Home | History | Annotate | Download | only in Sema
      1 //===--- SemaInit.cpp - Semantic Analysis for Initializers ----------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements semantic analysis for initializers.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "clang/Sema/Designator.h"
     15 #include "clang/Sema/Initialization.h"
     16 #include "clang/Sema/Lookup.h"
     17 #include "clang/Sema/SemaInternal.h"
     18 #include "clang/Lex/Preprocessor.h"
     19 #include "clang/AST/ASTContext.h"
     20 #include "clang/AST/DeclObjC.h"
     21 #include "clang/AST/ExprCXX.h"
     22 #include "clang/AST/ExprObjC.h"
     23 #include "clang/AST/TypeLoc.h"
     24 #include "llvm/Support/ErrorHandling.h"
     25 #include "llvm/Support/raw_ostream.h"
     26 #include <map>
     27 using namespace clang;
     28 
     29 //===----------------------------------------------------------------------===//
     30 // Sema Initialization Checking
     31 //===----------------------------------------------------------------------===//
     32 
     33 static Expr *IsStringInit(Expr *Init, const ArrayType *AT,
     34                           ASTContext &Context) {
     35   if (!isa<ConstantArrayType>(AT) && !isa<IncompleteArrayType>(AT))
     36     return 0;
     37 
     38   // See if this is a string literal or @encode.
     39   Init = Init->IgnoreParens();
     40 
     41   // Handle @encode, which is a narrow string.
     42   if (isa<ObjCEncodeExpr>(Init) && AT->getElementType()->isCharType())
     43     return Init;
     44 
     45   // Otherwise we can only handle string literals.
     46   StringLiteral *SL = dyn_cast<StringLiteral>(Init);
     47   if (SL == 0) return 0;
     48 
     49   QualType ElemTy = Context.getCanonicalType(AT->getElementType());
     50 
     51   switch (SL->getKind()) {
     52   case StringLiteral::Ascii:
     53   case StringLiteral::UTF8:
     54     // char array can be initialized with a narrow string.
     55     // Only allow char x[] = "foo";  not char x[] = L"foo";
     56     return ElemTy->isCharType() ? Init : 0;
     57   case StringLiteral::UTF16:
     58     return ElemTy->isChar16Type() ? Init : 0;
     59   case StringLiteral::UTF32:
     60     return ElemTy->isChar32Type() ? Init : 0;
     61   case StringLiteral::Wide:
     62     // wchar_t array can be initialized with a wide string: C99 6.7.8p15 (with
     63     // correction from DR343): "An array with element type compatible with a
     64     // qualified or unqualified version of wchar_t may be initialized by a wide
     65     // string literal, optionally enclosed in braces."
     66     if (Context.typesAreCompatible(Context.getWCharType(),
     67                                    ElemTy.getUnqualifiedType()))
     68       return Init;
     69 
     70     return 0;
     71   }
     72 
     73   llvm_unreachable("missed a StringLiteral kind?");
     74 }
     75 
     76 static Expr *IsStringInit(Expr *init, QualType declType, ASTContext &Context) {
     77   const ArrayType *arrayType = Context.getAsArrayType(declType);
     78   if (!arrayType) return 0;
     79 
     80   return IsStringInit(init, arrayType, Context);
     81 }
     82 
     83 static void CheckStringInit(Expr *Str, QualType &DeclT, const ArrayType *AT,
     84                             Sema &S) {
     85   // Get the length of the string as parsed.
     86   uint64_t StrLength =
     87     cast<ConstantArrayType>(Str->getType())->getSize().getZExtValue();
     88 
     89 
     90   if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
     91     // C99 6.7.8p14. We have an array of character type with unknown size
     92     // being initialized to a string literal.
     93     llvm::APSInt ConstVal(32);
     94     ConstVal = StrLength;
     95     // Return a new array type (C99 6.7.8p22).
     96     DeclT = S.Context.getConstantArrayType(IAT->getElementType(),
     97                                            ConstVal,
     98                                            ArrayType::Normal, 0);
     99     return;
    100   }
    101 
    102   const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
    103 
    104   // We have an array of character type with known size.  However,
    105   // the size may be smaller or larger than the string we are initializing.
    106   // FIXME: Avoid truncation for 64-bit length strings.
    107   if (S.getLangOptions().CPlusPlus) {
    108     if (StringLiteral *SL = dyn_cast<StringLiteral>(Str)) {
    109       // For Pascal strings it's OK to strip off the terminating null character,
    110       // so the example below is valid:
    111       //
    112       // unsigned char a[2] = "\pa";
    113       if (SL->isPascal())
    114         StrLength--;
    115     }
    116 
    117     // [dcl.init.string]p2
    118     if (StrLength > CAT->getSize().getZExtValue())
    119       S.Diag(Str->getSourceRange().getBegin(),
    120              diag::err_initializer_string_for_char_array_too_long)
    121         << Str->getSourceRange();
    122   } else {
    123     // C99 6.7.8p14.
    124     if (StrLength-1 > CAT->getSize().getZExtValue())
    125       S.Diag(Str->getSourceRange().getBegin(),
    126              diag::warn_initializer_string_for_char_array_too_long)
    127         << Str->getSourceRange();
    128   }
    129 
    130   // Set the type to the actual size that we are initializing.  If we have
    131   // something like:
    132   //   char x[1] = "foo";
    133   // then this will set the string literal's type to char[1].
    134   Str->setType(DeclT);
    135 }
    136 
    137 //===----------------------------------------------------------------------===//
    138 // Semantic checking for initializer lists.
    139 //===----------------------------------------------------------------------===//
    140 
    141 /// @brief Semantic checking for initializer lists.
    142 ///
    143 /// The InitListChecker class contains a set of routines that each
    144 /// handle the initialization of a certain kind of entity, e.g.,
    145 /// arrays, vectors, struct/union types, scalars, etc. The
    146 /// InitListChecker itself performs a recursive walk of the subobject
    147 /// structure of the type to be initialized, while stepping through
    148 /// the initializer list one element at a time. The IList and Index
    149 /// parameters to each of the Check* routines contain the active
    150 /// (syntactic) initializer list and the index into that initializer
    151 /// list that represents the current initializer. Each routine is
    152 /// responsible for moving that Index forward as it consumes elements.
    153 ///
    154 /// Each Check* routine also has a StructuredList/StructuredIndex
    155 /// arguments, which contains the current "structured" (semantic)
    156 /// initializer list and the index into that initializer list where we
    157 /// are copying initializers as we map them over to the semantic
    158 /// list. Once we have completed our recursive walk of the subobject
    159 /// structure, we will have constructed a full semantic initializer
    160 /// list.
    161 ///
    162 /// C99 designators cause changes in the initializer list traversal,
    163 /// because they make the initialization "jump" into a specific
    164 /// subobject and then continue the initialization from that
    165 /// point. CheckDesignatedInitializer() recursively steps into the
    166 /// designated subobject and manages backing out the recursion to
    167 /// initialize the subobjects after the one designated.
    168 namespace {
    169 class InitListChecker {
    170   Sema &SemaRef;
    171   bool hadError;
    172   bool VerifyOnly; // no diagnostics, no structure building
    173   bool AllowBraceElision;
    174   std::map<InitListExpr *, InitListExpr *> SyntacticToSemantic;
    175   InitListExpr *FullyStructuredList;
    176 
    177   void CheckImplicitInitList(const InitializedEntity &Entity,
    178                              InitListExpr *ParentIList, QualType T,
    179                              unsigned &Index, InitListExpr *StructuredList,
    180                              unsigned &StructuredIndex);
    181   void CheckExplicitInitList(const InitializedEntity &Entity,
    182                              InitListExpr *IList, QualType &T,
    183                              unsigned &Index, InitListExpr *StructuredList,
    184                              unsigned &StructuredIndex,
    185                              bool TopLevelObject = false);
    186   void CheckListElementTypes(const InitializedEntity &Entity,
    187                              InitListExpr *IList, QualType &DeclType,
    188                              bool SubobjectIsDesignatorContext,
    189                              unsigned &Index,
    190                              InitListExpr *StructuredList,
    191                              unsigned &StructuredIndex,
    192                              bool TopLevelObject = false);
    193   void CheckSubElementType(const InitializedEntity &Entity,
    194                            InitListExpr *IList, QualType ElemType,
    195                            unsigned &Index,
    196                            InitListExpr *StructuredList,
    197                            unsigned &StructuredIndex);
    198   void CheckComplexType(const InitializedEntity &Entity,
    199                         InitListExpr *IList, QualType DeclType,
    200                         unsigned &Index,
    201                         InitListExpr *StructuredList,
    202                         unsigned &StructuredIndex);
    203   void CheckScalarType(const InitializedEntity &Entity,
    204                        InitListExpr *IList, QualType DeclType,
    205                        unsigned &Index,
    206                        InitListExpr *StructuredList,
    207                        unsigned &StructuredIndex);
    208   void CheckReferenceType(const InitializedEntity &Entity,
    209                           InitListExpr *IList, QualType DeclType,
    210                           unsigned &Index,
    211                           InitListExpr *StructuredList,
    212                           unsigned &StructuredIndex);
    213   void CheckVectorType(const InitializedEntity &Entity,
    214                        InitListExpr *IList, QualType DeclType, unsigned &Index,
    215                        InitListExpr *StructuredList,
    216                        unsigned &StructuredIndex);
    217   void CheckStructUnionTypes(const InitializedEntity &Entity,
    218                              InitListExpr *IList, QualType DeclType,
    219                              RecordDecl::field_iterator Field,
    220                              bool SubobjectIsDesignatorContext, unsigned &Index,
    221                              InitListExpr *StructuredList,
    222                              unsigned &StructuredIndex,
    223                              bool TopLevelObject = false);
    224   void CheckArrayType(const InitializedEntity &Entity,
    225                       InitListExpr *IList, QualType &DeclType,
    226                       llvm::APSInt elementIndex,
    227                       bool SubobjectIsDesignatorContext, unsigned &Index,
    228                       InitListExpr *StructuredList,
    229                       unsigned &StructuredIndex);
    230   bool CheckDesignatedInitializer(const InitializedEntity &Entity,
    231                                   InitListExpr *IList, DesignatedInitExpr *DIE,
    232                                   unsigned DesigIdx,
    233                                   QualType &CurrentObjectType,
    234                                   RecordDecl::field_iterator *NextField,
    235                                   llvm::APSInt *NextElementIndex,
    236                                   unsigned &Index,
    237                                   InitListExpr *StructuredList,
    238                                   unsigned &StructuredIndex,
    239                                   bool FinishSubobjectInit,
    240                                   bool TopLevelObject);
    241   InitListExpr *getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
    242                                            QualType CurrentObjectType,
    243                                            InitListExpr *StructuredList,
    244                                            unsigned StructuredIndex,
    245                                            SourceRange InitRange);
    246   void UpdateStructuredListElement(InitListExpr *StructuredList,
    247                                    unsigned &StructuredIndex,
    248                                    Expr *expr);
    249   int numArrayElements(QualType DeclType);
    250   int numStructUnionElements(QualType DeclType);
    251 
    252   void FillInValueInitForField(unsigned Init, FieldDecl *Field,
    253                                const InitializedEntity &ParentEntity,
    254                                InitListExpr *ILE, bool &RequiresSecondPass);
    255   void FillInValueInitializations(const InitializedEntity &Entity,
    256                                   InitListExpr *ILE, bool &RequiresSecondPass);
    257   bool CheckFlexibleArrayInit(const InitializedEntity &Entity,
    258                               Expr *InitExpr, FieldDecl *Field,
    259                               bool TopLevelObject);
    260   void CheckValueInitializable(const InitializedEntity &Entity);
    261 
    262 public:
    263   InitListChecker(Sema &S, const InitializedEntity &Entity,
    264                   InitListExpr *IL, QualType &T, bool VerifyOnly,
    265                   bool AllowBraceElision);
    266   bool HadError() { return hadError; }
    267 
    268   // @brief Retrieves the fully-structured initializer list used for
    269   // semantic analysis and code generation.
    270   InitListExpr *getFullyStructuredList() const { return FullyStructuredList; }
    271 };
    272 } // end anonymous namespace
    273 
    274 void InitListChecker::CheckValueInitializable(const InitializedEntity &Entity) {
    275   assert(VerifyOnly &&
    276          "CheckValueInitializable is only inteded for verification mode.");
    277 
    278   SourceLocation Loc;
    279   InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
    280                                                             true);
    281   InitializationSequence InitSeq(SemaRef, Entity, Kind, 0, 0);
    282   if (InitSeq.Failed())
    283     hadError = true;
    284 }
    285 
    286 void InitListChecker::FillInValueInitForField(unsigned Init, FieldDecl *Field,
    287                                         const InitializedEntity &ParentEntity,
    288                                               InitListExpr *ILE,
    289                                               bool &RequiresSecondPass) {
    290   SourceLocation Loc = ILE->getSourceRange().getBegin();
    291   unsigned NumInits = ILE->getNumInits();
    292   InitializedEntity MemberEntity
    293     = InitializedEntity::InitializeMember(Field, &ParentEntity);
    294   if (Init >= NumInits || !ILE->getInit(Init)) {
    295     // FIXME: We probably don't need to handle references
    296     // specially here, since value-initialization of references is
    297     // handled in InitializationSequence.
    298     if (Field->getType()->isReferenceType()) {
    299       // C++ [dcl.init.aggr]p9:
    300       //   If an incomplete or empty initializer-list leaves a
    301       //   member of reference type uninitialized, the program is
    302       //   ill-formed.
    303       SemaRef.Diag(Loc, diag::err_init_reference_member_uninitialized)
    304         << Field->getType()
    305         << ILE->getSyntacticForm()->getSourceRange();
    306       SemaRef.Diag(Field->getLocation(),
    307                    diag::note_uninit_reference_member);
    308       hadError = true;
    309       return;
    310     }
    311 
    312     InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
    313                                                               true);
    314     InitializationSequence InitSeq(SemaRef, MemberEntity, Kind, 0, 0);
    315     if (!InitSeq) {
    316       InitSeq.Diagnose(SemaRef, MemberEntity, Kind, 0, 0);
    317       hadError = true;
    318       return;
    319     }
    320 
    321     ExprResult MemberInit
    322       = InitSeq.Perform(SemaRef, MemberEntity, Kind, MultiExprArg());
    323     if (MemberInit.isInvalid()) {
    324       hadError = true;
    325       return;
    326     }
    327 
    328     if (hadError) {
    329       // Do nothing
    330     } else if (Init < NumInits) {
    331       ILE->setInit(Init, MemberInit.takeAs<Expr>());
    332     } else if (InitSeq.isConstructorInitialization()) {
    333       // Value-initialization requires a constructor call, so
    334       // extend the initializer list to include the constructor
    335       // call and make a note that we'll need to take another pass
    336       // through the initializer list.
    337       ILE->updateInit(SemaRef.Context, Init, MemberInit.takeAs<Expr>());
    338       RequiresSecondPass = true;
    339     }
    340   } else if (InitListExpr *InnerILE
    341                = dyn_cast<InitListExpr>(ILE->getInit(Init)))
    342     FillInValueInitializations(MemberEntity, InnerILE,
    343                                RequiresSecondPass);
    344 }
    345 
    346 /// Recursively replaces NULL values within the given initializer list
    347 /// with expressions that perform value-initialization of the
    348 /// appropriate type.
    349 void
    350 InitListChecker::FillInValueInitializations(const InitializedEntity &Entity,
    351                                             InitListExpr *ILE,
    352                                             bool &RequiresSecondPass) {
    353   assert((ILE->getType() != SemaRef.Context.VoidTy) &&
    354          "Should not have void type");
    355   SourceLocation Loc = ILE->getSourceRange().getBegin();
    356   if (ILE->getSyntacticForm())
    357     Loc = ILE->getSyntacticForm()->getSourceRange().getBegin();
    358 
    359   if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
    360     if (RType->getDecl()->isUnion() &&
    361         ILE->getInitializedFieldInUnion())
    362       FillInValueInitForField(0, ILE->getInitializedFieldInUnion(),
    363                               Entity, ILE, RequiresSecondPass);
    364     else {
    365       unsigned Init = 0;
    366       for (RecordDecl::field_iterator
    367              Field = RType->getDecl()->field_begin(),
    368              FieldEnd = RType->getDecl()->field_end();
    369            Field != FieldEnd; ++Field) {
    370         if (Field->isUnnamedBitfield())
    371           continue;
    372 
    373         if (hadError)
    374           return;
    375 
    376         FillInValueInitForField(Init, *Field, Entity, ILE, RequiresSecondPass);
    377         if (hadError)
    378           return;
    379 
    380         ++Init;
    381 
    382         // Only look at the first initialization of a union.
    383         if (RType->getDecl()->isUnion())
    384           break;
    385       }
    386     }
    387 
    388     return;
    389   }
    390 
    391   QualType ElementType;
    392 
    393   InitializedEntity ElementEntity = Entity;
    394   unsigned NumInits = ILE->getNumInits();
    395   unsigned NumElements = NumInits;
    396   if (const ArrayType *AType = SemaRef.Context.getAsArrayType(ILE->getType())) {
    397     ElementType = AType->getElementType();
    398     if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType))
    399       NumElements = CAType->getSize().getZExtValue();
    400     ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
    401                                                          0, Entity);
    402   } else if (const VectorType *VType = ILE->getType()->getAs<VectorType>()) {
    403     ElementType = VType->getElementType();
    404     NumElements = VType->getNumElements();
    405     ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
    406                                                          0, Entity);
    407   } else
    408     ElementType = ILE->getType();
    409 
    410 
    411   for (unsigned Init = 0; Init != NumElements; ++Init) {
    412     if (hadError)
    413       return;
    414 
    415     if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement ||
    416         ElementEntity.getKind() == InitializedEntity::EK_VectorElement)
    417       ElementEntity.setElementIndex(Init);
    418 
    419     if (Init >= NumInits || !ILE->getInit(Init)) {
    420       InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
    421                                                                 true);
    422       InitializationSequence InitSeq(SemaRef, ElementEntity, Kind, 0, 0);
    423       if (!InitSeq) {
    424         InitSeq.Diagnose(SemaRef, ElementEntity, Kind, 0, 0);
    425         hadError = true;
    426         return;
    427       }
    428 
    429       ExprResult ElementInit
    430         = InitSeq.Perform(SemaRef, ElementEntity, Kind, MultiExprArg());
    431       if (ElementInit.isInvalid()) {
    432         hadError = true;
    433         return;
    434       }
    435 
    436       if (hadError) {
    437         // Do nothing
    438       } else if (Init < NumInits) {
    439         // For arrays, just set the expression used for value-initialization
    440         // of the "holes" in the array.
    441         if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement)
    442           ILE->setArrayFiller(ElementInit.takeAs<Expr>());
    443         else
    444           ILE->setInit(Init, ElementInit.takeAs<Expr>());
    445       } else {
    446         // For arrays, just set the expression used for value-initialization
    447         // of the rest of elements and exit.
    448         if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement) {
    449           ILE->setArrayFiller(ElementInit.takeAs<Expr>());
    450           return;
    451         }
    452 
    453         if (InitSeq.isConstructorInitialization()) {
    454           // Value-initialization requires a constructor call, so
    455           // extend the initializer list to include the constructor
    456           // call and make a note that we'll need to take another pass
    457           // through the initializer list.
    458           ILE->updateInit(SemaRef.Context, Init, ElementInit.takeAs<Expr>());
    459           RequiresSecondPass = true;
    460         }
    461       }
    462     } else if (InitListExpr *InnerILE
    463                  = dyn_cast<InitListExpr>(ILE->getInit(Init)))
    464       FillInValueInitializations(ElementEntity, InnerILE, RequiresSecondPass);
    465   }
    466 }
    467 
    468 
    469 InitListChecker::InitListChecker(Sema &S, const InitializedEntity &Entity,
    470                                  InitListExpr *IL, QualType &T,
    471                                  bool VerifyOnly, bool AllowBraceElision)
    472   : SemaRef(S), VerifyOnly(VerifyOnly), AllowBraceElision(AllowBraceElision) {
    473   hadError = false;
    474 
    475   unsigned newIndex = 0;
    476   unsigned newStructuredIndex = 0;
    477   FullyStructuredList
    478     = getStructuredSubobjectInit(IL, newIndex, T, 0, 0, IL->getSourceRange());
    479   CheckExplicitInitList(Entity, IL, T, newIndex,
    480                         FullyStructuredList, newStructuredIndex,
    481                         /*TopLevelObject=*/true);
    482 
    483   if (!hadError && !VerifyOnly) {
    484     bool RequiresSecondPass = false;
    485     FillInValueInitializations(Entity, FullyStructuredList, RequiresSecondPass);
    486     if (RequiresSecondPass && !hadError)
    487       FillInValueInitializations(Entity, FullyStructuredList,
    488                                  RequiresSecondPass);
    489   }
    490 }
    491 
    492 int InitListChecker::numArrayElements(QualType DeclType) {
    493   // FIXME: use a proper constant
    494   int maxElements = 0x7FFFFFFF;
    495   if (const ConstantArrayType *CAT =
    496         SemaRef.Context.getAsConstantArrayType(DeclType)) {
    497     maxElements = static_cast<int>(CAT->getSize().getZExtValue());
    498   }
    499   return maxElements;
    500 }
    501 
    502 int InitListChecker::numStructUnionElements(QualType DeclType) {
    503   RecordDecl *structDecl = DeclType->getAs<RecordType>()->getDecl();
    504   int InitializableMembers = 0;
    505   for (RecordDecl::field_iterator
    506          Field = structDecl->field_begin(),
    507          FieldEnd = structDecl->field_end();
    508        Field != FieldEnd; ++Field) {
    509     if (!Field->isUnnamedBitfield())
    510       ++InitializableMembers;
    511   }
    512   if (structDecl->isUnion())
    513     return std::min(InitializableMembers, 1);
    514   return InitializableMembers - structDecl->hasFlexibleArrayMember();
    515 }
    516 
    517 void InitListChecker::CheckImplicitInitList(const InitializedEntity &Entity,
    518                                             InitListExpr *ParentIList,
    519                                             QualType T, unsigned &Index,
    520                                             InitListExpr *StructuredList,
    521                                             unsigned &StructuredIndex) {
    522   int maxElements = 0;
    523 
    524   if (T->isArrayType())
    525     maxElements = numArrayElements(T);
    526   else if (T->isRecordType())
    527     maxElements = numStructUnionElements(T);
    528   else if (T->isVectorType())
    529     maxElements = T->getAs<VectorType>()->getNumElements();
    530   else
    531     llvm_unreachable("CheckImplicitInitList(): Illegal type");
    532 
    533   if (maxElements == 0) {
    534     if (!VerifyOnly)
    535       SemaRef.Diag(ParentIList->getInit(Index)->getLocStart(),
    536                    diag::err_implicit_empty_initializer);
    537     ++Index;
    538     hadError = true;
    539     return;
    540   }
    541 
    542   // Build a structured initializer list corresponding to this subobject.
    543   InitListExpr *StructuredSubobjectInitList
    544     = getStructuredSubobjectInit(ParentIList, Index, T, StructuredList,
    545                                  StructuredIndex,
    546           SourceRange(ParentIList->getInit(Index)->getSourceRange().getBegin(),
    547                       ParentIList->getSourceRange().getEnd()));
    548   unsigned StructuredSubobjectInitIndex = 0;
    549 
    550   // Check the element types and build the structural subobject.
    551   unsigned StartIndex = Index;
    552   CheckListElementTypes(Entity, ParentIList, T,
    553                         /*SubobjectIsDesignatorContext=*/false, Index,
    554                         StructuredSubobjectInitList,
    555                         StructuredSubobjectInitIndex);
    556 
    557   if (VerifyOnly) {
    558     if (!AllowBraceElision && (T->isArrayType() || T->isRecordType()))
    559       hadError = true;
    560   } else {
    561     StructuredSubobjectInitList->setType(T);
    562 
    563     unsigned EndIndex = (Index == StartIndex? StartIndex : Index - 1);
    564     // Update the structured sub-object initializer so that it's ending
    565     // range corresponds with the end of the last initializer it used.
    566     if (EndIndex < ParentIList->getNumInits()) {
    567       SourceLocation EndLoc
    568         = ParentIList->getInit(EndIndex)->getSourceRange().getEnd();
    569       StructuredSubobjectInitList->setRBraceLoc(EndLoc);
    570     }
    571 
    572     // Complain about missing braces.
    573     if (T->isArrayType() || T->isRecordType()) {
    574       SemaRef.Diag(StructuredSubobjectInitList->getLocStart(),
    575                     AllowBraceElision ? diag::warn_missing_braces :
    576                                         diag::err_missing_braces)
    577         << StructuredSubobjectInitList->getSourceRange()
    578         << FixItHint::CreateInsertion(
    579               StructuredSubobjectInitList->getLocStart(), "{")
    580         << FixItHint::CreateInsertion(
    581               SemaRef.PP.getLocForEndOfToken(
    582                                       StructuredSubobjectInitList->getLocEnd()),
    583               "}");
    584       if (!AllowBraceElision)
    585         hadError = true;
    586     }
    587   }
    588 }
    589 
    590 void InitListChecker::CheckExplicitInitList(const InitializedEntity &Entity,
    591                                             InitListExpr *IList, QualType &T,
    592                                             unsigned &Index,
    593                                             InitListExpr *StructuredList,
    594                                             unsigned &StructuredIndex,
    595                                             bool TopLevelObject) {
    596   assert(IList->isExplicit() && "Illegal Implicit InitListExpr");
    597   if (!VerifyOnly) {
    598     SyntacticToSemantic[IList] = StructuredList;
    599     StructuredList->setSyntacticForm(IList);
    600   }
    601   CheckListElementTypes(Entity, IList, T, /*SubobjectIsDesignatorContext=*/true,
    602                         Index, StructuredList, StructuredIndex, TopLevelObject);
    603   if (!VerifyOnly) {
    604     QualType ExprTy = T.getNonLValueExprType(SemaRef.Context);
    605     IList->setType(ExprTy);
    606     StructuredList->setType(ExprTy);
    607   }
    608   if (hadError)
    609     return;
    610 
    611   if (Index < IList->getNumInits()) {
    612     // We have leftover initializers
    613     if (VerifyOnly) {
    614       if (SemaRef.getLangOptions().CPlusPlus ||
    615           (SemaRef.getLangOptions().OpenCL &&
    616            IList->getType()->isVectorType())) {
    617         hadError = true;
    618       }
    619       return;
    620     }
    621 
    622     if (StructuredIndex == 1 &&
    623         IsStringInit(StructuredList->getInit(0), T, SemaRef.Context)) {
    624       unsigned DK = diag::warn_excess_initializers_in_char_array_initializer;
    625       if (SemaRef.getLangOptions().CPlusPlus) {
    626         DK = diag::err_excess_initializers_in_char_array_initializer;
    627         hadError = true;
    628       }
    629       // Special-case
    630       SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK)
    631         << IList->getInit(Index)->getSourceRange();
    632     } else if (!T->isIncompleteType()) {
    633       // Don't complain for incomplete types, since we'll get an error
    634       // elsewhere
    635       QualType CurrentObjectType = StructuredList->getType();
    636       int initKind =
    637         CurrentObjectType->isArrayType()? 0 :
    638         CurrentObjectType->isVectorType()? 1 :
    639         CurrentObjectType->isScalarType()? 2 :
    640         CurrentObjectType->isUnionType()? 3 :
    641         4;
    642 
    643       unsigned DK = diag::warn_excess_initializers;
    644       if (SemaRef.getLangOptions().CPlusPlus) {
    645         DK = diag::err_excess_initializers;
    646         hadError = true;
    647       }
    648       if (SemaRef.getLangOptions().OpenCL && initKind == 1) {
    649         DK = diag::err_excess_initializers;
    650         hadError = true;
    651       }
    652 
    653       SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK)
    654         << initKind << IList->getInit(Index)->getSourceRange();
    655     }
    656   }
    657 
    658   if (!VerifyOnly && T->isScalarType() && IList->getNumInits() == 1 &&
    659       !TopLevelObject)
    660     SemaRef.Diag(IList->getLocStart(), diag::warn_braces_around_scalar_init)
    661       << IList->getSourceRange()
    662       << FixItHint::CreateRemoval(IList->getLocStart())
    663       << FixItHint::CreateRemoval(IList->getLocEnd());
    664 }
    665 
    666 void InitListChecker::CheckListElementTypes(const InitializedEntity &Entity,
    667                                             InitListExpr *IList,
    668                                             QualType &DeclType,
    669                                             bool SubobjectIsDesignatorContext,
    670                                             unsigned &Index,
    671                                             InitListExpr *StructuredList,
    672                                             unsigned &StructuredIndex,
    673                                             bool TopLevelObject) {
    674   if (DeclType->isAnyComplexType() && SubobjectIsDesignatorContext) {
    675     // Explicitly braced initializer for complex type can be real+imaginary
    676     // parts.
    677     CheckComplexType(Entity, IList, DeclType, Index,
    678                      StructuredList, StructuredIndex);
    679   } else if (DeclType->isScalarType()) {
    680     CheckScalarType(Entity, IList, DeclType, Index,
    681                     StructuredList, StructuredIndex);
    682   } else if (DeclType->isVectorType()) {
    683     CheckVectorType(Entity, IList, DeclType, Index,
    684                     StructuredList, StructuredIndex);
    685   } else if (DeclType->isAggregateType()) {
    686     if (DeclType->isRecordType()) {
    687       RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
    688       CheckStructUnionTypes(Entity, IList, DeclType, RD->field_begin(),
    689                             SubobjectIsDesignatorContext, Index,
    690                             StructuredList, StructuredIndex,
    691                             TopLevelObject);
    692     } else if (DeclType->isArrayType()) {
    693       llvm::APSInt Zero(
    694                       SemaRef.Context.getTypeSize(SemaRef.Context.getSizeType()),
    695                       false);
    696       CheckArrayType(Entity, IList, DeclType, Zero,
    697                      SubobjectIsDesignatorContext, Index,
    698                      StructuredList, StructuredIndex);
    699     } else
    700       llvm_unreachable("Aggregate that isn't a structure or array?!");
    701   } else if (DeclType->isVoidType() || DeclType->isFunctionType()) {
    702     // This type is invalid, issue a diagnostic.
    703     ++Index;
    704     if (!VerifyOnly)
    705       SemaRef.Diag(IList->getLocStart(), diag::err_illegal_initializer_type)
    706         << DeclType;
    707     hadError = true;
    708   } else if (DeclType->isRecordType()) {
    709     // C++ [dcl.init]p14:
    710     //   [...] If the class is an aggregate (8.5.1), and the initializer
    711     //   is a brace-enclosed list, see 8.5.1.
    712     //
    713     // Note: 8.5.1 is handled below; here, we diagnose the case where
    714     // we have an initializer list and a destination type that is not
    715     // an aggregate.
    716     // FIXME: In C++0x, this is yet another form of initialization.
    717     if (!VerifyOnly)
    718       SemaRef.Diag(IList->getLocStart(), diag::err_init_non_aggr_init_list)
    719         << DeclType << IList->getSourceRange();
    720     hadError = true;
    721   } else if (DeclType->isReferenceType()) {
    722     CheckReferenceType(Entity, IList, DeclType, Index,
    723                        StructuredList, StructuredIndex);
    724   } else if (DeclType->isObjCObjectType()) {
    725     if (!VerifyOnly)
    726       SemaRef.Diag(IList->getLocStart(), diag::err_init_objc_class)
    727         << DeclType;
    728     hadError = true;
    729   } else {
    730     if (!VerifyOnly)
    731       SemaRef.Diag(IList->getLocStart(), diag::err_illegal_initializer_type)
    732         << DeclType;
    733     hadError = true;
    734   }
    735 }
    736 
    737 void InitListChecker::CheckSubElementType(const InitializedEntity &Entity,
    738                                           InitListExpr *IList,
    739                                           QualType ElemType,
    740                                           unsigned &Index,
    741                                           InitListExpr *StructuredList,
    742                                           unsigned &StructuredIndex) {
    743   Expr *expr = IList->getInit(Index);
    744   if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
    745     unsigned newIndex = 0;
    746     unsigned newStructuredIndex = 0;
    747     InitListExpr *newStructuredList
    748       = getStructuredSubobjectInit(IList, Index, ElemType,
    749                                    StructuredList, StructuredIndex,
    750                                    SubInitList->getSourceRange());
    751     CheckExplicitInitList(Entity, SubInitList, ElemType, newIndex,
    752                           newStructuredList, newStructuredIndex);
    753     ++StructuredIndex;
    754     ++Index;
    755     return;
    756   } else if (ElemType->isScalarType()) {
    757     return CheckScalarType(Entity, IList, ElemType, Index,
    758                            StructuredList, StructuredIndex);
    759   } else if (ElemType->isReferenceType()) {
    760     return CheckReferenceType(Entity, IList, ElemType, Index,
    761                               StructuredList, StructuredIndex);
    762   }
    763 
    764   if (const ArrayType *arrayType = SemaRef.Context.getAsArrayType(ElemType)) {
    765     // arrayType can be incomplete if we're initializing a flexible
    766     // array member.  There's nothing we can do with the completed
    767     // type here, though.
    768 
    769     if (Expr *Str = IsStringInit(expr, arrayType, SemaRef.Context)) {
    770       if (!VerifyOnly) {
    771         CheckStringInit(Str, ElemType, arrayType, SemaRef);
    772         UpdateStructuredListElement(StructuredList, StructuredIndex, Str);
    773       }
    774       ++Index;
    775       return;
    776     }
    777 
    778     // Fall through for subaggregate initialization.
    779 
    780   } else if (SemaRef.getLangOptions().CPlusPlus) {
    781     // C++ [dcl.init.aggr]p12:
    782     //   All implicit type conversions (clause 4) are considered when
    783     //   initializing the aggregate member with an initializer from
    784     //   an initializer-list. If the initializer can initialize a
    785     //   member, the member is initialized. [...]
    786 
    787     // FIXME: Better EqualLoc?
    788     InitializationKind Kind =
    789       InitializationKind::CreateCopy(expr->getLocStart(), SourceLocation());
    790     InitializationSequence Seq(SemaRef, Entity, Kind, &expr, 1);
    791 
    792     if (Seq) {
    793       if (!VerifyOnly) {
    794         ExprResult Result =
    795           Seq.Perform(SemaRef, Entity, Kind, MultiExprArg(&expr, 1));
    796         if (Result.isInvalid())
    797           hadError = true;
    798 
    799         UpdateStructuredListElement(StructuredList, StructuredIndex,
    800                                     Result.takeAs<Expr>());
    801       }
    802       ++Index;
    803       return;
    804     }
    805 
    806     // Fall through for subaggregate initialization
    807   } else {
    808     // C99 6.7.8p13:
    809     //
    810     //   The initializer for a structure or union object that has
    811     //   automatic storage duration shall be either an initializer
    812     //   list as described below, or a single expression that has
    813     //   compatible structure or union type. In the latter case, the
    814     //   initial value of the object, including unnamed members, is
    815     //   that of the expression.
    816     ExprResult ExprRes = SemaRef.Owned(expr);
    817     if ((ElemType->isRecordType() || ElemType->isVectorType()) &&
    818         SemaRef.CheckSingleAssignmentConstraints(ElemType, ExprRes,
    819                                                  !VerifyOnly)
    820           == Sema::Compatible) {
    821       if (ExprRes.isInvalid())
    822         hadError = true;
    823       else {
    824         ExprRes = SemaRef.DefaultFunctionArrayLvalueConversion(ExprRes.take());
    825 	      if (ExprRes.isInvalid())
    826 	        hadError = true;
    827       }
    828       UpdateStructuredListElement(StructuredList, StructuredIndex,
    829                                   ExprRes.takeAs<Expr>());
    830       ++Index;
    831       return;
    832     }
    833     ExprRes.release();
    834     // Fall through for subaggregate initialization
    835   }
    836 
    837   // C++ [dcl.init.aggr]p12:
    838   //
    839   //   [...] Otherwise, if the member is itself a non-empty
    840   //   subaggregate, brace elision is assumed and the initializer is
    841   //   considered for the initialization of the first member of
    842   //   the subaggregate.
    843   if (!SemaRef.getLangOptions().OpenCL &&
    844       (ElemType->isAggregateType() || ElemType->isVectorType())) {
    845     CheckImplicitInitList(Entity, IList, ElemType, Index, StructuredList,
    846                           StructuredIndex);
    847     ++StructuredIndex;
    848   } else {
    849     if (!VerifyOnly) {
    850       // We cannot initialize this element, so let
    851       // PerformCopyInitialization produce the appropriate diagnostic.
    852       SemaRef.PerformCopyInitialization(Entity, SourceLocation(),
    853                                         SemaRef.Owned(expr),
    854                                         /*TopLevelOfInitList=*/true);
    855     }
    856     hadError = true;
    857     ++Index;
    858     ++StructuredIndex;
    859   }
    860 }
    861 
    862 void InitListChecker::CheckComplexType(const InitializedEntity &Entity,
    863                                        InitListExpr *IList, QualType DeclType,
    864                                        unsigned &Index,
    865                                        InitListExpr *StructuredList,
    866                                        unsigned &StructuredIndex) {
    867   assert(Index == 0 && "Index in explicit init list must be zero");
    868 
    869   // As an extension, clang supports complex initializers, which initialize
    870   // a complex number component-wise.  When an explicit initializer list for
    871   // a complex number contains two two initializers, this extension kicks in:
    872   // it exepcts the initializer list to contain two elements convertible to
    873   // the element type of the complex type. The first element initializes
    874   // the real part, and the second element intitializes the imaginary part.
    875 
    876   if (IList->getNumInits() != 2)
    877     return CheckScalarType(Entity, IList, DeclType, Index, StructuredList,
    878                            StructuredIndex);
    879 
    880   // This is an extension in C.  (The builtin _Complex type does not exist
    881   // in the C++ standard.)
    882   if (!SemaRef.getLangOptions().CPlusPlus && !VerifyOnly)
    883     SemaRef.Diag(IList->getLocStart(), diag::ext_complex_component_init)
    884       << IList->getSourceRange();
    885 
    886   // Initialize the complex number.
    887   QualType elementType = DeclType->getAs<ComplexType>()->getElementType();
    888   InitializedEntity ElementEntity =
    889     InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
    890 
    891   for (unsigned i = 0; i < 2; ++i) {
    892     ElementEntity.setElementIndex(Index);
    893     CheckSubElementType(ElementEntity, IList, elementType, Index,
    894                         StructuredList, StructuredIndex);
    895   }
    896 }
    897 
    898 
    899 void InitListChecker::CheckScalarType(const InitializedEntity &Entity,
    900                                       InitListExpr *IList, QualType DeclType,
    901                                       unsigned &Index,
    902                                       InitListExpr *StructuredList,
    903                                       unsigned &StructuredIndex) {
    904   if (Index >= IList->getNumInits()) {
    905     if (!VerifyOnly)
    906       SemaRef.Diag(IList->getLocStart(),
    907                    SemaRef.getLangOptions().CPlusPlus0x ?
    908                      diag::warn_cxx98_compat_empty_scalar_initializer :
    909                      diag::err_empty_scalar_initializer)
    910         << IList->getSourceRange();
    911     hadError = !SemaRef.getLangOptions().CPlusPlus0x;
    912     ++Index;
    913     ++StructuredIndex;
    914     return;
    915   }
    916 
    917   Expr *expr = IList->getInit(Index);
    918   if (InitListExpr *SubIList = dyn_cast<InitListExpr>(expr)) {
    919     if (!VerifyOnly)
    920       SemaRef.Diag(SubIList->getLocStart(),
    921                    diag::warn_many_braces_around_scalar_init)
    922         << SubIList->getSourceRange();
    923 
    924     CheckScalarType(Entity, SubIList, DeclType, Index, StructuredList,
    925                     StructuredIndex);
    926     return;
    927   } else if (isa<DesignatedInitExpr>(expr)) {
    928     if (!VerifyOnly)
    929       SemaRef.Diag(expr->getSourceRange().getBegin(),
    930                    diag::err_designator_for_scalar_init)
    931         << DeclType << expr->getSourceRange();
    932     hadError = true;
    933     ++Index;
    934     ++StructuredIndex;
    935     return;
    936   }
    937 
    938   if (VerifyOnly) {
    939     if (!SemaRef.CanPerformCopyInitialization(Entity, SemaRef.Owned(expr)))
    940       hadError = true;
    941     ++Index;
    942     return;
    943   }
    944 
    945   ExprResult Result =
    946     SemaRef.PerformCopyInitialization(Entity, expr->getLocStart(),
    947                                       SemaRef.Owned(expr),
    948                                       /*TopLevelOfInitList=*/true);
    949 
    950   Expr *ResultExpr = 0;
    951 
    952   if (Result.isInvalid())
    953     hadError = true; // types weren't compatible.
    954   else {
    955     ResultExpr = Result.takeAs<Expr>();
    956 
    957     if (ResultExpr != expr) {
    958       // The type was promoted, update initializer list.
    959       IList->setInit(Index, ResultExpr);
    960     }
    961   }
    962   if (hadError)
    963     ++StructuredIndex;
    964   else
    965     UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr);
    966   ++Index;
    967 }
    968 
    969 void InitListChecker::CheckReferenceType(const InitializedEntity &Entity,
    970                                          InitListExpr *IList, QualType DeclType,
    971                                          unsigned &Index,
    972                                          InitListExpr *StructuredList,
    973                                          unsigned &StructuredIndex) {
    974   if (Index >= IList->getNumInits()) {
    975     // FIXME: It would be wonderful if we could point at the actual member. In
    976     // general, it would be useful to pass location information down the stack,
    977     // so that we know the location (or decl) of the "current object" being
    978     // initialized.
    979     if (!VerifyOnly)
    980       SemaRef.Diag(IList->getLocStart(),
    981                     diag::err_init_reference_member_uninitialized)
    982         << DeclType
    983         << IList->getSourceRange();
    984     hadError = true;
    985     ++Index;
    986     ++StructuredIndex;
    987     return;
    988   }
    989 
    990   Expr *expr = IList->getInit(Index);
    991   if (isa<InitListExpr>(expr)) {
    992     // FIXME: Allowed in C++11.
    993     if (!VerifyOnly)
    994       SemaRef.Diag(IList->getLocStart(), diag::err_init_non_aggr_init_list)
    995         << DeclType << IList->getSourceRange();
    996     hadError = true;
    997     ++Index;
    998     ++StructuredIndex;
    999     return;
   1000   }
   1001 
   1002   if (VerifyOnly) {
   1003     if (!SemaRef.CanPerformCopyInitialization(Entity, SemaRef.Owned(expr)))
   1004       hadError = true;
   1005     ++Index;
   1006     return;
   1007   }
   1008 
   1009   ExprResult Result =
   1010     SemaRef.PerformCopyInitialization(Entity, expr->getLocStart(),
   1011                                       SemaRef.Owned(expr),
   1012                                       /*TopLevelOfInitList=*/true);
   1013 
   1014   if (Result.isInvalid())
   1015     hadError = true;
   1016 
   1017   expr = Result.takeAs<Expr>();
   1018   IList->setInit(Index, expr);
   1019 
   1020   if (hadError)
   1021     ++StructuredIndex;
   1022   else
   1023     UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
   1024   ++Index;
   1025 }
   1026 
   1027 void InitListChecker::CheckVectorType(const InitializedEntity &Entity,
   1028                                       InitListExpr *IList, QualType DeclType,
   1029                                       unsigned &Index,
   1030                                       InitListExpr *StructuredList,
   1031                                       unsigned &StructuredIndex) {
   1032   const VectorType *VT = DeclType->getAs<VectorType>();
   1033   unsigned maxElements = VT->getNumElements();
   1034   unsigned numEltsInit = 0;
   1035   QualType elementType = VT->getElementType();
   1036 
   1037   if (Index >= IList->getNumInits()) {
   1038     // Make sure the element type can be value-initialized.
   1039     if (VerifyOnly)
   1040       CheckValueInitializable(
   1041           InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity));
   1042     return;
   1043   }
   1044 
   1045   if (!SemaRef.getLangOptions().OpenCL) {
   1046     // If the initializing element is a vector, try to copy-initialize
   1047     // instead of breaking it apart (which is doomed to failure anyway).
   1048     Expr *Init = IList->getInit(Index);
   1049     if (!isa<InitListExpr>(Init) && Init->getType()->isVectorType()) {
   1050       if (VerifyOnly) {
   1051         if (!SemaRef.CanPerformCopyInitialization(Entity, SemaRef.Owned(Init)))
   1052           hadError = true;
   1053         ++Index;
   1054         return;
   1055       }
   1056 
   1057       ExprResult Result =
   1058         SemaRef.PerformCopyInitialization(Entity, Init->getLocStart(),
   1059                                           SemaRef.Owned(Init),
   1060                                           /*TopLevelOfInitList=*/true);
   1061 
   1062       Expr *ResultExpr = 0;
   1063       if (Result.isInvalid())
   1064         hadError = true; // types weren't compatible.
   1065       else {
   1066         ResultExpr = Result.takeAs<Expr>();
   1067 
   1068         if (ResultExpr != Init) {
   1069           // The type was promoted, update initializer list.
   1070           IList->setInit(Index, ResultExpr);
   1071         }
   1072       }
   1073       if (hadError)
   1074         ++StructuredIndex;
   1075       else
   1076         UpdateStructuredListElement(StructuredList, StructuredIndex,
   1077                                     ResultExpr);
   1078       ++Index;
   1079       return;
   1080     }
   1081 
   1082     InitializedEntity ElementEntity =
   1083       InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
   1084 
   1085     for (unsigned i = 0; i < maxElements; ++i, ++numEltsInit) {
   1086       // Don't attempt to go past the end of the init list
   1087       if (Index >= IList->getNumInits()) {
   1088         if (VerifyOnly)
   1089           CheckValueInitializable(ElementEntity);
   1090         break;
   1091       }
   1092 
   1093       ElementEntity.setElementIndex(Index);
   1094       CheckSubElementType(ElementEntity, IList, elementType, Index,
   1095                           StructuredList, StructuredIndex);
   1096     }
   1097     return;
   1098   }
   1099 
   1100   InitializedEntity ElementEntity =
   1101     InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
   1102 
   1103   // OpenCL initializers allows vectors to be constructed from vectors.
   1104   for (unsigned i = 0; i < maxElements; ++i) {
   1105     // Don't attempt to go past the end of the init list
   1106     if (Index >= IList->getNumInits())
   1107       break;
   1108 
   1109     ElementEntity.setElementIndex(Index);
   1110 
   1111     QualType IType = IList->getInit(Index)->getType();
   1112     if (!IType->isVectorType()) {
   1113       CheckSubElementType(ElementEntity, IList, elementType, Index,
   1114                           StructuredList, StructuredIndex);
   1115       ++numEltsInit;
   1116     } else {
   1117       QualType VecType;
   1118       const VectorType *IVT = IType->getAs<VectorType>();
   1119       unsigned numIElts = IVT->getNumElements();
   1120 
   1121       if (IType->isExtVectorType())
   1122         VecType = SemaRef.Context.getExtVectorType(elementType, numIElts);
   1123       else
   1124         VecType = SemaRef.Context.getVectorType(elementType, numIElts,
   1125                                                 IVT->getVectorKind());
   1126       CheckSubElementType(ElementEntity, IList, VecType, Index,
   1127                           StructuredList, StructuredIndex);
   1128       numEltsInit += numIElts;
   1129     }
   1130   }
   1131 
   1132   // OpenCL requires all elements to be initialized.
   1133   if (numEltsInit != maxElements) {
   1134     if (!VerifyOnly)
   1135       SemaRef.Diag(IList->getSourceRange().getBegin(),
   1136                    diag::err_vector_incorrect_num_initializers)
   1137         << (numEltsInit < maxElements) << maxElements << numEltsInit;
   1138     hadError = true;
   1139   }
   1140 }
   1141 
   1142 void InitListChecker::CheckArrayType(const InitializedEntity &Entity,
   1143                                      InitListExpr *IList, QualType &DeclType,
   1144                                      llvm::APSInt elementIndex,
   1145                                      bool SubobjectIsDesignatorContext,
   1146                                      unsigned &Index,
   1147                                      InitListExpr *StructuredList,
   1148                                      unsigned &StructuredIndex) {
   1149   const ArrayType *arrayType = SemaRef.Context.getAsArrayType(DeclType);
   1150 
   1151   // Check for the special-case of initializing an array with a string.
   1152   if (Index < IList->getNumInits()) {
   1153     if (Expr *Str = IsStringInit(IList->getInit(Index), arrayType,
   1154                                  SemaRef.Context)) {
   1155       // We place the string literal directly into the resulting
   1156       // initializer list. This is the only place where the structure
   1157       // of the structured initializer list doesn't match exactly,
   1158       // because doing so would involve allocating one character
   1159       // constant for each string.
   1160       if (!VerifyOnly) {
   1161         CheckStringInit(Str, DeclType, arrayType, SemaRef);
   1162         UpdateStructuredListElement(StructuredList, StructuredIndex, Str);
   1163         StructuredList->resizeInits(SemaRef.Context, StructuredIndex);
   1164       }
   1165       ++Index;
   1166       return;
   1167     }
   1168   }
   1169   if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(arrayType)) {
   1170     // Check for VLAs; in standard C it would be possible to check this
   1171     // earlier, but I don't know where clang accepts VLAs (gcc accepts
   1172     // them in all sorts of strange places).
   1173     if (!VerifyOnly)
   1174       SemaRef.Diag(VAT->getSizeExpr()->getLocStart(),
   1175                     diag::err_variable_object_no_init)
   1176         << VAT->getSizeExpr()->getSourceRange();
   1177     hadError = true;
   1178     ++Index;
   1179     ++StructuredIndex;
   1180     return;
   1181   }
   1182 
   1183   // We might know the maximum number of elements in advance.
   1184   llvm::APSInt maxElements(elementIndex.getBitWidth(),
   1185                            elementIndex.isUnsigned());
   1186   bool maxElementsKnown = false;
   1187   if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(arrayType)) {
   1188     maxElements = CAT->getSize();
   1189     elementIndex = elementIndex.extOrTrunc(maxElements.getBitWidth());
   1190     elementIndex.setIsUnsigned(maxElements.isUnsigned());
   1191     maxElementsKnown = true;
   1192   }
   1193 
   1194   QualType elementType = arrayType->getElementType();
   1195   while (Index < IList->getNumInits()) {
   1196     Expr *Init = IList->getInit(Index);
   1197     if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
   1198       // If we're not the subobject that matches up with the '{' for
   1199       // the designator, we shouldn't be handling the
   1200       // designator. Return immediately.
   1201       if (!SubobjectIsDesignatorContext)
   1202         return;
   1203 
   1204       // Handle this designated initializer. elementIndex will be
   1205       // updated to be the next array element we'll initialize.
   1206       if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
   1207                                      DeclType, 0, &elementIndex, Index,
   1208                                      StructuredList, StructuredIndex, true,
   1209                                      false)) {
   1210         hadError = true;
   1211         continue;
   1212       }
   1213 
   1214       if (elementIndex.getBitWidth() > maxElements.getBitWidth())
   1215         maxElements = maxElements.extend(elementIndex.getBitWidth());
   1216       else if (elementIndex.getBitWidth() < maxElements.getBitWidth())
   1217         elementIndex = elementIndex.extend(maxElements.getBitWidth());
   1218       elementIndex.setIsUnsigned(maxElements.isUnsigned());
   1219 
   1220       // If the array is of incomplete type, keep track of the number of
   1221       // elements in the initializer.
   1222       if (!maxElementsKnown && elementIndex > maxElements)
   1223         maxElements = elementIndex;
   1224 
   1225       continue;
   1226     }
   1227 
   1228     // If we know the maximum number of elements, and we've already
   1229     // hit it, stop consuming elements in the initializer list.
   1230     if (maxElementsKnown && elementIndex == maxElements)
   1231       break;
   1232 
   1233     InitializedEntity ElementEntity =
   1234       InitializedEntity::InitializeElement(SemaRef.Context, StructuredIndex,
   1235                                            Entity);
   1236     // Check this element.
   1237     CheckSubElementType(ElementEntity, IList, elementType, Index,
   1238                         StructuredList, StructuredIndex);
   1239     ++elementIndex;
   1240 
   1241     // If the array is of incomplete type, keep track of the number of
   1242     // elements in the initializer.
   1243     if (!maxElementsKnown && elementIndex > maxElements)
   1244       maxElements = elementIndex;
   1245   }
   1246   if (!hadError && DeclType->isIncompleteArrayType() && !VerifyOnly) {
   1247     // If this is an incomplete array type, the actual type needs to
   1248     // be calculated here.
   1249     llvm::APSInt Zero(maxElements.getBitWidth(), maxElements.isUnsigned());
   1250     if (maxElements == Zero) {
   1251       // Sizing an array implicitly to zero is not allowed by ISO C,
   1252       // but is supported by GNU.
   1253       SemaRef.Diag(IList->getLocStart(),
   1254                     diag::ext_typecheck_zero_array_size);
   1255     }
   1256 
   1257     DeclType = SemaRef.Context.getConstantArrayType(elementType, maxElements,
   1258                                                      ArrayType::Normal, 0);
   1259   }
   1260   if (!hadError && VerifyOnly) {
   1261     // Check if there are any members of the array that get value-initialized.
   1262     // If so, check if doing that is possible.
   1263     // FIXME: This needs to detect holes left by designated initializers too.
   1264     if (maxElementsKnown && elementIndex < maxElements)
   1265       CheckValueInitializable(InitializedEntity::InitializeElement(
   1266                                                   SemaRef.Context, 0, Entity));
   1267   }
   1268 }
   1269 
   1270 bool InitListChecker::CheckFlexibleArrayInit(const InitializedEntity &Entity,
   1271                                              Expr *InitExpr,
   1272                                              FieldDecl *Field,
   1273                                              bool TopLevelObject) {
   1274   // Handle GNU flexible array initializers.
   1275   unsigned FlexArrayDiag;
   1276   if (isa<InitListExpr>(InitExpr) &&
   1277       cast<InitListExpr>(InitExpr)->getNumInits() == 0) {
   1278     // Empty flexible array init always allowed as an extension
   1279     FlexArrayDiag = diag::ext_flexible_array_init;
   1280   } else if (SemaRef.getLangOptions().CPlusPlus) {
   1281     // Disallow flexible array init in C++; it is not required for gcc
   1282     // compatibility, and it needs work to IRGen correctly in general.
   1283     FlexArrayDiag = diag::err_flexible_array_init;
   1284   } else if (!TopLevelObject) {
   1285     // Disallow flexible array init on non-top-level object
   1286     FlexArrayDiag = diag::err_flexible_array_init;
   1287   } else if (Entity.getKind() != InitializedEntity::EK_Variable) {
   1288     // Disallow flexible array init on anything which is not a variable.
   1289     FlexArrayDiag = diag::err_flexible_array_init;
   1290   } else if (cast<VarDecl>(Entity.getDecl())->hasLocalStorage()) {
   1291     // Disallow flexible array init on local variables.
   1292     FlexArrayDiag = diag::err_flexible_array_init;
   1293   } else {
   1294     // Allow other cases.
   1295     FlexArrayDiag = diag::ext_flexible_array_init;
   1296   }
   1297 
   1298   if (!VerifyOnly) {
   1299     SemaRef.Diag(InitExpr->getSourceRange().getBegin(),
   1300                  FlexArrayDiag)
   1301       << InitExpr->getSourceRange().getBegin();
   1302     SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
   1303       << Field;
   1304   }
   1305 
   1306   return FlexArrayDiag != diag::ext_flexible_array_init;
   1307 }
   1308 
   1309 void InitListChecker::CheckStructUnionTypes(const InitializedEntity &Entity,
   1310                                             InitListExpr *IList,
   1311                                             QualType DeclType,
   1312                                             RecordDecl::field_iterator Field,
   1313                                             bool SubobjectIsDesignatorContext,
   1314                                             unsigned &Index,
   1315                                             InitListExpr *StructuredList,
   1316                                             unsigned &StructuredIndex,
   1317                                             bool TopLevelObject) {
   1318   RecordDecl* structDecl = DeclType->getAs<RecordType>()->getDecl();
   1319 
   1320   // If the record is invalid, some of it's members are invalid. To avoid
   1321   // confusion, we forgo checking the intializer for the entire record.
   1322   if (structDecl->isInvalidDecl()) {
   1323     hadError = true;
   1324     return;
   1325   }
   1326 
   1327   if (DeclType->isUnionType() && IList->getNumInits() == 0) {
   1328     // Value-initialize the first named member of the union.
   1329     RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
   1330     for (RecordDecl::field_iterator FieldEnd = RD->field_end();
   1331          Field != FieldEnd; ++Field) {
   1332       if (Field->getDeclName()) {
   1333         if (VerifyOnly)
   1334           CheckValueInitializable(
   1335               InitializedEntity::InitializeMember(*Field, &Entity));
   1336         else
   1337           StructuredList->setInitializedFieldInUnion(*Field);
   1338         break;
   1339       }
   1340     }
   1341     return;
   1342   }
   1343 
   1344   // If structDecl is a forward declaration, this loop won't do
   1345   // anything except look at designated initializers; That's okay,
   1346   // because an error should get printed out elsewhere. It might be
   1347   // worthwhile to skip over the rest of the initializer, though.
   1348   RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
   1349   RecordDecl::field_iterator FieldEnd = RD->field_end();
   1350   bool InitializedSomething = false;
   1351   bool CheckForMissingFields = true;
   1352   while (Index < IList->getNumInits()) {
   1353     Expr *Init = IList->getInit(Index);
   1354 
   1355     if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
   1356       // If we're not the subobject that matches up with the '{' for
   1357       // the designator, we shouldn't be handling the
   1358       // designator. Return immediately.
   1359       if (!SubobjectIsDesignatorContext)
   1360         return;
   1361 
   1362       // Handle this designated initializer. Field will be updated to
   1363       // the next field that we'll be initializing.
   1364       if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
   1365                                      DeclType, &Field, 0, Index,
   1366                                      StructuredList, StructuredIndex,
   1367                                      true, TopLevelObject))
   1368         hadError = true;
   1369 
   1370       InitializedSomething = true;
   1371 
   1372       // Disable check for missing fields when designators are used.
   1373       // This matches gcc behaviour.
   1374       CheckForMissingFields = false;
   1375       continue;
   1376     }
   1377 
   1378     if (Field == FieldEnd) {
   1379       // We've run out of fields. We're done.
   1380       break;
   1381     }
   1382 
   1383     // We've already initialized a member of a union. We're done.
   1384     if (InitializedSomething && DeclType->isUnionType())
   1385       break;
   1386 
   1387     // If we've hit the flexible array member at the end, we're done.
   1388     if (Field->getType()->isIncompleteArrayType())
   1389       break;
   1390 
   1391     if (Field->isUnnamedBitfield()) {
   1392       // Don't initialize unnamed bitfields, e.g. "int : 20;"
   1393       ++Field;
   1394       continue;
   1395     }
   1396 
   1397     // Make sure we can use this declaration.
   1398     bool InvalidUse;
   1399     if (VerifyOnly)
   1400       InvalidUse = !SemaRef.CanUseDecl(*Field);
   1401     else
   1402       InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field,
   1403                                           IList->getInit(Index)->getLocStart());
   1404     if (InvalidUse) {
   1405       ++Index;
   1406       ++Field;
   1407       hadError = true;
   1408       continue;
   1409     }
   1410 
   1411     InitializedEntity MemberEntity =
   1412       InitializedEntity::InitializeMember(*Field, &Entity);
   1413     CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
   1414                         StructuredList, StructuredIndex);
   1415     InitializedSomething = true;
   1416 
   1417     if (DeclType->isUnionType() && !VerifyOnly) {
   1418       // Initialize the first field within the union.
   1419       StructuredList->setInitializedFieldInUnion(*Field);
   1420     }
   1421 
   1422     ++Field;
   1423   }
   1424 
   1425   // Emit warnings for missing struct field initializers.
   1426   if (!VerifyOnly && InitializedSomething && CheckForMissingFields &&
   1427       Field != FieldEnd && !Field->getType()->isIncompleteArrayType() &&
   1428       !DeclType->isUnionType()) {
   1429     // It is possible we have one or more unnamed bitfields remaining.
   1430     // Find first (if any) named field and emit warning.
   1431     for (RecordDecl::field_iterator it = Field, end = RD->field_end();
   1432          it != end; ++it) {
   1433       if (!it->isUnnamedBitfield()) {
   1434         SemaRef.Diag(IList->getSourceRange().getEnd(),
   1435                      diag::warn_missing_field_initializers) << it->getName();
   1436         break;
   1437       }
   1438     }
   1439   }
   1440 
   1441   // Check that any remaining fields can be value-initialized.
   1442   if (VerifyOnly && Field != FieldEnd && !DeclType->isUnionType() &&
   1443       !Field->getType()->isIncompleteArrayType()) {
   1444     // FIXME: Should check for holes left by designated initializers too.
   1445     for (; Field != FieldEnd && !hadError; ++Field) {
   1446       if (!Field->isUnnamedBitfield())
   1447         CheckValueInitializable(
   1448             InitializedEntity::InitializeMember(*Field, &Entity));
   1449     }
   1450   }
   1451 
   1452   if (Field == FieldEnd || !Field->getType()->isIncompleteArrayType() ||
   1453       Index >= IList->getNumInits())
   1454     return;
   1455 
   1456   if (CheckFlexibleArrayInit(Entity, IList->getInit(Index), *Field,
   1457                              TopLevelObject)) {
   1458     hadError = true;
   1459     ++Index;
   1460     return;
   1461   }
   1462 
   1463   InitializedEntity MemberEntity =
   1464     InitializedEntity::InitializeMember(*Field, &Entity);
   1465 
   1466   if (isa<InitListExpr>(IList->getInit(Index)))
   1467     CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
   1468                         StructuredList, StructuredIndex);
   1469   else
   1470     CheckImplicitInitList(MemberEntity, IList, Field->getType(), Index,
   1471                           StructuredList, StructuredIndex);
   1472 }
   1473 
   1474 /// \brief Expand a field designator that refers to a member of an
   1475 /// anonymous struct or union into a series of field designators that
   1476 /// refers to the field within the appropriate subobject.
   1477 ///
   1478 static void ExpandAnonymousFieldDesignator(Sema &SemaRef,
   1479                                            DesignatedInitExpr *DIE,
   1480                                            unsigned DesigIdx,
   1481                                            IndirectFieldDecl *IndirectField) {
   1482   typedef DesignatedInitExpr::Designator Designator;
   1483 
   1484   // Build the replacement designators.
   1485   SmallVector<Designator, 4> Replacements;
   1486   for (IndirectFieldDecl::chain_iterator PI = IndirectField->chain_begin(),
   1487        PE = IndirectField->chain_end(); PI != PE; ++PI) {
   1488     if (PI + 1 == PE)
   1489       Replacements.push_back(Designator((IdentifierInfo *)0,
   1490                                     DIE->getDesignator(DesigIdx)->getDotLoc(),
   1491                                 DIE->getDesignator(DesigIdx)->getFieldLoc()));
   1492     else
   1493       Replacements.push_back(Designator((IdentifierInfo *)0, SourceLocation(),
   1494                                         SourceLocation()));
   1495     assert(isa<FieldDecl>(*PI));
   1496     Replacements.back().setField(cast<FieldDecl>(*PI));
   1497   }
   1498 
   1499   // Expand the current designator into the set of replacement
   1500   // designators, so we have a full subobject path down to where the
   1501   // member of the anonymous struct/union is actually stored.
   1502   DIE->ExpandDesignator(SemaRef.Context, DesigIdx, &Replacements[0],
   1503                         &Replacements[0] + Replacements.size());
   1504 }
   1505 
   1506 /// \brief Given an implicit anonymous field, search the IndirectField that
   1507 ///  corresponds to FieldName.
   1508 static IndirectFieldDecl *FindIndirectFieldDesignator(FieldDecl *AnonField,
   1509                                                  IdentifierInfo *FieldName) {
   1510   assert(AnonField->isAnonymousStructOrUnion());
   1511   Decl *NextDecl = AnonField->getNextDeclInContext();
   1512   while (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(NextDecl)) {
   1513     if (FieldName && FieldName == IF->getAnonField()->getIdentifier())
   1514       return IF;
   1515     NextDecl = NextDecl->getNextDeclInContext();
   1516   }
   1517   return 0;
   1518 }
   1519 
   1520 static DesignatedInitExpr *CloneDesignatedInitExpr(Sema &SemaRef,
   1521                                                    DesignatedInitExpr *DIE) {
   1522   unsigned NumIndexExprs = DIE->getNumSubExprs() - 1;
   1523   SmallVector<Expr*, 4> IndexExprs(NumIndexExprs);
   1524   for (unsigned I = 0; I < NumIndexExprs; ++I)
   1525     IndexExprs[I] = DIE->getSubExpr(I + 1);
   1526   return DesignatedInitExpr::Create(SemaRef.Context, DIE->designators_begin(),
   1527                                     DIE->size(), IndexExprs.data(),
   1528                                     NumIndexExprs, DIE->getEqualOrColonLoc(),
   1529                                     DIE->usesGNUSyntax(), DIE->getInit());
   1530 }
   1531 
   1532 /// @brief Check the well-formedness of a C99 designated initializer.
   1533 ///
   1534 /// Determines whether the designated initializer @p DIE, which
   1535 /// resides at the given @p Index within the initializer list @p
   1536 /// IList, is well-formed for a current object of type @p DeclType
   1537 /// (C99 6.7.8). The actual subobject that this designator refers to
   1538 /// within the current subobject is returned in either
   1539 /// @p NextField or @p NextElementIndex (whichever is appropriate).
   1540 ///
   1541 /// @param IList  The initializer list in which this designated
   1542 /// initializer occurs.
   1543 ///
   1544 /// @param DIE The designated initializer expression.
   1545 ///
   1546 /// @param DesigIdx  The index of the current designator.
   1547 ///
   1548 /// @param DeclType  The type of the "current object" (C99 6.7.8p17),
   1549 /// into which the designation in @p DIE should refer.
   1550 ///
   1551 /// @param NextField  If non-NULL and the first designator in @p DIE is
   1552 /// a field, this will be set to the field declaration corresponding
   1553 /// to the field named by the designator.
   1554 ///
   1555 /// @param NextElementIndex  If non-NULL and the first designator in @p
   1556 /// DIE is an array designator or GNU array-range designator, this
   1557 /// will be set to the last index initialized by this designator.
   1558 ///
   1559 /// @param Index  Index into @p IList where the designated initializer
   1560 /// @p DIE occurs.
   1561 ///
   1562 /// @param StructuredList  The initializer list expression that
   1563 /// describes all of the subobject initializers in the order they'll
   1564 /// actually be initialized.
   1565 ///
   1566 /// @returns true if there was an error, false otherwise.
   1567 bool
   1568 InitListChecker::CheckDesignatedInitializer(const InitializedEntity &Entity,
   1569                                             InitListExpr *IList,
   1570                                             DesignatedInitExpr *DIE,
   1571                                             unsigned DesigIdx,
   1572                                             QualType &CurrentObjectType,
   1573                                           RecordDecl::field_iterator *NextField,
   1574                                             llvm::APSInt *NextElementIndex,
   1575                                             unsigned &Index,
   1576                                             InitListExpr *StructuredList,
   1577                                             unsigned &StructuredIndex,
   1578                                             bool FinishSubobjectInit,
   1579                                             bool TopLevelObject) {
   1580   if (DesigIdx == DIE->size()) {
   1581     // Check the actual initialization for the designated object type.
   1582     bool prevHadError = hadError;
   1583 
   1584     // Temporarily remove the designator expression from the
   1585     // initializer list that the child calls see, so that we don't try
   1586     // to re-process the designator.
   1587     unsigned OldIndex = Index;
   1588     IList->setInit(OldIndex, DIE->getInit());
   1589 
   1590     CheckSubElementType(Entity, IList, CurrentObjectType, Index,
   1591                         StructuredList, StructuredIndex);
   1592 
   1593     // Restore the designated initializer expression in the syntactic
   1594     // form of the initializer list.
   1595     if (IList->getInit(OldIndex) != DIE->getInit())
   1596       DIE->setInit(IList->getInit(OldIndex));
   1597     IList->setInit(OldIndex, DIE);
   1598 
   1599     return hadError && !prevHadError;
   1600   }
   1601 
   1602   DesignatedInitExpr::Designator *D = DIE->getDesignator(DesigIdx);
   1603   bool IsFirstDesignator = (DesigIdx == 0);
   1604   if (!VerifyOnly) {
   1605     assert((IsFirstDesignator || StructuredList) &&
   1606            "Need a non-designated initializer list to start from");
   1607 
   1608     // Determine the structural initializer list that corresponds to the
   1609     // current subobject.
   1610     StructuredList = IsFirstDesignator? SyntacticToSemantic[IList]
   1611       : getStructuredSubobjectInit(IList, Index, CurrentObjectType,
   1612                                    StructuredList, StructuredIndex,
   1613                                    SourceRange(D->getStartLocation(),
   1614                                                DIE->getSourceRange().getEnd()));
   1615     assert(StructuredList && "Expected a structured initializer list");
   1616   }
   1617 
   1618   if (D->isFieldDesignator()) {
   1619     // C99 6.7.8p7:
   1620     //
   1621     //   If a designator has the form
   1622     //
   1623     //      . identifier
   1624     //
   1625     //   then the current object (defined below) shall have
   1626     //   structure or union type and the identifier shall be the
   1627     //   name of a member of that type.
   1628     const RecordType *RT = CurrentObjectType->getAs<RecordType>();
   1629     if (!RT) {
   1630       SourceLocation Loc = D->getDotLoc();
   1631       if (Loc.isInvalid())
   1632         Loc = D->getFieldLoc();
   1633       if (!VerifyOnly)
   1634         SemaRef.Diag(Loc, diag::err_field_designator_non_aggr)
   1635           << SemaRef.getLangOptions().CPlusPlus << CurrentObjectType;
   1636       ++Index;
   1637       return true;
   1638     }
   1639 
   1640     // Note: we perform a linear search of the fields here, despite
   1641     // the fact that we have a faster lookup method, because we always
   1642     // need to compute the field's index.
   1643     FieldDecl *KnownField = D->getField();
   1644     IdentifierInfo *FieldName = D->getFieldName();
   1645     unsigned FieldIndex = 0;
   1646     RecordDecl::field_iterator
   1647       Field = RT->getDecl()->field_begin(),
   1648       FieldEnd = RT->getDecl()->field_end();
   1649     for (; Field != FieldEnd; ++Field) {
   1650       if (Field->isUnnamedBitfield())
   1651         continue;
   1652 
   1653       // If we find a field representing an anonymous field, look in the
   1654       // IndirectFieldDecl that follow for the designated initializer.
   1655       if (!KnownField && Field->isAnonymousStructOrUnion()) {
   1656         if (IndirectFieldDecl *IF =
   1657             FindIndirectFieldDesignator(*Field, FieldName)) {
   1658           // In verify mode, don't modify the original.
   1659           if (VerifyOnly)
   1660             DIE = CloneDesignatedInitExpr(SemaRef, DIE);
   1661           ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx, IF);
   1662           D = DIE->getDesignator(DesigIdx);
   1663           break;
   1664         }
   1665       }
   1666       if (KnownField && KnownField == *Field)
   1667         break;
   1668       if (FieldName && FieldName == Field->getIdentifier())
   1669         break;
   1670 
   1671       ++FieldIndex;
   1672     }
   1673 
   1674     if (Field == FieldEnd) {
   1675       if (VerifyOnly) {
   1676         ++Index;
   1677         return true; // No typo correction when just trying this out.
   1678       }
   1679 
   1680       // There was no normal field in the struct with the designated
   1681       // name. Perform another lookup for this name, which may find
   1682       // something that we can't designate (e.g., a member function),
   1683       // may find nothing, or may find a member of an anonymous
   1684       // struct/union.
   1685       DeclContext::lookup_result Lookup = RT->getDecl()->lookup(FieldName);
   1686       FieldDecl *ReplacementField = 0;
   1687       if (Lookup.first == Lookup.second) {
   1688         // Name lookup didn't find anything. Determine whether this
   1689         // was a typo for another field name.
   1690         LookupResult R(SemaRef, FieldName, D->getFieldLoc(),
   1691                        Sema::LookupMemberName);
   1692         TypoCorrection Corrected = SemaRef.CorrectTypo(
   1693             DeclarationNameInfo(FieldName, D->getFieldLoc()),
   1694             Sema::LookupMemberName, /*Scope=*/NULL, /*SS=*/NULL,
   1695             RT->getDecl(), false, Sema::CTC_NoKeywords);
   1696         if ((ReplacementField = Corrected.getCorrectionDeclAs<FieldDecl>()) &&
   1697             ReplacementField->getDeclContext()->getRedeclContext()
   1698                                                       ->Equals(RT->getDecl())) {
   1699           std::string CorrectedStr(
   1700               Corrected.getAsString(SemaRef.getLangOptions()));
   1701           std::string CorrectedQuotedStr(
   1702               Corrected.getQuoted(SemaRef.getLangOptions()));
   1703           SemaRef.Diag(D->getFieldLoc(),
   1704                        diag::err_field_designator_unknown_suggest)
   1705             << FieldName << CurrentObjectType << CorrectedQuotedStr
   1706             << FixItHint::CreateReplacement(D->getFieldLoc(), CorrectedStr);
   1707           SemaRef.Diag(ReplacementField->getLocation(),
   1708                        diag::note_previous_decl) << CorrectedQuotedStr;
   1709           hadError = true;
   1710         } else {
   1711           SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_unknown)
   1712             << FieldName << CurrentObjectType;
   1713           ++Index;
   1714           return true;
   1715         }
   1716       }
   1717 
   1718       if (!ReplacementField) {
   1719         // Name lookup found something, but it wasn't a field.
   1720         SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_nonfield)
   1721           << FieldName;
   1722         SemaRef.Diag((*Lookup.first)->getLocation(),
   1723                       diag::note_field_designator_found);
   1724         ++Index;
   1725         return true;
   1726       }
   1727 
   1728       if (!KnownField) {
   1729         // The replacement field comes from typo correction; find it
   1730         // in the list of fields.
   1731         FieldIndex = 0;
   1732         Field = RT->getDecl()->field_begin();
   1733         for (; Field != FieldEnd; ++Field) {
   1734           if (Field->isUnnamedBitfield())
   1735             continue;
   1736 
   1737           if (ReplacementField == *Field ||
   1738               Field->getIdentifier() == ReplacementField->getIdentifier())
   1739             break;
   1740 
   1741           ++FieldIndex;
   1742         }
   1743       }
   1744     }
   1745 
   1746     // All of the fields of a union are located at the same place in
   1747     // the initializer list.
   1748     if (RT->getDecl()->isUnion()) {
   1749       FieldIndex = 0;
   1750       if (!VerifyOnly)
   1751         StructuredList->setInitializedFieldInUnion(*Field);
   1752     }
   1753 
   1754     // Make sure we can use this declaration.
   1755     bool InvalidUse;
   1756     if (VerifyOnly)
   1757       InvalidUse = !SemaRef.CanUseDecl(*Field);
   1758     else
   1759       InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field, D->getFieldLoc());
   1760     if (InvalidUse) {
   1761       ++Index;
   1762       return true;
   1763     }
   1764 
   1765     if (!VerifyOnly) {
   1766       // Update the designator with the field declaration.
   1767       D->setField(*Field);
   1768 
   1769       // Make sure that our non-designated initializer list has space
   1770       // for a subobject corresponding to this field.
   1771       if (FieldIndex >= StructuredList->getNumInits())
   1772         StructuredList->resizeInits(SemaRef.Context, FieldIndex + 1);
   1773     }
   1774 
   1775     // This designator names a flexible array member.
   1776     if (Field->getType()->isIncompleteArrayType()) {
   1777       bool Invalid = false;
   1778       if ((DesigIdx + 1) != DIE->size()) {
   1779         // We can't designate an object within the flexible array
   1780         // member (because GCC doesn't allow it).
   1781         if (!VerifyOnly) {
   1782           DesignatedInitExpr::Designator *NextD
   1783             = DIE->getDesignator(DesigIdx + 1);
   1784           SemaRef.Diag(NextD->getStartLocation(),
   1785                         diag::err_designator_into_flexible_array_member)
   1786             << SourceRange(NextD->getStartLocation(),
   1787                            DIE->getSourceRange().getEnd());
   1788           SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
   1789             << *Field;
   1790         }
   1791         Invalid = true;
   1792       }
   1793 
   1794       if (!hadError && !isa<InitListExpr>(DIE->getInit()) &&
   1795           !isa<StringLiteral>(DIE->getInit())) {
   1796         // The initializer is not an initializer list.
   1797         if (!VerifyOnly) {
   1798           SemaRef.Diag(DIE->getInit()->getSourceRange().getBegin(),
   1799                         diag::err_flexible_array_init_needs_braces)
   1800             << DIE->getInit()->getSourceRange();
   1801           SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
   1802             << *Field;
   1803         }
   1804         Invalid = true;
   1805       }
   1806 
   1807       // Check GNU flexible array initializer.
   1808       if (!Invalid && CheckFlexibleArrayInit(Entity, DIE->getInit(), *Field,
   1809                                              TopLevelObject))
   1810         Invalid = true;
   1811 
   1812       if (Invalid) {
   1813         ++Index;
   1814         return true;
   1815       }
   1816 
   1817       // Initialize the array.
   1818       bool prevHadError = hadError;
   1819       unsigned newStructuredIndex = FieldIndex;
   1820       unsigned OldIndex = Index;
   1821       IList->setInit(Index, DIE->getInit());
   1822 
   1823       InitializedEntity MemberEntity =
   1824         InitializedEntity::InitializeMember(*Field, &Entity);
   1825       CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
   1826                           StructuredList, newStructuredIndex);
   1827 
   1828       IList->setInit(OldIndex, DIE);
   1829       if (hadError && !prevHadError) {
   1830         ++Field;
   1831         ++FieldIndex;
   1832         if (NextField)
   1833           *NextField = Field;
   1834         StructuredIndex = FieldIndex;
   1835         return true;
   1836       }
   1837     } else {
   1838       // Recurse to check later designated subobjects.
   1839       QualType FieldType = (*Field)->getType();
   1840       unsigned newStructuredIndex = FieldIndex;
   1841 
   1842       InitializedEntity MemberEntity =
   1843         InitializedEntity::InitializeMember(*Field, &Entity);
   1844       if (CheckDesignatedInitializer(MemberEntity, IList, DIE, DesigIdx + 1,
   1845                                      FieldType, 0, 0, Index,
   1846                                      StructuredList, newStructuredIndex,
   1847                                      true, false))
   1848         return true;
   1849     }
   1850 
   1851     // Find the position of the next field to be initialized in this
   1852     // subobject.
   1853     ++Field;
   1854     ++FieldIndex;
   1855 
   1856     // If this the first designator, our caller will continue checking
   1857     // the rest of this struct/class/union subobject.
   1858     if (IsFirstDesignator) {
   1859       if (NextField)
   1860         *NextField = Field;
   1861       StructuredIndex = FieldIndex;
   1862       return false;
   1863     }
   1864 
   1865     if (!FinishSubobjectInit)
   1866       return false;
   1867 
   1868     // We've already initialized something in the union; we're done.
   1869     if (RT->getDecl()->isUnion())
   1870       return hadError;
   1871 
   1872     // Check the remaining fields within this class/struct/union subobject.
   1873     bool prevHadError = hadError;
   1874 
   1875     CheckStructUnionTypes(Entity, IList, CurrentObjectType, Field, false, Index,
   1876                           StructuredList, FieldIndex);
   1877     return hadError && !prevHadError;
   1878   }
   1879 
   1880   // C99 6.7.8p6:
   1881   //
   1882   //   If a designator has the form
   1883   //
   1884   //      [ constant-expression ]
   1885   //
   1886   //   then the current object (defined below) shall have array
   1887   //   type and the expression shall be an integer constant
   1888   //   expression. If the array is of unknown size, any
   1889   //   nonnegative value is valid.
   1890   //
   1891   // Additionally, cope with the GNU extension that permits
   1892   // designators of the form
   1893   //
   1894   //      [ constant-expression ... constant-expression ]
   1895   const ArrayType *AT = SemaRef.Context.getAsArrayType(CurrentObjectType);
   1896   if (!AT) {
   1897     if (!VerifyOnly)
   1898       SemaRef.Diag(D->getLBracketLoc(), diag::err_array_designator_non_array)
   1899         << CurrentObjectType;
   1900     ++Index;
   1901     return true;
   1902   }
   1903 
   1904   Expr *IndexExpr = 0;
   1905   llvm::APSInt DesignatedStartIndex, DesignatedEndIndex;
   1906   if (D->isArrayDesignator()) {
   1907     IndexExpr = DIE->getArrayIndex(*D);
   1908     DesignatedStartIndex = IndexExpr->EvaluateKnownConstInt(SemaRef.Context);
   1909     DesignatedEndIndex = DesignatedStartIndex;
   1910   } else {
   1911     assert(D->isArrayRangeDesignator() && "Need array-range designator");
   1912 
   1913     DesignatedStartIndex =
   1914       DIE->getArrayRangeStart(*D)->EvaluateKnownConstInt(SemaRef.Context);
   1915     DesignatedEndIndex =
   1916       DIE->getArrayRangeEnd(*D)->EvaluateKnownConstInt(SemaRef.Context);
   1917     IndexExpr = DIE->getArrayRangeEnd(*D);
   1918 
   1919     // Codegen can't handle evaluating array range designators that have side
   1920     // effects, because we replicate the AST value for each initialized element.
   1921     // As such, set the sawArrayRangeDesignator() bit if we initialize multiple
   1922     // elements with something that has a side effect, so codegen can emit an
   1923     // "error unsupported" error instead of miscompiling the app.
   1924     if (DesignatedStartIndex.getZExtValue()!=DesignatedEndIndex.getZExtValue()&&
   1925         DIE->getInit()->HasSideEffects(SemaRef.Context) && !VerifyOnly)
   1926       FullyStructuredList->sawArrayRangeDesignator();
   1927   }
   1928 
   1929   if (isa<ConstantArrayType>(AT)) {
   1930     llvm::APSInt MaxElements(cast<ConstantArrayType>(AT)->getSize(), false);
   1931     DesignatedStartIndex
   1932       = DesignatedStartIndex.extOrTrunc(MaxElements.getBitWidth());
   1933     DesignatedStartIndex.setIsUnsigned(MaxElements.isUnsigned());
   1934     DesignatedEndIndex
   1935       = DesignatedEndIndex.extOrTrunc(MaxElements.getBitWidth());
   1936     DesignatedEndIndex.setIsUnsigned(MaxElements.isUnsigned());
   1937     if (DesignatedEndIndex >= MaxElements) {
   1938       if (!VerifyOnly)
   1939         SemaRef.Diag(IndexExpr->getSourceRange().getBegin(),
   1940                       diag::err_array_designator_too_large)
   1941           << DesignatedEndIndex.toString(10) << MaxElements.toString(10)
   1942           << IndexExpr->getSourceRange();
   1943       ++Index;
   1944       return true;
   1945     }
   1946   } else {
   1947     // Make sure the bit-widths and signedness match.
   1948     if (DesignatedStartIndex.getBitWidth() > DesignatedEndIndex.getBitWidth())
   1949       DesignatedEndIndex
   1950         = DesignatedEndIndex.extend(DesignatedStartIndex.getBitWidth());
   1951     else if (DesignatedStartIndex.getBitWidth() <
   1952              DesignatedEndIndex.getBitWidth())
   1953       DesignatedStartIndex
   1954         = DesignatedStartIndex.extend(DesignatedEndIndex.getBitWidth());
   1955     DesignatedStartIndex.setIsUnsigned(true);
   1956     DesignatedEndIndex.setIsUnsigned(true);
   1957   }
   1958 
   1959   // Make sure that our non-designated initializer list has space
   1960   // for a subobject corresponding to this array element.
   1961   if (!VerifyOnly &&
   1962       DesignatedEndIndex.getZExtValue() >= StructuredList->getNumInits())
   1963     StructuredList->resizeInits(SemaRef.Context,
   1964                                 DesignatedEndIndex.getZExtValue() + 1);
   1965 
   1966   // Repeatedly perform subobject initializations in the range
   1967   // [DesignatedStartIndex, DesignatedEndIndex].
   1968 
   1969   // Move to the next designator
   1970   unsigned ElementIndex = DesignatedStartIndex.getZExtValue();
   1971   unsigned OldIndex = Index;
   1972 
   1973   InitializedEntity ElementEntity =
   1974     InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
   1975 
   1976   while (DesignatedStartIndex <= DesignatedEndIndex) {
   1977     // Recurse to check later designated subobjects.
   1978     QualType ElementType = AT->getElementType();
   1979     Index = OldIndex;
   1980 
   1981     ElementEntity.setElementIndex(ElementIndex);
   1982     if (CheckDesignatedInitializer(ElementEntity, IList, DIE, DesigIdx + 1,
   1983                                    ElementType, 0, 0, Index,
   1984                                    StructuredList, ElementIndex,
   1985                                    (DesignatedStartIndex == DesignatedEndIndex),
   1986                                    false))
   1987       return true;
   1988 
   1989     // Move to the next index in the array that we'll be initializing.
   1990     ++DesignatedStartIndex;
   1991     ElementIndex = DesignatedStartIndex.getZExtValue();
   1992   }
   1993 
   1994   // If this the first designator, our caller will continue checking
   1995   // the rest of this array subobject.
   1996   if (IsFirstDesignator) {
   1997     if (NextElementIndex)
   1998       *NextElementIndex = DesignatedStartIndex;
   1999     StructuredIndex = ElementIndex;
   2000     return false;
   2001   }
   2002 
   2003   if (!FinishSubobjectInit)
   2004     return false;
   2005 
   2006   // Check the remaining elements within this array subobject.
   2007   bool prevHadError = hadError;
   2008   CheckArrayType(Entity, IList, CurrentObjectType, DesignatedStartIndex,
   2009                  /*SubobjectIsDesignatorContext=*/false, Index,
   2010                  StructuredList, ElementIndex);
   2011   return hadError && !prevHadError;
   2012 }
   2013 
   2014 // Get the structured initializer list for a subobject of type
   2015 // @p CurrentObjectType.
   2016 InitListExpr *
   2017 InitListChecker::getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
   2018                                             QualType CurrentObjectType,
   2019                                             InitListExpr *StructuredList,
   2020                                             unsigned StructuredIndex,
   2021                                             SourceRange InitRange) {
   2022   if (VerifyOnly)
   2023     return 0; // No structured list in verification-only mode.
   2024   Expr *ExistingInit = 0;
   2025   if (!StructuredList)
   2026     ExistingInit = SyntacticToSemantic[IList];
   2027   else if (StructuredIndex < StructuredList->getNumInits())
   2028     ExistingInit = StructuredList->getInit(StructuredIndex);
   2029 
   2030   if (InitListExpr *Result = dyn_cast_or_null<InitListExpr>(ExistingInit))
   2031     return Result;
   2032 
   2033   if (ExistingInit) {
   2034     // We are creating an initializer list that initializes the
   2035     // subobjects of the current object, but there was already an
   2036     // initialization that completely initialized the current
   2037     // subobject, e.g., by a compound literal:
   2038     //
   2039     // struct X { int a, b; };
   2040     // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 };
   2041     //
   2042     // Here, xs[0].a == 0 and xs[0].b == 3, since the second,
   2043     // designated initializer re-initializes the whole
   2044     // subobject [0], overwriting previous initializers.
   2045     SemaRef.Diag(InitRange.getBegin(),
   2046                  diag::warn_subobject_initializer_overrides)
   2047       << InitRange;
   2048     SemaRef.Diag(ExistingInit->getSourceRange().getBegin(),
   2049                   diag::note_previous_initializer)
   2050       << /*FIXME:has side effects=*/0
   2051       << ExistingInit->getSourceRange();
   2052   }
   2053 
   2054   InitListExpr *Result
   2055     = new (SemaRef.Context) InitListExpr(SemaRef.Context,
   2056                                          InitRange.getBegin(), 0, 0,
   2057                                          InitRange.getEnd());
   2058 
   2059   Result->setType(CurrentObjectType.getNonLValueExprType(SemaRef.Context));
   2060 
   2061   // Pre-allocate storage for the structured initializer list.
   2062   unsigned NumElements = 0;
   2063   unsigned NumInits = 0;
   2064   bool GotNumInits = false;
   2065   if (!StructuredList) {
   2066     NumInits = IList->getNumInits();
   2067     GotNumInits = true;
   2068   } else if (Index < IList->getNumInits()) {
   2069     if (InitListExpr *SubList = dyn_cast<InitListExpr>(IList->getInit(Index))) {
   2070       NumInits = SubList->getNumInits();
   2071       GotNumInits = true;
   2072     }
   2073   }
   2074 
   2075   if (const ArrayType *AType
   2076       = SemaRef.Context.getAsArrayType(CurrentObjectType)) {
   2077     if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType)) {
   2078       NumElements = CAType->getSize().getZExtValue();
   2079       // Simple heuristic so that we don't allocate a very large
   2080       // initializer with many empty entries at the end.
   2081       if (GotNumInits && NumElements > NumInits)
   2082         NumElements = 0;
   2083     }
   2084   } else if (const VectorType *VType = CurrentObjectType->getAs<VectorType>())
   2085     NumElements = VType->getNumElements();
   2086   else if (const RecordType *RType = CurrentObjectType->getAs<RecordType>()) {
   2087     RecordDecl *RDecl = RType->getDecl();
   2088     if (RDecl->isUnion())
   2089       NumElements = 1;
   2090     else
   2091       NumElements = std::distance(RDecl->field_begin(),
   2092                                   RDecl->field_end());
   2093   }
   2094 
   2095   Result->reserveInits(SemaRef.Context, NumElements);
   2096 
   2097   // Link this new initializer list into the structured initializer
   2098   // lists.
   2099   if (StructuredList)
   2100     StructuredList->updateInit(SemaRef.Context, StructuredIndex, Result);
   2101   else {
   2102     Result->setSyntacticForm(IList);
   2103     SyntacticToSemantic[IList] = Result;
   2104   }
   2105 
   2106   return Result;
   2107 }
   2108 
   2109 /// Update the initializer at index @p StructuredIndex within the
   2110 /// structured initializer list to the value @p expr.
   2111 void InitListChecker::UpdateStructuredListElement(InitListExpr *StructuredList,
   2112                                                   unsigned &StructuredIndex,
   2113                                                   Expr *expr) {
   2114   // No structured initializer list to update
   2115   if (!StructuredList)
   2116     return;
   2117 
   2118   if (Expr *PrevInit = StructuredList->updateInit(SemaRef.Context,
   2119                                                   StructuredIndex, expr)) {
   2120     // This initializer overwrites a previous initializer. Warn.
   2121     SemaRef.Diag(expr->getSourceRange().getBegin(),
   2122                   diag::warn_initializer_overrides)
   2123       << expr->getSourceRange();
   2124     SemaRef.Diag(PrevInit->getSourceRange().getBegin(),
   2125                   diag::note_previous_initializer)
   2126       << /*FIXME:has side effects=*/0
   2127       << PrevInit->getSourceRange();
   2128   }
   2129 
   2130   ++StructuredIndex;
   2131 }
   2132 
   2133 /// Check that the given Index expression is a valid array designator
   2134 /// value. This is essentailly just a wrapper around
   2135 /// VerifyIntegerConstantExpression that also checks for negative values
   2136 /// and produces a reasonable diagnostic if there is a
   2137 /// failure. Returns true if there was an error, false otherwise.  If
   2138 /// everything went okay, Value will receive the value of the constant
   2139 /// expression.
   2140 static bool
   2141 CheckArrayDesignatorExpr(Sema &S, Expr *Index, llvm::APSInt &Value) {
   2142   SourceLocation Loc = Index->getSourceRange().getBegin();
   2143 
   2144   // Make sure this is an integer constant expression.
   2145   if (S.VerifyIntegerConstantExpression(Index, &Value))
   2146     return true;
   2147 
   2148   if (Value.isSigned() && Value.isNegative())
   2149     return S.Diag(Loc, diag::err_array_designator_negative)
   2150       << Value.toString(10) << Index->getSourceRange();
   2151 
   2152   Value.setIsUnsigned(true);
   2153   return false;
   2154 }
   2155 
   2156 ExprResult Sema::ActOnDesignatedInitializer(Designation &Desig,
   2157                                             SourceLocation Loc,
   2158                                             bool GNUSyntax,
   2159                                             ExprResult Init) {
   2160   typedef DesignatedInitExpr::Designator ASTDesignator;
   2161 
   2162   bool Invalid = false;
   2163   SmallVector<ASTDesignator, 32> Designators;
   2164   SmallVector<Expr *, 32> InitExpressions;
   2165 
   2166   // Build designators and check array designator expressions.
   2167   for (unsigned Idx = 0; Idx < Desig.getNumDesignators(); ++Idx) {
   2168     const Designator &D = Desig.getDesignator(Idx);
   2169     switch (D.getKind()) {
   2170     case Designator::FieldDesignator:
   2171       Designators.push_back(ASTDesignator(D.getField(), D.getDotLoc(),
   2172                                           D.getFieldLoc()));
   2173       break;
   2174 
   2175     case Designator::ArrayDesignator: {
   2176       Expr *Index = static_cast<Expr *>(D.getArrayIndex());
   2177       llvm::APSInt IndexValue;
   2178       if (!Index->isTypeDependent() &&
   2179           !Index->isValueDependent() &&
   2180           CheckArrayDesignatorExpr(*this, Index, IndexValue))
   2181         Invalid = true;
   2182       else {
   2183         Designators.push_back(ASTDesignator(InitExpressions.size(),
   2184                                             D.getLBracketLoc(),
   2185                                             D.getRBracketLoc()));
   2186         InitExpressions.push_back(Index);
   2187       }
   2188       break;
   2189     }
   2190 
   2191     case Designator::ArrayRangeDesignator: {
   2192       Expr *StartIndex = static_cast<Expr *>(D.getArrayRangeStart());
   2193       Expr *EndIndex = static_cast<Expr *>(D.getArrayRangeEnd());
   2194       llvm::APSInt StartValue;
   2195       llvm::APSInt EndValue;
   2196       bool StartDependent = StartIndex->isTypeDependent() ||
   2197                             StartIndex->isValueDependent();
   2198       bool EndDependent = EndIndex->isTypeDependent() ||
   2199                           EndIndex->isValueDependent();
   2200       if ((!StartDependent &&
   2201            CheckArrayDesignatorExpr(*this, StartIndex, StartValue)) ||
   2202           (!EndDependent &&
   2203            CheckArrayDesignatorExpr(*this, EndIndex, EndValue)))
   2204         Invalid = true;
   2205       else {
   2206         // Make sure we're comparing values with the same bit width.
   2207         if (StartDependent || EndDependent) {
   2208           // Nothing to compute.
   2209         } else if (StartValue.getBitWidth() > EndValue.getBitWidth())
   2210           EndValue = EndValue.extend(StartValue.getBitWidth());
   2211         else if (StartValue.getBitWidth() < EndValue.getBitWidth())
   2212           StartValue = StartValue.extend(EndValue.getBitWidth());
   2213 
   2214         if (!StartDependent && !EndDependent && EndValue < StartValue) {
   2215           Diag(D.getEllipsisLoc(), diag::err_array_designator_empty_range)
   2216             << StartValue.toString(10) << EndValue.toString(10)
   2217             << StartIndex->getSourceRange() << EndIndex->getSourceRange();
   2218           Invalid = true;
   2219         } else {
   2220           Designators.push_back(ASTDesignator(InitExpressions.size(),
   2221                                               D.getLBracketLoc(),
   2222                                               D.getEllipsisLoc(),
   2223                                               D.getRBracketLoc()));
   2224           InitExpressions.push_back(StartIndex);
   2225           InitExpressions.push_back(EndIndex);
   2226         }
   2227       }
   2228       break;
   2229     }
   2230     }
   2231   }
   2232 
   2233   if (Invalid || Init.isInvalid())
   2234     return ExprError();
   2235 
   2236   // Clear out the expressions within the designation.
   2237   Desig.ClearExprs(*this);
   2238 
   2239   DesignatedInitExpr *DIE
   2240     = DesignatedInitExpr::Create(Context,
   2241                                  Designators.data(), Designators.size(),
   2242                                  InitExpressions.data(), InitExpressions.size(),
   2243                                  Loc, GNUSyntax, Init.takeAs<Expr>());
   2244 
   2245   if (getLangOptions().CPlusPlus)
   2246     Diag(DIE->getLocStart(), diag::ext_designated_init_cxx)
   2247       << DIE->getSourceRange();
   2248   else if (!getLangOptions().C99)
   2249     Diag(DIE->getLocStart(), diag::ext_designated_init)
   2250       << DIE->getSourceRange();
   2251 
   2252   return Owned(DIE);
   2253 }
   2254 
   2255 //===----------------------------------------------------------------------===//
   2256 // Initialization entity
   2257 //===----------------------------------------------------------------------===//
   2258 
   2259 InitializedEntity::InitializedEntity(ASTContext &Context, unsigned Index,
   2260                                      const InitializedEntity &Parent)
   2261   : Parent(&Parent), Index(Index)
   2262 {
   2263   if (const ArrayType *AT = Context.getAsArrayType(Parent.getType())) {
   2264     Kind = EK_ArrayElement;
   2265     Type = AT->getElementType();
   2266   } else if (const VectorType *VT = Parent.getType()->getAs<VectorType>()) {
   2267     Kind = EK_VectorElement;
   2268     Type = VT->getElementType();
   2269   } else {
   2270     const ComplexType *CT = Parent.getType()->getAs<ComplexType>();
   2271     assert(CT && "Unexpected type");
   2272     Kind = EK_ComplexElement;
   2273     Type = CT->getElementType();
   2274   }
   2275 }
   2276 
   2277 InitializedEntity InitializedEntity::InitializeBase(ASTContext &Context,
   2278                                                     CXXBaseSpecifier *Base,
   2279                                                     bool IsInheritedVirtualBase)
   2280 {
   2281   InitializedEntity Result;
   2282   Result.Kind = EK_Base;
   2283   Result.Base = reinterpret_cast<uintptr_t>(Base);
   2284   if (IsInheritedVirtualBase)
   2285     Result.Base |= 0x01;
   2286 
   2287   Result.Type = Base->getType();
   2288   return Result;
   2289 }
   2290 
   2291 DeclarationName InitializedEntity::getName() const {
   2292   switch (getKind()) {
   2293   case EK_Parameter: {
   2294     ParmVarDecl *D = reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1);
   2295     return (D ? D->getDeclName() : DeclarationName());
   2296   }
   2297 
   2298   case EK_Variable:
   2299   case EK_Member:
   2300     return VariableOrMember->getDeclName();
   2301 
   2302   case EK_Result:
   2303   case EK_Exception:
   2304   case EK_New:
   2305   case EK_Temporary:
   2306   case EK_Base:
   2307   case EK_Delegating:
   2308   case EK_ArrayElement:
   2309   case EK_VectorElement:
   2310   case EK_ComplexElement:
   2311   case EK_BlockElement:
   2312     return DeclarationName();
   2313   }
   2314 
   2315   // Silence GCC warning
   2316   return DeclarationName();
   2317 }
   2318 
   2319 DeclaratorDecl *InitializedEntity::getDecl() const {
   2320   switch (getKind()) {
   2321   case EK_Variable:
   2322   case EK_Member:
   2323     return VariableOrMember;
   2324 
   2325   case EK_Parameter:
   2326     return reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1);
   2327 
   2328   case EK_Result:
   2329   case EK_Exception:
   2330   case EK_New:
   2331   case EK_Temporary:
   2332   case EK_Base:
   2333   case EK_Delegating:
   2334   case EK_ArrayElement:
   2335   case EK_VectorElement:
   2336   case EK_ComplexElement:
   2337   case EK_BlockElement:
   2338     return 0;
   2339   }
   2340 
   2341   // Silence GCC warning
   2342   return 0;
   2343 }
   2344 
   2345 bool InitializedEntity::allowsNRVO() const {
   2346   switch (getKind()) {
   2347   case EK_Result:
   2348   case EK_Exception:
   2349     return LocAndNRVO.NRVO;
   2350 
   2351   case EK_Variable:
   2352   case EK_Parameter:
   2353   case EK_Member:
   2354   case EK_New:
   2355   case EK_Temporary:
   2356   case EK_Base:
   2357   case EK_Delegating:
   2358   case EK_ArrayElement:
   2359   case EK_VectorElement:
   2360   case EK_ComplexElement:
   2361   case EK_BlockElement:
   2362     break;
   2363   }
   2364 
   2365   return false;
   2366 }
   2367 
   2368 //===----------------------------------------------------------------------===//
   2369 // Initialization sequence
   2370 //===----------------------------------------------------------------------===//
   2371 
   2372 void InitializationSequence::Step::Destroy() {
   2373   switch (Kind) {
   2374   case SK_ResolveAddressOfOverloadedFunction:
   2375   case SK_CastDerivedToBaseRValue:
   2376   case SK_CastDerivedToBaseXValue:
   2377   case SK_CastDerivedToBaseLValue:
   2378   case SK_BindReference:
   2379   case SK_BindReferenceToTemporary:
   2380   case SK_ExtraneousCopyToTemporary:
   2381   case SK_UserConversion:
   2382   case SK_QualificationConversionRValue:
   2383   case SK_QualificationConversionXValue:
   2384   case SK_QualificationConversionLValue:
   2385   case SK_ListInitialization:
   2386   case SK_ListConstructorCall:
   2387   case SK_ConstructorInitialization:
   2388   case SK_ZeroInitialization:
   2389   case SK_CAssignment:
   2390   case SK_StringInit:
   2391   case SK_ObjCObjectConversion:
   2392   case SK_ArrayInit:
   2393   case SK_PassByIndirectCopyRestore:
   2394   case SK_PassByIndirectRestore:
   2395   case SK_ProduceObjCObject:
   2396     break;
   2397 
   2398   case SK_ConversionSequence:
   2399     delete ICS;
   2400   }
   2401 }
   2402 
   2403 bool InitializationSequence::isDirectReferenceBinding() const {
   2404   return !Steps.empty() && Steps.back().Kind == SK_BindReference;
   2405 }
   2406 
   2407 bool InitializationSequence::isAmbiguous() const {
   2408   if (!Failed())
   2409     return false;
   2410 
   2411   switch (getFailureKind()) {
   2412   case FK_TooManyInitsForReference:
   2413   case FK_ArrayNeedsInitList:
   2414   case FK_ArrayNeedsInitListOrStringLiteral:
   2415   case FK_AddressOfOverloadFailed: // FIXME: Could do better
   2416   case FK_NonConstLValueReferenceBindingToTemporary:
   2417   case FK_NonConstLValueReferenceBindingToUnrelated:
   2418   case FK_RValueReferenceBindingToLValue:
   2419   case FK_ReferenceInitDropsQualifiers:
   2420   case FK_ReferenceInitFailed:
   2421   case FK_ConversionFailed:
   2422   case FK_ConversionFromPropertyFailed:
   2423   case FK_TooManyInitsForScalar:
   2424   case FK_ReferenceBindingToInitList:
   2425   case FK_InitListBadDestinationType:
   2426   case FK_DefaultInitOfConst:
   2427   case FK_Incomplete:
   2428   case FK_ArrayTypeMismatch:
   2429   case FK_NonConstantArrayInit:
   2430   case FK_ListInitializationFailed:
   2431   case FK_PlaceholderType:
   2432     return false;
   2433 
   2434   case FK_ReferenceInitOverloadFailed:
   2435   case FK_UserConversionOverloadFailed:
   2436   case FK_ConstructorOverloadFailed:
   2437     return FailedOverloadResult == OR_Ambiguous;
   2438   }
   2439 
   2440   return false;
   2441 }
   2442 
   2443 bool InitializationSequence::isConstructorInitialization() const {
   2444   return !Steps.empty() && Steps.back().Kind == SK_ConstructorInitialization;
   2445 }
   2446 
   2447 bool InitializationSequence::endsWithNarrowing(ASTContext &Ctx,
   2448                                                const Expr *Initializer,
   2449                                                bool *isInitializerConstant,
   2450                                                APValue *ConstantValue) const {
   2451   if (Steps.empty() || Initializer->isValueDependent())
   2452     return false;
   2453 
   2454   const Step &LastStep = Steps.back();
   2455   if (LastStep.Kind != SK_ConversionSequence)
   2456     return false;
   2457 
   2458   const ImplicitConversionSequence &ICS = *LastStep.ICS;
   2459   const StandardConversionSequence *SCS = NULL;
   2460   switch (ICS.getKind()) {
   2461   case ImplicitConversionSequence::StandardConversion:
   2462     SCS = &ICS.Standard;
   2463     break;
   2464   case ImplicitConversionSequence::UserDefinedConversion:
   2465     SCS = &ICS.UserDefined.After;
   2466     break;
   2467   case ImplicitConversionSequence::AmbiguousConversion:
   2468   case ImplicitConversionSequence::EllipsisConversion:
   2469   case ImplicitConversionSequence::BadConversion:
   2470     return false;
   2471   }
   2472 
   2473   // Check if SCS represents a narrowing conversion, according to C++0x
   2474   // [dcl.init.list]p7:
   2475   //
   2476   // A narrowing conversion is an implicit conversion ...
   2477   ImplicitConversionKind PossibleNarrowing = SCS->Second;
   2478   QualType FromType = SCS->getToType(0);
   2479   QualType ToType = SCS->getToType(1);
   2480   switch (PossibleNarrowing) {
   2481   // * from a floating-point type to an integer type, or
   2482   //
   2483   // * from an integer type or unscoped enumeration type to a floating-point
   2484   //   type, except where the source is a constant expression and the actual
   2485   //   value after conversion will fit into the target type and will produce
   2486   //   the original value when converted back to the original type, or
   2487   case ICK_Floating_Integral:
   2488     if (FromType->isRealFloatingType() && ToType->isIntegralType(Ctx)) {
   2489       *isInitializerConstant = false;
   2490       return true;
   2491     } else if (FromType->isIntegralType(Ctx) && ToType->isRealFloatingType()) {
   2492       llvm::APSInt IntConstantValue;
   2493       if (Initializer &&
   2494           Initializer->isIntegerConstantExpr(IntConstantValue, Ctx)) {
   2495         // Convert the integer to the floating type.
   2496         llvm::APFloat Result(Ctx.getFloatTypeSemantics(ToType));
   2497         Result.convertFromAPInt(IntConstantValue, IntConstantValue.isSigned(),
   2498                                 llvm::APFloat::rmNearestTiesToEven);
   2499         // And back.
   2500         llvm::APSInt ConvertedValue = IntConstantValue;
   2501         bool ignored;
   2502         Result.convertToInteger(ConvertedValue,
   2503                                 llvm::APFloat::rmTowardZero, &ignored);
   2504         // If the resulting value is different, this was a narrowing conversion.
   2505         if (IntConstantValue != ConvertedValue) {
   2506           *isInitializerConstant = true;
   2507           *ConstantValue = APValue(IntConstantValue);
   2508           return true;
   2509         }
   2510       } else {
   2511         // Variables are always narrowings.
   2512         *isInitializerConstant = false;
   2513         return true;
   2514       }
   2515     }
   2516     return false;
   2517 
   2518   // * from long double to double or float, or from double to float, except
   2519   //   where the source is a constant expression and the actual value after
   2520   //   conversion is within the range of values that can be represented (even
   2521   //   if it cannot be represented exactly), or
   2522   case ICK_Floating_Conversion:
   2523     if (1 == Ctx.getFloatingTypeOrder(FromType, ToType)) {
   2524       // FromType is larger than ToType.
   2525       Expr::EvalResult InitializerValue;
   2526       // FIXME: Check whether Initializer is a constant expression according
   2527       // to C++0x [expr.const], rather than just whether it can be folded.
   2528       if (Initializer->Evaluate(InitializerValue, Ctx) &&
   2529           !InitializerValue.HasSideEffects && InitializerValue.Val.isFloat()) {
   2530         // Constant! (Except for FIXME above.)
   2531         llvm::APFloat FloatVal = InitializerValue.Val.getFloat();
   2532         // Convert the source value into the target type.
   2533         bool ignored;
   2534         llvm::APFloat::opStatus ConvertStatus = FloatVal.convert(
   2535           Ctx.getFloatTypeSemantics(ToType),
   2536           llvm::APFloat::rmNearestTiesToEven, &ignored);
   2537         // If there was no overflow, the source value is within the range of
   2538         // values that can be represented.
   2539         if (ConvertStatus & llvm::APFloat::opOverflow) {
   2540           *isInitializerConstant = true;
   2541           *ConstantValue = InitializerValue.Val;
   2542           return true;
   2543         }
   2544       } else {
   2545         *isInitializerConstant = false;
   2546         return true;
   2547       }
   2548     }
   2549     return false;
   2550 
   2551   // * from an integer type or unscoped enumeration type to an integer type
   2552   //   that cannot represent all the values of the original type, except where
   2553   //   the source is a constant expression and the actual value after
   2554   //   conversion will fit into the target type and will produce the original
   2555   //   value when converted back to the original type.
   2556   case ICK_Boolean_Conversion:  // Bools are integers too.
   2557     if (!FromType->isIntegralOrUnscopedEnumerationType()) {
   2558       // Boolean conversions can be from pointers and pointers to members
   2559       // [conv.bool], and those aren't considered narrowing conversions.
   2560       return false;
   2561     }  // Otherwise, fall through to the integral case.
   2562   case ICK_Integral_Conversion: {
   2563     assert(FromType->isIntegralOrUnscopedEnumerationType());
   2564     assert(ToType->isIntegralOrUnscopedEnumerationType());
   2565     const bool FromSigned = FromType->isSignedIntegerOrEnumerationType();
   2566     const unsigned FromWidth = Ctx.getIntWidth(FromType);
   2567     const bool ToSigned = ToType->isSignedIntegerOrEnumerationType();
   2568     const unsigned ToWidth = Ctx.getIntWidth(ToType);
   2569 
   2570     if (FromWidth > ToWidth ||
   2571         (FromWidth == ToWidth && FromSigned != ToSigned)) {
   2572       // Not all values of FromType can be represented in ToType.
   2573       llvm::APSInt InitializerValue;
   2574       if (Initializer->isIntegerConstantExpr(InitializerValue, Ctx)) {
   2575         *isInitializerConstant = true;
   2576         *ConstantValue = APValue(InitializerValue);
   2577 
   2578         // Add a bit to the InitializerValue so we don't have to worry about
   2579         // signed vs. unsigned comparisons.
   2580         InitializerValue = InitializerValue.extend(
   2581           InitializerValue.getBitWidth() + 1);
   2582         // Convert the initializer to and from the target width and signed-ness.
   2583         llvm::APSInt ConvertedValue = InitializerValue;
   2584         ConvertedValue = ConvertedValue.trunc(ToWidth);
   2585         ConvertedValue.setIsSigned(ToSigned);
   2586         ConvertedValue = ConvertedValue.extend(InitializerValue.getBitWidth());
   2587         ConvertedValue.setIsSigned(InitializerValue.isSigned());
   2588         // If the result is different, this was a narrowing conversion.
   2589         return ConvertedValue != InitializerValue;
   2590       } else {
   2591         // Variables are always narrowings.
   2592         *isInitializerConstant = false;
   2593         return true;
   2594       }
   2595     }
   2596     return false;
   2597   }
   2598 
   2599   default:
   2600     // Other kinds of conversions are not narrowings.
   2601     return false;
   2602   }
   2603 }
   2604 
   2605 void InitializationSequence::AddAddressOverloadResolutionStep(
   2606                                                       FunctionDecl *Function,
   2607                                                       DeclAccessPair Found) {
   2608   Step S;
   2609   S.Kind = SK_ResolveAddressOfOverloadedFunction;
   2610   S.Type = Function->getType();
   2611   S.Function.HadMultipleCandidates = false;
   2612   S.Function.Function = Function;
   2613   S.Function.FoundDecl = Found;
   2614   Steps.push_back(S);
   2615 }
   2616 
   2617 void InitializationSequence::AddDerivedToBaseCastStep(QualType BaseType,
   2618                                                       ExprValueKind VK) {
   2619   Step S;
   2620   switch (VK) {
   2621   case VK_RValue: S.Kind = SK_CastDerivedToBaseRValue; break;
   2622   case VK_XValue: S.Kind = SK_CastDerivedToBaseXValue; break;
   2623   case VK_LValue: S.Kind = SK_CastDerivedToBaseLValue; break;
   2624   default: llvm_unreachable("No such category");
   2625   }
   2626   S.Type = BaseType;
   2627   Steps.push_back(S);
   2628 }
   2629 
   2630 void InitializationSequence::AddReferenceBindingStep(QualType T,
   2631                                                      bool BindingTemporary) {
   2632   Step S;
   2633   S.Kind = BindingTemporary? SK_BindReferenceToTemporary : SK_BindReference;
   2634   S.Type = T;
   2635   Steps.push_back(S);
   2636 }
   2637 
   2638 void InitializationSequence::AddExtraneousCopyToTemporary(QualType T) {
   2639   Step S;
   2640   S.Kind = SK_ExtraneousCopyToTemporary;
   2641   S.Type = T;
   2642   Steps.push_back(S);
   2643 }
   2644 
   2645 void InitializationSequence::AddUserConversionStep(FunctionDecl *Function,
   2646                                                    DeclAccessPair FoundDecl,
   2647                                                    QualType T) {
   2648   Step S;
   2649   S.Kind = SK_UserConversion;
   2650   S.Type = T;
   2651   S.Function.HadMultipleCandidates = false;
   2652   S.Function.Function = Function;
   2653   S.Function.FoundDecl = FoundDecl;
   2654   Steps.push_back(S);
   2655 }
   2656 
   2657 void InitializationSequence::AddQualificationConversionStep(QualType Ty,
   2658                                                             ExprValueKind VK) {
   2659   Step S;
   2660   S.Kind = SK_QualificationConversionRValue; // work around a gcc warning
   2661   switch (VK) {
   2662   case VK_RValue:
   2663     S.Kind = SK_QualificationConversionRValue;
   2664     break;
   2665   case VK_XValue:
   2666     S.Kind = SK_QualificationConversionXValue;
   2667     break;
   2668   case VK_LValue:
   2669     S.Kind = SK_QualificationConversionLValue;
   2670     break;
   2671   }
   2672   S.Type = Ty;
   2673   Steps.push_back(S);
   2674 }
   2675 
   2676 void InitializationSequence::AddConversionSequenceStep(
   2677                                        const ImplicitConversionSequence &ICS,
   2678                                                        QualType T) {
   2679   Step S;
   2680   S.Kind = SK_ConversionSequence;
   2681   S.Type = T;
   2682   S.ICS = new ImplicitConversionSequence(ICS);
   2683   Steps.push_back(S);
   2684 }
   2685 
   2686 void InitializationSequence::AddListInitializationStep(QualType T) {
   2687   Step S;
   2688   S.Kind = SK_ListInitialization;
   2689   S.Type = T;
   2690   Steps.push_back(S);
   2691 }
   2692 
   2693 void
   2694 InitializationSequence::AddConstructorInitializationStep(
   2695                                               CXXConstructorDecl *Constructor,
   2696                                                        AccessSpecifier Access,
   2697                                                          QualType T) {
   2698   Step S;
   2699   S.Kind = SK_ConstructorInitialization;
   2700   S.Type = T;
   2701   S.Function.HadMultipleCandidates = false;
   2702   S.Function.Function = Constructor;
   2703   S.Function.FoundDecl = DeclAccessPair::make(Constructor, Access);
   2704   Steps.push_back(S);
   2705 }
   2706 
   2707 void InitializationSequence::AddZeroInitializationStep(QualType T) {
   2708   Step S;
   2709   S.Kind = SK_ZeroInitialization;
   2710   S.Type = T;
   2711   Steps.push_back(S);
   2712 }
   2713 
   2714 void InitializationSequence::AddCAssignmentStep(QualType T) {
   2715   Step S;
   2716   S.Kind = SK_CAssignment;
   2717   S.Type = T;
   2718   Steps.push_back(S);
   2719 }
   2720 
   2721 void InitializationSequence::AddStringInitStep(QualType T) {
   2722   Step S;
   2723   S.Kind = SK_StringInit;
   2724   S.Type = T;
   2725   Steps.push_back(S);
   2726 }
   2727 
   2728 void InitializationSequence::AddObjCObjectConversionStep(QualType T) {
   2729   Step S;
   2730   S.Kind = SK_ObjCObjectConversion;
   2731   S.Type = T;
   2732   Steps.push_back(S);
   2733 }
   2734 
   2735 void InitializationSequence::AddArrayInitStep(QualType T) {
   2736   Step S;
   2737   S.Kind = SK_ArrayInit;
   2738   S.Type = T;
   2739   Steps.push_back(S);
   2740 }
   2741 
   2742 void InitializationSequence::AddPassByIndirectCopyRestoreStep(QualType type,
   2743                                                               bool shouldCopy) {
   2744   Step s;
   2745   s.Kind = (shouldCopy ? SK_PassByIndirectCopyRestore
   2746                        : SK_PassByIndirectRestore);
   2747   s.Type = type;
   2748   Steps.push_back(s);
   2749 }
   2750 
   2751 void InitializationSequence::AddProduceObjCObjectStep(QualType T) {
   2752   Step S;
   2753   S.Kind = SK_ProduceObjCObject;
   2754   S.Type = T;
   2755   Steps.push_back(S);
   2756 }
   2757 
   2758 void InitializationSequence::SetOverloadFailure(FailureKind Failure,
   2759                                                 OverloadingResult Result) {
   2760   setSequenceKind(FailedSequence);
   2761   this->Failure = Failure;
   2762   this->FailedOverloadResult = Result;
   2763 }
   2764 
   2765 //===----------------------------------------------------------------------===//
   2766 // Attempt initialization
   2767 //===----------------------------------------------------------------------===//
   2768 
   2769 static void MaybeProduceObjCObject(Sema &S,
   2770                                    InitializationSequence &Sequence,
   2771                                    const InitializedEntity &Entity) {
   2772   if (!S.getLangOptions().ObjCAutoRefCount) return;
   2773 
   2774   /// When initializing a parameter, produce the value if it's marked
   2775   /// __attribute__((ns_consumed)).
   2776   if (Entity.getKind() == InitializedEntity::EK_Parameter) {
   2777     if (!Entity.isParameterConsumed())
   2778       return;
   2779 
   2780     assert(Entity.getType()->isObjCRetainableType() &&
   2781            "consuming an object of unretainable type?");
   2782     Sequence.AddProduceObjCObjectStep(Entity.getType());
   2783 
   2784   /// When initializing a return value, if the return type is a
   2785   /// retainable type, then returns need to immediately retain the
   2786   /// object.  If an autorelease is required, it will be done at the
   2787   /// last instant.
   2788   } else if (Entity.getKind() == InitializedEntity::EK_Result) {
   2789     if (!Entity.getType()->isObjCRetainableType())
   2790       return;
   2791 
   2792     Sequence.AddProduceObjCObjectStep(Entity.getType());
   2793   }
   2794 }
   2795 
   2796 /// \brief Attempt list initialization (C++0x [dcl.init.list])
   2797 static void TryListInitialization(Sema &S,
   2798                                   const InitializedEntity &Entity,
   2799                                   const InitializationKind &Kind,
   2800                                   InitListExpr *InitList,
   2801                                   InitializationSequence &Sequence) {
   2802   QualType DestType = Entity.getType();
   2803 
   2804   // C++ doesn't allow scalar initialization with more than one argument.
   2805   // But C99 complex numbers are scalars and it makes sense there.
   2806   if (S.getLangOptions().CPlusPlus && DestType->isScalarType() &&
   2807       !DestType->isAnyComplexType() && InitList->getNumInits() > 1) {
   2808     Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForScalar);
   2809     return;
   2810   }
   2811   // FIXME: C++0x defines behavior for these two cases.
   2812   if (DestType->isReferenceType()) {
   2813     Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList);
   2814     return;
   2815   }
   2816   if (DestType->isRecordType() && !DestType->isAggregateType()) {
   2817     Sequence.SetFailed(InitializationSequence::FK_InitListBadDestinationType);
   2818     return;
   2819   }
   2820 
   2821   InitListChecker CheckInitList(S, Entity, InitList,
   2822           DestType, /*VerifyOnly=*/true,
   2823           Kind.getKind() != InitializationKind::IK_Direct ||
   2824             !S.getLangOptions().CPlusPlus0x);
   2825   if (CheckInitList.HadError()) {
   2826     Sequence.SetFailed(InitializationSequence::FK_ListInitializationFailed);
   2827     return;
   2828   }
   2829 
   2830   // Add the list initialization step with the built init list.
   2831   Sequence.AddListInitializationStep(DestType);
   2832 }
   2833 
   2834 /// \brief Try a reference initialization that involves calling a conversion
   2835 /// function.
   2836 static OverloadingResult TryRefInitWithConversionFunction(Sema &S,
   2837                                              const InitializedEntity &Entity,
   2838                                              const InitializationKind &Kind,
   2839                                                           Expr *Initializer,
   2840                                                           bool AllowRValues,
   2841                                              InitializationSequence &Sequence) {
   2842   QualType DestType = Entity.getType();
   2843   QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
   2844   QualType T1 = cv1T1.getUnqualifiedType();
   2845   QualType cv2T2 = Initializer->getType();
   2846   QualType T2 = cv2T2.getUnqualifiedType();
   2847 
   2848   bool DerivedToBase;
   2849   bool ObjCConversion;
   2850   bool ObjCLifetimeConversion;
   2851   assert(!S.CompareReferenceRelationship(Initializer->getLocStart(),
   2852                                          T1, T2, DerivedToBase,
   2853                                          ObjCConversion,
   2854                                          ObjCLifetimeConversion) &&
   2855          "Must have incompatible references when binding via conversion");
   2856   (void)DerivedToBase;
   2857   (void)ObjCConversion;
   2858   (void)ObjCLifetimeConversion;
   2859 
   2860   // Build the candidate set directly in the initialization sequence
   2861   // structure, so that it will persist if we fail.
   2862   OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
   2863   CandidateSet.clear();
   2864 
   2865   // Determine whether we are allowed to call explicit constructors or
   2866   // explicit conversion operators.
   2867   bool AllowExplicit = Kind.getKind() == InitializationKind::IK_Direct;
   2868 
   2869   const RecordType *T1RecordType = 0;
   2870   if (AllowRValues && (T1RecordType = T1->getAs<RecordType>()) &&
   2871       !S.RequireCompleteType(Kind.getLocation(), T1, 0)) {
   2872     // The type we're converting to is a class type. Enumerate its constructors
   2873     // to see if there is a suitable conversion.
   2874     CXXRecordDecl *T1RecordDecl = cast<CXXRecordDecl>(T1RecordType->getDecl());
   2875 
   2876     DeclContext::lookup_iterator Con, ConEnd;
   2877     for (llvm::tie(Con, ConEnd) = S.LookupConstructors(T1RecordDecl);
   2878          Con != ConEnd; ++Con) {
   2879       NamedDecl *D = *Con;
   2880       DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
   2881 
   2882       // Find the constructor (which may be a template).
   2883       CXXConstructorDecl *Constructor = 0;
   2884       FunctionTemplateDecl *ConstructorTmpl = dyn_cast<FunctionTemplateDecl>(D);
   2885       if (ConstructorTmpl)
   2886         Constructor = cast<CXXConstructorDecl>(
   2887                                          ConstructorTmpl->getTemplatedDecl());
   2888       else
   2889         Constructor = cast<CXXConstructorDecl>(D);
   2890 
   2891       if (!Constructor->isInvalidDecl() &&
   2892           Constructor->isConvertingConstructor(AllowExplicit)) {
   2893         if (ConstructorTmpl)
   2894           S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
   2895                                          /*ExplicitArgs*/ 0,
   2896                                          &Initializer, 1, CandidateSet,
   2897                                          /*SuppressUserConversions=*/true);
   2898         else
   2899           S.AddOverloadCandidate(Constructor, FoundDecl,
   2900                                  &Initializer, 1, CandidateSet,
   2901                                  /*SuppressUserConversions=*/true);
   2902       }
   2903     }
   2904   }
   2905   if (T1RecordType && T1RecordType->getDecl()->isInvalidDecl())
   2906     return OR_No_Viable_Function;
   2907 
   2908   const RecordType *T2RecordType = 0;
   2909   if ((T2RecordType = T2->getAs<RecordType>()) &&
   2910       !S.RequireCompleteType(Kind.getLocation(), T2, 0)) {
   2911     // The type we're converting from is a class type, enumerate its conversion
   2912     // functions.
   2913     CXXRecordDecl *T2RecordDecl = cast<CXXRecordDecl>(T2RecordType->getDecl());
   2914 
   2915     const UnresolvedSetImpl *Conversions
   2916       = T2RecordDecl->getVisibleConversionFunctions();
   2917     for (UnresolvedSetImpl::const_iterator I = Conversions->begin(),
   2918            E = Conversions->end(); I != E; ++I) {
   2919       NamedDecl *D = *I;
   2920       CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
   2921       if (isa<UsingShadowDecl>(D))
   2922         D = cast<UsingShadowDecl>(D)->getTargetDecl();
   2923 
   2924       FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
   2925       CXXConversionDecl *Conv;
   2926       if (ConvTemplate)
   2927         Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
   2928       else
   2929         Conv = cast<CXXConversionDecl>(D);
   2930 
   2931       // If the conversion function doesn't return a reference type,
   2932       // it can't be considered for this conversion unless we're allowed to
   2933       // consider rvalues.
   2934       // FIXME: Do we need to make sure that we only consider conversion
   2935       // candidates with reference-compatible results? That might be needed to
   2936       // break recursion.
   2937       if ((AllowExplicit || !Conv->isExplicit()) &&
   2938           (AllowRValues || Conv->getConversionType()->isLValueReferenceType())){
   2939         if (ConvTemplate)
   2940           S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(),
   2941                                            ActingDC, Initializer,
   2942                                            DestType, CandidateSet);
   2943         else
   2944           S.AddConversionCandidate(Conv, I.getPair(), ActingDC,
   2945                                    Initializer, DestType, CandidateSet);
   2946       }
   2947     }
   2948   }
   2949   if (T2RecordType && T2RecordType->getDecl()->isInvalidDecl())
   2950     return OR_No_Viable_Function;
   2951 
   2952   SourceLocation DeclLoc = Initializer->getLocStart();
   2953 
   2954   // Perform overload resolution. If it fails, return the failed result.
   2955   OverloadCandidateSet::iterator Best;
   2956   if (OverloadingResult Result
   2957         = CandidateSet.BestViableFunction(S, DeclLoc, Best, true))
   2958     return Result;
   2959 
   2960   FunctionDecl *Function = Best->Function;
   2961 
   2962   // This is the overload that will actually be used for the initialization, so
   2963   // mark it as used.
   2964   S.MarkDeclarationReferenced(DeclLoc, Function);
   2965 
   2966   // Compute the returned type of the conversion.
   2967   if (isa<CXXConversionDecl>(Function))
   2968     T2 = Function->getResultType();
   2969   else
   2970     T2 = cv1T1;
   2971 
   2972   // Add the user-defined conversion step.
   2973   Sequence.AddUserConversionStep(Function, Best->FoundDecl,
   2974                                  T2.getNonLValueExprType(S.Context));
   2975 
   2976   // Determine whether we need to perform derived-to-base or
   2977   // cv-qualification adjustments.
   2978   ExprValueKind VK = VK_RValue;
   2979   if (T2->isLValueReferenceType())
   2980     VK = VK_LValue;
   2981   else if (const RValueReferenceType *RRef = T2->getAs<RValueReferenceType>())
   2982     VK = RRef->getPointeeType()->isFunctionType() ? VK_LValue : VK_XValue;
   2983 
   2984   bool NewDerivedToBase = false;
   2985   bool NewObjCConversion = false;
   2986   bool NewObjCLifetimeConversion = false;
   2987   Sema::ReferenceCompareResult NewRefRelationship
   2988     = S.CompareReferenceRelationship(DeclLoc, T1,
   2989                                      T2.getNonLValueExprType(S.Context),
   2990                                      NewDerivedToBase, NewObjCConversion,
   2991                                      NewObjCLifetimeConversion);
   2992   if (NewRefRelationship == Sema::Ref_Incompatible) {
   2993     // If the type we've converted to is not reference-related to the
   2994     // type we're looking for, then there is another conversion step
   2995     // we need to perform to produce a temporary of the right type
   2996     // that we'll be binding to.
   2997     ImplicitConversionSequence ICS;
   2998     ICS.setStandard();
   2999     ICS.Standard = Best->FinalConversion;
   3000     T2 = ICS.Standard.getToType(2);
   3001     Sequence.AddConversionSequenceStep(ICS, T2);
   3002   } else if (NewDerivedToBase)
   3003     Sequence.AddDerivedToBaseCastStep(
   3004                                 S.Context.getQualifiedType(T1,
   3005                                   T2.getNonReferenceType().getQualifiers()),
   3006                                       VK);
   3007   else if (NewObjCConversion)
   3008     Sequence.AddObjCObjectConversionStep(
   3009                                 S.Context.getQualifiedType(T1,
   3010                                   T2.getNonReferenceType().getQualifiers()));
   3011 
   3012   if (cv1T1.getQualifiers() != T2.getNonReferenceType().getQualifiers())
   3013     Sequence.AddQualificationConversionStep(cv1T1, VK);
   3014 
   3015   Sequence.AddReferenceBindingStep(cv1T1, !T2->isReferenceType());
   3016   return OR_Success;
   3017 }
   3018 
   3019 /// \brief Attempt reference initialization (C++0x [dcl.init.ref])
   3020 static void TryReferenceInitialization(Sema &S,
   3021                                        const InitializedEntity &Entity,
   3022                                        const InitializationKind &Kind,
   3023                                        Expr *Initializer,
   3024                                        InitializationSequence &Sequence) {
   3025   QualType DestType = Entity.getType();
   3026   QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
   3027   Qualifiers T1Quals;
   3028   QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
   3029   QualType cv2T2 = Initializer->getType();
   3030   Qualifiers T2Quals;
   3031   QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
   3032   SourceLocation DeclLoc = Initializer->getLocStart();
   3033 
   3034   // If the initializer is the address of an overloaded function, try
   3035   // to resolve the overloaded function. If all goes well, T2 is the
   3036   // type of the resulting function.
   3037   if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
   3038     DeclAccessPair Found;
   3039     if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(Initializer,
   3040                                                                 T1,
   3041                                                                 false,
   3042                                                                 Found)) {
   3043       Sequence.AddAddressOverloadResolutionStep(Fn, Found);
   3044       cv2T2 = Fn->getType();
   3045       T2 = cv2T2.getUnqualifiedType();
   3046     } else if (!T1->isRecordType()) {
   3047       Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
   3048       return;
   3049     }
   3050   }
   3051 
   3052   // Compute some basic properties of the types and the initializer.
   3053   bool isLValueRef = DestType->isLValueReferenceType();
   3054   bool isRValueRef = !isLValueRef;
   3055   bool DerivedToBase = false;
   3056   bool ObjCConversion = false;
   3057   bool ObjCLifetimeConversion = false;
   3058   Expr::Classification InitCategory = Initializer->Classify(S.Context);
   3059   Sema::ReferenceCompareResult RefRelationship
   3060     = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, DerivedToBase,
   3061                                      ObjCConversion, ObjCLifetimeConversion);
   3062 
   3063   // C++0x [dcl.init.ref]p5:
   3064   //   A reference to type "cv1 T1" is initialized by an expression of type
   3065   //   "cv2 T2" as follows:
   3066   //
   3067   //     - If the reference is an lvalue reference and the initializer
   3068   //       expression
   3069   // Note the analogous bullet points for rvlaue refs to functions. Because
   3070   // there are no function rvalues in C++, rvalue refs to functions are treated
   3071   // like lvalue refs.
   3072   OverloadingResult ConvOvlResult = OR_Success;
   3073   bool T1Function = T1->isFunctionType();
   3074   if (isLValueRef || T1Function) {
   3075     if (InitCategory.isLValue() &&
   3076         (RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification ||
   3077          (Kind.isCStyleOrFunctionalCast() &&
   3078           RefRelationship == Sema::Ref_Related))) {
   3079       //   - is an lvalue (but is not a bit-field), and "cv1 T1" is
   3080       //     reference-compatible with "cv2 T2," or
   3081       //
   3082       // Per C++ [over.best.ics]p2, we don't diagnose whether the lvalue is a
   3083       // bit-field when we're determining whether the reference initialization
   3084       // can occur. However, we do pay attention to whether it is a bit-field
   3085       // to decide whether we're actually binding to a temporary created from
   3086       // the bit-field.
   3087       if (DerivedToBase)
   3088         Sequence.AddDerivedToBaseCastStep(
   3089                          S.Context.getQualifiedType(T1, T2Quals),
   3090                          VK_LValue);
   3091       else if (ObjCConversion)
   3092         Sequence.AddObjCObjectConversionStep(
   3093                                      S.Context.getQualifiedType(T1, T2Quals));
   3094 
   3095       if (T1Quals != T2Quals)
   3096         Sequence.AddQualificationConversionStep(cv1T1, VK_LValue);
   3097       bool BindingTemporary = T1Quals.hasConst() && !T1Quals.hasVolatile() &&
   3098         (Initializer->getBitField() || Initializer->refersToVectorElement());
   3099       Sequence.AddReferenceBindingStep(cv1T1, BindingTemporary);
   3100       return;
   3101     }
   3102 
   3103     //     - has a class type (i.e., T2 is a class type), where T1 is not
   3104     //       reference-related to T2, and can be implicitly converted to an
   3105     //       lvalue of type "cv3 T3," where "cv1 T1" is reference-compatible
   3106     //       with "cv3 T3" (this conversion is selected by enumerating the
   3107     //       applicable conversion functions (13.3.1.6) and choosing the best
   3108     //       one through overload resolution (13.3)),
   3109     // If we have an rvalue ref to function type here, the rhs must be
   3110     // an rvalue.
   3111     if (RefRelationship == Sema::Ref_Incompatible && T2->isRecordType() &&
   3112         (isLValueRef || InitCategory.isRValue())) {
   3113       ConvOvlResult = TryRefInitWithConversionFunction(S, Entity, Kind,
   3114                                                        Initializer,
   3115                                                    /*AllowRValues=*/isRValueRef,
   3116                                                        Sequence);
   3117       if (ConvOvlResult == OR_Success)
   3118         return;
   3119       if (ConvOvlResult != OR_No_Viable_Function) {
   3120         Sequence.SetOverloadFailure(
   3121                       InitializationSequence::FK_ReferenceInitOverloadFailed,
   3122                                     ConvOvlResult);
   3123       }
   3124     }
   3125   }
   3126 
   3127   //     - Otherwise, the reference shall be an lvalue reference to a
   3128   //       non-volatile const type (i.e., cv1 shall be const), or the reference
   3129   //       shall be an rvalue reference.
   3130   if (isLValueRef && !(T1Quals.hasConst() && !T1Quals.hasVolatile())) {
   3131     if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
   3132       Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
   3133     else if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
   3134       Sequence.SetOverloadFailure(
   3135                         InitializationSequence::FK_ReferenceInitOverloadFailed,
   3136                                   ConvOvlResult);
   3137     else
   3138       Sequence.SetFailed(InitCategory.isLValue()
   3139         ? (RefRelationship == Sema::Ref_Related
   3140              ? InitializationSequence::FK_ReferenceInitDropsQualifiers
   3141              : InitializationSequence::FK_NonConstLValueReferenceBindingToUnrelated)
   3142         : InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary);
   3143 
   3144     return;
   3145   }
   3146 
   3147   //    - If the initializer expression
   3148   //      - is an xvalue, class prvalue, array prvalue, or function lvalue and
   3149   //        "cv1 T1" is reference-compatible with "cv2 T2"
   3150   // Note: functions are handled below.
   3151   if (!T1Function &&
   3152       (RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification ||
   3153        (Kind.isCStyleOrFunctionalCast() &&
   3154         RefRelationship == Sema::Ref_Related)) &&
   3155       (InitCategory.isXValue() ||
   3156        (InitCategory.isPRValue() && T2->isRecordType()) ||
   3157        (InitCategory.isPRValue() && T2->isArrayType()))) {
   3158     ExprValueKind ValueKind = InitCategory.isXValue()? VK_XValue : VK_RValue;
   3159     if (InitCategory.isPRValue() && T2->isRecordType()) {
   3160       // The corresponding bullet in C++03 [dcl.init.ref]p5 gives the
   3161       // compiler the freedom to perform a copy here or bind to the
   3162       // object, while C++0x requires that we bind directly to the
   3163       // object. Hence, we always bind to the object without making an
   3164       // extra copy. However, in C++03 requires that we check for the
   3165       // presence of a suitable copy constructor:
   3166       //
   3167       //   The constructor that would be used to make the copy shall
   3168       //   be callable whether or not the copy is actually done.
   3169       if (!S.getLangOptions().CPlusPlus0x && !S.getLangOptions().MicrosoftExt)
   3170         Sequence.AddExtraneousCopyToTemporary(cv2T2);
   3171     }
   3172 
   3173     if (DerivedToBase)
   3174       Sequence.AddDerivedToBaseCastStep(S.Context.getQualifiedType(T1, T2Quals),
   3175                                         ValueKind);
   3176     else if (ObjCConversion)
   3177       Sequence.AddObjCObjectConversionStep(
   3178                                        S.Context.getQualifiedType(T1, T2Quals));
   3179 
   3180     if (T1Quals != T2Quals)
   3181       Sequence.AddQualificationConversionStep(cv1T1, ValueKind);
   3182     Sequence.AddReferenceBindingStep(cv1T1,
   3183          /*bindingTemporary=*/(InitCategory.isPRValue() && !T2->isArrayType()));
   3184     return;
   3185   }
   3186 
   3187   //       - has a class type (i.e., T2 is a class type), where T1 is not
   3188   //         reference-related to T2, and can be implicitly converted to an
   3189   //         xvalue, class prvalue, or function lvalue of type "cv3 T3",
   3190   //         where "cv1 T1" is reference-compatible with "cv3 T3",
   3191   if (T2->isRecordType()) {
   3192     if (RefRelationship == Sema::Ref_Incompatible) {
   3193       ConvOvlResult = TryRefInitWithConversionFunction(S, Entity,
   3194                                                        Kind, Initializer,
   3195                                                        /*AllowRValues=*/true,
   3196                                                        Sequence);
   3197       if (ConvOvlResult)
   3198         Sequence.SetOverloadFailure(
   3199                       InitializationSequence::FK_ReferenceInitOverloadFailed,
   3200                                     ConvOvlResult);
   3201 
   3202       return;
   3203     }
   3204 
   3205     Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
   3206     return;
   3207   }
   3208 
   3209   //      - Otherwise, a temporary of type "cv1 T1" is created and initialized
   3210   //        from the initializer expression using the rules for a non-reference
   3211   //        copy initialization (8.5). The reference is then bound to the
   3212   //        temporary. [...]
   3213 
   3214   // Determine whether we are allowed to call explicit constructors or
   3215   // explicit conversion operators.
   3216   bool AllowExplicit = (Kind.getKind() == InitializationKind::IK_Direct);
   3217 
   3218   InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1);
   3219 
   3220   ImplicitConversionSequence ICS
   3221     = S.TryImplicitConversion(Initializer, TempEntity.getType(),
   3222                               /*SuppressUserConversions*/ false,
   3223                               AllowExplicit,
   3224                               /*FIXME:InOverloadResolution=*/false,
   3225                               /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
   3226                               /*AllowObjCWritebackConversion=*/false);
   3227 
   3228   if (ICS.isBad()) {
   3229     // FIXME: Use the conversion function set stored in ICS to turn
   3230     // this into an overloading ambiguity diagnostic. However, we need
   3231     // to keep that set as an OverloadCandidateSet rather than as some
   3232     // other kind of set.
   3233     if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
   3234       Sequence.SetOverloadFailure(
   3235                         InitializationSequence::FK_ReferenceInitOverloadFailed,
   3236                                   ConvOvlResult);
   3237     else if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
   3238       Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
   3239     else
   3240       Sequence.SetFailed(InitializationSequence::FK_ReferenceInitFailed);
   3241     return;
   3242   } else {
   3243     Sequence.AddConversionSequenceStep(ICS, TempEntity.getType());
   3244   }
   3245 
   3246   //        [...] If T1 is reference-related to T2, cv1 must be the
   3247   //        same cv-qualification as, or greater cv-qualification
   3248   //        than, cv2; otherwise, the program is ill-formed.
   3249   unsigned T1CVRQuals = T1Quals.getCVRQualifiers();
   3250   unsigned T2CVRQuals = T2Quals.getCVRQualifiers();
   3251   if (RefRelationship == Sema::Ref_Related &&
   3252       (T1CVRQuals | T2CVRQuals) != T1CVRQuals) {
   3253     Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
   3254     return;
   3255   }
   3256 
   3257   //   [...] If T1 is reference-related to T2 and the reference is an rvalue
   3258   //   reference, the initializer expression shall not be an lvalue.
   3259   if (RefRelationship >= Sema::Ref_Related && !isLValueRef &&
   3260       InitCategory.isLValue()) {
   3261     Sequence.SetFailed(
   3262                     InitializationSequence::FK_RValueReferenceBindingToLValue);
   3263     return;
   3264   }
   3265 
   3266   Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/true);
   3267   return;
   3268 }
   3269 
   3270 /// \brief Attempt character array initialization from a string literal
   3271 /// (C++ [dcl.init.string], C99 6.7.8).
   3272 static void TryStringLiteralInitialization(Sema &S,
   3273                                            const InitializedEntity &Entity,
   3274                                            const InitializationKind &Kind,
   3275                                            Expr *Initializer,
   3276                                        InitializationSequence &Sequence) {
   3277   Sequence.AddStringInitStep(Entity.getType());
   3278 }
   3279 
   3280 /// \brief Attempt initialization by constructor (C++ [dcl.init]), which
   3281 /// enumerates the constructors of the initialized entity and performs overload
   3282 /// resolution to select the best.
   3283 static void TryConstructorInitialization(Sema &S,
   3284                                          const InitializedEntity &Entity,
   3285                                          const InitializationKind &Kind,
   3286                                          Expr **Args, unsigned NumArgs,
   3287                                          QualType DestType,
   3288                                          InitializationSequence &Sequence) {
   3289   // Check constructor arguments for self reference.
   3290   if (DeclaratorDecl *DD = Entity.getDecl())
   3291     // Parameters arguments are occassionially constructed with itself,
   3292     // for instance, in recursive functions.  Skip them.
   3293     if (!isa<ParmVarDecl>(DD))
   3294       for (unsigned i = 0; i < NumArgs; ++i)
   3295         S.CheckSelfReference(DD, Args[i]);
   3296 
   3297   // Build the candidate set directly in the initialization sequence
   3298   // structure, so that it will persist if we fail.
   3299   OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
   3300   CandidateSet.clear();
   3301 
   3302   // Determine whether we are allowed to call explicit constructors or
   3303   // explicit conversion operators.
   3304   bool AllowExplicit = (Kind.getKind() == InitializationKind::IK_Direct ||
   3305                         Kind.getKind() == InitializationKind::IK_Value ||
   3306                         Kind.getKind() == InitializationKind::IK_Default);
   3307 
   3308   // The type we're constructing needs to be complete.
   3309   if (S.RequireCompleteType(Kind.getLocation(), DestType, 0)) {
   3310     Sequence.SetFailed(InitializationSequence::FK_Incomplete);
   3311     return;
   3312   }
   3313 
   3314   // The type we're converting to is a class type. Enumerate its constructors
   3315   // to see if one is suitable.
   3316   const RecordType *DestRecordType = DestType->getAs<RecordType>();
   3317   assert(DestRecordType && "Constructor initialization requires record type");
   3318   CXXRecordDecl *DestRecordDecl
   3319     = cast<CXXRecordDecl>(DestRecordType->getDecl());
   3320 
   3321   DeclContext::lookup_iterator Con, ConEnd;
   3322   for (llvm::tie(Con, ConEnd) = S.LookupConstructors(DestRecordDecl);
   3323        Con != ConEnd; ++Con) {
   3324     NamedDecl *D = *Con;
   3325     DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
   3326     bool SuppressUserConversions = false;
   3327 
   3328     // Find the constructor (which may be a template).
   3329     CXXConstructorDecl *Constructor = 0;
   3330     FunctionTemplateDecl *ConstructorTmpl = dyn_cast<FunctionTemplateDecl>(D);
   3331     if (ConstructorTmpl)
   3332       Constructor = cast<CXXConstructorDecl>(
   3333                                            ConstructorTmpl->getTemplatedDecl());
   3334     else {
   3335       Constructor = cast<CXXConstructorDecl>(D);
   3336 
   3337       // If we're performing copy initialization using a copy constructor, we
   3338       // suppress user-defined conversions on the arguments.
   3339       // FIXME: Move constructors?
   3340       if (Kind.getKind() == InitializationKind::IK_Copy &&
   3341           Constructor->isCopyConstructor())
   3342         SuppressUserConversions = true;
   3343     }
   3344 
   3345     if (!Constructor->isInvalidDecl() &&
   3346         (AllowExplicit || !Constructor->isExplicit())) {
   3347       if (ConstructorTmpl)
   3348         S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
   3349                                        /*ExplicitArgs*/ 0,
   3350                                        Args, NumArgs, CandidateSet,
   3351                                        SuppressUserConversions);
   3352       else
   3353         S.AddOverloadCandidate(Constructor, FoundDecl,
   3354                                Args, NumArgs, CandidateSet,
   3355                                SuppressUserConversions);
   3356     }
   3357   }
   3358 
   3359   SourceLocation DeclLoc = Kind.getLocation();
   3360 
   3361   // Perform overload resolution. If it fails, return the failed result.
   3362   OverloadCandidateSet::iterator Best;
   3363   if (OverloadingResult Result
   3364         = CandidateSet.BestViableFunction(S, DeclLoc, Best)) {
   3365     Sequence.SetOverloadFailure(
   3366                           InitializationSequence::FK_ConstructorOverloadFailed,
   3367                                 Result);
   3368     return;
   3369   }
   3370 
   3371   // C++0x [dcl.init]p6:
   3372   //   If a program calls for the default initialization of an object
   3373   //   of a const-qualified type T, T shall be a class type with a
   3374   //   user-provided default constructor.
   3375   if (Kind.getKind() == InitializationKind::IK_Default &&
   3376       Entity.getType().isConstQualified() &&
   3377       cast<CXXConstructorDecl>(Best->Function)->isImplicit()) {
   3378     Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
   3379     return;
   3380   }
   3381 
   3382   // Add the constructor initialization step. Any cv-qualification conversion is
   3383   // subsumed by the initialization.
   3384   Sequence.AddConstructorInitializationStep(
   3385                                       cast<CXXConstructorDecl>(Best->Function),
   3386                                       Best->FoundDecl.getAccess(),
   3387                                       DestType);
   3388 }
   3389 
   3390 /// \brief Attempt value initialization (C++ [dcl.init]p7).
   3391 static void TryValueInitialization(Sema &S,
   3392                                    const InitializedEntity &Entity,
   3393                                    const InitializationKind &Kind,
   3394                                    InitializationSequence &Sequence) {
   3395   // C++ [dcl.init]p5:
   3396   //
   3397   //   To value-initialize an object of type T means:
   3398   QualType T = Entity.getType();
   3399 
   3400   //     -- if T is an array type, then each element is value-initialized;
   3401   while (const ArrayType *AT = S.Context.getAsArrayType(T))
   3402     T = AT->getElementType();
   3403 
   3404   if (const RecordType *RT = T->getAs<RecordType>()) {
   3405     if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
   3406       // -- if T is a class type (clause 9) with a user-declared
   3407       //    constructor (12.1), then the default constructor for T is
   3408       //    called (and the initialization is ill-formed if T has no
   3409       //    accessible default constructor);
   3410       //
   3411       // FIXME: we really want to refer to a single subobject of the array,
   3412       // but Entity doesn't have a way to capture that (yet).
   3413       if (ClassDecl->hasUserDeclaredConstructor())
   3414         return TryConstructorInitialization(S, Entity, Kind, 0, 0, T, Sequence);
   3415 
   3416       // -- if T is a (possibly cv-qualified) non-union class type
   3417       //    without a user-provided constructor, then the object is
   3418       //    zero-initialized and, if T's implicitly-declared default
   3419       //    constructor is non-trivial, that constructor is called.
   3420       if ((ClassDecl->getTagKind() == TTK_Class ||
   3421            ClassDecl->getTagKind() == TTK_Struct)) {
   3422         Sequence.AddZeroInitializationStep(Entity.getType());
   3423         return TryConstructorInitialization(S, Entity, Kind, 0, 0, T, Sequence);
   3424       }
   3425     }
   3426   }
   3427 
   3428   Sequence.AddZeroInitializationStep(Entity.getType());
   3429 }
   3430 
   3431 /// \brief Attempt default initialization (C++ [dcl.init]p6).
   3432 static void TryDefaultInitialization(Sema &S,
   3433                                      const InitializedEntity &Entity,
   3434                                      const InitializationKind &Kind,
   3435                                      InitializationSequence &Sequence) {
   3436   assert(Kind.getKind() == InitializationKind::IK_Default);
   3437 
   3438   // C++ [dcl.init]p6:
   3439   //   To default-initialize an object of type T means:
   3440   //     - if T is an array type, each element is default-initialized;
   3441   QualType DestType = S.Context.getBaseElementType(Entity.getType());
   3442 
   3443   //     - if T is a (possibly cv-qualified) class type (Clause 9), the default
   3444   //       constructor for T is called (and the initialization is ill-formed if
   3445   //       T has no accessible default constructor);
   3446   if (DestType->isRecordType() && S.getLangOptions().CPlusPlus) {
   3447     TryConstructorInitialization(S, Entity, Kind, 0, 0, DestType, Sequence);
   3448     return;
   3449   }
   3450 
   3451   //     - otherwise, no initialization is performed.
   3452 
   3453   //   If a program calls for the default initialization of an object of
   3454   //   a const-qualified type T, T shall be a class type with a user-provided
   3455   //   default constructor.
   3456   if (DestType.isConstQualified() && S.getLangOptions().CPlusPlus) {
   3457     Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
   3458     return;
   3459   }
   3460 
   3461   // If the destination type has a lifetime property, zero-initialize it.
   3462   if (DestType.getQualifiers().hasObjCLifetime()) {
   3463     Sequence.AddZeroInitializationStep(Entity.getType());
   3464     return;
   3465   }
   3466 }
   3467 
   3468 /// \brief Attempt a user-defined conversion between two types (C++ [dcl.init]),
   3469 /// which enumerates all conversion functions and performs overload resolution
   3470 /// to select the best.
   3471 static void TryUserDefinedConversion(Sema &S,
   3472                                      const InitializedEntity &Entity,
   3473                                      const InitializationKind &Kind,
   3474                                      Expr *Initializer,
   3475                                      InitializationSequence &Sequence) {
   3476   QualType DestType = Entity.getType();
   3477   assert(!DestType->isReferenceType() && "References are handled elsewhere");
   3478   QualType SourceType = Initializer->getType();
   3479   assert((DestType->isRecordType() || SourceType->isRecordType()) &&
   3480          "Must have a class type to perform a user-defined conversion");
   3481 
   3482   // Build the candidate set directly in the initialization sequence
   3483   // structure, so that it will persist if we fail.
   3484   OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
   3485   CandidateSet.clear();
   3486 
   3487   // Determine whether we are allowed to call explicit constructors or
   3488   // explicit conversion operators.
   3489   bool AllowExplicit = Kind.getKind() == InitializationKind::IK_Direct;
   3490 
   3491   if (const RecordType *DestRecordType = DestType->getAs<RecordType>()) {
   3492     // The type we're converting to is a class type. Enumerate its constructors
   3493     // to see if there is a suitable conversion.
   3494     CXXRecordDecl *DestRecordDecl
   3495       = cast<CXXRecordDecl>(DestRecordType->getDecl());
   3496 
   3497     // Try to complete the type we're converting to.
   3498     if (!S.RequireCompleteType(Kind.getLocation(), DestType, 0)) {
   3499       DeclContext::lookup_iterator Con, ConEnd;
   3500       for (llvm::tie(Con, ConEnd) = S.LookupConstructors(DestRecordDecl);
   3501            Con != ConEnd; ++Con) {
   3502         NamedDecl *D = *Con;
   3503         DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
   3504 
   3505         // Find the constructor (which may be a template).
   3506         CXXConstructorDecl *Constructor = 0;
   3507         FunctionTemplateDecl *ConstructorTmpl
   3508           = dyn_cast<FunctionTemplateDecl>(D);
   3509         if (ConstructorTmpl)
   3510           Constructor = cast<CXXConstructorDecl>(
   3511                                            ConstructorTmpl->getTemplatedDecl());
   3512         else
   3513           Constructor = cast<CXXConstructorDecl>(D);
   3514 
   3515         if (!Constructor->isInvalidDecl() &&
   3516             Constructor->isConvertingConstructor(AllowExplicit)) {
   3517           if (ConstructorTmpl)
   3518             S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
   3519                                            /*ExplicitArgs*/ 0,
   3520                                            &Initializer, 1, CandidateSet,
   3521                                            /*SuppressUserConversions=*/true);
   3522           else
   3523             S.AddOverloadCandidate(Constructor, FoundDecl,
   3524                                    &Initializer, 1, CandidateSet,
   3525                                    /*SuppressUserConversions=*/true);
   3526         }
   3527       }
   3528     }
   3529   }
   3530 
   3531   SourceLocation DeclLoc = Initializer->getLocStart();
   3532 
   3533   if (const RecordType *SourceRecordType = SourceType->getAs<RecordType>()) {
   3534     // The type we're converting from is a class type, enumerate its conversion
   3535     // functions.
   3536 
   3537     // We can only enumerate the conversion functions for a complete type; if
   3538     // the type isn't complete, simply skip this step.
   3539     if (!S.RequireCompleteType(DeclLoc, SourceType, 0)) {
   3540       CXXRecordDecl *SourceRecordDecl
   3541         = cast<CXXRecordDecl>(SourceRecordType->getDecl());
   3542 
   3543       const UnresolvedSetImpl *Conversions
   3544         = SourceRecordDecl->getVisibleConversionFunctions();
   3545       for (UnresolvedSetImpl::const_iterator I = Conversions->begin(),
   3546            E = Conversions->end();
   3547            I != E; ++I) {
   3548         NamedDecl *D = *I;
   3549         CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
   3550         if (isa<UsingShadowDecl>(D))
   3551           D = cast<UsingShadowDecl>(D)->getTargetDecl();
   3552 
   3553         FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
   3554         CXXConversionDecl *Conv;
   3555         if (ConvTemplate)
   3556           Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
   3557         else
   3558           Conv = cast<CXXConversionDecl>(D);
   3559 
   3560         if (AllowExplicit || !Conv->isExplicit()) {
   3561           if (ConvTemplate)
   3562             S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(),
   3563                                              ActingDC, Initializer, DestType,
   3564                                              CandidateSet);
   3565           else
   3566             S.AddConversionCandidate(Conv, I.getPair(), ActingDC,
   3567                                      Initializer, DestType, CandidateSet);
   3568         }
   3569       }
   3570     }
   3571   }
   3572 
   3573   // Perform overload resolution. If it fails, return the failed result.
   3574   OverloadCandidateSet::iterator Best;
   3575   if (OverloadingResult Result
   3576         = CandidateSet.BestViableFunction(S, DeclLoc, Best, true)) {
   3577     Sequence.SetOverloadFailure(
   3578                         InitializationSequence::FK_UserConversionOverloadFailed,
   3579                                 Result);
   3580     return;
   3581   }
   3582 
   3583   FunctionDecl *Function = Best->Function;
   3584   S.MarkDeclarationReferenced(DeclLoc, Function);
   3585 
   3586   if (isa<CXXConstructorDecl>(Function)) {
   3587     // Add the user-defined conversion step. Any cv-qualification conversion is
   3588     // subsumed by the initialization.
   3589     Sequence.AddUserConversionStep(Function, Best->FoundDecl, DestType);
   3590     return;
   3591   }
   3592 
   3593   // Add the user-defined conversion step that calls the conversion function.
   3594   QualType ConvType = Function->getCallResultType();
   3595   if (ConvType->getAs<RecordType>()) {
   3596     // If we're converting to a class type, there may be an copy if
   3597     // the resulting temporary object (possible to create an object of
   3598     // a base class type). That copy is not a separate conversion, so
   3599     // we just make a note of the actual destination type (possibly a
   3600     // base class of the type returned by the conversion function) and
   3601     // let the user-defined conversion step handle the conversion.
   3602     Sequence.AddUserConversionStep(Function, Best->FoundDecl, DestType);
   3603     return;
   3604   }
   3605 
   3606   Sequence.AddUserConversionStep(Function, Best->FoundDecl, ConvType);
   3607 
   3608   // If the conversion following the call to the conversion function
   3609   // is interesting, add it as a separate step.
   3610   if (Best->FinalConversion.First || Best->FinalConversion.Second ||
   3611       Best->FinalConversion.Third) {
   3612     ImplicitConversionSequence ICS;
   3613     ICS.setStandard();
   3614     ICS.Standard = Best->FinalConversion;
   3615     Sequence.AddConversionSequenceStep(ICS, DestType);
   3616   }
   3617 }
   3618 
   3619 /// The non-zero enum values here are indexes into diagnostic alternatives.
   3620 enum InvalidICRKind { IIK_okay, IIK_nonlocal, IIK_nonscalar };
   3621 
   3622 /// Determines whether this expression is an acceptable ICR source.
   3623 static InvalidICRKind isInvalidICRSource(ASTContext &C, Expr *e,
   3624                                          bool isAddressOf) {
   3625   // Skip parens.
   3626   e = e->IgnoreParens();
   3627 
   3628   // Skip address-of nodes.
   3629   if (UnaryOperator *op = dyn_cast<UnaryOperator>(e)) {
   3630     if (op->getOpcode() == UO_AddrOf)
   3631       return isInvalidICRSource(C, op->getSubExpr(), /*addressof*/ true);
   3632 
   3633   // Skip certain casts.
   3634   } else if (CastExpr *ce = dyn_cast<CastExpr>(e)) {
   3635     switch (ce->getCastKind()) {
   3636     case CK_Dependent:
   3637     case CK_BitCast:
   3638     case CK_LValueBitCast:
   3639     case CK_NoOp:
   3640       return isInvalidICRSource(C, ce->getSubExpr(), isAddressOf);
   3641 
   3642     case CK_ArrayToPointerDecay:
   3643       return IIK_nonscalar;
   3644 
   3645     case CK_NullToPointer:
   3646       return IIK_okay;
   3647 
   3648     default:
   3649       break;
   3650     }
   3651 
   3652   // If we have a declaration reference, it had better be a local variable.
   3653   } else if (isa<DeclRefExpr>(e) || isa<BlockDeclRefExpr>(e)) {
   3654     if (!isAddressOf) return IIK_nonlocal;
   3655 
   3656     VarDecl *var;
   3657     if (isa<DeclRefExpr>(e)) {
   3658       var = dyn_cast<VarDecl>(cast<DeclRefExpr>(e)->getDecl());
   3659       if (!var) return IIK_nonlocal;
   3660     } else {
   3661       var = cast<BlockDeclRefExpr>(e)->getDecl();
   3662     }
   3663 
   3664     return (var->hasLocalStorage() ? IIK_okay : IIK_nonlocal);
   3665 
   3666   // If we have a conditional operator, check both sides.
   3667   } else if (ConditionalOperator *cond = dyn_cast<ConditionalOperator>(e)) {
   3668     if (InvalidICRKind iik = isInvalidICRSource(C, cond->getLHS(), isAddressOf))
   3669       return iik;
   3670 
   3671     return isInvalidICRSource(C, cond->getRHS(), isAddressOf);
   3672 
   3673   // These are never scalar.
   3674   } else if (isa<ArraySubscriptExpr>(e)) {
   3675     return IIK_nonscalar;
   3676 
   3677   // Otherwise, it needs to be a null pointer constant.
   3678   } else {
   3679     return (e->isNullPointerConstant(C, Expr::NPC_ValueDependentIsNull)
   3680             ? IIK_okay : IIK_nonlocal);
   3681   }
   3682 
   3683   return IIK_nonlocal;
   3684 }
   3685 
   3686 /// Check whether the given expression is a valid operand for an
   3687 /// indirect copy/restore.
   3688 static void checkIndirectCopyRestoreSource(Sema &S, Expr *src) {
   3689   assert(src->isRValue());
   3690 
   3691   InvalidICRKind iik = isInvalidICRSource(S.Context, src, false);
   3692   if (iik == IIK_okay) return;
   3693 
   3694   S.Diag(src->getExprLoc(), diag::err_arc_nonlocal_writeback)
   3695     << ((unsigned) iik - 1)  // shift index into diagnostic explanations
   3696     << src->getSourceRange();
   3697 }
   3698 
   3699 /// \brief Determine whether we have compatible array types for the
   3700 /// purposes of GNU by-copy array initialization.
   3701 static bool hasCompatibleArrayTypes(ASTContext &Context,
   3702                                     const ArrayType *Dest,
   3703                                     const ArrayType *Source) {
   3704   // If the source and destination array types are equivalent, we're
   3705   // done.
   3706   if (Context.hasSameType(QualType(Dest, 0), QualType(Source, 0)))
   3707     return true;
   3708 
   3709   // Make sure that the element types are the same.
   3710   if (!Context.hasSameType(Dest->getElementType(), Source->getElementType()))
   3711     return false;
   3712 
   3713   // The only mismatch we allow is when the destination is an
   3714   // incomplete array type and the source is a constant array type.
   3715   return Source->isConstantArrayType() && Dest->isIncompleteArrayType();
   3716 }
   3717 
   3718 static bool tryObjCWritebackConversion(Sema &S,
   3719                                        InitializationSequence &Sequence,
   3720                                        const InitializedEntity &Entity,
   3721                                        Expr *Initializer) {
   3722   bool ArrayDecay = false;
   3723   QualType ArgType = Initializer->getType();
   3724   QualType ArgPointee;
   3725   if (const ArrayType *ArgArrayType = S.Context.getAsArrayType(ArgType)) {
   3726     ArrayDecay = true;
   3727     ArgPointee = ArgArrayType->getElementType();
   3728     ArgType = S.Context.getPointerType(ArgPointee);
   3729   }
   3730 
   3731   // Handle write-back conversion.
   3732   QualType ConvertedArgType;
   3733   if (!S.isObjCWritebackConversion(ArgType, Entity.getType(),
   3734                                    ConvertedArgType))
   3735     return false;
   3736 
   3737   // We should copy unless we're passing to an argument explicitly
   3738   // marked 'out'.
   3739   bool ShouldCopy = true;
   3740   if (ParmVarDecl *param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
   3741     ShouldCopy = (param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
   3742 
   3743   // Do we need an lvalue conversion?
   3744   if (ArrayDecay || Initializer->isGLValue()) {
   3745     ImplicitConversionSequence ICS;
   3746     ICS.setStandard();
   3747     ICS.Standard.setAsIdentityConversion();
   3748 
   3749     QualType ResultType;
   3750     if (ArrayDecay) {
   3751       ICS.Standard.First = ICK_Array_To_Pointer;
   3752       ResultType = S.Context.getPointerType(ArgPointee);
   3753     } else {
   3754       ICS.Standard.First = ICK_Lvalue_To_Rvalue;
   3755       ResultType = Initializer->getType().getNonLValueExprType(S.Context);
   3756     }
   3757 
   3758     Sequence.AddConversionSequenceStep(ICS, ResultType);
   3759   }
   3760 
   3761   Sequence.AddPassByIndirectCopyRestoreStep(Entity.getType(), ShouldCopy);
   3762   return true;
   3763 }
   3764 
   3765 InitializationSequence::InitializationSequence(Sema &S,
   3766                                                const InitializedEntity &Entity,
   3767                                                const InitializationKind &Kind,
   3768                                                Expr **Args,
   3769                                                unsigned NumArgs)
   3770     : FailedCandidateSet(Kind.getLocation()) {
   3771   ASTContext &Context = S.Context;
   3772 
   3773   // C++0x [dcl.init]p16:
   3774   //   The semantics of initializers are as follows. The destination type is
   3775   //   the type of the object or reference being initialized and the source
   3776   //   type is the type of the initializer expression. The source type is not
   3777   //   defined when the initializer is a braced-init-list or when it is a
   3778   //   parenthesized list of expressions.
   3779   QualType DestType = Entity.getType();
   3780 
   3781   if (DestType->isDependentType() ||
   3782       Expr::hasAnyTypeDependentArguments(Args, NumArgs)) {
   3783     SequenceKind = DependentSequence;
   3784     return;
   3785   }
   3786 
   3787   // Almost everything is a normal sequence.
   3788   setSequenceKind(NormalSequence);
   3789 
   3790   for (unsigned I = 0; I != NumArgs; ++I)
   3791     if (Args[I]->getObjectKind() == OK_ObjCProperty) {
   3792       ExprResult Result = S.ConvertPropertyForRValue(Args[I]);
   3793       if (Result.isInvalid()) {
   3794         SetFailed(FK_ConversionFromPropertyFailed);
   3795         return;
   3796       }
   3797       Args[I] = Result.take();
   3798     } else if (const BuiltinType *PlaceholderTy
   3799                  = Args[I]->getType()->getAsPlaceholderType()) {
   3800       // FIXME: should we be doing this here?
   3801       if (PlaceholderTy->getKind() != BuiltinType::Overload) {
   3802         ExprResult result = S.CheckPlaceholderExpr(Args[I]);
   3803         if (result.isInvalid()) {
   3804           SetFailed(FK_PlaceholderType);
   3805           return;
   3806         }
   3807         Args[I] = result.take();
   3808       }
   3809     }
   3810 
   3811 
   3812   QualType SourceType;
   3813   Expr *Initializer = 0;
   3814   if (NumArgs == 1) {
   3815     Initializer = Args[0];
   3816     if (!isa<InitListExpr>(Initializer))
   3817       SourceType = Initializer->getType();
   3818   }
   3819 
   3820   //     - If the initializer is a braced-init-list, the object is
   3821   //       list-initialized (8.5.4).
   3822   if (InitListExpr *InitList = dyn_cast_or_null<InitListExpr>(Initializer)) {
   3823     TryListInitialization(S, Entity, Kind, InitList, *this);
   3824     return;
   3825   }
   3826 
   3827   //     - If the destination type is a reference type, see 8.5.3.
   3828   if (DestType->isReferenceType()) {
   3829     // C++0x [dcl.init.ref]p1:
   3830     //   A variable declared to be a T& or T&&, that is, "reference to type T"
   3831     //   (8.3.2), shall be initialized by an object, or function, of type T or
   3832     //   by an object that can be converted into a T.
   3833     // (Therefore, multiple arguments are not permitted.)
   3834     if (NumArgs != 1)
   3835       SetFailed(FK_TooManyInitsForReference);
   3836     else
   3837       TryReferenceInitialization(S, Entity, Kind, Args[0], *this);
   3838     return;
   3839   }
   3840 
   3841   //     - If the initializer is (), the object is value-initialized.
   3842   if (Kind.getKind() == InitializationKind::IK_Value ||
   3843       (Kind.getKind() == InitializationKind::IK_Direct && NumArgs == 0)) {
   3844     TryValueInitialization(S, Entity, Kind, *this);
   3845     return;
   3846   }
   3847 
   3848   // Handle default initialization.
   3849   if (Kind.getKind() == InitializationKind::IK_Default) {
   3850     TryDefaultInitialization(S, Entity, Kind, *this);
   3851     return;
   3852   }
   3853 
   3854   //     - If the destination type is an array of characters, an array of
   3855   //       char16_t, an array of char32_t, or an array of wchar_t, and the
   3856   //       initializer is a string literal, see 8.5.2.
   3857   //     - Otherwise, if the destination type is an array, the program is
   3858   //       ill-formed.
   3859   if (const ArrayType *DestAT = Context.getAsArrayType(DestType)) {
   3860     if (Initializer && IsStringInit(Initializer, DestAT, Context)) {
   3861       TryStringLiteralInitialization(S, Entity, Kind, Initializer, *this);
   3862       return;
   3863     }
   3864 
   3865     // Note: as an GNU C extension, we allow initialization of an
   3866     // array from a compound literal that creates an array of the same
   3867     // type, so long as the initializer has no side effects.
   3868     if (!S.getLangOptions().CPlusPlus && Initializer &&
   3869         isa<CompoundLiteralExpr>(Initializer->IgnoreParens()) &&
   3870         Initializer->getType()->isArrayType()) {
   3871       const ArrayType *SourceAT
   3872         = Context.getAsArrayType(Initializer->getType());
   3873       if (!hasCompatibleArrayTypes(S.Context, DestAT, SourceAT))
   3874         SetFailed(FK_ArrayTypeMismatch);
   3875       else if (Initializer->HasSideEffects(S.Context))
   3876         SetFailed(FK_NonConstantArrayInit);
   3877       else {
   3878         AddArrayInitStep(DestType);
   3879       }
   3880     } else if (DestAT->getElementType()->isAnyCharacterType())
   3881       SetFailed(FK_ArrayNeedsInitListOrStringLiteral);
   3882     else
   3883       SetFailed(FK_ArrayNeedsInitList);
   3884 
   3885     return;
   3886   }
   3887 
   3888   // Determine whether we should consider writeback conversions for
   3889   // Objective-C ARC.
   3890   bool allowObjCWritebackConversion = S.getLangOptions().ObjCAutoRefCount &&
   3891     Entity.getKind() == InitializedEntity::EK_Parameter;
   3892 
   3893   // We're at the end of the line for C: it's either a write-back conversion
   3894   // or it's a C assignment. There's no need to check anything else.
   3895   if (!S.getLangOptions().CPlusPlus) {
   3896     // If allowed, check whether this is an Objective-C writeback conversion.
   3897     if (allowObjCWritebackConversion &&
   3898         tryObjCWritebackConversion(S, *this, Entity, Initializer)) {
   3899       return;
   3900     }
   3901 
   3902     // Handle initialization in C
   3903     AddCAssignmentStep(DestType);
   3904     MaybeProduceObjCObject(S, *this, Entity);
   3905     return;
   3906   }
   3907 
   3908   assert(S.getLangOptions().CPlusPlus);
   3909 
   3910   //     - If the destination type is a (possibly cv-qualified) class type:
   3911   if (DestType->isRecordType()) {
   3912     //     - If the initialization is direct-initialization, or if it is
   3913     //       copy-initialization where the cv-unqualified version of the
   3914     //       source type is the same class as, or a derived class of, the
   3915     //       class of the destination, constructors are considered. [...]
   3916     if (Kind.getKind() == InitializationKind::IK_Direct ||
   3917         (Kind.getKind() == InitializationKind::IK_Copy &&
   3918          (Context.hasSameUnqualifiedType(SourceType, DestType) ||
   3919           S.IsDerivedFrom(SourceType, DestType))))
   3920       TryConstructorInitialization(S, Entity, Kind, Args, NumArgs,
   3921                                    Entity.getType(), *this);
   3922     //     - Otherwise (i.e., for the remaining copy-initialization cases),
   3923     //       user-defined conversion sequences that can convert from the source
   3924     //       type to the destination type or (when a conversion function is
   3925     //       used) to a derived class thereof are enumerated as described in
   3926     //       13.3.1.4, and the best one is chosen through overload resolution
   3927     //       (13.3).
   3928     else
   3929       TryUserDefinedConversion(S, Entity, Kind, Initializer, *this);
   3930     return;
   3931   }
   3932 
   3933   if (NumArgs > 1) {
   3934     SetFailed(FK_TooManyInitsForScalar);
   3935     return;
   3936   }
   3937   assert(NumArgs == 1 && "Zero-argument case handled above");
   3938 
   3939   //    - Otherwise, if the source type is a (possibly cv-qualified) class
   3940   //      type, conversion functions are considered.
   3941   if (!SourceType.isNull() && SourceType->isRecordType()) {
   3942     TryUserDefinedConversion(S, Entity, Kind, Initializer, *this);
   3943     MaybeProduceObjCObject(S, *this, Entity);
   3944     return;
   3945   }
   3946 
   3947   //    - Otherwise, the initial value of the object being initialized is the
   3948   //      (possibly converted) value of the initializer expression. Standard
   3949   //      conversions (Clause 4) will be used, if necessary, to convert the
   3950   //      initializer expression to the cv-unqualified version of the
   3951   //      destination type; no user-defined conversions are considered.
   3952 
   3953   ImplicitConversionSequence ICS
   3954     = S.TryImplicitConversion(Initializer, Entity.getType(),
   3955                               /*SuppressUserConversions*/true,
   3956                               /*AllowExplicitConversions*/ false,
   3957                               /*InOverloadResolution*/ false,
   3958                               /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
   3959                               allowObjCWritebackConversion);
   3960 
   3961   if (ICS.isStandard() &&
   3962       ICS.Standard.Second == ICK_Writeback_Conversion) {
   3963     // Objective-C ARC writeback conversion.
   3964 
   3965     // We should copy unless we're passing to an argument explicitly
   3966     // marked 'out'.
   3967     bool ShouldCopy = true;
   3968     if (ParmVarDecl *Param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
   3969       ShouldCopy = (Param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
   3970 
   3971     // If there was an lvalue adjustment, add it as a separate conversion.
   3972     if (ICS.Standard.First == ICK_Array_To_Pointer ||
   3973         ICS.Standard.First == ICK_Lvalue_To_Rvalue) {
   3974       ImplicitConversionSequence LvalueICS;
   3975       LvalueICS.setStandard();
   3976       LvalueICS.Standard.setAsIdentityConversion();
   3977       LvalueICS.Standard.setAllToTypes(ICS.Standard.getToType(0));
   3978       LvalueICS.Standard.First = ICS.Standard.First;
   3979       AddConversionSequenceStep(LvalueICS, ICS.Standard.getToType(0));
   3980     }
   3981 
   3982     AddPassByIndirectCopyRestoreStep(Entity.getType(), ShouldCopy);
   3983   } else if (ICS.isBad()) {
   3984     DeclAccessPair dap;
   3985     if (Initializer->getType() == Context.OverloadTy &&
   3986           !S.ResolveAddressOfOverloadedFunction(Initializer
   3987                       , DestType, false, dap))
   3988       SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
   3989     else
   3990       SetFailed(InitializationSequence::FK_ConversionFailed);
   3991   } else {
   3992     AddConversionSequenceStep(ICS, Entity.getType());
   3993 
   3994     MaybeProduceObjCObject(S, *this, Entity);
   3995   }
   3996 }
   3997 
   3998 InitializationSequence::~InitializationSequence() {
   3999   for (SmallVectorImpl<Step>::iterator Step = Steps.begin(),
   4000                                           StepEnd = Steps.end();
   4001        Step != StepEnd; ++Step)
   4002     Step->Destroy();
   4003 }
   4004 
   4005 //===----------------------------------------------------------------------===//
   4006 // Perform initialization
   4007 //===----------------------------------------------------------------------===//
   4008 static Sema::AssignmentAction
   4009 getAssignmentAction(const InitializedEntity &Entity) {
   4010   switch(Entity.getKind()) {
   4011   case InitializedEntity::EK_Variable:
   4012   case InitializedEntity::EK_New:
   4013   case InitializedEntity::EK_Exception:
   4014   case InitializedEntity::EK_Base:
   4015   case InitializedEntity::EK_Delegating:
   4016     return Sema::AA_Initializing;
   4017 
   4018   case InitializedEntity::EK_Parameter:
   4019     if (Entity.getDecl() &&
   4020         isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext()))
   4021       return Sema::AA_Sending;
   4022 
   4023     return Sema::AA_Passing;
   4024 
   4025   case InitializedEntity::EK_Result:
   4026     return Sema::AA_Returning;
   4027 
   4028   case InitializedEntity::EK_Temporary:
   4029     // FIXME: Can we tell apart casting vs. converting?
   4030     return Sema::AA_Casting;
   4031 
   4032   case InitializedEntity::EK_Member:
   4033   case InitializedEntity::EK_ArrayElement:
   4034   case InitializedEntity::EK_VectorElement:
   4035   case InitializedEntity::EK_ComplexElement:
   4036   case InitializedEntity::EK_BlockElement:
   4037     return Sema::AA_Initializing;
   4038   }
   4039 
   4040   return Sema::AA_Converting;
   4041 }
   4042 
   4043 /// \brief Whether we should binding a created object as a temporary when
   4044 /// initializing the given entity.
   4045 static bool shouldBindAsTemporary(const InitializedEntity &Entity) {
   4046   switch (Entity.getKind()) {
   4047   case InitializedEntity::EK_ArrayElement:
   4048   case InitializedEntity::EK_Member:
   4049   case InitializedEntity::EK_Result:
   4050   case InitializedEntity::EK_New:
   4051   case InitializedEntity::EK_Variable:
   4052   case InitializedEntity::EK_Base:
   4053   case InitializedEntity::EK_Delegating:
   4054   case InitializedEntity::EK_VectorElement:
   4055   case InitializedEntity::EK_ComplexElement:
   4056   case InitializedEntity::EK_Exception:
   4057   case InitializedEntity::EK_BlockElement:
   4058     return false;
   4059 
   4060   case InitializedEntity::EK_Parameter:
   4061   case InitializedEntity::EK_Temporary:
   4062     return true;
   4063   }
   4064 
   4065   llvm_unreachable("missed an InitializedEntity kind?");
   4066 }
   4067 
   4068 /// \brief Whether the given entity, when initialized with an object
   4069 /// created for that initialization, requires destruction.
   4070 static bool shouldDestroyTemporary(const InitializedEntity &Entity) {
   4071   switch (Entity.getKind()) {
   4072     case InitializedEntity::EK_Member:
   4073     case InitializedEntity::EK_Result:
   4074     case InitializedEntity::EK_New:
   4075     case InitializedEntity::EK_Base:
   4076     case InitializedEntity::EK_Delegating:
   4077     case InitializedEntity::EK_VectorElement:
   4078     case InitializedEntity::EK_ComplexElement:
   4079     case InitializedEntity::EK_BlockElement:
   4080       return false;
   4081 
   4082     case InitializedEntity::EK_Variable:
   4083     case InitializedEntity::EK_Parameter:
   4084     case InitializedEntity::EK_Temporary:
   4085     case InitializedEntity::EK_ArrayElement:
   4086     case InitializedEntity::EK_Exception:
   4087       return true;
   4088   }
   4089 
   4090   llvm_unreachable("missed an InitializedEntity kind?");
   4091 }
   4092 
   4093 /// \brief Make a (potentially elidable) temporary copy of the object
   4094 /// provided by the given initializer by calling the appropriate copy
   4095 /// constructor.
   4096 ///
   4097 /// \param S The Sema object used for type-checking.
   4098 ///
   4099 /// \param T The type of the temporary object, which must either be
   4100 /// the type of the initializer expression or a superclass thereof.
   4101 ///
   4102 /// \param Enter The entity being initialized.
   4103 ///
   4104 /// \param CurInit The initializer expression.
   4105 ///
   4106 /// \param IsExtraneousCopy Whether this is an "extraneous" copy that
   4107 /// is permitted in C++03 (but not C++0x) when binding a reference to
   4108 /// an rvalue.
   4109 ///
   4110 /// \returns An expression that copies the initializer expression into
   4111 /// a temporary object, or an error expression if a copy could not be
   4112 /// created.
   4113 static ExprResult CopyObject(Sema &S,
   4114                              QualType T,
   4115                              const InitializedEntity &Entity,
   4116                              ExprResult CurInit,
   4117                              bool IsExtraneousCopy) {
   4118   // Determine which class type we're copying to.
   4119   Expr *CurInitExpr = (Expr *)CurInit.get();
   4120   CXXRecordDecl *Class = 0;
   4121   if (const RecordType *Record = T->getAs<RecordType>())
   4122     Class = cast<CXXRecordDecl>(Record->getDecl());
   4123   if (!Class)
   4124     return move(CurInit);
   4125 
   4126   // C++0x [class.copy]p32:
   4127   //   When certain criteria are met, an implementation is allowed to
   4128   //   omit the copy/move construction of a class object, even if the
   4129   //   copy/move constructor and/or destructor for the object have
   4130   //   side effects. [...]
   4131   //     - when a temporary class object that has not been bound to a
   4132   //       reference (12.2) would be copied/moved to a class object
   4133   //       with the same cv-unqualified type, the copy/move operation
   4134   //       can be omitted by constructing the temporary object
   4135   //       directly into the target of the omitted copy/move
   4136   //
   4137   // Note that the other three bullets are handled elsewhere. Copy
   4138   // elision for return statements and throw expressions are handled as part
   4139   // of constructor initialization, while copy elision for exception handlers
   4140   // is handled by the run-time.
   4141   bool Elidable = CurInitExpr->isTemporaryObject(S.Context, Class);
   4142   SourceLocation Loc;
   4143   switch (Entity.getKind()) {
   4144   case InitializedEntity::EK_Result:
   4145     Loc = Entity.getReturnLoc();
   4146     break;
   4147 
   4148   case InitializedEntity::EK_Exception:
   4149     Loc = Entity.getThrowLoc();
   4150     break;
   4151 
   4152   case InitializedEntity::EK_Variable:
   4153     Loc = Entity.getDecl()->getLocation();
   4154     break;
   4155 
   4156   case InitializedEntity::EK_ArrayElement:
   4157   case InitializedEntity::EK_Member:
   4158   case InitializedEntity::EK_Parameter:
   4159   case InitializedEntity::EK_Temporary:
   4160   case InitializedEntity::EK_New:
   4161   case InitializedEntity::EK_Base:
   4162   case InitializedEntity::EK_Delegating:
   4163   case InitializedEntity::EK_VectorElement:
   4164   case InitializedEntity::EK_ComplexElement:
   4165   case InitializedEntity::EK_BlockElement:
   4166     Loc = CurInitExpr->getLocStart();
   4167     break;
   4168   }
   4169 
   4170   // Make sure that the type we are copying is complete.
   4171   if (S.RequireCompleteType(Loc, T, S.PDiag(diag::err_temp_copy_incomplete)))
   4172     return move(CurInit);
   4173 
   4174   // Perform overload resolution using the class's copy/move constructors.
   4175   DeclContext::lookup_iterator Con, ConEnd;
   4176   OverloadCandidateSet CandidateSet(Loc);
   4177   for (llvm::tie(Con, ConEnd) = S.LookupConstructors(Class);
   4178        Con != ConEnd; ++Con) {
   4179     // Only consider copy/move constructors and constructor templates. Per
   4180     // C++0x [dcl.init]p16, second bullet to class types, this
   4181     // initialization is direct-initialization.
   4182     CXXConstructorDecl *Constructor = 0;
   4183 
   4184     if ((Constructor = dyn_cast<CXXConstructorDecl>(*Con))) {
   4185       // Handle copy/moveconstructors, only.
   4186       if (!Constructor || Constructor->isInvalidDecl() ||
   4187           !Constructor->isCopyOrMoveConstructor() ||
   4188           !Constructor->isConvertingConstructor(/*AllowExplicit=*/true))
   4189         continue;
   4190 
   4191       DeclAccessPair FoundDecl
   4192         = DeclAccessPair::make(Constructor, Constructor->getAccess());
   4193       S.AddOverloadCandidate(Constructor, FoundDecl,
   4194                              &CurInitExpr, 1, CandidateSet);
   4195       continue;
   4196     }
   4197 
   4198     // Handle constructor templates.
   4199     FunctionTemplateDecl *ConstructorTmpl = cast<FunctionTemplateDecl>(*Con);
   4200     if (ConstructorTmpl->isInvalidDecl())
   4201       continue;
   4202 
   4203     Constructor = cast<CXXConstructorDecl>(
   4204                                          ConstructorTmpl->getTemplatedDecl());
   4205     if (!Constructor->isConvertingConstructor(/*AllowExplicit=*/true))
   4206       continue;
   4207 
   4208     // FIXME: Do we need to limit this to copy-constructor-like
   4209     // candidates?
   4210     DeclAccessPair FoundDecl
   4211       = DeclAccessPair::make(ConstructorTmpl, ConstructorTmpl->getAccess());
   4212     S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl, 0,
   4213                                    &CurInitExpr, 1, CandidateSet, true);
   4214   }
   4215 
   4216   bool HadMultipleCandidates = (CandidateSet.size() > 1);
   4217 
   4218   OverloadCandidateSet::iterator Best;
   4219   switch (CandidateSet.BestViableFunction(S, Loc, Best)) {
   4220   case OR_Success:
   4221     break;
   4222 
   4223   case OR_No_Viable_Function:
   4224     S.Diag(Loc, IsExtraneousCopy && !S.isSFINAEContext()
   4225            ? diag::ext_rvalue_to_reference_temp_copy_no_viable
   4226            : diag::err_temp_copy_no_viable)
   4227       << (int)Entity.getKind() << CurInitExpr->getType()
   4228       << CurInitExpr->getSourceRange();
   4229     CandidateSet.NoteCandidates(S, OCD_AllCandidates, &CurInitExpr, 1);
   4230     if (!IsExtraneousCopy || S.isSFINAEContext())
   4231       return ExprError();
   4232     return move(CurInit);
   4233 
   4234   case OR_Ambiguous:
   4235     S.Diag(Loc, diag::err_temp_copy_ambiguous)
   4236       << (int)Entity.getKind() << CurInitExpr->getType()
   4237       << CurInitExpr->getSourceRange();
   4238     CandidateSet.NoteCandidates(S, OCD_ViableCandidates, &CurInitExpr, 1);
   4239     return ExprError();
   4240 
   4241   case OR_Deleted:
   4242     S.Diag(Loc, diag::err_temp_copy_deleted)
   4243       << (int)Entity.getKind() << CurInitExpr->getType()
   4244       << CurInitExpr->getSourceRange();
   4245     S.Diag(Best->Function->getLocation(), diag::note_unavailable_here)
   4246       << 1 << Best->Function->isDeleted();
   4247     return ExprError();
   4248   }
   4249 
   4250   CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
   4251   ASTOwningVector<Expr*> ConstructorArgs(S);
   4252   CurInit.release(); // Ownership transferred into MultiExprArg, below.
   4253 
   4254   S.CheckConstructorAccess(Loc, Constructor, Entity,
   4255                            Best->FoundDecl.getAccess(), IsExtraneousCopy);
   4256 
   4257   if (IsExtraneousCopy) {
   4258     // If this is a totally extraneous copy for C++03 reference
   4259     // binding purposes, just return the original initialization
   4260     // expression. We don't generate an (elided) copy operation here
   4261     // because doing so would require us to pass down a flag to avoid
   4262     // infinite recursion, where each step adds another extraneous,
   4263     // elidable copy.
   4264 
   4265     // Instantiate the default arguments of any extra parameters in
   4266     // the selected copy constructor, as if we were going to create a
   4267     // proper call to the copy constructor.
   4268     for (unsigned I = 1, N = Constructor->getNumParams(); I != N; ++I) {
   4269       ParmVarDecl *Parm = Constructor->getParamDecl(I);
   4270       if (S.RequireCompleteType(Loc, Parm->getType(),
   4271                                 S.PDiag(diag::err_call_incomplete_argument)))
   4272         break;
   4273 
   4274       // Build the default argument expression; we don't actually care
   4275       // if this succeeds or not, because this routine will complain
   4276       // if there was a problem.
   4277       S.BuildCXXDefaultArgExpr(Loc, Constructor, Parm);
   4278     }
   4279 
   4280     return S.Owned(CurInitExpr);
   4281   }
   4282 
   4283   S.MarkDeclarationReferenced(Loc, Constructor);
   4284 
   4285   // Determine the arguments required to actually perform the
   4286   // constructor call (we might have derived-to-base conversions, or
   4287   // the copy constructor may have default arguments).
   4288   if (S.CompleteConstructorCall(Constructor, MultiExprArg(&CurInitExpr, 1),
   4289                                 Loc, ConstructorArgs))
   4290     return ExprError();
   4291 
   4292   // Actually perform the constructor call.
   4293   CurInit = S.BuildCXXConstructExpr(Loc, T, Constructor, Elidable,
   4294                                     move_arg(ConstructorArgs),
   4295                                     HadMultipleCandidates,
   4296                                     /*ZeroInit*/ false,
   4297                                     CXXConstructExpr::CK_Complete,
   4298                                     SourceRange());
   4299 
   4300   // If we're supposed to bind temporaries, do so.
   4301   if (!CurInit.isInvalid() && shouldBindAsTemporary(Entity))
   4302     CurInit = S.MaybeBindToTemporary(CurInit.takeAs<Expr>());
   4303   return move(CurInit);
   4304 }
   4305 
   4306 void InitializationSequence::PrintInitLocationNote(Sema &S,
   4307                                               const InitializedEntity &Entity) {
   4308   if (Entity.getKind() == InitializedEntity::EK_Parameter && Entity.getDecl()) {
   4309     if (Entity.getDecl()->getLocation().isInvalid())
   4310       return;
   4311 
   4312     if (Entity.getDecl()->getDeclName())
   4313       S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_named_here)
   4314         << Entity.getDecl()->getDeclName();
   4315     else
   4316       S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_here);
   4317   }
   4318 }
   4319 
   4320 static bool isReferenceBinding(const InitializationSequence::Step &s) {
   4321   return s.Kind == InitializationSequence::SK_BindReference ||
   4322          s.Kind == InitializationSequence::SK_BindReferenceToTemporary;
   4323 }
   4324 
   4325 ExprResult
   4326 InitializationSequence::Perform(Sema &S,
   4327                                 const InitializedEntity &Entity,
   4328                                 const InitializationKind &Kind,
   4329                                 MultiExprArg Args,
   4330                                 QualType *ResultType) {
   4331   if (Failed()) {
   4332     unsigned NumArgs = Args.size();
   4333     Diagnose(S, Entity, Kind, (Expr **)Args.release(), NumArgs);
   4334     return ExprError();
   4335   }
   4336 
   4337   if (getKind() == DependentSequence) {
   4338     // If the declaration is a non-dependent, incomplete array type
   4339     // that has an initializer, then its type will be completed once
   4340     // the initializer is instantiated.
   4341     if (ResultType && !Entity.getType()->isDependentType() &&
   4342         Args.size() == 1) {
   4343       QualType DeclType = Entity.getType();
   4344       if (const IncompleteArrayType *ArrayT
   4345                            = S.Context.getAsIncompleteArrayType(DeclType)) {
   4346         // FIXME: We don't currently have the ability to accurately
   4347         // compute the length of an initializer list without
   4348         // performing full type-checking of the initializer list
   4349         // (since we have to determine where braces are implicitly
   4350         // introduced and such).  So, we fall back to making the array
   4351         // type a dependently-sized array type with no specified
   4352         // bound.
   4353         if (isa<InitListExpr>((Expr *)Args.get()[0])) {
   4354           SourceRange Brackets;
   4355 
   4356           // Scavange the location of the brackets from the entity, if we can.
   4357           if (DeclaratorDecl *DD = Entity.getDecl()) {
   4358             if (TypeSourceInfo *TInfo = DD->getTypeSourceInfo()) {
   4359               TypeLoc TL = TInfo->getTypeLoc();
   4360               if (IncompleteArrayTypeLoc *ArrayLoc
   4361                                       = dyn_cast<IncompleteArrayTypeLoc>(&TL))
   4362               Brackets = ArrayLoc->getBracketsRange();
   4363             }
   4364           }
   4365 
   4366           *ResultType
   4367             = S.Context.getDependentSizedArrayType(ArrayT->getElementType(),
   4368                                                    /*NumElts=*/0,
   4369                                                    ArrayT->getSizeModifier(),
   4370                                        ArrayT->getIndexTypeCVRQualifiers(),
   4371                                                    Brackets);
   4372         }
   4373 
   4374       }
   4375     }
   4376     assert(Kind.getKind() == InitializationKind::IK_Copy ||
   4377            Kind.isExplicitCast());
   4378     return ExprResult(Args.release()[0]);
   4379   }
   4380 
   4381   // No steps means no initialization.
   4382   if (Steps.empty())
   4383     return S.Owned((Expr *)0);
   4384 
   4385   QualType DestType = Entity.getType().getNonReferenceType();
   4386   // FIXME: Ugly hack around the fact that Entity.getType() is not
   4387   // the same as Entity.getDecl()->getType() in cases involving type merging,
   4388   //  and we want latter when it makes sense.
   4389   if (ResultType)
   4390     *ResultType = Entity.getDecl() ? Entity.getDecl()->getType() :
   4391                                      Entity.getType();
   4392 
   4393   ExprResult CurInit = S.Owned((Expr *)0);
   4394 
   4395   // For initialization steps that start with a single initializer,
   4396   // grab the only argument out the Args and place it into the "current"
   4397   // initializer.
   4398   switch (Steps.front().Kind) {
   4399   case SK_ResolveAddressOfOverloadedFunction:
   4400   case SK_CastDerivedToBaseRValue:
   4401   case SK_CastDerivedToBaseXValue:
   4402   case SK_CastDerivedToBaseLValue:
   4403   case SK_BindReference:
   4404   case SK_BindReferenceToTemporary:
   4405   case SK_ExtraneousCopyToTemporary:
   4406   case SK_UserConversion:
   4407   case SK_QualificationConversionLValue:
   4408   case SK_QualificationConversionXValue:
   4409   case SK_QualificationConversionRValue:
   4410   case SK_ConversionSequence:
   4411   case SK_ListConstructorCall:
   4412   case SK_ListInitialization:
   4413   case SK_CAssignment:
   4414   case SK_StringInit:
   4415   case SK_ObjCObjectConversion:
   4416   case SK_ArrayInit:
   4417   case SK_PassByIndirectCopyRestore:
   4418   case SK_PassByIndirectRestore:
   4419   case SK_ProduceObjCObject: {
   4420     assert(Args.size() == 1);
   4421     CurInit = Args.get()[0];
   4422     if (!CurInit.get()) return ExprError();
   4423 
   4424     // Read from a property when initializing something with it.
   4425     if (CurInit.get()->getObjectKind() == OK_ObjCProperty) {
   4426       CurInit = S.ConvertPropertyForRValue(CurInit.take());
   4427       if (CurInit.isInvalid())
   4428         return ExprError();
   4429     }
   4430     break;
   4431   }
   4432 
   4433   case SK_ConstructorInitialization:
   4434   case SK_ZeroInitialization:
   4435     break;
   4436   }
   4437 
   4438   // Walk through the computed steps for the initialization sequence,
   4439   // performing the specified conversions along the way.
   4440   bool ConstructorInitRequiresZeroInit = false;
   4441   for (step_iterator Step = step_begin(), StepEnd = step_end();
   4442        Step != StepEnd; ++Step) {
   4443     if (CurInit.isInvalid())
   4444       return ExprError();
   4445 
   4446     QualType SourceType = CurInit.get() ? CurInit.get()->getType() : QualType();
   4447 
   4448     switch (Step->Kind) {
   4449     case SK_ResolveAddressOfOverloadedFunction:
   4450       // Overload resolution determined which function invoke; update the
   4451       // initializer to reflect that choice.
   4452       S.CheckAddressOfMemberAccess(CurInit.get(), Step->Function.FoundDecl);
   4453       S.DiagnoseUseOfDecl(Step->Function.FoundDecl, Kind.getLocation());
   4454       CurInit = S.FixOverloadedFunctionReference(move(CurInit),
   4455                                                  Step->Function.FoundDecl,
   4456                                                  Step->Function.Function);
   4457       break;
   4458 
   4459     case SK_CastDerivedToBaseRValue:
   4460     case SK_CastDerivedToBaseXValue:
   4461     case SK_CastDerivedToBaseLValue: {
   4462       // We have a derived-to-base cast that produces either an rvalue or an
   4463       // lvalue. Perform that cast.
   4464 
   4465       CXXCastPath BasePath;
   4466 
   4467       // Casts to inaccessible base classes are allowed with C-style casts.
   4468       bool IgnoreBaseAccess = Kind.isCStyleOrFunctionalCast();
   4469       if (S.CheckDerivedToBaseConversion(SourceType, Step->Type,
   4470                                          CurInit.get()->getLocStart(),
   4471                                          CurInit.get()->getSourceRange(),
   4472                                          &BasePath, IgnoreBaseAccess))
   4473         return ExprError();
   4474 
   4475       if (S.BasePathInvolvesVirtualBase(BasePath)) {
   4476         QualType T = SourceType;
   4477         if (const PointerType *Pointer = T->getAs<PointerType>())
   4478           T = Pointer->getPointeeType();
   4479         if (const RecordType *RecordTy = T->getAs<RecordType>())
   4480           S.MarkVTableUsed(CurInit.get()->getLocStart(),
   4481                            cast<CXXRecordDecl>(RecordTy->getDecl()));
   4482       }
   4483 
   4484       ExprValueKind VK =
   4485           Step->Kind == SK_CastDerivedToBaseLValue ?
   4486               VK_LValue :
   4487               (Step->Kind == SK_CastDerivedToBaseXValue ?
   4488                    VK_XValue :
   4489                    VK_RValue);
   4490       CurInit = S.Owned(ImplicitCastExpr::Create(S.Context,
   4491                                                  Step->Type,
   4492                                                  CK_DerivedToBase,
   4493                                                  CurInit.get(),
   4494                                                  &BasePath, VK));
   4495       break;
   4496     }
   4497 
   4498     case SK_BindReference:
   4499       if (FieldDecl *BitField = CurInit.get()->getBitField()) {
   4500         // References cannot bind to bit fields (C++ [dcl.init.ref]p5).
   4501         S.Diag(Kind.getLocation(), diag::err_reference_bind_to_bitfield)
   4502           << Entity.getType().isVolatileQualified()
   4503           << BitField->getDeclName()
   4504           << CurInit.get()->getSourceRange();
   4505         S.Diag(BitField->getLocation(), diag::note_bitfield_decl);
   4506         return ExprError();
   4507       }
   4508 
   4509       if (CurInit.get()->refersToVectorElement()) {
   4510         // References cannot bind to vector elements.
   4511         S.Diag(Kind.getLocation(), diag::err_reference_bind_to_vector_element)
   4512           << Entity.getType().isVolatileQualified()
   4513           << CurInit.get()->getSourceRange();
   4514         PrintInitLocationNote(S, Entity);
   4515         return ExprError();
   4516       }
   4517 
   4518       // Reference binding does not have any corresponding ASTs.
   4519 
   4520       // Check exception specifications
   4521       if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
   4522         return ExprError();
   4523 
   4524       break;
   4525 
   4526     case SK_BindReferenceToTemporary:
   4527       // Check exception specifications
   4528       if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
   4529         return ExprError();
   4530 
   4531       // Materialize the temporary into memory.
   4532       CurInit = new (S.Context) MaterializeTemporaryExpr(
   4533                                          Entity.getType().getNonReferenceType(),
   4534                                                          CurInit.get(),
   4535                                      Entity.getType()->isLValueReferenceType());
   4536 
   4537       // If we're binding to an Objective-C object that has lifetime, we
   4538       // need cleanups.
   4539       if (S.getLangOptions().ObjCAutoRefCount &&
   4540           CurInit.get()->getType()->isObjCLifetimeType())
   4541         S.ExprNeedsCleanups = true;
   4542 
   4543       break;
   4544 
   4545     case SK_ExtraneousCopyToTemporary:
   4546       CurInit = CopyObject(S, Step->Type, Entity, move(CurInit),
   4547                            /*IsExtraneousCopy=*/true);
   4548       break;
   4549 
   4550     case SK_UserConversion: {
   4551       // We have a user-defined conversion that invokes either a constructor
   4552       // or a conversion function.
   4553       CastKind CastKind;
   4554       bool IsCopy = false;
   4555       FunctionDecl *Fn = Step->Function.Function;
   4556       DeclAccessPair FoundFn = Step->Function.FoundDecl;
   4557       bool HadMultipleCandidates = Step->Function.HadMultipleCandidates;
   4558       bool CreatedObject = false;
   4559       if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Fn)) {
   4560         // Build a call to the selected constructor.
   4561         ASTOwningVector<Expr*> ConstructorArgs(S);
   4562         SourceLocation Loc = CurInit.get()->getLocStart();
   4563         CurInit.release(); // Ownership transferred into MultiExprArg, below.
   4564 
   4565         // Determine the arguments required to actually perform the constructor
   4566         // call.
   4567         Expr *Arg = CurInit.get();
   4568         if (S.CompleteConstructorCall(Constructor,
   4569                                       MultiExprArg(&Arg, 1),
   4570                                       Loc, ConstructorArgs))
   4571           return ExprError();
   4572 
   4573         // Build the an expression that constructs a temporary.
   4574         CurInit = S.BuildCXXConstructExpr(Loc, Step->Type, Constructor,
   4575                                           move_arg(ConstructorArgs),
   4576                                           HadMultipleCandidates,
   4577                                           /*ZeroInit*/ false,
   4578                                           CXXConstructExpr::CK_Complete,
   4579                                           SourceRange());
   4580         if (CurInit.isInvalid())
   4581           return ExprError();
   4582 
   4583         S.CheckConstructorAccess(Kind.getLocation(), Constructor, Entity,
   4584                                  FoundFn.getAccess());
   4585         S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation());
   4586 
   4587         CastKind = CK_ConstructorConversion;
   4588         QualType Class = S.Context.getTypeDeclType(Constructor->getParent());
   4589         if (S.Context.hasSameUnqualifiedType(SourceType, Class) ||
   4590             S.IsDerivedFrom(SourceType, Class))
   4591           IsCopy = true;
   4592 
   4593         CreatedObject = true;
   4594       } else {
   4595         // Build a call to the conversion function.
   4596         CXXConversionDecl *Conversion = cast<CXXConversionDecl>(Fn);
   4597         S.CheckMemberOperatorAccess(Kind.getLocation(), CurInit.get(), 0,
   4598                                     FoundFn);
   4599         S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation());
   4600 
   4601         // FIXME: Should we move this initialization into a separate
   4602         // derived-to-base conversion? I believe the answer is "no", because
   4603         // we don't want to turn off access control here for c-style casts.
   4604         ExprResult CurInitExprRes =
   4605           S.PerformObjectArgumentInitialization(CurInit.take(), /*Qualifier=*/0,
   4606                                                 FoundFn, Conversion);
   4607         if(CurInitExprRes.isInvalid())
   4608           return ExprError();
   4609         CurInit = move(CurInitExprRes);
   4610 
   4611         // Build the actual call to the conversion function.
   4612         CurInit = S.BuildCXXMemberCallExpr(CurInit.get(), FoundFn, Conversion,
   4613                                            HadMultipleCandidates);
   4614         if (CurInit.isInvalid() || !CurInit.get())
   4615           return ExprError();
   4616 
   4617         CastKind = CK_UserDefinedConversion;
   4618 
   4619         CreatedObject = Conversion->getResultType()->isRecordType();
   4620       }
   4621 
   4622       bool RequiresCopy = !IsCopy && !isReferenceBinding(Steps.back());
   4623       if (RequiresCopy || shouldBindAsTemporary(Entity))
   4624         CurInit = S.MaybeBindToTemporary(CurInit.takeAs<Expr>());
   4625       else if (CreatedObject && shouldDestroyTemporary(Entity)) {
   4626         QualType T = CurInit.get()->getType();
   4627         if (const RecordType *Record = T->getAs<RecordType>()) {
   4628           CXXDestructorDecl *Destructor
   4629             = S.LookupDestructor(cast<CXXRecordDecl>(Record->getDecl()));
   4630           S.CheckDestructorAccess(CurInit.get()->getLocStart(), Destructor,
   4631                                   S.PDiag(diag::err_access_dtor_temp) << T);
   4632           S.MarkDeclarationReferenced(CurInit.get()->getLocStart(), Destructor);
   4633           S.DiagnoseUseOfDecl(Destructor, CurInit.get()->getLocStart());
   4634         }
   4635       }
   4636 
   4637       CurInit = S.Owned(ImplicitCastExpr::Create(S.Context,
   4638                                                  CurInit.get()->getType(),
   4639                                                  CastKind, CurInit.get(), 0,
   4640                                                 CurInit.get()->getValueKind()));
   4641 
   4642       if (RequiresCopy)
   4643         CurInit = CopyObject(S, Entity.getType().getNonReferenceType(), Entity,
   4644                              move(CurInit), /*IsExtraneousCopy=*/false);
   4645 
   4646       break;
   4647     }
   4648 
   4649     case SK_QualificationConversionLValue:
   4650     case SK_QualificationConversionXValue:
   4651     case SK_QualificationConversionRValue: {
   4652       // Perform a qualification conversion; these can never go wrong.
   4653       ExprValueKind VK =
   4654           Step->Kind == SK_QualificationConversionLValue ?
   4655               VK_LValue :
   4656               (Step->Kind == SK_QualificationConversionXValue ?
   4657                    VK_XValue :
   4658                    VK_RValue);
   4659       CurInit = S.ImpCastExprToType(CurInit.take(), Step->Type, CK_NoOp, VK);
   4660       break;
   4661     }
   4662 
   4663     case SK_ConversionSequence: {
   4664       Sema::CheckedConversionKind CCK
   4665         = Kind.isCStyleCast()? Sema::CCK_CStyleCast
   4666         : Kind.isFunctionalCast()? Sema::CCK_FunctionalCast
   4667         : Kind.isExplicitCast()? Sema::CCK_OtherCast
   4668         : Sema::CCK_ImplicitConversion;
   4669       ExprResult CurInitExprRes =
   4670         S.PerformImplicitConversion(CurInit.get(), Step->Type, *Step->ICS,
   4671                                     getAssignmentAction(Entity), CCK);
   4672       if (CurInitExprRes.isInvalid())
   4673         return ExprError();
   4674       CurInit = move(CurInitExprRes);
   4675       break;
   4676     }
   4677 
   4678     case SK_ListInitialization: {
   4679       InitListExpr *InitList = cast<InitListExpr>(CurInit.get());
   4680       QualType Ty = Step->Type;
   4681       InitListChecker PerformInitList(S, Entity, InitList,
   4682           ResultType ? *ResultType : Ty, /*VerifyOnly=*/false,
   4683           Kind.getKind() != InitializationKind::IK_Direct ||
   4684             !S.getLangOptions().CPlusPlus0x);
   4685       if (PerformInitList.HadError())
   4686         return ExprError();
   4687 
   4688       CurInit.release();
   4689       CurInit = S.Owned(PerformInitList.getFullyStructuredList());
   4690       break;
   4691     }
   4692 
   4693     case SK_ListConstructorCall:
   4694       assert(false && "List constructor calls not yet supported.");
   4695 
   4696     case SK_ConstructorInitialization: {
   4697       unsigned NumArgs = Args.size();
   4698       CXXConstructorDecl *Constructor
   4699         = cast<CXXConstructorDecl>(Step->Function.Function);
   4700       bool HadMultipleCandidates = Step->Function.HadMultipleCandidates;
   4701 
   4702       // Build a call to the selected constructor.
   4703       ASTOwningVector<Expr*> ConstructorArgs(S);
   4704       SourceLocation Loc = (Kind.isCopyInit() && Kind.getEqualLoc().isValid())
   4705                              ? Kind.getEqualLoc()
   4706                              : Kind.getLocation();
   4707 
   4708       if (Kind.getKind() == InitializationKind::IK_Default) {
   4709         // Force even a trivial, implicit default constructor to be
   4710         // semantically checked. We do this explicitly because we don't build
   4711         // the definition for completely trivial constructors.
   4712         CXXRecordDecl *ClassDecl = Constructor->getParent();
   4713         assert(ClassDecl && "No parent class for constructor.");
   4714         if (Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
   4715             ClassDecl->hasTrivialDefaultConstructor() &&
   4716             !Constructor->isUsed(false))
   4717           S.DefineImplicitDefaultConstructor(Loc, Constructor);
   4718       }
   4719 
   4720       // Determine the arguments required to actually perform the constructor
   4721       // call.
   4722       if (S.CompleteConstructorCall(Constructor, move(Args),
   4723                                     Loc, ConstructorArgs))
   4724         return ExprError();
   4725 
   4726 
   4727       if (Entity.getKind() == InitializedEntity::EK_Temporary &&
   4728           NumArgs != 1 && // FIXME: Hack to work around cast weirdness
   4729           (Kind.getKind() == InitializationKind::IK_Direct ||
   4730            Kind.getKind() == InitializationKind::IK_Value)) {
   4731         // An explicitly-constructed temporary, e.g., X(1, 2).
   4732         unsigned NumExprs = ConstructorArgs.size();
   4733         Expr **Exprs = (Expr **)ConstructorArgs.take();
   4734         S.MarkDeclarationReferenced(Loc, Constructor);
   4735         S.DiagnoseUseOfDecl(Constructor, Loc);
   4736 
   4737         TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
   4738         if (!TSInfo)
   4739           TSInfo = S.Context.getTrivialTypeSourceInfo(Entity.getType(), Loc);
   4740 
   4741         CurInit = S.Owned(new (S.Context) CXXTemporaryObjectExpr(S.Context,
   4742                                                                  Constructor,
   4743                                                                  TSInfo,
   4744                                                                  Exprs,
   4745                                                                  NumExprs,
   4746                                                          Kind.getParenRange(),
   4747                                                          HadMultipleCandidates,
   4748                                              ConstructorInitRequiresZeroInit));
   4749       } else {
   4750         CXXConstructExpr::ConstructionKind ConstructKind =
   4751           CXXConstructExpr::CK_Complete;
   4752 
   4753         if (Entity.getKind() == InitializedEntity::EK_Base) {
   4754           ConstructKind = Entity.getBaseSpecifier()->isVirtual() ?
   4755             CXXConstructExpr::CK_VirtualBase :
   4756             CXXConstructExpr::CK_NonVirtualBase;
   4757         } else if (Entity.getKind() == InitializedEntity::EK_Delegating) {
   4758           ConstructKind = CXXConstructExpr::CK_Delegating;
   4759         }
   4760 
   4761         // Only get the parenthesis range if it is a direct construction.
   4762         SourceRange parenRange =
   4763             Kind.getKind() == InitializationKind::IK_Direct ?
   4764             Kind.getParenRange() : SourceRange();
   4765 
   4766         // If the entity allows NRVO, mark the construction as elidable
   4767         // unconditionally.
   4768         if (Entity.allowsNRVO())
   4769           CurInit = S.BuildCXXConstructExpr(Loc, Entity.getType(),
   4770                                             Constructor, /*Elidable=*/true,
   4771                                             move_arg(ConstructorArgs),
   4772                                             HadMultipleCandidates,
   4773                                             ConstructorInitRequiresZeroInit,
   4774                                             ConstructKind,
   4775                                             parenRange);
   4776         else
   4777           CurInit = S.BuildCXXConstructExpr(Loc, Entity.getType(),
   4778                                             Constructor,
   4779                                             move_arg(ConstructorArgs),
   4780                                             HadMultipleCandidates,
   4781                                             ConstructorInitRequiresZeroInit,
   4782                                             ConstructKind,
   4783                                             parenRange);
   4784       }
   4785       if (CurInit.isInvalid())
   4786         return ExprError();
   4787 
   4788       // Only check access if all of that succeeded.
   4789       S.CheckConstructorAccess(Loc, Constructor, Entity,
   4790                                Step->Function.FoundDecl.getAccess());
   4791       S.DiagnoseUseOfDecl(Step->Function.FoundDecl, Loc);
   4792 
   4793       if (shouldBindAsTemporary(Entity))
   4794         CurInit = S.MaybeBindToTemporary(CurInit.takeAs<Expr>());
   4795 
   4796       break;
   4797     }
   4798 
   4799     case SK_ZeroInitialization: {
   4800       step_iterator NextStep = Step;
   4801       ++NextStep;
   4802       if (NextStep != StepEnd &&
   4803           NextStep->Kind == SK_ConstructorInitialization) {
   4804         // The need for zero-initialization is recorded directly into
   4805         // the call to the object's constructor within the next step.
   4806         ConstructorInitRequiresZeroInit = true;
   4807       } else if (Kind.getKind() == InitializationKind::IK_Value &&
   4808                  S.getLangOptions().CPlusPlus &&
   4809                  !Kind.isImplicitValueInit()) {
   4810         TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
   4811         if (!TSInfo)
   4812           TSInfo = S.Context.getTrivialTypeSourceInfo(Step->Type,
   4813                                                     Kind.getRange().getBegin());
   4814 
   4815         CurInit = S.Owned(new (S.Context) CXXScalarValueInitExpr(
   4816                               TSInfo->getType().getNonLValueExprType(S.Context),
   4817                                                                  TSInfo,
   4818                                                     Kind.getRange().getEnd()));
   4819       } else {
   4820         CurInit = S.Owned(new (S.Context) ImplicitValueInitExpr(Step->Type));
   4821       }
   4822       break;
   4823     }
   4824 
   4825     case SK_CAssignment: {
   4826       QualType SourceType = CurInit.get()->getType();
   4827       ExprResult Result = move(CurInit);
   4828       Sema::AssignConvertType ConvTy =
   4829         S.CheckSingleAssignmentConstraints(Step->Type, Result);
   4830       if (Result.isInvalid())
   4831         return ExprError();
   4832       CurInit = move(Result);
   4833 
   4834       // If this is a call, allow conversion to a transparent union.
   4835       ExprResult CurInitExprRes = move(CurInit);
   4836       if (ConvTy != Sema::Compatible &&
   4837           Entity.getKind() == InitializedEntity::EK_Parameter &&
   4838           S.CheckTransparentUnionArgumentConstraints(Step->Type, CurInitExprRes)
   4839             == Sema::Compatible)
   4840         ConvTy = Sema::Compatible;
   4841       if (CurInitExprRes.isInvalid())
   4842         return ExprError();
   4843       CurInit = move(CurInitExprRes);
   4844 
   4845       bool Complained;
   4846       if (S.DiagnoseAssignmentResult(ConvTy, Kind.getLocation(),
   4847                                      Step->Type, SourceType,
   4848                                      CurInit.get(),
   4849                                      getAssignmentAction(Entity),
   4850                                      &Complained)) {
   4851         PrintInitLocationNote(S, Entity);
   4852         return ExprError();
   4853       } else if (Complained)
   4854         PrintInitLocationNote(S, Entity);
   4855       break;
   4856     }
   4857 
   4858     case SK_StringInit: {
   4859       QualType Ty = Step->Type;
   4860       CheckStringInit(CurInit.get(), ResultType ? *ResultType : Ty,
   4861                       S.Context.getAsArrayType(Ty), S);
   4862       break;
   4863     }
   4864 
   4865     case SK_ObjCObjectConversion:
   4866       CurInit = S.ImpCastExprToType(CurInit.take(), Step->Type,
   4867                           CK_ObjCObjectLValueCast,
   4868                           CurInit.get()->getValueKind());
   4869       break;
   4870 
   4871     case SK_ArrayInit:
   4872       // Okay: we checked everything before creating this step. Note that
   4873       // this is a GNU extension.
   4874       S.Diag(Kind.getLocation(), diag::ext_array_init_copy)
   4875         << Step->Type << CurInit.get()->getType()
   4876         << CurInit.get()->getSourceRange();
   4877 
   4878       // If the destination type is an incomplete array type, update the
   4879       // type accordingly.
   4880       if (ResultType) {
   4881         if (const IncompleteArrayType *IncompleteDest
   4882                            = S.Context.getAsIncompleteArrayType(Step->Type)) {
   4883           if (const ConstantArrayType *ConstantSource
   4884                  = S.Context.getAsConstantArrayType(CurInit.get()->getType())) {
   4885             *ResultType = S.Context.getConstantArrayType(
   4886                                              IncompleteDest->getElementType(),
   4887                                              ConstantSource->getSize(),
   4888                                              ArrayType::Normal, 0);
   4889           }
   4890         }
   4891       }
   4892       break;
   4893 
   4894     case SK_PassByIndirectCopyRestore:
   4895     case SK_PassByIndirectRestore:
   4896       checkIndirectCopyRestoreSource(S, CurInit.get());
   4897       CurInit = S.Owned(new (S.Context)
   4898                         ObjCIndirectCopyRestoreExpr(CurInit.take(), Step->Type,
   4899                                 Step->Kind == SK_PassByIndirectCopyRestore));
   4900       break;
   4901 
   4902     case SK_ProduceObjCObject:
   4903       CurInit = S.Owned(ImplicitCastExpr::Create(S.Context, Step->Type,
   4904                                                  CK_ARCProduceObject,
   4905                                                  CurInit.take(), 0, VK_RValue));
   4906       break;
   4907     }
   4908   }
   4909 
   4910   // Diagnose non-fatal problems with the completed initialization.
   4911   if (Entity.getKind() == InitializedEntity::EK_Member &&
   4912       cast<FieldDecl>(Entity.getDecl())->isBitField())
   4913     S.CheckBitFieldInitialization(Kind.getLocation(),
   4914                                   cast<FieldDecl>(Entity.getDecl()),
   4915                                   CurInit.get());
   4916 
   4917   return move(CurInit);
   4918 }
   4919 
   4920 //===----------------------------------------------------------------------===//
   4921 // Diagnose initialization failures
   4922 //===----------------------------------------------------------------------===//
   4923 bool InitializationSequence::Diagnose(Sema &S,
   4924                                       const InitializedEntity &Entity,
   4925                                       const InitializationKind &Kind,
   4926                                       Expr **Args, unsigned NumArgs) {
   4927   if (!Failed())
   4928     return false;
   4929 
   4930   QualType DestType = Entity.getType();
   4931   switch (Failure) {
   4932   case FK_TooManyInitsForReference:
   4933     // FIXME: Customize for the initialized entity?
   4934     if (NumArgs == 0)
   4935       S.Diag(Kind.getLocation(), diag::err_reference_without_init)
   4936         << DestType.getNonReferenceType();
   4937     else  // FIXME: diagnostic below could be better!
   4938       S.Diag(Kind.getLocation(), diag::err_reference_has_multiple_inits)
   4939         << SourceRange(Args[0]->getLocStart(), Args[NumArgs - 1]->getLocEnd());
   4940     break;
   4941 
   4942   case FK_ArrayNeedsInitList:
   4943   case FK_ArrayNeedsInitListOrStringLiteral:
   4944     S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list)
   4945       << (Failure == FK_ArrayNeedsInitListOrStringLiteral);
   4946     break;
   4947 
   4948   case FK_ArrayTypeMismatch:
   4949   case FK_NonConstantArrayInit:
   4950     S.Diag(Kind.getLocation(),
   4951            (Failure == FK_ArrayTypeMismatch
   4952               ? diag::err_array_init_different_type
   4953               : diag::err_array_init_non_constant_array))
   4954       << DestType.getNonReferenceType()
   4955       << Args[0]->getType()
   4956       << Args[0]->getSourceRange();
   4957     break;
   4958 
   4959   case FK_AddressOfOverloadFailed: {
   4960     DeclAccessPair Found;
   4961     S.ResolveAddressOfOverloadedFunction(Args[0],
   4962                                          DestType.getNonReferenceType(),
   4963                                          true,
   4964                                          Found);
   4965     break;
   4966   }
   4967 
   4968   case FK_ReferenceInitOverloadFailed:
   4969   case FK_UserConversionOverloadFailed:
   4970     switch (FailedOverloadResult) {
   4971     case OR_Ambiguous:
   4972       if (Failure == FK_UserConversionOverloadFailed)
   4973         S.Diag(Kind.getLocation(), diag::err_typecheck_ambiguous_condition)
   4974           << Args[0]->getType() << DestType
   4975           << Args[0]->getSourceRange();
   4976       else
   4977         S.Diag(Kind.getLocation(), diag::err_ref_init_ambiguous)
   4978           << DestType << Args[0]->getType()
   4979           << Args[0]->getSourceRange();
   4980 
   4981       FailedCandidateSet.NoteCandidates(S, OCD_ViableCandidates, Args, NumArgs);
   4982       break;
   4983 
   4984     case OR_No_Viable_Function:
   4985       S.Diag(Kind.getLocation(), diag::err_typecheck_nonviable_condition)
   4986         << Args[0]->getType() << DestType.getNonReferenceType()
   4987         << Args[0]->getSourceRange();
   4988       FailedCandidateSet.NoteCandidates(S, OCD_AllCandidates, Args, NumArgs);
   4989       break;
   4990 
   4991     case OR_Deleted: {
   4992       S.Diag(Kind.getLocation(), diag::err_typecheck_deleted_function)
   4993         << Args[0]->getType() << DestType.getNonReferenceType()
   4994         << Args[0]->getSourceRange();
   4995       OverloadCandidateSet::iterator Best;
   4996       OverloadingResult Ovl
   4997         = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best,
   4998                                                 true);
   4999       if (Ovl == OR_Deleted) {
   5000         S.Diag(Best->Function->getLocation(), diag::note_unavailable_here)
   5001           << 1 << Best->Function->isDeleted();
   5002       } else {
   5003         llvm_unreachable("Inconsistent overload resolution?");
   5004       }
   5005       break;
   5006     }
   5007 
   5008     case OR_Success:
   5009       llvm_unreachable("Conversion did not fail!");
   5010       break;
   5011     }
   5012     break;
   5013 
   5014   case FK_NonConstLValueReferenceBindingToTemporary:
   5015   case FK_NonConstLValueReferenceBindingToUnrelated:
   5016     S.Diag(Kind.getLocation(),
   5017            Failure == FK_NonConstLValueReferenceBindingToTemporary
   5018              ? diag::err_lvalue_reference_bind_to_temporary
   5019              : diag::err_lvalue_reference_bind_to_unrelated)
   5020       << DestType.getNonReferenceType().isVolatileQualified()
   5021       << DestType.getNonReferenceType()
   5022       << Args[0]->getType()
   5023       << Args[0]->getSourceRange();
   5024     break;
   5025 
   5026   case FK_RValueReferenceBindingToLValue:
   5027     S.Diag(Kind.getLocation(), diag::err_lvalue_to_rvalue_ref)
   5028       << DestType.getNonReferenceType() << Args[0]->getType()
   5029       << Args[0]->getSourceRange();
   5030     break;
   5031 
   5032   case FK_ReferenceInitDropsQualifiers:
   5033     S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals)
   5034       << DestType.getNonReferenceType()
   5035       << Args[0]->getType()
   5036       << Args[0]->getSourceRange();
   5037     break;
   5038 
   5039   case FK_ReferenceInitFailed:
   5040     S.Diag(Kind.getLocation(), diag::err_reference_bind_failed)
   5041       << DestType.getNonReferenceType()
   5042       << Args[0]->isLValue()
   5043       << Args[0]->getType()
   5044       << Args[0]->getSourceRange();
   5045     if (DestType.getNonReferenceType()->isObjCObjectPointerType() &&
   5046         Args[0]->getType()->isObjCObjectPointerType())
   5047       S.EmitRelatedResultTypeNote(Args[0]);
   5048     break;
   5049 
   5050   case FK_ConversionFailed: {
   5051     QualType FromType = Args[0]->getType();
   5052     S.Diag(Kind.getLocation(), diag::err_init_conversion_failed)
   5053       << (int)Entity.getKind()
   5054       << DestType
   5055       << Args[0]->isLValue()
   5056       << FromType
   5057       << Args[0]->getSourceRange();
   5058     if (DestType.getNonReferenceType()->isObjCObjectPointerType() &&
   5059         Args[0]->getType()->isObjCObjectPointerType())
   5060       S.EmitRelatedResultTypeNote(Args[0]);
   5061     break;
   5062   }
   5063 
   5064   case FK_ConversionFromPropertyFailed:
   5065     // No-op. This error has already been reported.
   5066     break;
   5067 
   5068   case FK_TooManyInitsForScalar: {
   5069     SourceRange R;
   5070 
   5071     if (InitListExpr *InitList = dyn_cast<InitListExpr>(Args[0]))
   5072       R = SourceRange(InitList->getInit(0)->getLocEnd(),
   5073                       InitList->getLocEnd());
   5074     else
   5075       R = SourceRange(Args[0]->getLocEnd(), Args[NumArgs - 1]->getLocEnd());
   5076 
   5077     R.setBegin(S.PP.getLocForEndOfToken(R.getBegin()));
   5078     if (Kind.isCStyleOrFunctionalCast())
   5079       S.Diag(Kind.getLocation(), diag::err_builtin_func_cast_more_than_one_arg)
   5080         << R;
   5081     else
   5082       S.Diag(Kind.getLocation(), diag::err_excess_initializers)
   5083         << /*scalar=*/2 << R;
   5084     break;
   5085   }
   5086 
   5087   case FK_ReferenceBindingToInitList:
   5088     S.Diag(Kind.getLocation(), diag::err_reference_bind_init_list)
   5089       << DestType.getNonReferenceType() << Args[0]->getSourceRange();
   5090     break;
   5091 
   5092   case FK_InitListBadDestinationType:
   5093     S.Diag(Kind.getLocation(), diag::err_init_list_bad_dest_type)
   5094       << (DestType->isRecordType()) << DestType << Args[0]->getSourceRange();
   5095     break;
   5096 
   5097   case FK_ConstructorOverloadFailed: {
   5098     SourceRange ArgsRange;
   5099     if (NumArgs)
   5100       ArgsRange = SourceRange(Args[0]->getLocStart(),
   5101                               Args[NumArgs - 1]->getLocEnd());
   5102 
   5103     // FIXME: Using "DestType" for the entity we're printing is probably
   5104     // bad.
   5105     switch (FailedOverloadResult) {
   5106       case OR_Ambiguous:
   5107         S.Diag(Kind.getLocation(), diag::err_ovl_ambiguous_init)
   5108           << DestType << ArgsRange;
   5109         FailedCandidateSet.NoteCandidates(S, OCD_ViableCandidates,
   5110                                           Args, NumArgs);
   5111         break;
   5112 
   5113       case OR_No_Viable_Function:
   5114         if (Kind.getKind() == InitializationKind::IK_Default &&
   5115             (Entity.getKind() == InitializedEntity::EK_Base ||
   5116              Entity.getKind() == InitializedEntity::EK_Member) &&
   5117             isa<CXXConstructorDecl>(S.CurContext)) {
   5118           // This is implicit default initialization of a member or
   5119           // base within a constructor. If no viable function was
   5120           // found, notify the user that she needs to explicitly
   5121           // initialize this base/member.
   5122           CXXConstructorDecl *Constructor
   5123             = cast<CXXConstructorDecl>(S.CurContext);
   5124           if (Entity.getKind() == InitializedEntity::EK_Base) {
   5125             S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
   5126               << Constructor->isImplicit()
   5127               << S.Context.getTypeDeclType(Constructor->getParent())
   5128               << /*base=*/0
   5129               << Entity.getType();
   5130 
   5131             RecordDecl *BaseDecl
   5132               = Entity.getBaseSpecifier()->getType()->getAs<RecordType>()
   5133                                                                   ->getDecl();
   5134             S.Diag(BaseDecl->getLocation(), diag::note_previous_decl)
   5135               << S.Context.getTagDeclType(BaseDecl);
   5136           } else {
   5137             S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
   5138               << Constructor->isImplicit()
   5139               << S.Context.getTypeDeclType(Constructor->getParent())
   5140               << /*member=*/1
   5141               << Entity.getName();
   5142             S.Diag(Entity.getDecl()->getLocation(), diag::note_field_decl);
   5143 
   5144             if (const RecordType *Record
   5145                                  = Entity.getType()->getAs<RecordType>())
   5146               S.Diag(Record->getDecl()->getLocation(),
   5147                      diag::note_previous_decl)
   5148                 << S.Context.getTagDeclType(Record->getDecl());
   5149           }
   5150           break;
   5151         }
   5152 
   5153         S.Diag(Kind.getLocation(), diag::err_ovl_no_viable_function_in_init)
   5154           << DestType << ArgsRange;
   5155         FailedCandidateSet.NoteCandidates(S, OCD_AllCandidates, Args, NumArgs);
   5156         break;
   5157 
   5158       case OR_Deleted: {
   5159         S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
   5160           << true << DestType << ArgsRange;
   5161         OverloadCandidateSet::iterator Best;
   5162         OverloadingResult Ovl
   5163           = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
   5164         if (Ovl == OR_Deleted) {
   5165           S.Diag(Best->Function->getLocation(), diag::note_unavailable_here)
   5166             << 1 << Best->Function->isDeleted();
   5167         } else {
   5168           llvm_unreachable("Inconsistent overload resolution?");
   5169         }
   5170         break;
   5171       }
   5172 
   5173       case OR_Success:
   5174         llvm_unreachable("Conversion did not fail!");
   5175         break;
   5176     }
   5177     break;
   5178   }
   5179 
   5180   case FK_DefaultInitOfConst:
   5181     if (Entity.getKind() == InitializedEntity::EK_Member &&
   5182         isa<CXXConstructorDecl>(S.CurContext)) {
   5183       // This is implicit default-initialization of a const member in
   5184       // a constructor. Complain that it needs to be explicitly
   5185       // initialized.
   5186       CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(S.CurContext);
   5187       S.Diag(Kind.getLocation(), diag::err_uninitialized_member_in_ctor)
   5188         << Constructor->isImplicit()
   5189         << S.Context.getTypeDeclType(Constructor->getParent())
   5190         << /*const=*/1
   5191         << Entity.getName();
   5192       S.Diag(Entity.getDecl()->getLocation(), diag::note_previous_decl)
   5193         << Entity.getName();
   5194     } else {
   5195       S.Diag(Kind.getLocation(), diag::err_default_init_const)
   5196         << DestType << (bool)DestType->getAs<RecordType>();
   5197     }
   5198     break;
   5199 
   5200   case FK_Incomplete:
   5201     S.RequireCompleteType(Kind.getLocation(), DestType,
   5202                           diag::err_init_incomplete_type);
   5203     break;
   5204 
   5205   case FK_ListInitializationFailed: {
   5206     // Run the init list checker again to emit diagnostics.
   5207     InitListExpr* InitList = cast<InitListExpr>(Args[0]);
   5208     QualType DestType = Entity.getType();
   5209     InitListChecker DiagnoseInitList(S, Entity, InitList,
   5210             DestType, /*VerifyOnly=*/false,
   5211             Kind.getKind() != InitializationKind::IK_Direct ||
   5212               !S.getLangOptions().CPlusPlus0x);
   5213     assert(DiagnoseInitList.HadError() &&
   5214            "Inconsistent init list check result.");
   5215     break;
   5216   }
   5217 
   5218   case FK_PlaceholderType: {
   5219     // FIXME: Already diagnosed!
   5220     break;
   5221   }
   5222   }
   5223 
   5224   PrintInitLocationNote(S, Entity);
   5225   return true;
   5226 }
   5227 
   5228 void InitializationSequence::dump(raw_ostream &OS) const {
   5229   switch (SequenceKind) {
   5230   case FailedSequence: {
   5231     OS << "Failed sequence: ";
   5232     switch (Failure) {
   5233     case FK_TooManyInitsForReference:
   5234       OS << "too many initializers for reference";
   5235       break;
   5236 
   5237     case FK_ArrayNeedsInitList:
   5238       OS << "array requires initializer list";
   5239       break;
   5240 
   5241     case FK_ArrayNeedsInitListOrStringLiteral:
   5242       OS << "array requires initializer list or string literal";
   5243       break;
   5244 
   5245     case FK_ArrayTypeMismatch:
   5246       OS << "array type mismatch";
   5247       break;
   5248 
   5249     case FK_NonConstantArrayInit:
   5250       OS << "non-constant array initializer";
   5251       break;
   5252 
   5253     case FK_AddressOfOverloadFailed:
   5254       OS << "address of overloaded function failed";
   5255       break;
   5256 
   5257     case FK_ReferenceInitOverloadFailed:
   5258       OS << "overload resolution for reference initialization failed";
   5259       break;
   5260 
   5261     case FK_NonConstLValueReferenceBindingToTemporary:
   5262       OS << "non-const lvalue reference bound to temporary";
   5263       break;
   5264 
   5265     case FK_NonConstLValueReferenceBindingToUnrelated:
   5266       OS << "non-const lvalue reference bound to unrelated type";
   5267       break;
   5268 
   5269     case FK_RValueReferenceBindingToLValue:
   5270       OS << "rvalue reference bound to an lvalue";
   5271       break;
   5272 
   5273     case FK_ReferenceInitDropsQualifiers:
   5274       OS << "reference initialization drops qualifiers";
   5275       break;
   5276 
   5277     case FK_ReferenceInitFailed:
   5278       OS << "reference initialization failed";
   5279       break;
   5280 
   5281     case FK_ConversionFailed:
   5282       OS << "conversion failed";
   5283       break;
   5284 
   5285     case FK_ConversionFromPropertyFailed:
   5286       OS << "conversion from property failed";
   5287       break;
   5288 
   5289     case FK_TooManyInitsForScalar:
   5290       OS << "too many initializers for scalar";
   5291       break;
   5292 
   5293     case FK_ReferenceBindingToInitList:
   5294       OS << "referencing binding to initializer list";
   5295       break;
   5296 
   5297     case FK_InitListBadDestinationType:
   5298       OS << "initializer list for non-aggregate, non-scalar type";
   5299       break;
   5300 
   5301     case FK_UserConversionOverloadFailed:
   5302       OS << "overloading failed for user-defined conversion";
   5303       break;
   5304 
   5305     case FK_ConstructorOverloadFailed:
   5306       OS << "constructor overloading failed";
   5307       break;
   5308 
   5309     case FK_DefaultInitOfConst:
   5310       OS << "default initialization of a const variable";
   5311       break;
   5312 
   5313     case FK_Incomplete:
   5314       OS << "initialization of incomplete type";
   5315       break;
   5316 
   5317     case FK_ListInitializationFailed:
   5318       OS << "list initialization checker failure";
   5319       break;
   5320 
   5321     case FK_PlaceholderType:
   5322       OS << "initializer expression isn't contextually valid";
   5323       break;
   5324     }
   5325     OS << '\n';
   5326     return;
   5327   }
   5328 
   5329   case DependentSequence:
   5330     OS << "Dependent sequence\n";
   5331     return;
   5332 
   5333   case NormalSequence:
   5334     OS << "Normal sequence: ";
   5335     break;
   5336   }
   5337 
   5338   for (step_iterator S = step_begin(), SEnd = step_end(); S != SEnd; ++S) {
   5339     if (S != step_begin()) {
   5340       OS << " -> ";
   5341     }
   5342 
   5343     switch (S->Kind) {
   5344     case SK_ResolveAddressOfOverloadedFunction:
   5345       OS << "resolve address of overloaded function";
   5346       break;
   5347 
   5348     case SK_CastDerivedToBaseRValue:
   5349       OS << "derived-to-base case (rvalue" << S->Type.getAsString() << ")";
   5350       break;
   5351 
   5352     case SK_CastDerivedToBaseXValue:
   5353       OS << "derived-to-base case (xvalue" << S->Type.getAsString() << ")";
   5354       break;
   5355 
   5356     case SK_CastDerivedToBaseLValue:
   5357       OS << "derived-to-base case (lvalue" << S->Type.getAsString() << ")";
   5358       break;
   5359 
   5360     case SK_BindReference:
   5361       OS << "bind reference to lvalue";
   5362       break;
   5363 
   5364     case SK_BindReferenceToTemporary:
   5365       OS << "bind reference to a temporary";
   5366       break;
   5367 
   5368     case SK_ExtraneousCopyToTemporary:
   5369       OS << "extraneous C++03 copy to temporary";
   5370       break;
   5371 
   5372     case SK_UserConversion:
   5373       OS << "user-defined conversion via " << *S->Function.Function;
   5374       break;
   5375 
   5376     case SK_QualificationConversionRValue:
   5377       OS << "qualification conversion (rvalue)";
   5378 
   5379     case SK_QualificationConversionXValue:
   5380       OS << "qualification conversion (xvalue)";
   5381 
   5382     case SK_QualificationConversionLValue:
   5383       OS << "qualification conversion (lvalue)";
   5384       break;
   5385 
   5386     case SK_ConversionSequence:
   5387       OS << "implicit conversion sequence (";
   5388       S->ICS->DebugPrint(); // FIXME: use OS
   5389       OS << ")";
   5390       break;
   5391 
   5392     case SK_ListInitialization:
   5393       OS << "list aggregate initialization";
   5394       break;
   5395 
   5396     case SK_ListConstructorCall:
   5397       OS << "list initialization via constructor";
   5398       break;
   5399 
   5400     case SK_ConstructorInitialization:
   5401       OS << "constructor initialization";
   5402       break;
   5403 
   5404     case SK_ZeroInitialization:
   5405       OS << "zero initialization";
   5406       break;
   5407 
   5408     case SK_CAssignment:
   5409       OS << "C assignment";
   5410       break;
   5411 
   5412     case SK_StringInit:
   5413       OS << "string initialization";
   5414       break;
   5415 
   5416     case SK_ObjCObjectConversion:
   5417       OS << "Objective-C object conversion";
   5418       break;
   5419 
   5420     case SK_ArrayInit:
   5421       OS << "array initialization";
   5422       break;
   5423 
   5424     case SK_PassByIndirectCopyRestore:
   5425       OS << "pass by indirect copy and restore";
   5426       break;
   5427 
   5428     case SK_PassByIndirectRestore:
   5429       OS << "pass by indirect restore";
   5430       break;
   5431 
   5432     case SK_ProduceObjCObject:
   5433       OS << "Objective-C object retension";
   5434       break;
   5435     }
   5436   }
   5437 }
   5438 
   5439 void InitializationSequence::dump() const {
   5440   dump(llvm::errs());
   5441 }
   5442 
   5443 static void DiagnoseNarrowingInInitList(
   5444     Sema& S, QualType EntityType, const Expr *InitE,
   5445     bool Constant, const APValue &ConstantValue) {
   5446   if (Constant) {
   5447     S.Diag(InitE->getLocStart(),
   5448            S.getLangOptions().CPlusPlus0x && !S.getLangOptions().MicrosoftExt
   5449            ? diag::err_init_list_constant_narrowing
   5450            : diag::warn_init_list_constant_narrowing)
   5451       << InitE->getSourceRange()
   5452       << ConstantValue
   5453       << EntityType.getLocalUnqualifiedType();
   5454   } else
   5455     S.Diag(InitE->getLocStart(),
   5456            S.getLangOptions().CPlusPlus0x && !S.getLangOptions().MicrosoftExt
   5457            ? diag::err_init_list_variable_narrowing
   5458            : diag::warn_init_list_variable_narrowing)
   5459       << InitE->getSourceRange()
   5460       << InitE->getType().getLocalUnqualifiedType()
   5461       << EntityType.getLocalUnqualifiedType();
   5462 
   5463   llvm::SmallString<128> StaticCast;
   5464   llvm::raw_svector_ostream OS(StaticCast);
   5465   OS << "static_cast<";
   5466   if (const TypedefType *TT = EntityType->getAs<TypedefType>()) {
   5467     // It's important to use the typedef's name if there is one so that the
   5468     // fixit doesn't break code using types like int64_t.
   5469     //
   5470     // FIXME: This will break if the typedef requires qualification.  But
   5471     // getQualifiedNameAsString() includes non-machine-parsable components.
   5472     OS << *TT->getDecl();
   5473   } else if (const BuiltinType *BT = EntityType->getAs<BuiltinType>())
   5474     OS << BT->getName(S.getLangOptions());
   5475   else {
   5476     // Oops, we didn't find the actual type of the variable.  Don't emit a fixit
   5477     // with a broken cast.
   5478     return;
   5479   }
   5480   OS << ">(";
   5481   S.Diag(InitE->getLocStart(), diag::note_init_list_narrowing_override)
   5482     << InitE->getSourceRange()
   5483     << FixItHint::CreateInsertion(InitE->getLocStart(), OS.str())
   5484     << FixItHint::CreateInsertion(
   5485       S.getPreprocessor().getLocForEndOfToken(InitE->getLocEnd()), ")");
   5486 }
   5487 
   5488 //===----------------------------------------------------------------------===//
   5489 // Initialization helper functions
   5490 //===----------------------------------------------------------------------===//
   5491 bool
   5492 Sema::CanPerformCopyInitialization(const InitializedEntity &Entity,
   5493                                    ExprResult Init) {
   5494   if (Init.isInvalid())
   5495     return false;
   5496 
   5497   Expr *InitE = Init.get();
   5498   assert(InitE && "No initialization expression");
   5499 
   5500   InitializationKind Kind = InitializationKind::CreateCopy(SourceLocation(),
   5501                                                            SourceLocation());
   5502   InitializationSequence Seq(*this, Entity, Kind, &InitE, 1);
   5503   return !Seq.Failed();
   5504 }
   5505 
   5506 ExprResult
   5507 Sema::PerformCopyInitialization(const InitializedEntity &Entity,
   5508                                 SourceLocation EqualLoc,
   5509                                 ExprResult Init,
   5510                                 bool TopLevelOfInitList) {
   5511   if (Init.isInvalid())
   5512     return ExprError();
   5513 
   5514   Expr *InitE = Init.get();
   5515   assert(InitE && "No initialization expression?");
   5516 
   5517   if (EqualLoc.isInvalid())
   5518     EqualLoc = InitE->getLocStart();
   5519 
   5520   InitializationKind Kind = InitializationKind::CreateCopy(InitE->getLocStart(),
   5521                                                            EqualLoc);
   5522   InitializationSequence Seq(*this, Entity, Kind, &InitE, 1);
   5523   Init.release();
   5524 
   5525   bool Constant = false;
   5526   APValue Result;
   5527   if (TopLevelOfInitList &&
   5528       Seq.endsWithNarrowing(Context, InitE, &Constant, &Result)) {
   5529     DiagnoseNarrowingInInitList(*this, Entity.getType(), InitE,
   5530                                 Constant, Result);
   5531   }
   5532   return Seq.Perform(*this, Entity, Kind, MultiExprArg(&InitE, 1));
   5533 }
   5534