tests streaming a user type whose definition and operator<< are
   5007 // both in a user namespace.
   5008 namespace namespace1 {
   5009 class MyTypeInNameSpace1 : public Base {
   5010  public:
   5011   explicit MyTypeInNameSpace1(int an_x): Base(an_x) {}
   5012 };
   5013 std::ostream& operator<<(std::ostream& os,
   5014                          const MyTypeInNameSpace1& val) {
   5015   return os << val.x();
   5016 }
   5017 std::ostream& operator<<(std::ostream& os,
   5018                          const MyTypeInNameSpace1* pointer) {
   5019   return os << "(" << pointer->x() << ")";
   5020 }
   5021 }  // namespace namespace1
   5022 
   5023 TEST(MessageTest, CanStreamUserTypeInUserNameSpace) {
   5024   Message msg;
   5025   namespace1::MyTypeInNameSpace1 a(1);
   5026 
   5027   msg << a << &a;  // Uses namespace1::operator<<.
   5028   EXPECT_STREQ("1(1)", msg.GetString().c_str());
   5029 }
   5030 
   5031 // Tests streaming a user type whose definition is in a user namespace
   5032 // but whose operator<< is in the global namespace.
   5033 namespace namespace2 {
   5034 class MyTypeInNameSpace2 : public ::Base {
   5035  public:
   5036   explicit MyTypeInNameSpace2(int an_x): Base(an_x) {}
   5037 };
   5038 }  // namespace namespace2
   5039 std::ostream& operator<<(std::ostream& os,
   5040                          const namespace2::MyTypeInNameSpace2& val) {
   5041   return os << val.x();
   5042 }
   5043 std::ostream& operator<<(std::ostream& os,
   5044                          const namespace2::MyTypeInNameSpace2* pointer) {
   5045   return os << "(" << pointer->x() << ")";
   5046 }
   5047 
   5048 TEST(MessageTest, CanStreamUserTypeInUserNameSpaceWithStreamOperatorInGlobal) {
   5049   Message msg;
   5050   namespace2::MyTypeInNameSpace2 a(1);
   5051 
   5052   msg << a << &a;  // Uses ::operator<<.
   5053   EXPECT_STREQ("1(1)", msg.GetString().c_str());
   5054 }
   5055 
   5056 // Tests streaming NULL pointers to testing::Message.
   5057 TEST(MessageTest, NullPointers) {
   5058   Message msg;
   5059   char* const p1 = NULL;
   5060   unsigned char* const p2 = NULL;
   5061   int* p3 = NULL;
   5062   double* p4 = NULL;
   5063   bool* p5 = NULL;
   5064   Message* p6 = NULL;
   5065 
   5066   msg << p1 << p2 << p3 << p4 << p5 << p6;
   5067   ASSERT_STREQ("(null)(null)(null)(null)(null)(null)",
   5068                msg.GetString().c_str());
   5069 }
   5070 
   5071 // Tests streaming wide strings to testing::Message.
   5072 TEST(MessageTest, WideStrings) {
   5073   // Streams a NULL of type const wchar_t*.
   5074   const wchar_t* const_wstr = NULL;
   5075   EXPECT_STREQ("(null)",
   5076                (Message() << const_wstr).GetString().c_str());
   5077 
   5078   // Streams a NULL of type wchar_t*.
   5079   wchar_t* wstr = NULL;
   5080   EXPECT_STREQ("(null)",
   5081                (Message() << wstr).GetString().c_str());
   5082 
   5083   // Streams a non-NULL of type const wchar_t*.
   5084   const_wstr = L"abc\x8119";
   5085   EXPECT_STREQ("abc\xe8\x84\x99",
   5086                (Message() << const_wstr).GetString().c_str());
   5087 
   5088   // Streams a non-NULL of type wchar_t*.
   5089   wstr = const_cast<wchar_t*>(const_wstr);
   5090   EXPECT_STREQ("abc\xe8\x84\x99",
   5091                (Message() << wstr).GetString().c_str());
   5092 }
   5093 
   5094 
   5095 // This line tests that we can define tests in the testing namespace.
   5096 namespace testing {
   5097 
   5098 // Tests the TestInfo class.
   5099 
   5100 class TestInfoTest : public Test {
   5101  protected:
   5102   static const TestInfo* GetTestInfo(const char* test_name) {
   5103     const TestCase* const test_case = GetUnitTestImpl()->
   5104         GetTestCase("TestInfoTest", "", NULL, NULL);
   5105 
   5106     for (int i = 0; i < test_case->total_test_count(); ++i) {
   5107       const TestInfo* const test_info = test_case->GetTestInfo(i);
   5108       if (strcmp(test_name, test_info->name()) == 0)
   5109         return test_info;
   5110     }
   5111     return NULL;
   5112   }
   5113 
   5114   static const TestResult* GetTestResult(
   5115       const TestInfo* test_info) {
   5116     return test_info->result();
   5117   }
   5118 };
   5119 
   5120 // Tests TestInfo::test_case_name() and TestInfo::name().
   5121 TEST_F(TestInfoTest, Names) {
   5122   const TestInfo* const test_info = GetTestInfo("Names");
   5123 
   5124   ASSERT_STREQ("TestInfoTest", test_info->test_case_name());
   5125   ASSERT_STREQ("Names", test_info->name());
   5126 }
   5127 
   5128 // Tests TestInfo::result().
   5129 TEST_F(TestInfoTest, result) {
   5130   const TestInfo* const test_info = GetTestInfo("result");
   5131 
   5132   // Initially, there is no TestPartResult for this test.
   5133   ASSERT_EQ(0, GetTestResult(test_info)->total_part_count());
   5134 
   5135   // After the previous assertion, there is still none.
   5136   ASSERT_EQ(0, GetTestResult(test_info)->total_part_count());
   5137 }
   5138 
   5139 // Tests setting up and tearing down a test case.
   5140 
   5141 class SetUpTestCaseTest : public Test {
   5142  protected:
   5143   // This will be called once before the first test in this test case
   5144   // is run.
   5145   static void SetUpTestCase() {
   5146     printf("Setting up the test case . . .\n");
   5147 
   5148     // Initializes some shared resource.  In this simple example, we
   5149     // just create a C string.  More complex stuff can be done if
   5150     // desired.
   5151     shared_resource_ = "123";
   5152 
   5153     // Increments the number of test cases that have been set up.
   5154     counter_++;
   5155 
   5156     // SetUpTestCase() should be called only once.
   5157     EXPECT_EQ(1, counter_);
   5158   }
   5159 
   5160   // This will be called once after the last test in this test case is
   5161   // run.
   5162   static void TearDownTestCase() {
   5163     printf("Tearing down the test case . . .\n");
   5164 
   5165     // Decrements the number of test cases that have been set up.
   5166     counter_--;
   5167 
   5168     // TearDownTestCase() should be called only once.
   5169     EXPECT_EQ(0, counter_);
   5170 
   5171     // Cleans up the shared resource.
   5172     shared_resource_ = NULL;
   5173   }
   5174 
   5175   // This will be called before each test in this test case.
   5176   virtual void SetUp() {
   5177     // SetUpTestCase() should be called only once, so counter_ should
   5178     // always be 1.
   5179     EXPECT_EQ(1, counter_);
   5180   }
   5181 
   5182   // Number of test cases that have been set up.
   5183   static int counter_;
   5184 
   5185   // Some resource to be shared by all tests in this test case.
   5186   static const char* shared_resource_;
   5187 };
   5188 
   5189 int SetUpTestCaseTest::counter_ = 0;
   5190 const char* SetUpTestCaseTest::shared_resource_ = NULL;
   5191 
   5192 // A test that uses the shared resource.
   5193 TEST_F(SetUpTestCaseTest, Test1) {
   5194   EXPECT_STRNE(NULL, shared_resource_);
   5195 }
   5196 
   5197 // Another test that uses the shared resource.
   5198 TEST_F(SetUpTestCaseTest, Test2) {
   5199   EXPECT_STREQ("123", shared_resource_);
   5200 }
   5201 
   5202 // The InitGoogleTestTest test case tests testing::InitGoogleTest().
   5203 
   5204 // The Flags struct stores a copy of all Google Test flags.
   5205 struct Flags {
   5206   // Constructs a Flags struct where each flag has its default value.
   5207   Flags() : also_run_disabled_tests(false),
   5208             break_on_failure(false),
   5209             catch_exceptions(false),
   5210             death_test_use_fork(false),
   5211             filter(""),
   5212             list_tests(false),
   5213             output(""),
   5214             print_time(true),
   5215             random_seed(0),
   5216             repeat(1),
   5217             shuffle(false),
   5218             stack_trace_depth(kMaxStackTraceDepth),
   5219             stream_result_to(""),
   5220             throw_on_failure(false) {}
   5221 
   5222   // Factory methods.
   5223 
   5224   // Creates a Flags struct where the gtest_also_run_disabled_tests flag has
   5225   // the given value.
   5226   static Flags AlsoRunDisabledTests(bool also_run_disabled_tests) {
   5227     Flags flags;
   5228     flags.also_run_disabled_tests = also_run_disabled_tests;
   5229     return flags;
   5230   }
   5231 
   5232   // Creates a Flags struct where the gtest_break_on_failure flag has
   5233   // the given value.
   5234   static Flags BreakOnFailure(bool break_on_failure) {
   5235     Flags flags;
   5236     flags.break_on_failure = break_on_failure;
   5237     return flags;
   5238   }
   5239 
   5240   // Creates a Flags struct where the gtest_catch_exceptions flag has
   5241   // the given value.
   5242   static Flags CatchExceptions(bool catch_exceptions) {
   5243     Flags flags;
   5244     flags.catch_exceptions = catch_exceptions;
   5245     return flags;
   5246   }
   5247 
   5248   // Creates a Flags struct where the gtest_death_test_use_fork flag has
   5249   // the given value.
   5250   static Flags DeathTestUseFork(bool death_test_use_fork) {
   5251     Flags flags;
   5252     flags.death_test_use_fork = death_test_use_fork;
   5253     return flags;
   5254   }
   5255 
   5256   // Creates a Flags struct where the gtest_filter flag has the given
   5257   // value.
   5258   static Flags Filter(const char* filter) {
   5259     Flags flags;
   5260     flags.filter = filter;
   5261     return flags;
   5262   }
   5263 
   5264   // Creates a Flags struct where the gtest_list_tests flag has the
   5265   // given value.
   5266   static Flags ListTests(bool list_tests) {
   5267     Flags flags;
   5268     flags.list_tests = list_tests;
   5269     return flags;
   5270   }
   5271 
   5272   // Creates a Flags struct where the gtest_output flag has the given
   5273   // value.
   5274   static Flags Output(const char* output) {
   5275     Flags flags;
   5276     flags.output = output;
   5277     return flags;
   5278   }
   5279 
   5280   // Creates a Flags struct where the gtest_print_time flag has the given
   5281   // value.
   5282   static Flags PrintTime(bool print_time) {
   5283     Flags flags;
   5284     flags.print_time = print_time;
   5285     return flags;
   5286   }
   5287 
   5288   // Creates a Flags struct where the gtest_random_seed flag has
   5289   // the given value.
   5290   static Flags RandomSeed(Int32 random_seed) {
   5291     Flags flags;
   5292     flags.random_seed = random_seed;
   5293     return flags;
   5294   }
   5295 
   5296   // Creates a Flags struct where the gtest_repeat flag has the given
   5297   // value.
   5298   static Flags Repeat(Int32 repeat) {
   5299     Flags flags;
   5300     flags.repeat = repeat;
   5301     return flags;
   5302   }
   5303 
   5304   // Creates a Flags struct where the gtest_shuffle flag has
   5305   // the given value.
   5306   static Flags Shuffle(bool shuffle) {
   5307     Flags flags;
   5308     flags.shuffle = shuffle;
   5309     return flags;
   5310   }
   5311 
   5312   // Creates a Flags struct where the GTEST_FLAG(stack_trace_depth) flag has
   5313   // the given value.
   5314   static Flags StackTraceDepth(Int32 stack_trace_depth) {
   5315     Flags flags;
   5316     flags.stack_trace_depth = stack_trace_depth;
   5317     return flags;
   5318   }
   5319 
   5320   // Creates a Flags struct where the GTEST_FLAG(stream_result_to) flag has
   5321   // the given value.
   5322   static Flags StreamResultTo(const char* stream_result_to) {
   5323     Flags flags;
   5324     flags.stream_result_to = stream_result_to;
   5325     return flags;
   5326   }
   5327 
   5328   // Creates a Flags struct where the gtest_throw_on_failure flag has
   5329   // the given value.
   5330   static Flags ThrowOnFailure(bool throw_on_failure) {
   5331     Flags flags;
   5332     flags.throw_on_failure = throw_on_failure;
   5333     return flags;
   5334   }
   5335 
   5336   // These fields store the flag values.
   5337   bool also_run_disabled_tests;
   5338   bool break_on_failure;
   5339   bool catch_exceptions;
   5340   bool death_test_use_fork;
   5341   const char* filter;
   5342   bool list_tests;
   5343   const char* output;
   5344   bool print_time;
   5345   Int32 random_seed;
   5346   Int32 repeat;
   5347   bool shuffle;
   5348   Int32 stack_trace_depth;
   5349   const char* stream_result_to;
   5350   bool throw_on_failure;
   5351 };
   5352 
   5353 // Fixture for testing InitGoogleTest().
   5354 class InitGoogleTestTest : public Test {
   5355  protected:
   5356   // Clears the flags before each test.
   5357   virtual void SetUp() {
   5358     GTEST_FLAG(also_run_disabled_tests) = false;
   5359     GTEST_FLAG(break_on_failure) = false;
   5360     GTEST_FLAG(catch_exceptions) = false;
   5361     GTEST_FLAG(death_test_use_fork) = false;
   5362     GTEST_FLAG(filter) = "";
   5363     GTEST_FLAG(list_tests) = false;
   5364     GTEST_FLAG(output) = "";
   5365     GTEST_FLAG(print_time) = true;
   5366     GTEST_FLAG(random_seed) = 0;
   5367     GTEST_FLAG(repeat) = 1;
   5368     GTEST_FLAG(shuffle) = false;
   5369     GTEST_FLAG(stack_trace_depth) = kMaxStackTraceDepth;
   5370     GTEST_FLAG(stream_result_to) = "";
   5371     GTEST_FLAG(throw_on_failure) = false;
   5372   }
   5373 
   5374   // Asserts that two narrow or wide string arrays are equal.
   5375   template <typename CharType>
   5376   static void AssertStringArrayEq(size_t size1, CharType** array1,
   5377                                   size_t size2, CharType** array2) {
   5378     ASSERT_EQ(size1, size2) << " Array sizes different.";
   5379 
   5380     for (size_t i = 0; i != size1; i++) {
   5381       ASSERT_STREQ(array1[i], array2[i]) << " where i == " << i;
   5382     }
   5383   }
   5384 
   5385   // Verifies that the flag values match the expected values.
   5386   static void CheckFlags(const Flags& expected) {
   5387     EXPECT_EQ(expected.also_run_disabled_tests,
   5388               GTEST_FLAG(also_run_disabled_tests));
   5389     EXPECT_EQ(expected.break_on_failure, GTEST_FLAG(break_on_failure));
   5390     EXPECT_EQ(expected.catch_exceptions, GTEST_FLAG(catch_exceptions));
   5391     EXPECT_EQ(expected.death_test_use_fork, GTEST_FLAG(death_test_use_fork));
   5392     EXPECT_STREQ(expected.filter, GTEST_FLAG(filter).c_str());
   5393     EXPECT_EQ(expected.list_tests, GTEST_FLAG(list_tests));
   5394     EXPECT_STREQ(expected.output, GTEST_FLAG(output).c_str());
   5395     EXPECT_EQ(expected.print_time, GTEST_FLAG(print_time));
   5396     EXPECT_EQ(expected.random_seed, GTEST_FLAG(random_seed));
   5397     EXPECT_EQ(expected.repeat, GTEST_FLAG(repeat));
   5398     EXPECT_EQ(expected.shuffle, GTEST_FLAG(shuffle));
   5399     EXPECT_EQ(expected.stack_trace_depth, GTEST_FLAG(stack_trace_depth));
   5400     EXPECT_STREQ(expected.stream_result_to,
   5401                  GTEST_FLAG(stream_result_to).c_str());
   5402     EXPECT_EQ(expected.throw_on_failure, GTEST_FLAG(throw_on_failure));
   5403   }
   5404 
   5405   // Parses a command line (specified by argc1 and argv1), then
   5406   // verifies that the flag values are expected and that the
   5407   // recognized flags are removed from the command line.
   5408   template <typename CharType>
   5409   static void TestParsingFlags(int argc1, const CharType** argv1,
   5410                                int argc2, const CharType** argv2,
   5411                                const Flags& expected, bool should_print_help) {
   5412     const bool saved_help_flag = ::testing::internal::g_help_flag;
   5413     ::testing::internal::g_help_flag = false;
   5414 
   5415 #if GTEST_HAS_STREAM_REDIRECTION
   5416     CaptureStdout();
   5417 #endif
   5418 
   5419     // Parses the command line.
   5420     internal::ParseGoogleTestFlagsOnly(&argc1, const_cast<CharType**>(argv1));
   5421 
   5422 #if GTEST_HAS_STREAM_REDIRECTION
   5423     const String captured_stdout = GetCapturedStdout();
   5424 #endif
   5425 
   5426     // Verifies the flag values.
   5427     CheckFlags(expected);
   5428 
   5429     // Verifies that the recognized flags are removed from the command
   5430     // line.
   5431     AssertStringArrayEq(argc1 + 1, argv1, argc2 + 1, argv2);
   5432 
   5433     // ParseGoogleTestFlagsOnly should neither set g_help_flag nor print the
   5434     // help message for the flags it recognizes.
   5435     EXPECT_EQ(should_print_help, ::testing::internal::g_help_flag);
   5436 
   5437 #if GTEST_HAS_STREAM_REDIRECTION
   5438     const char* const expected_help_fragment =
   5439         "This program contains tests written using";
   5440     if (should_print_help) {
   5441       EXPECT_PRED_FORMAT2(IsSubstring, expected_help_fragment, captured_stdout);
   5442     } else {
   5443       EXPECT_PRED_FORMAT2(IsNotSubstring,
   5444                           expected_help_fragment, captured_stdout);
   5445     }
   5446 #endif  // GTEST_HAS_STREAM_REDIRECTION
   5447 
   5448     ::testing::internal::g_help_flag = saved_help_flag;
   5449   }
   5450 
   5451   // This macro wraps TestParsingFlags s.t. the user doesn't need
   5452   // to specify the array sizes.
   5453 
   5454 #define GTEST_TEST_PARSING_FLAGS_(argv1, argv2, expected, should_print_help) \
   5455   TestParsingFlags(sizeof(argv1)/sizeof(*argv1) - 1, argv1, \
   5456                    sizeof(argv2)/sizeof(*argv2) - 1, argv2, \
   5457                    expected, should_print_help)
   5458 };
   5459 
   5460 // Tests parsing an empty command line.
   5461 TEST_F(InitGoogleTestTest, Empty) {
   5462   const char* argv[] = {
   5463     NULL
   5464   };
   5465 
   5466   const char* argv2[] = {
   5467     NULL
   5468   };
   5469 
   5470   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags(), false);
   5471 }
   5472 
   5473 // Tests parsing a command line that has no flag.
   5474 TEST_F(InitGoogleTestTest, NoFlag) {
   5475   const char* argv[] = {
   5476     "foo.exe",
   5477     NULL
   5478   };
   5479 
   5480   const char* argv2[] = {
   5481     "foo.exe",
   5482     NULL
   5483   };
   5484 
   5485   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags(), false);
   5486 }
   5487 
   5488 // Tests parsing a bad --gtest_filter flag.
   5489 TEST_F(InitGoogleTestTest, FilterBad) {
   5490   const char* argv[] = {
   5491     "foo.exe",
   5492     "--gtest_filter",
   5493     NULL
   5494   };
   5495 
   5496   const char* argv2[] = {
   5497     "foo.exe",
   5498     "--gtest_filter",
   5499     NULL
   5500   };
   5501 
   5502   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter(""), true);
   5503 }
   5504 
   5505 // Tests parsing an empty --gtest_filter flag.
   5506 TEST_F(InitGoogleTestTest, FilterEmpty) {
   5507   const char* argv[] = {
   5508     "foo.exe",
   5509     "--gtest_filter=",
   5510     NULL
   5511   };
   5512 
   5513   const char* argv2[] = {
   5514     "foo.exe",
   5515     NULL
   5516   };
   5517 
   5518   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter(""), false);
   5519 }
   5520 
   5521 // Tests parsing a non-empty --gtest_filter flag.
   5522 TEST_F(InitGoogleTestTest, FilterNonEmpty) {
   5523   const char* argv[] = {
   5524     "foo.exe",
   5525     "--gtest_filter=abc",
   5526     NULL
   5527   };
   5528 
   5529   const char* argv2[] = {
   5530     "foo.exe",
   5531     NULL
   5532   };
   5533 
   5534   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter("abc"), false);
   5535 }
   5536 
   5537 // Tests parsing --gtest_break_on_failure.
   5538 TEST_F(InitGoogleTestTest, BreakOnFailureWithoutValue) {
   5539   const char* argv[] = {
   5540     "foo.exe",
   5541     "--gtest_break_on_failure",
   5542     NULL
   5543 };
   5544 
   5545   const char* argv2[] = {
   5546     "foo.exe",
   5547     NULL
   5548   };
   5549 
   5550   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(true), false);
   5551 }
   5552 
   5553 // Tests parsing --gtest_break_on_failure=0.
   5554 TEST_F(InitGoogleTestTest, BreakOnFailureFalse_0) {
   5555   const char* argv[] = {
   5556     "foo.exe",
   5557     "--gtest_break_on_failure=0",
   5558     NULL
   5559   };
   5560 
   5561   const char* argv2[] = {
   5562     "foo.exe",
   5563     NULL
   5564   };
   5565 
   5566   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(false), false);
   5567 }
   5568 
   5569 // Tests parsing --gtest_break_on_failure=f.
   5570 TEST_F(InitGoogleTestTest, BreakOnFailureFalse_f) {
   5571   const char* argv[] = {
   5572     "foo.exe",
   5573     "--gtest_break_on_failure=f",
   5574     NULL
   5575   };
   5576 
   5577   const char* argv2[] = {
   5578     "foo.exe",
   5579     NULL
   5580   };
   5581 
   5582   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(false), false);
   5583 }
   5584 
   5585 // Tests parsing --gtest_break_on_failure=F.
   5586 TEST_F(InitGoogleTestTest, BreakOnFailureFalse_F) {
   5587   const char* argv[] = {
   5588     "foo.exe",
   5589     "--gtest_break_on_failure=F",
   5590     NULL
   5591   };
   5592 
   5593   const char* argv2[] = {
   5594     "foo.exe",
   5595     NULL
   5596   };
   5597 
   5598   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(false), false);
   5599 }
   5600 
   5601 // Tests parsing a --gtest_break_on_failure flag that has a "true"
   5602 // definition.
   5603 TEST_F(InitGoogleTestTest, BreakOnFailureTrue) {
   5604   const char* argv[] = {
   5605     "foo.exe",
   5606     "--gtest_break_on_failure=1",
   5607     NULL
   5608   };
   5609 
   5610   const char* argv2[] = {
   5611     "foo.exe",
   5612     NULL
   5613   };
   5614 
   5615   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(true), false);
   5616 }
   5617 
   5618 // Tests parsing --gtest_catch_exceptions.
   5619 TEST_F(InitGoogleTestTest, CatchExceptions) {
   5620   const char* argv[] = {
   5621     "foo.exe",
   5622     "--gtest_catch_exceptions",
   5623     NULL
   5624   };
   5625 
   5626   const char* argv2[] = {
   5627     "foo.exe",
   5628     NULL
   5629   };
   5630 
   5631   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::CatchExceptions(true), false);
   5632 }
   5633 
   5634 // Tests parsing --gtest_death_test_use_fork.
   5635 TEST_F(InitGoogleTestTest, DeathTestUseFork) {
   5636   const char* argv[] = {
   5637     "foo.exe",
   5638     "--gtest_death_test_use_fork",
   5639     NULL
   5640   };
   5641 
   5642   const char* argv2[] = {
   5643     "foo.exe",
   5644     NULL
   5645   };
   5646 
   5647   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::DeathTestUseFork(true), false);
   5648 }
   5649 
   5650 // Tests having the same flag twice with different values.  The
   5651 // expected behavior is that the one coming last takes precedence.
   5652 TEST_F(InitGoogleTestTest, DuplicatedFlags) {
   5653   const char* argv[] = {
   5654     "foo.exe",
   5655     "--gtest_filter=a",
   5656     "--gtest_filter=b",
   5657     NULL
   5658   };
   5659 
   5660   const char* argv2[] = {
   5661     "foo.exe",
   5662     NULL
   5663   };
   5664 
   5665   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter("b"), false);
   5666 }
   5667 
   5668 // Tests having an unrecognized flag on the command line.
   5669 TEST_F(InitGoogleTestTest, UnrecognizedFlag) {
   5670   const char* argv[] = {
   5671     "foo.exe",
   5672     "--gtest_break_on_failure",
   5673     "bar",  // Unrecognized by Google Test.
   5674     "--gtest_filter=b",
   5675     NULL
   5676   };
   5677 
   5678   const char* argv2[] = {
   5679     "foo.exe",
   5680     "bar",
   5681     NULL
   5682   };
   5683 
   5684   Flags flags;
   5685   flags.break_on_failure = true;
   5686   flags.filter = "b";
   5687   GTEST_TEST_PARSING_FLAGS_(argv, argv2, flags, false);
   5688 }
   5689 
   5690 // Tests having a --gtest_list_tests flag
   5691 TEST_F(InitGoogleTestTest, ListTestsFlag) {
   5692     const char* argv[] = {
   5693       "foo.exe",
   5694       "--gtest_list_tests",
   5695       NULL
   5696     };
   5697 
   5698     const char* argv2[] = {
   5699       "foo.exe",
   5700       NULL
   5701     };
   5702 
   5703     GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(true), false);
   5704 }
   5705 
   5706 // Tests having a --gtest_list_tests flag with a "true" value
   5707 TEST_F(InitGoogleTestTest, ListTestsTrue) {
   5708     const char* argv[] = {
   5709       "foo.exe",
   5710       "--gtest_list_tests=1",
   5711       NULL
   5712     };
   5713 
   5714     const char* argv2[] = {
   5715       "foo.exe",
   5716       NULL
   5717     };
   5718 
   5719     GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(true), false);
   5720 }
   5721 
   5722 // Tests having a --gtest_list_tests flag with a "false" value
   5723 TEST_F(InitGoogleTestTest, ListTestsFalse) {
   5724     const char* argv[] = {
   5725       "foo.exe",
   5726       "--gtest_list_tests=0",
   5727       NULL
   5728     };
   5729 
   5730     const char* argv2[] = {
   5731       "foo.exe",
   5732       NULL
   5733     };
   5734 
   5735     GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(false), false);
   5736 }
   5737 
   5738 // Tests parsing --gtest_list_tests=f.
   5739 TEST_F(InitGoogleTestTest, ListTestsFalse_f) {
   5740   const char* argv[] = {
   5741     "foo.exe",
   5742     "--gtest_list_tests=f",
   5743     NULL
   5744   };
   5745 
   5746   const char* argv2[] = {
   5747     "foo.exe",
   5748     NULL
   5749   };
   5750 
   5751   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(false), false);
   5752 }
   5753 
   5754 // Tests parsing --gtest_list_tests=F.
   5755 TEST_F(InitGoogleTestTest, ListTestsFalse_F) {
   5756   const char* argv[] = {
   5757     "foo.exe",
   5758     "--gtest_list_tests=F",
   5759     NULL
   5760   };
   5761 
   5762   const char* argv2[] = {
   5763     "foo.exe",
   5764     NULL
   5765   };
   5766 
   5767   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(false), false);
   5768 }
   5769 
   5770 // Tests parsing --gtest_output (invalid).
   5771 TEST_F(InitGoogleTestTest, OutputEmpty) {
   5772   const char* argv[] = {
   5773     "foo.exe",
   5774     "--gtest_output",
   5775     NULL
   5776   };
   5777 
   5778   const char* argv2[] = {
   5779     "foo.exe",
   5780     "--gtest_output",
   5781     NULL
   5782   };
   5783 
   5784   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags(), true);
   5785 }
   5786 
   5787 // Tests parsing --gtest_output=xml
   5788 TEST_F(InitGoogleTestTest, OutputXml) {
   5789   const char* argv[] = {
   5790     "foo.exe",
   5791     "--gtest_output=xml",
   5792     NULL
   5793   };
   5794 
   5795   const char* argv2[] = {
   5796     "foo.exe",
   5797     NULL
   5798   };
   5799 
   5800   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Output("xml"), false);
   5801 }
   5802 
   5803 // Tests parsing --gtest_output=xml:file
   5804 TEST_F(InitGoogleTestTest, OutputXmlFile) {
   5805   const char* argv[] = {
   5806     "foo.exe",
   5807     "--gtest_output=xml:file",
   5808     NULL
   5809   };
   5810 
   5811   const char* argv2[] = {
   5812     "foo.exe",
   5813     NULL
   5814   };
   5815 
   5816   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Output("xml:file"), false);
   5817 }
   5818 
   5819 // Tests parsing --gtest_output=xml:directory/path/
   5820 TEST_F(InitGoogleTestTest, OutputXmlDirectory) {
   5821   const char* argv[] = {
   5822     "foo.exe",
   5823     "--gtest_output=xml:directory/path/",
   5824     NULL
   5825   };
   5826 
   5827   const char* argv2[] = {
   5828     "foo.exe",
   5829     NULL
   5830   };
   5831 
   5832   GTEST_TEST_PARSING_FLAGS_(argv, argv2,
   5833                             Flags::Output("xml:directory/path/"), false);
   5834 }
   5835 
   5836 // Tests having a --gtest_print_time flag
   5837 TEST_F(InitGoogleTestTest, PrintTimeFlag) {
   5838     const char* argv[] = {
   5839       "foo.exe",
   5840       "--gtest_print_time",
   5841       NULL
   5842     };
   5843 
   5844     const char* argv2[] = {
   5845       "foo.exe",
   5846       NULL
   5847     };
   5848 
   5849     GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(true), false);
   5850 }
   5851 
   5852 // Tests having a --gtest_print_time flag with a "true" value
   5853 TEST_F(InitGoogleTestTest, PrintTimeTrue) {
   5854     const char* argv[] = {
   5855       "foo.exe",
   5856       "--gtest_print_time=1",
   5857       NULL
   5858     };
   5859 
   5860     const char* argv2[] = {
   5861       "foo.exe",
   5862       NULL
   5863     };
   5864 
   5865     GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(true), false);
   5866 }
   5867 
   5868 // Tests having a --gtest_print_time flag with a "false" value
   5869 TEST_F(InitGoogleTestTest, PrintTimeFalse) {
   5870     const char* argv[] = {
   5871       "foo.exe",
   5872       "--gtest_print_time=0",
   5873       NULL
   5874     };
   5875 
   5876     const char* argv2[] = {
   5877       "foo.exe",
   5878       NULL
   5879     };
   5880 
   5881     GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(false), false);
   5882 }
   5883 
   5884 // Tests parsing --gtest_print_time=f.
   5885 TEST_F(InitGoogleTestTest, PrintTimeFalse_f) {
   5886   const char* argv[] = {
   5887     "foo.exe",
   5888     "--gtest_print_time=f",
   5889     NULL
   5890   };
   5891 
   5892   const char* argv2[] = {
   5893     "foo.exe",
   5894     NULL
   5895   };
   5896 
   5897   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(false), false);
   5898 }
   5899 
   5900 // Tests parsing --gtest_print_time=F.
   5901 TEST_F(InitGoogleTestTest, PrintTimeFalse_F) {
   5902   const char* argv[] = {
   5903     "foo.exe",
   5904     "--gtest_print_time=F",
   5905     NULL
   5906   };
   5907 
   5908   const char* argv2[] = {
   5909     "foo.exe",
   5910     NULL
   5911   };
   5912 
   5913   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(false), false);
   5914 }
   5915 
   5916 // Tests parsing --gtest_random_seed=number
   5917 TEST_F(InitGoogleTestTest, RandomSeed) {
   5918   const char* argv[] = {
   5919     "foo.exe",
   5920     "--gtest_random_seed=1000",
   5921     NULL
   5922   };
   5923 
   5924   const char* argv2[] = {
   5925     "foo.exe",
   5926     NULL
   5927   };
   5928 
   5929   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::RandomSeed(1000), false);
   5930 }
   5931 
   5932 // Tests parsing --gtest_repeat=number
   5933 TEST_F(InitGoogleTestTest, Repeat) {
   5934   const char* argv[] = {
   5935     "foo.exe",
   5936     "--gtest_repeat=1000",
   5937     NULL
   5938   };
   5939 
   5940   const char* argv2[] = {
   5941     "foo.exe",
   5942     NULL
   5943   };
   5944 
   5945   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Repeat(1000), false);
   5946 }
   5947 
   5948 // Tests having a --gtest_also_run_disabled_tests flag
   5949 TEST_F(InitGoogleTestTest, AlsoRunDisabledTestsFlag) {
   5950     const char* argv[] = {
   5951       "foo.exe",
   5952       "--gtest_also_run_disabled_tests",
   5953       NULL
   5954     };
   5955 
   5956     const char* argv2[] = {
   5957       "foo.exe",
   5958       NULL
   5959     };
   5960 
   5961     GTEST_TEST_PARSING_FLAGS_(argv, argv2,
   5962                               Flags::AlsoRunDisabledTests(true), false);
   5963 }
   5964 
   5965 // Tests having a --gtest_also_run_disabled_tests flag with a "true" value
   5966 TEST_F(InitGoogleTestTest, AlsoRunDisabledTestsTrue) {
   5967     const char* argv[] = {
   5968       "foo.exe",
   5969       "--gtest_also_run_disabled_tests=1",
   5970       NULL
   5971     };
   5972 
   5973     const char* argv2[] = {
   5974       "foo.exe",
   5975       NULL
   5976     };
   5977 
   5978     GTEST_TEST_PARSING_FLAGS_(argv, argv2,
   5979                               Flags::AlsoRunDisabledTests(true), false);
   5980 }
   5981 
   5982 // Tests having a --gtest_also_run_disabled_tests flag with a "false" value
   5983 TEST_F(InitGoogleTestTest, AlsoRunDisabledTestsFalse) {
   5984     const char* argv[] = {
   5985       "foo.exe",
   5986       "--gtest_also_run_disabled_tests=0",
   5987       NULL
   5988     };
   5989 
   5990     const char* argv2[] = {
   5991       "foo.exe",
   5992       NULL
   5993     };
   5994 
   5995     GTEST_TEST_PARSING_FLAGS_(argv, argv2,
   5996                               Flags::AlsoRunDisabledTests(false), false);
   5997 }
   5998 
   5999 // Tests parsing --gtest_shuffle.
   6000 TEST_F(InitGoogleTestTest, ShuffleWithoutValue) {
   6001   const char* argv[] = {
   6002     "foo.exe",
   6003     "--gtest_shuffle",
   6004     NULL
   6005 };
   6006 
   6007   const char* argv2[] = {
   6008     "foo.exe",
   6009     NULL
   6010   };
   6011 
   6012   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Shuffle(true), false);
   6013 }
   6014 
   6015 // Tests parsing --gtest_shuffle=0.
   6016 TEST_F(InitGoogleTestTest, ShuffleFalse_0) {
   6017   const char* argv[] = {
   6018     "foo.exe",
   6019     "--gtest_shuffle=0",
   6020     NULL
   6021   };
   6022 
   6023   const char* argv2[] = {
   6024     "foo.exe",
   6025     NULL
   6026   };
   6027 
   6028   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Shuffle(false), false);
   6029 }
   6030 
   6031 // Tests parsing a --gtest_shuffle flag that has a "true"
   6032 // definition.
   6033 TEST_F(InitGoogleTestTest, ShuffleTrue) {
   6034   const char* argv[] = {
   6035     "foo.exe",
   6036     "--gtest_shuffle=1",
   6037     NULL
   6038   };
   6039 
   6040   const char* argv2[] = {
   6041     "foo.exe",
   6042     NULL
   6043   };
   6044 
   6045   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Shuffle(true), false);
   6046 }
   6047 
   6048 // Tests parsing --gtest_stack_trace_depth=number.
   6049 TEST_F(InitGoogleTestTest, StackTraceDepth) {
   6050   const char* argv[] = {
   6051     "foo.exe",
   6052     "--gtest_stack_trace_depth=5",
   6053     NULL
   6054   };
   6055 
   6056   const char* argv2[] = {
   6057     "foo.exe",
   6058     NULL
   6059   };
   6060 
   6061   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::StackTraceDepth(5), false);
   6062 }
   6063 
   6064 TEST_F(InitGoogleTestTest, StreamResultTo) {
   6065   const char* argv[] = {
   6066     "foo.exe",
   6067     "--gtest_stream_result_to=localhost:1234",
   6068     NULL
   6069   };
   6070 
   6071   const char* argv2[] = {
   6072     "foo.exe",
   6073     NULL
   6074   };
   6075 
   6076   GTEST_TEST_PARSING_FLAGS_(
   6077       argv, argv2, Flags::StreamResultTo("localhost:1234"), false);
   6078 }
   6079 
   6080 // Tests parsing --gtest_throw_on_failure.
   6081 TEST_F(InitGoogleTestTest, ThrowOnFailureWithoutValue) {
   6082   const char* argv[] = {
   6083     "foo.exe",
   6084     "--gtest_throw_on_failure",
   6085     NULL
   6086 };
   6087 
   6088   const char* argv2[] = {
   6089     "foo.exe",
   6090     NULL
   6091   };
   6092 
   6093   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ThrowOnFailure(true), false);
   6094 }
   6095 
   6096 // Tests parsing --gtest_throw_on_failure=0.
   6097 TEST_F(InitGoogleTestTest, ThrowOnFailureFalse_0) {
   6098   const char* argv[] = {
   6099     "foo.exe",
   6100     "--gtest_throw_on_failure=0",
   6101     NULL
   6102   };
   6103 
   6104   const char* argv2[] = {
   6105     "foo.exe",
   6106     NULL
   6107   };
   6108 
   6109   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ThrowOnFailure(false), false);
   6110 }
   6111 
   6112 // Tests parsing a --gtest_throw_on_failure flag that has a "true"
   6113 // definition.
   6114 TEST_F(InitGoogleTestTest, ThrowOnFailureTrue) {
   6115   const char* argv[] = {
   6116     "foo.exe",
   6117     "--gtest_throw_on_failure=1",
   6118     NULL
   6119   };
   6120 
   6121   const char* argv2[] = {
   6122     "foo.exe",
   6123     NULL
   6124   };
   6125 
   6126   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ThrowOnFailure(true), false);
   6127 }
   6128 
   6129 #if GTEST_OS_WINDOWS
   6130 // Tests parsing wide strings.
   6131 TEST_F(InitGoogleTestTest, WideStrings) {
   6132   const wchar_t* argv[] = {
   6133     L"foo.exe",
   6134     L"--gtest_filter=Foo*",
   6135     L"--gtest_list_tests=1",
   6136     L"--gtest_break_on_failure",
   6137     L"--non_gtest_flag",
   6138     NULL
   6139   };
   6140 
   6141   const wchar_t* argv2[] = {
   6142     L"foo.exe",
   6143     L"--non_gtest_flag",
   6144     NULL
   6145   };
   6146 
   6147   Flags expected_flags;
   6148   expected_flags.break_on_failure = true;
   6149   expected_flags.filter = "Foo*";
   6150   expected_flags.list_tests = true;
   6151 
   6152   GTEST_TEST_PARSING_FLAGS_(argv, argv2, expected_flags, false);
   6153 }
   6154 #endif  // GTEST_OS_WINDOWS
   6155 
   6156 // Tests current_test_info() in UnitTest.
   6157 class CurrentTestInfoTest : public Test {
   6158  protected:
   6159   // Tests that current_test_info() returns NULL before the first test in
   6160   // the test case is run.
   6161   static void SetUpTestCase() {
   6162     // There should be no tests running at this point.
   6163     const TestInfo* test_info =
   6164       UnitTest::GetInstance()->current_test_info();
   6165     EXPECT_TRUE(test_info == NULL)
   6166         << "There should be no tests running at this point.";
   6167   }
   6168 
   6169   // Tests that current_test_info() returns NULL after the last test in
   6170   // the test case has run.
   6171   static void TearDownTestCase() {
   6172     const TestInfo* test_info =
   6173       UnitTest::GetInstance()->current_test_info();
   6174     EXPECT_TRUE(test_info == NULL)
   6175         << "There should be no tests running at this point.";
   6176   }
   6177 };
   6178 
   6179 // Tests that current_test_info() returns TestInfo for currently running
   6180 // test by checking the expected test name against the actual one.
   6181 TEST_F(CurrentTestInfoTest, WorksForFirstTestInATestCase) {
   6182   const TestInfo* test_info =
   6183     UnitTest::GetInstance()->current_test_info();
   6184   ASSERT_TRUE(NULL != test_info)
   6185       << "There is a test running so we should have a valid TestInfo.";
   6186   EXPECT_STREQ("CurrentTestInfoTest", test_info->test_case_name())
   6187       << "Expected the name of the currently running test case.";
   6188   EXPECT_STREQ("WorksForFirstTestInATestCase", test_info->name())
   6189       << "Expected the name of the currently running test.";
   6190 }
   6191 
   6192 // Tests that current_test_info() returns TestInfo for currently running
   6193 // test by checking the expected test name against the actual one.  We
   6194 // use this test to see that the TestInfo object actually changed from
   6195 // the previous invocation.
   6196 TEST_F(CurrentTestInfoTest, WorksForSecondTestInATestCase) {
   6197   const TestInfo* test_info =
   6198     UnitTest::GetInstance()->current_test_info();
   6199   ASSERT_TRUE(NULL != test_info)
   6200       << "There is a test running so we should have a valid TestInfo.";
   6201   EXPECT_STREQ("CurrentTestInfoTest", test_info->test_case_name())
   6202       << "Expected the name of the currently running test case.";
   6203   EXPECT_STREQ("WorksForSecondTestInATestCase", test_info->name())
   6204       << "Expected the name of the currently running test.";
   6205 }
   6206 
   6207 }  // namespace testing
   6208 
   6209 // These two lines test that we can define tests in a namespace that
   6210 // has the name "testing" and is nested in another namespace.
   6211 namespace my_namespace {
   6212 namespace testing {
   6213 
   6214 // Makes sure that TEST knows to use ::testing::Test instead of
   6215 // ::my_namespace::testing::Test.
   6216 class Test {};
   6217 
   6218 // Makes sure that an assertion knows to use ::testing::Message instead of
   6219 // ::my_namespace::testing::Message.
   6220 class Message {};
   6221 
   6222 // Makes sure that an assertion knows to use
   6223 // ::testing::AssertionResult instead of
   6224 // ::my_namespace::testing::AssertionResult.
   6225 class AssertionResult {};
   6226 
   6227 // Tests that an assertion that should succeed works as expected.
   6228 TEST(NestedTestingNamespaceTest, Success) {
   6229   EXPECT_EQ(1, 1) << "This shouldn't fail.";
   6230 }
   6231 
   6232 // Tests that an assertion that should fail works as expected.
   6233 TEST(NestedTestingNamespaceTest, Failure) {
   6234   EXPECT_FATAL_FAILURE(FAIL() << "This failure is expected.",
   6235                        "This failure is expected.");
   6236 }
   6237 
   6238 }  // namespace testing
   6239 }  // namespace my_namespace
   6240 
   6241 // Tests that one can call superclass SetUp and TearDown methods--
   6242 // that is, that they are not private.
   6243 // No tests are based on this fixture; the test "passes" if it compiles
   6244 // successfully.
   6245 class ProtectedFixtureMethodsTest : public Test {
   6246  protected:
   6247   virtual void SetUp() {
   6248     Test::SetUp();
   6249   }
   6250   virtual void TearDown() {
   6251     Test::TearDown();
   6252   }
   6253 };
   6254 
   6255 // StreamingAssertionsTest tests the streaming versions of a representative
   6256 // sample of assertions.
   6257 TEST(StreamingAssertionsTest, Unconditional) {
   6258   SUCCEED() << "expected success";
   6259   EXPECT_NONFATAL_FAILURE(ADD_FAILURE() << "expected failure",
   6260                           "expected failure");
   6261   EXPECT_FATAL_FAILURE(FAIL() << "expected failure",
   6262                        "expected failure");
   6263 }
   6264 
   6265 #ifdef __BORLANDC__
   6266 // Silences warnings: "Condition is always true", "Unreachable code"
   6267 # pragma option push -w-ccc -w-rch
   6268 #endif
   6269 
   6270 TEST(StreamingAssertionsTest, Truth) {
   6271   EXPECT_TRUE(true) << "unexpected failure";
   6272   ASSERT_TRUE(true) << "unexpected failure";
   6273   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(false) << "expected failure",
   6274                           "expected failure");
   6275   EXPECT_FATAL_FAILURE(ASSERT_TRUE(false) << "expected failure",
   6276                        "expected failure");
   6277 }
   6278 
   6279 TEST(StreamingAssertionsTest, Truth2) {
   6280   EXPECT_FALSE(false) << "unexpected failure";
   6281   ASSERT_FALSE(false) << "unexpected failure";
   6282   EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(true) << "expected failure",
   6283                           "expected failure");
   6284   EXPECT_FATAL_FAILURE(ASSERT_FALSE(true) << "expected failure",
   6285                        "expected failure");
   6286 }
   6287 
   6288 #ifdef __BORLANDC__
   6289 // Restores warnings after previous "#pragma option push" supressed them
   6290 # pragma option pop
   6291 #endif
   6292 
   6293 TEST(StreamingAssertionsTest, IntegerEquals) {
   6294   EXPECT_EQ(1, 1) << "unexpected failure";
   6295   ASSERT_EQ(1, 1) << "unexpected failure";
   6296   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(1, 2) << "expected failure",
   6297                           "expected failure");
   6298   EXPECT_FATAL_FAILURE(ASSERT_EQ(1, 2) << "expected failure",
   6299                        "expected failure");
   6300 }
   6301 
   6302 TEST(StreamingAssertionsTest, IntegerLessThan) {
   6303   EXPECT_LT(1, 2) << "unexpected failure";
   6304   ASSERT_LT(1, 2) << "unexpected failure";
   6305   EXPECT_NONFATAL_FAILURE(EXPECT_LT(2, 1) << "expected failure",
   6306                           "expected failure");
   6307   EXPECT_FATAL_FAILURE(ASSERT_LT(2, 1) << "expected failure",
   6308                        "expected failure");
   6309 }
   6310 
   6311 TEST(StreamingAssertionsTest, StringsEqual) {
   6312   EXPECT_STREQ("foo", "foo") << "unexpected failure";
   6313   ASSERT_STREQ("foo", "foo") << "unexpected failure";
   6314   EXPECT_NONFATAL_FAILURE(EXPECT_STREQ("foo", "bar") << "expected failure",
   6315                           "expected failure");
   6316   EXPECT_FATAL_FAILURE(ASSERT_STREQ("foo", "bar") << "expected failure",
   6317                        "expected failure");
   6318 }
   6319 
   6320 TEST(StreamingAssertionsTest, StringsNotEqual) {
   6321   EXPECT_STRNE("foo", "bar") << "unexpected failure";
   6322   ASSERT_STRNE("foo", "bar") << "unexpected failure";
   6323   EXPECT_NONFATAL_FAILURE(EXPECT_STRNE("foo", "foo") << "expected failure",
   6324                           "expected failure");
   6325   EXPECT_FATAL_FAILURE(ASSERT_STRNE("foo", "foo") << "expected failure",
   6326                        "expected failure");
   6327 }
   6328 
   6329 TEST(StreamingAssertionsTest, StringsEqualIgnoringCase) {
   6330   EXPECT_STRCASEEQ("foo", "FOO") << "unexpected failure";
   6331   ASSERT_STRCASEEQ("foo", "FOO") << "unexpected failure";
   6332   EXPECT_NONFATAL_FAILURE(EXPECT_STRCASEEQ("foo", "bar") << "expected failure",
   6333                           "expected failure");
   6334   EXPECT_FATAL_FAILURE(ASSERT_STRCASEEQ("foo", "bar") << "expected failure",
   6335                        "expected failure");
   6336 }
   6337 
   6338 TEST(StreamingAssertionsTest, StringNotEqualIgnoringCase) {
   6339   EXPECT_STRCASENE("foo", "bar") << "unexpected failure";
   6340   ASSERT_STRCASENE("foo", "bar") << "unexpected failure";
   6341   EXPECT_NONFATAL_FAILURE(EXPECT_STRCASENE("foo", "FOO") << "expected failure",
   6342                           "expected failure");
   6343   EXPECT_FATAL_FAILURE(ASSERT_STRCASENE("bar", "BAR") << "expected failure",
   6344                        "expected failure");
   6345 }
   6346 
   6347 TEST(StreamingAssertionsTest, FloatingPointEquals) {
   6348   EXPECT_FLOAT_EQ(1.0, 1.0) << "unexpected failure";
   6349   ASSERT_FLOAT_EQ(1.0, 1.0) << "unexpected failure";
   6350   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(0.0, 1.0) << "expected failure",
   6351                           "expected failure");
   6352   EXPECT_FATAL_FAILURE(ASSERT_FLOAT_EQ(0.0, 1.0) << "expected failure",
   6353                        "expected failure");
   6354 }
   6355 
   6356 #if GTEST_HAS_EXCEPTIONS
   6357 
   6358 TEST(StreamingAssertionsTest, Throw) {
   6359   EXPECT_THROW(ThrowAnInteger(), int) << "unexpected failure";
   6360   ASSERT_THROW(ThrowAnInteger(), int) << "unexpected failure";
   6361   EXPECT_NONFATAL_FAILURE(EXPECT_THROW(ThrowAnInteger(), bool) <<
   6362                           "expected failure", "expected failure");
   6363   EXPECT_FATAL_FAILURE(ASSERT_THROW(ThrowAnInteger(), bool) <<
   6364                        "expected failure", "expected failure");
   6365 }
   6366 
   6367 TEST(StreamingAssertionsTest, NoThrow) {
   6368   EXPECT_NO_THROW(ThrowNothing()) << "unexpected failure";
   6369   ASSERT_NO_THROW(ThrowNothing()) << "unexpected failure";
   6370   EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW(ThrowAnInteger()) <<
   6371                           "expected failure", "expected failure");
   6372   EXPECT_FATAL_FAILURE(ASSERT_NO_THROW(ThrowAnInteger()) <<
   6373                        "expected failure", "expected failure");
   6374 }
   6375 
   6376 TEST(StreamingAssertionsTest, AnyThrow) {
   6377   EXPECT_ANY_THROW(ThrowAnInteger()) << "unexpected failure";
   6378   ASSERT_ANY_THROW(ThrowAnInteger()) << "unexpected failure";
   6379   EXPECT_NONFATAL_FAILURE(EXPECT_ANY_THROW(ThrowNothing()) <<
   6380                           "expected failure", "expected failure");
   6381   EXPECT_FATAL_FAILURE(ASSERT_ANY_THROW(ThrowNothing()) <<
   6382                        "expected failure", "expected failure");
   6383 }
   6384 
   6385 #endif  // GTEST_HAS_EXCEPTIONS
   6386 
   6387 // Tests that Google Test correctly decides whether to use colors in the output.
   6388 
   6389 TEST(ColoredOutputTest, UsesColorsWhenGTestColorFlagIsYes) {
   6390   GTEST_FLAG(color) = "yes";
   6391 
   6392   SetEnv("TERM", "xterm");  // TERM supports colors.
   6393   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
   6394   EXPECT_TRUE(ShouldUseColor(false));  // Stdout is not a TTY.
   6395 
   6396   SetEnv("TERM", "dumb");  // TERM doesn't support colors.
   6397   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
   6398   EXPECT_TRUE(ShouldUseColor(false));  // Stdout is not a TTY.
   6399 }
   6400 
   6401 TEST(ColoredOutputTest, UsesColorsWhenGTestColorFlagIsAliasOfYes) {
   6402   SetEnv("TERM", "dumb");  // TERM doesn't support colors.
   6403 
   6404   GTEST_FLAG(color) = "True";
   6405   EXPECT_TRUE(ShouldUseColor(false));  // Stdout is not a TTY.
   6406 
   6407   GTEST_FLAG(color) = "t";
   6408   EXPECT_TRUE(ShouldUseColor(false));  // Stdout is not a TTY.
   6409 
   6410   GTEST_FLAG(color) = "1";
   6411   EXPECT_TRUE(ShouldUseColor(false));  // Stdout is not a TTY.
   6412 }
   6413 
   6414 TEST(ColoredOutputTest, UsesNoColorWhenGTestColorFlagIsNo) {
   6415   GTEST_FLAG(color) = "no";
   6416 
   6417   SetEnv("TERM", "xterm");  // TERM supports colors.
   6418   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
   6419   EXPECT_FALSE(ShouldUseColor(false));  // Stdout is not a TTY.
   6420 
   6421   SetEnv("TERM", "dumb");  // TERM doesn't support colors.
   6422   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
   6423   EXPECT_FALSE(ShouldUseColor(false));  // Stdout is not a TTY.
   6424 }
   6425 
   6426 TEST(ColoredOutputTest, UsesNoColorWhenGTestColorFlagIsInvalid) {
   6427   SetEnv("TERM", "xterm");  // TERM supports colors.
   6428 
   6429   GTEST_FLAG(color) = "F";
   6430   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
   6431 
   6432   GTEST_FLAG(color) = "0";
   6433   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
   6434 
   6435   GTEST_FLAG(color) = "unknown";
   6436   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
   6437 }
   6438 
   6439 TEST(ColoredOutputTest, UsesColorsWhenStdoutIsTty) {
   6440   GTEST_FLAG(color) = "auto";
   6441 
   6442   SetEnv("TERM", "xterm");  // TERM supports colors.
   6443   EXPECT_FALSE(ShouldUseColor(false));  // Stdout is not a TTY.
   6444   EXPECT_TRUE(ShouldUseColor(true));    // Stdout is a TTY.
   6445 }
   6446 
   6447 TEST(ColoredOutputTest, UsesColorsWhenTermSupportsColors) {
   6448   GTEST_FLAG(color) = "auto";
   6449 
   6450 #if GTEST_OS_WINDOWS
   6451   // On Windows, we ignore the TERM variable as it's usually not set.
   6452 
   6453   SetEnv("TERM", "dumb");
   6454   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
   6455 
   6456   SetEnv("TERM", "");
   6457   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
   6458 
   6459   SetEnv("TERM", "xterm");
   6460   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
   6461 #else
   6462   // On non-Windows platforms, we rely on TERM to determine if the
   6463   // terminal supports colors.
   6464 
   6465   SetEnv("TERM", "dumb");  // TERM doesn't support colors.
   6466   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
   6467 
   6468   SetEnv("TERM", "emacs");  // TERM doesn't support colors.
   6469   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
   6470 
   6471   SetEnv("TERM", "vt100");  // TERM doesn't support colors.
   6472   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
   6473 
   6474   SetEnv("TERM", "xterm-mono");  // TERM doesn't support colors.
   6475   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
   6476 
   6477   SetEnv("TERM", "xterm");  // TERM supports colors.
   6478   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
   6479 
   6480   SetEnv("TERM", "xterm-color");  // TERM supports colors.
   6481   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
   6482 
   6483   SetEnv("TERM", "xterm-256color");  // TERM supports colors.
   6484   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
   6485 
   6486   SetEnv("TERM", "screen");  // TERM supports colors.
   6487   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
   6488 
   6489   SetEnv("TERM", "linux");  // TERM supports colors.
   6490   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
   6491 
   6492   SetEnv("TERM", "cygwin");  // TERM supports colors.
   6493   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
   6494 #endif  // GTEST_OS_WINDOWS
   6495 }
   6496 
   6497 // Verifies that StaticAssertTypeEq works in a namespace scope.
   6498 
   6499 static bool dummy1 GTEST_ATTRIBUTE_UNUSED_ = StaticAssertTypeEq<bool, bool>();
   6500 static bool dummy2 GTEST_ATTRIBUTE_UNUSED_ =
   6501     StaticAssertTypeEq<const int, const int>();
   6502 
   6503 // Verifies that StaticAssertTypeEq works in a class.
   6504 
   6505 template <typename T>
   6506 class StaticAssertTypeEqTestHelper {
   6507  public:
   6508   StaticAssertTypeEqTestHelper() { StaticAssertTypeEq<bool, T>(); }
   6509 };
   6510 
   6511 TEST(StaticAssertTypeEqTest, WorksInClass) {
   6512   StaticAssertTypeEqTestHelper<bool>();
   6513 }
   6514 
   6515 // Verifies that StaticAssertTypeEq works inside a function.
   6516 
   6517 typedef int IntAlias;
   6518 
   6519 TEST(StaticAssertTypeEqTest, CompilesForEqualTypes) {
   6520   StaticAssertTypeEq<int, IntAlias>();
   6521   StaticAssertTypeEq<int*, IntAlias*>();
   6522 }
   6523 
   6524 TEST(GetCurrentOsStackTraceExceptTopTest, ReturnsTheStackTrace) {
   6525   testing::UnitTest* const unit_test = testing::UnitTest::GetInstance();
   6526 
   6527   // We don't have a stack walker in Google Test yet.
   6528   EXPECT_STREQ("", GetCurrentOsStackTraceExceptTop(unit_test, 0).c_str());
   6529   EXPECT_STREQ("", GetCurrentOsStackTraceExceptTop(unit_test, 1).c_str());
   6530 }
   6531 
   6532 TEST(HasNonfatalFailureTest, ReturnsFalseWhenThereIsNoFailure) {
   6533   EXPECT_FALSE(HasNonfatalFailure());
   6534 }
   6535 
   6536 static void FailFatally() { FAIL(); }
   6537 
   6538 TEST(HasNonfatalFailureTest, ReturnsFalseWhenThereIsOnlyFatalFailure) {
   6539   FailFatally();
   6540   const bool has_nonfatal_failure = HasNonfatalFailure();
   6541   ClearCurrentTestPartResults();
   6542   EXPECT_FALSE(has_nonfatal_failure);
   6543 }
   6544 
   6545 TEST(HasNonfatalFailureTest, ReturnsTrueWhenThereIsNonfatalFailure) {
   6546   ADD_FAILURE();
   6547   const bool has_nonfatal_failure = HasNonfatalFailure();
   6548   ClearCurrentTestPartResults();
   6549   EXPECT_TRUE(has_nonfatal_failure);
   6550 }
   6551 
   6552 TEST(HasNonfatalFailureTest, ReturnsTrueWhenThereAreFatalAndNonfatalFailures) {
   6553   FailFatally();
   6554   ADD_FAILURE();
   6555   const bool has_nonfatal_failure = HasNonfatalFailure();
   6556   ClearCurrentTestPartResults();
   6557   EXPECT_TRUE(has_nonfatal_failure);
   6558 }
   6559 
   6560 // A wrapper for calling HasNonfatalFailure outside of a test body.
   6561 static bool HasNonfatalFailureHelper() {
   6562   return testing::Test::HasNonfatalFailure();
   6563 }
   6564 
   6565 TEST(HasNonfatalFailureTest, WorksOutsideOfTestBody) {
   6566   EXPECT_FALSE(HasNonfatalFailureHelper());
   6567 }
   6568 
   6569 TEST(HasNonfatalFailureTest, WorksOutsideOfTestBody2) {
   6570   ADD_FAILURE();
   6571   const bool has_nonfatal_failure = HasNonfatalFailureHelper();
   6572   ClearCurrentTestPartResults();
   6573   EXPECT_TRUE(has_nonfatal_failure);
   6574 }
   6575 
   6576 TEST(HasFailureTest, ReturnsFalseWhenThereIsNoFailure) {
   6577   EXPECT_FALSE(HasFailure());
   6578 }
   6579 
   6580 TEST(HasFailureTest, ReturnsTrueWhenThereIsFatalFailure) {
   6581   FailFatally();
   6582   const bool has_failure = HasFailure();
   6583   ClearCurrentTestPartResults();
   6584   EXPECT_TRUE(has_failure);
   6585 }
   6586 
   6587 TEST(HasFailureTest, ReturnsTrueWhenThereIsNonfatalFailure) {
   6588   ADD_FAILURE();
   6589   const bool has_failure = HasFailure();
   6590   ClearCurrentTestPartResults();
   6591   EXPECT_TRUE(has_failure);
   6592 }
   6593 
   6594 TEST(HasFailureTest, ReturnsTrueWhenThereAreFatalAndNonfatalFailures) {
   6595   FailFatally();
   6596   ADD_FAILURE();
   6597   const bool has_failure = HasFailure();
   6598   ClearCurrentTestPartResults();
   6599   EXPECT_TRUE(has_failure);
   6600 }
   6601 
   6602 // A wrapper for calling HasFailure outside of a test body.
   6603 static bool HasFailureHelper() { return testing::Test::HasFailure(); }
   6604 
   6605 TEST(HasFailureTest, WorksOutsideOfTestBody) {
   6606   EXPECT_FALSE(HasFailureHelper());
   6607 }
   6608 
   6609 TEST(HasFailureTest, WorksOutsideOfTestBody2) {
   6610   ADD_FAILURE();
   6611   const bool has_failure = HasFailureHelper();
   6612   ClearCurrentTestPartResults();
   6613   EXPECT_TRUE(has_failure);
   6614 }
   6615 
   6616 class TestListener : public EmptyTestEventListener {
   6617  public:
   6618   TestListener() : on_start_counter_(NULL), is_destroyed_(NULL) {}
   6619   TestListener(int* on_start_counter, bool* is_destroyed)
   6620       : on_start_counter_(on_start_counter),
   6621         is_destroyed_(is_destroyed) {}
   6622 
   6623   virtual ~TestListener() {
   6624     if (is_destroyed_)
   6625       *is_destroyed_ = true;
   6626   }
   6627 
   6628  protected:
   6629   virtual void OnTestProgramStart(const UnitTest& /*unit_test*/) {
   6630     if (on_start_counter_ != NULL)
   6631       (*on_start_counter_)++;
   6632   }
   6633 
   6634  private:
   6635   int* on_start_counter_;
   6636   bool* is_destroyed_;
   6637 };
   6638 
   6639 // Tests the constructor.
   6640 TEST(TestEventListenersTest, ConstructionWorks) {
   6641   TestEventListeners listeners;
   6642 
   6643   EXPECT_TRUE(TestEventListenersAccessor::GetRepeater(&listeners) != NULL);
   6644   EXPECT_TRUE(listeners.default_result_printer() == NULL);
   6645   EXPECT_TRUE(listeners.default_xml_generator() == NULL);
   6646 }
   6647 
   6648 // Tests that the TestEventListeners destructor deletes all the listeners it
   6649 // owns.
   6650 TEST(TestEventListenersTest, DestructionWorks) {
   6651   bool default_result_printer_is_destroyed = false;
   6652   bool default_xml_printer_is_destroyed = false;
   6653   bool extra_listener_is_destroyed = false;
   6654   TestListener* default_result_printer = new TestListener(
   6655       NULL, &default_result_printer_is_destroyed);
   6656   TestListener* default_xml_printer = new TestListener(
   6657       NULL, &default_xml_printer_is_destroyed);
   6658   TestListener* extra_listener = new TestListener(
   6659       NULL, &extra_listener_is_destroyed);
   6660 
   6661   {
   6662     TestEventListeners listeners;
   6663     TestEventListenersAccessor::SetDefaultResultPrinter(&listeners,
   6664                                                         default_result_printer);
   6665     TestEventListenersAccessor::SetDefaultXmlGenerator(&listeners,
   6666                                                        default_xml_printer);
   6667     listeners.Append(extra_listener);
   6668   }
   6669   EXPECT_TRUE(default_result_printer_is_destroyed);
   6670   EXPECT_TRUE(default_xml_printer_is_destroyed);
   6671   EXPECT_TRUE(extra_listener_is_destroyed);
   6672 }
   6673 
   6674 // Tests that a listener Append'ed to a TestEventListeners list starts
   6675 // receiving events.
   6676 TEST(TestEventListenersTest, Append) {
   6677   int on_start_counter = 0;
   6678   bool is_destroyed = false;
   6679   TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
   6680   {
   6681     TestEventListeners listeners;
   6682     listeners.Append(listener);
   6683     TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
   6684         *UnitTest::GetInstance());
   6685     EXPECT_EQ(1, on_start_counter);
   6686   }
   6687   EXPECT_TRUE(is_destroyed);
   6688 }
   6689 
   6690 // Tests that listeners receive events in the order they were appended to
   6691 // the list, except for *End requests, which must be received in the reverse
   6692 // order.
   6693 class SequenceTestingListener : public EmptyTestEventListener {
   6694  public:
   6695   SequenceTestingListener(std::vector<String>* vector, const char* id)
   6696       : vector_(vector), id_(id) {}
   6697 
   6698  protected:
   6699   virtual void OnTestProgramStart(const UnitTest& /*unit_test*/) {
   6700     vector_->push_back(GetEventDescription("OnTestProgramStart"));
   6701   }
   6702 
   6703   virtual void OnTestProgramEnd(const UnitTest& /*unit_test*/) {
   6704     vector_->push_back(GetEventDescription("OnTestProgramEnd"));
   6705   }
   6706 
   6707   virtual void OnTestIterationStart(const UnitTest& /*unit_test*/,
   6708                                     int /*iteration*/) {
   6709     vector_->push_back(GetEventDescription("OnTestIterationStart"));
   6710   }
   6711 
   6712   virtual void OnTestIterationEnd(const UnitTest& /*unit_test*/,
   6713                                   int /*iteration*/) {
   6714     vector_->push_back(GetEventDescription("OnTestIterationEnd"));
   6715   }
   6716 
   6717  private:
   6718   String GetEventDescription(const char* method) {
   6719     Message message;
   6720     message << id_ << "." << method;
   6721     return message.GetString();
   6722   }
   6723 
   6724   std::vector<String>* vector_;
   6725   const char* const id_;
   6726 
   6727   GTEST_DISALLOW_COPY_AND_ASSIGN_(SequenceTestingListener);
   6728 };
   6729 
   6730 TEST(EventListenerTest, AppendKeepsOrder) {
   6731   std::vector<String> vec;
   6732   TestEventListeners listeners;
   6733   listeners.Append(new SequenceTestingListener(&vec, "1st"));
   6734   listeners.Append(new SequenceTestingListener(&vec, "2nd"));
   6735   listeners.Append(new SequenceTestingListener(&vec, "3rd"));
   6736 
   6737   TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
   6738       *UnitTest::GetInstance());
   6739   ASSERT_EQ(3U, vec.size());
   6740   EXPECT_STREQ("1st.OnTestProgramStart", vec[0].c_str());
   6741   EXPECT_STREQ("2nd.OnTestProgramStart", vec[1].c_str());
   6742   EXPECT_STREQ("3rd.OnTestProgramStart", vec[2].c_str());
   6743 
   6744   vec.clear();
   6745   TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramEnd(
   6746       *UnitTest::GetInstance());
   6747   ASSERT_EQ(3U, vec.size());
   6748   EXPECT_STREQ("3rd.OnTestProgramEnd", vec[0].c_str());
   6749   EXPECT_STREQ("2nd.OnTestProgramEnd", vec[1].c_str());
   6750   EXPECT_STREQ("1st.OnTestProgramEnd", vec[2].c_str());
   6751 
   6752   vec.clear();
   6753   TestEventListenersAccessor::GetRepeater(&listeners)->OnTestIterationStart(
   6754       *UnitTest::GetInstance(), 0);
   6755   ASSERT_EQ(3U, vec.size());
   6756   EXPECT_STREQ("1st.OnTestIterationStart", vec[0].c_str());
   6757   EXPECT_STREQ("2nd.OnTestIterationStart", vec[1].c_str());
   6758   EXPECT_STREQ("3rd.OnTestIterationStart", vec[2].c_str());
   6759 
   6760   vec.clear();
   6761   TestEventListenersAccessor::GetRepeater(&listeners)->OnTestIterationEnd(
   6762       *UnitTest::GetInstance(), 0);
   6763   ASSERT_EQ(3U, vec.size());
   6764   EXPECT_STREQ("3rd.OnTestIterationEnd", vec[0].c_str());
   6765   EXPECT_STREQ("2nd.OnTestIterationEnd", vec[1].c_str());
   6766   EXPECT_STREQ("1st.OnTestIterationEnd", vec[2].c_str());
   6767 }
   6768 
   6769 // Tests that a listener removed from a TestEventListeners list stops receiving
   6770 // events and is not deleted when the list is destroyed.
   6771 TEST(TestEventListenersTest, Release) {
   6772   int on_start_counter = 0;
   6773   bool is_destroyed = false;
   6774   // Although Append passes the ownership of this object to the list,
   6775   // the following calls release it, and we need to delete it before the
   6776   // test ends.
   6777   TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
   6778   {
   6779     TestEventListeners listeners;
   6780     listeners.Append(listener);
   6781     EXPECT_EQ(listener, listeners.Release(listener));
   6782     TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
   6783         *UnitTest::GetInstance());
   6784     EXPECT_TRUE(listeners.Release(listener) == NULL);
   6785   }
   6786   EXPECT_EQ(0, on_start_counter);
   6787   EXPECT_FALSE(is_destroyed);
   6788   delete listener;
   6789 }
   6790 
   6791 // Tests that no events are forwarded when event forwarding is disabled.
   6792 TEST(EventListenerTest, SuppressEventForwarding) {
   6793   int on_start_counter = 0;
   6794   TestListener* listener = new TestListener(&on_start_counter, NULL);
   6795 
   6796   TestEventListeners listeners;
   6797   listeners.Append(listener);
   6798   ASSERT_TRUE(TestEventListenersAccessor::EventForwardingEnabled(listeners));
   6799   TestEventListenersAccessor::SuppressEventForwarding(&listeners);
   6800   ASSERT_FALSE(TestEventListenersAccessor::EventForwardingEnabled(listeners));
   6801   TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
   6802       *UnitTest::GetInstance());
   6803   EXPECT_EQ(0, on_start_counter);
   6804 }
   6805 
   6806 // Tests that events generated by Google Test are not forwarded in
   6807 // death test subprocesses.
   6808 TEST(EventListenerDeathTest, EventsNotForwardedInDeathTestSubprecesses) {
   6809   EXPECT_DEATH_IF_SUPPORTED({
   6810       GTEST_CHECK_(TestEventListenersAccessor::EventForwardingEnabled(
   6811           *GetUnitTestImpl()->listeners())) << "expected failure";},
   6812       "expected failure");
   6813 }
   6814 
   6815 // Tests that a listener installed via SetDefaultResultPrinter() starts
   6816 // receiving events and is returned via default_result_printer() and that
   6817 // the previous default_result_printer is removed from the list and deleted.
   6818 TEST(EventListenerTest, default_result_printer) {
   6819   int on_start_counter = 0;
   6820   bool is_destroyed = false;
   6821   TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
   6822 
   6823   TestEventListeners listeners;
   6824   TestEventListenersAccessor::SetDefaultResultPrinter(&listeners, listener);
   6825 
   6826   EXPECT_EQ(listener, listeners.default_result_printer());
   6827 
   6828   TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
   6829       *UnitTest::GetInstance());
   6830 
   6831   EXPECT_EQ(1, on_start_counter);
   6832 
   6833   // Replacing default_result_printer with something else should remove it
   6834   // from the list and destroy it.
   6835   TestEventListenersAccessor::SetDefaultResultPrinter(&listeners, NULL);
   6836 
   6837   EXPECT_TRUE(listeners.default_result_printer() == NULL);
   6838   EXPECT_TRUE(is_destroyed);
   6839 
   6840   // After broadcasting an event the counter is still the same, indicating
   6841   // the listener is not in the list anymore.
   6842   TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
   6843       *UnitTest::GetInstance());
   6844   EXPECT_EQ(1, on_start_counter);
   6845 }
   6846 
   6847 // Tests that the default_result_printer listener stops receiving events
   6848 // when removed via Release and that is not owned by the list anymore.
   6849 TEST(EventListenerTest, RemovingDefaultResultPrinterWorks) {
   6850   int on_start_counter = 0;
   6851   bool is_destroyed = false;
   6852   // Although Append passes the ownership of this object to the list,
   6853   // the following calls release it, and we need to delete it before the
   6854   // test ends.
   6855   TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
   6856   {
   6857     TestEventListeners listeners;
   6858     TestEventListenersAccessor::SetDefaultResultPrinter(&listeners, listener);
   6859 
   6860     EXPECT_EQ(listener, listeners.Release(listener));
   6861     EXPECT_TRUE(listeners.default_result_printer() == NULL);
   6862     EXPECT_FALSE(is_destroyed);
   6863 
   6864     // Broadcasting events now should not affect default_result_printer.
   6865     TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
   6866         *UnitTest::GetInstance());
   6867     EXPECT_EQ(0, on_start_counter);
   6868   }
   6869   // Destroying the list should not affect the listener now, too.
   6870   EXPECT_FALSE(is_destroyed);
   6871   delete listener;
   6872 }
   6873 
   6874 // Tests that a listener installed via SetDefaultXmlGenerator() starts
   6875 // receiving events and is returned via default_xml_generator() and that
   6876 // the previous default_xml_generator is removed from the list and deleted.
   6877 TEST(EventListenerTest, default_xml_generator) {
   6878   int on_start_counter = 0;
   6879   bool is_destroyed = false;
   6880   TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
   6881 
   6882   TestEventListeners listeners;
   6883   TestEventListenersAccessor::SetDefaultXmlGenerator(&listeners, listener);
   6884 
   6885   EXPECT_EQ(listener, listeners.default_xml_generator());
   6886 
   6887   TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
   6888       *UnitTest::GetInstance());
   6889 
   6890   EXPECT_EQ(1, on_start_counter);
   6891 
   6892   // Replacing default_xml_generator with something else should remove it
   6893   // from the list and destroy it.
   6894   TestEventListenersAccessor::SetDefaultXmlGenerator(&listeners, NULL);
   6895 
   6896   EXPECT_TRUE(listeners.default_xml_generator() == NULL);
   6897   EXPECT_TRUE(is_destroyed);
   6898 
   6899   // After broadcasting an event the counter is still the same, indicating
   6900   // the listener is not in the list anymore.
   6901   TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
   6902       *UnitTest::GetInstance());
   6903   EXPECT_EQ(1, on_start_counter);
   6904 }
   6905 
   6906 // Tests that the default_xml_generator listener stops receiving events
   6907 // when removed via Release and that is not owned by the list anymore.
   6908 TEST(EventListenerTest, RemovingDefaultXmlGeneratorWorks) {
   6909   int on_start_counter = 0;
   6910   bool is_destroyed = false;
   6911   // Although Append passes the ownership of this object to the list,
   6912   // the following calls release it, and we need to delete it before the
   6913   // test ends.
   6914   TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
   6915   {
   6916     TestEventListeners listeners;
   6917     TestEventListenersAccessor::SetDefaultXmlGenerator(&listeners, listener);
   6918 
   6919     EXPECT_EQ(listener, listeners.Release(listener));
   6920     EXPECT_TRUE(listeners.default_xml_generator() == NULL);
   6921     EXPECT_FALSE(is_destroyed);
   6922 
   6923     // Broadcasting events now should not affect default_xml_generator.
   6924     TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
   6925         *UnitTest::GetInstance());
   6926     EXPECT_EQ(0, on_start_counter);
   6927   }
   6928   // Destroying the list should not affect the listener now, too.
   6929   EXPECT_FALSE(is_destroyed);
   6930   delete listener;
   6931 }
   6932 
   6933 // Sanity tests to ensure that the alternative, verbose spellings of
   6934 // some of the macros work.  We don't test them thoroughly as that
   6935 // would be quite involved.  Since their implementations are
   6936 // straightforward, and they are rarely used, we'll just rely on the
   6937 // users to tell us when they are broken.
   6938 GTEST_TEST(AlternativeNameTest, Works) {  // GTEST_TEST is the same as TEST.
   6939   GTEST_SUCCEED() << "OK";  // GTEST_SUCCEED is the same as SUCCEED.
   6940 
   6941   // GTEST_FAIL is the same as FAIL.
   6942   EXPECT_FATAL_FAILURE(GTEST_FAIL() << "An expected failure",
   6943                        "An expected failure");
   6944 
   6945   // GTEST_ASSERT_XY is the same as ASSERT_XY.
   6946 
   6947   GTEST_ASSERT_EQ(0, 0);
   6948   EXPECT_FATAL_FAILURE(GTEST_ASSERT_EQ(0, 1) << "An expected failure",
   6949                        "An expected failure");
   6950   EXPECT_FATAL_FAILURE(GTEST_ASSERT_EQ(1, 0) << "An expected failure",
   6951                        "An expected failure");
   6952 
   6953   GTEST_ASSERT_NE(0, 1);
   6954   GTEST_ASSERT_NE(1, 0);
   6955   EXPECT_FATAL_FAILURE(GTEST_ASSERT_NE(0, 0) << "An expected failure",
   6956                        "An expected failure");
   6957 
   6958   GTEST_ASSERT_LE(0, 0);
   6959   GTEST_ASSERT_LE(0, 1);
   6960   EXPECT_FATAL_FAILURE(GTEST_ASSERT_LE(1, 0) << "An expected failure",
   6961                        "An expected failure");
   6962 
   6963   GTEST_ASSERT_LT(0, 1);
   6964   EXPECT_FATAL_FAILURE(GTEST_ASSERT_LT(0, 0) << "An expected failure",
   6965                        "An expected failure");
   6966   EXPECT_FATAL_FAILURE(GTEST_ASSERT_LT(1, 0) << "An expected failure",
   6967                        "An expected failure");
   6968 
   6969   GTEST_ASSERT_GE(0, 0);
   6970   GTEST_ASSERT_GE(1, 0);
   6971   EXPECT_FATAL_FAILURE(GTEST_ASSERT_GE(0, 1) << "An expected failure",
   6972                        "An expected failure");
   6973 
   6974   GTEST_ASSERT_GT(1, 0);
   6975   EXPECT_FATAL_FAILURE(GTEST_ASSERT_GT(0, 1) << "An expected failure",
   6976                        "An expected failure");
   6977   EXPECT_FATAL_FAILURE(GTEST_ASSERT_GT(1, 1) << "An expected failure",
   6978                        "An expected failure");
   6979 }
   6980 
   6981 // Tests for internal utilities necessary for implementation of the universal
   6982 // printing.
   6983 // TODO(vladl (at) google.com): Find a better home for them.
   6984 
   6985 class ConversionHelperBase {};
   6986 class ConversionHelperDerived : public ConversionHelperBase {};
   6987 
   6988 // Tests that IsAProtocolMessage<T>::value is a compile-time constant.
   6989 TEST(IsAProtocolMessageTest, ValueIsCompileTimeConstant) {
   6990   GTEST_COMPILE_ASSERT_(IsAProtocolMessage<ProtocolMessage>::value,
   6991                         const_true);
   6992   GTEST_COMPILE_ASSERT_(!IsAProtocolMessage<int>::value, const_false);
   6993 }
   6994 
   6995 // Tests that IsAProtocolMessage<T>::value is true when T is
   6996 // proto2::Message or a sub-class of it.
   6997 TEST(IsAProtocolMessageTest, ValueIsTrueWhenTypeIsAProtocolMessage) {
   6998   EXPECT_TRUE(IsAProtocolMessage< ::proto2::Message>::value);
   6999   EXPECT_TRUE(IsAProtocolMessage<ProtocolMessage>::value);
   7000 }
   7001 
   7002 // Tests that IsAProtocolMessage<T>::value is false when T is neither
   7003 // ProtocolMessage nor a sub-class of it.
   7004 TEST(IsAProtocolMessageTest, ValueIsFalseWhenTypeIsNotAProtocolMessage) {
   7005   EXPECT_FALSE(IsAProtocolMessage<int>::value);
   7006   EXPECT_FALSE(IsAProtocolMessage<const ConversionHelperBase>::value);
   7007 }
   7008 
   7009 // Tests that CompileAssertTypesEqual compiles when the type arguments are
   7010 // equal.
   7011 TEST(CompileAssertTypesEqual, CompilesWhenTypesAreEqual) {
   7012   CompileAssertTypesEqual<void, void>();
   7013   CompileAssertTypesEqual<int*, int*>();
   7014 }
   7015 
   7016 // Tests that RemoveReference does not affect non-reference types.
   7017 TEST(RemoveReferenceTest, DoesNotAffectNonReferenceType) {
   7018   CompileAssertTypesEqual<int, RemoveReference<int>::type>();
   7019   CompileAssertTypesEqual<const char, RemoveReference<const char>::type>();
   7020 }
   7021 
   7022 // Tests that RemoveReference removes reference from reference types.
   7023 TEST(RemoveReferenceTest, RemovesReference) {
   7024   CompileAssertTypesEqual<int, RemoveReference<int&>::type>();
   7025   CompileAssertTypesEqual<const char, RemoveReference<const char&>::type>();
   7026 }
   7027 
   7028 // Tests GTEST_REMOVE_REFERENCE_.
   7029 
   7030 template <typename T1, typename T2>
   7031 void TestGTestRemoveReference() {
   7032   CompileAssertTypesEqual<T1, GTEST_REMOVE_REFERENCE_(T2)>();
   7033 }
   7034 
   7035 TEST(RemoveReferenceTest, MacroVersion) {
   7036   TestGTestRemoveReference<int, int>();
   7037   TestGTestRemoveReference<const char, const char&>();
   7038 }
   7039 
   7040 
   7041 // Tests that RemoveConst does not affect non-const types.
   7042 TEST(RemoveConstTest, DoesNotAffectNonConstType) {
   7043   CompileAssertTypesEqual<int, RemoveConst<int>::type>();
   7044   CompileAssertTypesEqual<char&, RemoveConst<char&>::type>();
   7045 }
   7046 
   7047 // Tests that RemoveConst removes const from const types.
   7048 TEST(RemoveConstTest, RemovesConst) {
   7049   CompileAssertTypesEqual<int, RemoveConst<const int>::type>();
   7050   CompileAssertTypesEqual<char[2], RemoveConst<const char[2]>::type>();
   7051   CompileAssertTypesEqual<char[2][3], RemoveConst<const char[2][3]>::type>();
   7052 }
   7053 
   7054 // Tests GTEST_REMOVE_CONST_.
   7055 
   7056 template <typename T1, typename T2>
   7057 void TestGTestRemoveConst() {
   7058   CompileAssertTypesEqual<T1, GTEST_REMOVE_CONST_(T2)>();
   7059 }
   7060 
   7061 TEST(RemoveConstTest, MacroVersion) {
   7062   TestGTestRemoveConst<int, int>();
   7063   TestGTestRemoveConst<double&, double&>();
   7064   TestGTestRemoveConst<char, const char>();
   7065 }
   7066 
   7067 // Tests GTEST_REMOVE_REFERENCE_AND_CONST_.
   7068 
   7069 template <typename T1, typename T2>
   7070 void TestGTestRemoveReferenceAndConst() {
   7071   CompileAssertTypesEqual<T1, GTEST_REMOVE_REFERENCE_AND_CONST_(T2)>();
   7072 }
   7073 
   7074 TEST(RemoveReferenceToConstTest, Works) {
   7075   TestGTestRemoveReferenceAndConst<int, int>();
   7076   TestGTestRemoveReferenceAndConst<double, double&>();
   7077   TestGTestRemoveReferenceAndConst<char, const char>();
   7078   TestGTestRemoveReferenceAndConst<char, const char&>();
   7079   TestGTestRemoveReferenceAndConst<const char*, const char*>();
   7080 }
   7081 
   7082 // Tests that AddReference does not affect reference types.
   7083 TEST(AddReferenceTest, DoesNotAffectReferenceType) {
   7084   CompileAssertTypesEqual<int&, AddReference<int&>::type>();
   7085   CompileAssertTypesEqual<const char&, AddReference<const char&>::type>();
   7086 }
   7087 
   7088 // Tests that AddReference adds reference to non-reference types.
   7089 TEST(AddReferenceTest, AddsReference) {
   7090   CompileAssertTypesEqual<int&, AddReference<int>::type>();
   7091   CompileAssertTypesEqual<const char&, AddReference<const char>::type>();
   7092 }
   7093 
   7094 // Tests GTEST_ADD_REFERENCE_.
   7095 
   7096 template <typename T1, typename T2>
   7097 void TestGTestAddReference() {
   7098   CompileAssertTypesEqual<T1, GTEST_ADD_REFERENCE_(T2)>();
   7099 }
   7100 
   7101 TEST(AddReferenceTest, MacroVersion) {
   7102   TestGTestAddReference<int&, int>();
   7103   TestGTestAddReference<const char&, const char&>();
   7104 }
   7105 
   7106 // Tests GTEST_REFERENCE_TO_CONST_.
   7107 
   7108 template <typename T1, typename T2>
   7109 void TestGTestReferenceToConst() {
   7110   CompileAssertTypesEqual<T1, GTEST_REFERENCE_TO_CONST_(T2)>();
   7111 }
   7112 
   7113 TEST(GTestReferenceToConstTest, Works) {
   7114   TestGTestReferenceToConst<const char&, char>();
   7115   TestGTestReferenceToConst<const int&, const int>();
   7116   TestGTestReferenceToConst<const double&, double>();
   7117   TestGTestReferenceToConst<const String&, const String&>();
   7118 }
   7119 
   7120 // Tests that ImplicitlyConvertible<T1, T2>::value is a compile-time constant.
   7121 TEST(ImplicitlyConvertibleTest, ValueIsCompileTimeConstant) {
   7122   GTEST_COMPILE_ASSERT_((ImplicitlyConvertible<int, int>::value), const_true);
   7123   GTEST_COMPILE_ASSERT_((!ImplicitlyConvertible<void*, int*>::value),
   7124                         const_false);
   7125 }
   7126 
   7127 // Tests that ImplicitlyConvertible<T1, T2>::value is true when T1 can
   7128 // be implicitly converted to T2.
   7129 TEST(ImplicitlyConvertibleTest, ValueIsTrueWhenConvertible) {
   7130   EXPECT_TRUE((ImplicitlyConvertible<int, double>::value));
   7131   EXPECT_TRUE((ImplicitlyConvertible<double, int>::value));
   7132   EXPECT_TRUE((ImplicitlyConvertible<int*, void*>::value));
   7133   EXPECT_TRUE((ImplicitlyConvertible<int*, const int*>::value));
   7134   EXPECT_TRUE((ImplicitlyConvertible<ConversionHelperDerived&,
   7135                                      const ConversionHelperBase&>::value));
   7136   EXPECT_TRUE((ImplicitlyConvertible<const ConversionHelperBase,
   7137                                      ConversionHelperBase>::value));
   7138 }
   7139 
   7140 // Tests that ImplicitlyConvertible<T1, T2>::value is false when T1
   7141 // cannot be implicitly converted to T2.
   7142 TEST(ImplicitlyConvertibleTest, ValueIsFalseWhenNotConvertible) {
   7143   EXPECT_FALSE((ImplicitlyConvertible<double, int*>::value));
   7144   EXPECT_FALSE((ImplicitlyConvertible<void*, int*>::value));
   7145   EXPECT_FALSE((ImplicitlyConvertible<const int*, int*>::value));
   7146   EXPECT_FALSE((ImplicitlyConvertible<ConversionHelperBase&,
   7147                                       ConversionHelperDerived&>::value));
   7148 }
   7149 
   7150 // Tests IsContainerTest.
   7151 
   7152 class NonContainer {};
   7153 
   7154 TEST(IsContainerTestTest, WorksForNonContainer) {
   7155   EXPECT_EQ(sizeof(IsNotContainer), sizeof(IsContainerTest<int>(0)));
   7156   EXPECT_EQ(sizeof(IsNotContainer), sizeof(IsContainerTest<char[5]>(0)));
   7157   EXPECT_EQ(sizeof(IsNotContainer), sizeof(IsContainerTest<NonContainer>(0)));
   7158 }
   7159 
   7160 TEST(IsContainerTestTest, WorksForContainer) {
   7161   EXPECT_EQ(sizeof(IsContainer),
   7162             sizeof(IsContainerTest<std::vector<bool> >(0)));
   7163   EXPECT_EQ(sizeof(IsContainer),
   7164             sizeof(IsContainerTest<std::map<int, double> >(0)));
   7165 }
   7166 
   7167 // Tests ArrayEq().
   7168 
   7169 TEST(ArrayEqTest, WorksForDegeneratedArrays) {
   7170   EXPECT_TRUE(ArrayEq(5, 5L));
   7171   EXPECT_FALSE(ArrayEq('a', 0));
   7172 }
   7173 
   7174 TEST(ArrayEqTest, WorksForOneDimensionalArrays) {
   7175   const int a[] = { 0, 1 };
   7176   long b[] = { 0, 1 };
   7177   EXPECT_TRUE(ArrayEq(a, b));
   7178   EXPECT_TRUE(ArrayEq(a, 2, b));
   7179 
   7180   b[0] = 2;
   7181   EXPECT_FALSE(ArrayEq(a, b));
   7182   EXPECT_FALSE(ArrayEq(a, 1, b));
   7183 }
   7184 
   7185 TEST(ArrayEqTest, WorksForTwoDimensionalArrays) {
   7186   const char a[][3] = { "hi", "lo" };
   7187   const char b[][3] = { "hi", "lo" };
   7188   const char c[][3] = { "hi", "li" };
   7189 
   7190   EXPECT_TRUE(ArrayEq(a, b));
   7191   EXPECT_TRUE(ArrayEq(a, 2, b));
   7192 
   7193   EXPECT_FALSE(ArrayEq(a, c));
   7194   EXPECT_FALSE(ArrayEq(a, 2, c));
   7195 }
   7196 
   7197 // Tests ArrayAwareFind().
   7198 
   7199 TEST(ArrayAwareFindTest, WorksForOneDimensionalArray) {
   7200   const char a[] = "hello";
   7201   EXPECT_EQ(a + 4, ArrayAwareFind(a, a + 5, 'o'));
   7202   EXPECT_EQ(a + 5, ArrayAwareFind(a, a + 5, 'x'));
   7203 }
   7204 
   7205 TEST(ArrayAwareFindTest, WorksForTwoDimensionalArray) {
   7206   int a[][2] = { { 0, 1 }, { 2, 3 }, { 4, 5 } };
   7207   const int b[2] = { 2, 3 };
   7208   EXPECT_EQ(a + 1, ArrayAwareFind(a, a + 3, b));
   7209 
   7210   const int c[2] = { 6, 7 };
   7211   EXPECT_EQ(a + 3, ArrayAwareFind(a, a + 3, c));
   7212 }
   7213 
   7214 // Tests CopyArray().
   7215 
   7216 TEST(CopyArrayTest, WorksForDegeneratedArrays) {
   7217   int n = 0;
   7218   CopyArray('a', &n);
   7219   EXPECT_EQ('a', n);
   7220 }
   7221 
   7222 TEST(CopyArrayTest, WorksForOneDimensionalArrays) {
   7223   const char a[3] = "hi";
   7224   int b[3];
   7225 #ifndef __BORLANDC__  // C++Builder cannot compile some array size deductions.
   7226   CopyArray(a, &b);
   7227   EXPECT_TRUE(ArrayEq(a, b));
   7228 #endif
   7229 
   7230   int c[3];
   7231   CopyArray(a, 3, c);
   7232   EXPECT_TRUE(ArrayEq(a, c));
   7233 }
   7234 
   7235 TEST(CopyArrayTest, WorksForTwoDimensionalArrays) {
   7236   const int a[2][3] = { { 0, 1, 2 }, { 3, 4, 5 } };
   7237   int b[2][3];
   7238 #ifndef __BORLANDC__  // C++Builder cannot compile some array size deductions.
   7239   CopyArray(a, &b);
   7240   EXPECT_TRUE(ArrayEq(a, b));
   7241 #endif
   7242 
   7243   int c[2][3];
   7244   CopyArray(a, 2, c);
   7245   EXPECT_TRUE(ArrayEq(a, c));
   7246 }
   7247 
   7248 // Tests NativeArray.
   7249 
   7250 TEST(NativeArrayTest, ConstructorFromArrayWorks) {
   7251   const int a[3] = { 0, 1, 2 };
   7252   NativeArray<int> na(a, 3, kReference);
   7253   EXPECT_EQ(3U, na.size());
   7254   EXPECT_EQ(a, na.begin());
   7255 }
   7256 
   7257 TEST(NativeArrayTest, CreatesAndDeletesCopyOfArrayWhenAskedTo) {
   7258   typedef int Array[2];
   7259   Array* a = new Array[1];
   7260   (*a)[0] = 0;
   7261   (*a)[1] = 1;
   7262   NativeArray<int> na(*a, 2, kCopy);
   7263   EXPECT_NE(*a, na.begin());
   7264   delete[] a;
   7265   EXPECT_EQ(0, na.begin()[0]);
   7266   EXPECT_EQ(1, na.begin()[1]);
   7267 
   7268   // We rely on the heap checker to verify that na deletes the copy of
   7269   // array.
   7270 }
   7271 
   7272 TEST(NativeArrayTest, TypeMembersAreCorrect) {
   7273   StaticAssertTypeEq<char, NativeArray<char>::value_type>();
   7274   StaticAssertTypeEq<int[2], NativeArray<int[2]>::value_type>();
   7275 
   7276   StaticAssertTypeEq<const char*, NativeArray<char>::const_iterator>();
   7277   StaticAssertTypeEq<const bool(*)[2], NativeArray<bool[2]>::const_iterator>();
   7278 }
   7279 
   7280 TEST(NativeArrayTest, MethodsWork) {
   7281   const int a[3] = { 0, 1, 2 };
   7282   NativeArray<int> na(a, 3, kCopy);
   7283   ASSERT_EQ(3U, na.size());
   7284   EXPECT_EQ(3, na.end() - na.begin());
   7285 
   7286   NativeArray<int>::const_iterator it = na.begin();
   7287   EXPECT_EQ(0, *it);
   7288   ++it;
   7289   EXPECT_EQ(1, *it);
   7290   it++;
   7291   EXPECT_EQ(2, *it);
   7292   ++it;
   7293   EXPECT_EQ(na.end(), it);
   7294 
   7295   EXPECT_TRUE(na == na);
   7296 
   7297   NativeArray<int> na2(a, 3, kReference);
   7298   EXPECT_TRUE(na == na2);
   7299 
   7300   const int b1[3] = { 0, 1, 1 };
   7301   const int b2[4] = { 0, 1, 2, 3 };
   7302   EXPECT_FALSE(na == NativeArray<int>(b1, 3, kReference));
   7303   EXPECT_FALSE(na == NativeArray<int>(b2, 4, kCopy));
   7304 }
   7305 
   7306 TEST(NativeArrayTest, WorksForTwoDimensionalArray) {
   7307   const char a[2][3] = { "hi", "lo" };
   7308   NativeArray<char[3]> na(a, 2, kReference);
   7309   ASSERT_EQ(2U, na.size());
   7310   EXPECT_EQ(a, na.begin());
   7311 }
   7312 
   7313 // Tests SkipPrefix().
   7314 
   7315 TEST(SkipPrefixTest, SkipsWhenPrefixMatches) {
   7316   const char* const str = "hello";
   7317 
   7318   const char* p = str;
   7319   EXPECT_TRUE(SkipPrefix("", &p));
   7320   EXPECT_EQ(str, p);
   7321 
   7322   p = str;
   7323   EXPECT_TRUE(SkipPrefix("hell", &p));
   7324   EXPECT_EQ(str + 4, p);
   7325 }
   7326 
   7327 TEST(SkipPrefixTest, DoesNotSkipWhenPrefixDoesNotMatch) {
   7328   const char* const str = "world";
   7329 
   7330   const char* p = str;
   7331   EXPECT_FALSE(SkipPrefix("W", &p));
   7332   EXPECT_EQ(str, p);
   7333 
   7334   p = str;
   7335   EXPECT_FALSE(SkipPrefix("world!", &p));
   7336   EXPECT_EQ(str, p);
   7337 }
   7338