Home | History | Annotate | Download | only in Analysis
      1 //===--- CFG.h - Classes for representing and building CFGs------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 //  This file defines the CFG and CFGBuilder classes for representing and
     11 //  building Control-Flow Graphs (CFGs) from ASTs.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #ifndef LLVM_CLANG_CFG_H
     16 #define LLVM_CLANG_CFG_H
     17 
     18 #include "llvm/ADT/PointerIntPair.h"
     19 #include "llvm/ADT/GraphTraits.h"
     20 #include "llvm/Support/Allocator.h"
     21 #include "llvm/Support/Casting.h"
     22 #include "llvm/ADT/OwningPtr.h"
     23 #include "llvm/ADT/DenseMap.h"
     24 #include "llvm/ADT/BitVector.h"
     25 #include "clang/AST/Stmt.h"
     26 #include "clang/Analysis/Support/BumpVector.h"
     27 #include "clang/Basic/SourceLocation.h"
     28 #include <cassert>
     29 #include <iterator>
     30 
     31 namespace clang {
     32   class CXXDestructorDecl;
     33   class Decl;
     34   class Stmt;
     35   class Expr;
     36   class FieldDecl;
     37   class VarDecl;
     38   class CXXCtorInitializer;
     39   class CXXBaseSpecifier;
     40   class CXXBindTemporaryExpr;
     41   class CFG;
     42   class PrinterHelper;
     43   class LangOptions;
     44   class ASTContext;
     45 
     46 /// CFGElement - Represents a top-level expression in a basic block.
     47 class CFGElement {
     48 public:
     49   enum Kind {
     50     // main kind
     51     Invalid,
     52     Statement,
     53     Initializer,
     54     // dtor kind
     55     AutomaticObjectDtor,
     56     BaseDtor,
     57     MemberDtor,
     58     TemporaryDtor,
     59     DTOR_BEGIN = AutomaticObjectDtor,
     60     DTOR_END = TemporaryDtor
     61   };
     62 
     63 protected:
     64   // The int bits are used to mark the kind.
     65   llvm::PointerIntPair<void *, 2> Data1;
     66   llvm::PointerIntPair<void *, 2> Data2;
     67 
     68   CFGElement(Kind kind, const void *Ptr1, const void *Ptr2 = 0)
     69     : Data1(const_cast<void*>(Ptr1), ((unsigned) kind) & 0x3),
     70       Data2(const_cast<void*>(Ptr2), (((unsigned) kind) >> 2) & 0x3) {}
     71 
     72 public:
     73   CFGElement() {}
     74 
     75   Kind getKind() const {
     76     unsigned x = Data2.getInt();
     77     x <<= 2;
     78     x |= Data1.getInt();
     79     return (Kind) x;
     80   }
     81 
     82   bool isValid() const { return getKind() != Invalid; }
     83 
     84   operator bool() const { return isValid(); }
     85 
     86   template<class ElemTy> const ElemTy *getAs() const {
     87     if (llvm::isa<ElemTy>(this))
     88       return static_cast<const ElemTy*>(this);
     89     return 0;
     90   }
     91 
     92   static bool classof(const CFGElement *E) { return true; }
     93 };
     94 
     95 class CFGStmt : public CFGElement {
     96 public:
     97   CFGStmt(Stmt *S) : CFGElement(Statement, S) {}
     98 
     99   const Stmt *getStmt() const {
    100     return static_cast<const Stmt *>(Data1.getPointer());
    101   }
    102 
    103   static bool classof(const CFGElement *E) {
    104     return E->getKind() == Statement;
    105   }
    106 };
    107 
    108 /// CFGInitializer - Represents C++ base or member initializer from
    109 /// constructor's initialization list.
    110 class CFGInitializer : public CFGElement {
    111 public:
    112   CFGInitializer(CXXCtorInitializer *initializer)
    113       : CFGElement(Initializer, initializer) {}
    114 
    115   CXXCtorInitializer* getInitializer() const {
    116     return static_cast<CXXCtorInitializer*>(Data1.getPointer());
    117   }
    118 
    119   static bool classof(const CFGElement *E) {
    120     return E->getKind() == Initializer;
    121   }
    122 };
    123 
    124 /// CFGImplicitDtor - Represents C++ object destructor implicitly generated
    125 /// by compiler on various occasions.
    126 class CFGImplicitDtor : public CFGElement {
    127 protected:
    128   CFGImplicitDtor(Kind kind, const void *data1, const void *data2 = 0)
    129     : CFGElement(kind, data1, data2) {
    130     assert(kind >= DTOR_BEGIN && kind <= DTOR_END);
    131   }
    132 
    133 public:
    134   const CXXDestructorDecl *getDestructorDecl(ASTContext &astContext) const;
    135   bool isNoReturn(ASTContext &astContext) const;
    136 
    137   static bool classof(const CFGElement *E) {
    138     Kind kind = E->getKind();
    139     return kind >= DTOR_BEGIN && kind <= DTOR_END;
    140   }
    141 };
    142 
    143 /// CFGAutomaticObjDtor - Represents C++ object destructor implicitly generated
    144 /// for automatic object or temporary bound to const reference at the point
    145 /// of leaving its local scope.
    146 class CFGAutomaticObjDtor: public CFGImplicitDtor {
    147 public:
    148   CFGAutomaticObjDtor(const VarDecl *var, const Stmt *stmt)
    149       : CFGImplicitDtor(AutomaticObjectDtor, var, stmt) {}
    150 
    151   const VarDecl *getVarDecl() const {
    152     return static_cast<VarDecl*>(Data1.getPointer());
    153   }
    154 
    155   // Get statement end of which triggered the destructor call.
    156   const Stmt *getTriggerStmt() const {
    157     return static_cast<Stmt*>(Data2.getPointer());
    158   }
    159 
    160   static bool classof(const CFGElement *elem) {
    161     return elem->getKind() == AutomaticObjectDtor;
    162   }
    163 };
    164 
    165 /// CFGBaseDtor - Represents C++ object destructor implicitly generated for
    166 /// base object in destructor.
    167 class CFGBaseDtor : public CFGImplicitDtor {
    168 public:
    169   CFGBaseDtor(const CXXBaseSpecifier *base)
    170       : CFGImplicitDtor(BaseDtor, base) {}
    171 
    172   const CXXBaseSpecifier *getBaseSpecifier() const {
    173     return static_cast<const CXXBaseSpecifier*>(Data1.getPointer());
    174   }
    175 
    176   static bool classof(const CFGElement *E) {
    177     return E->getKind() == BaseDtor;
    178   }
    179 };
    180 
    181 /// CFGMemberDtor - Represents C++ object destructor implicitly generated for
    182 /// member object in destructor.
    183 class CFGMemberDtor : public CFGImplicitDtor {
    184 public:
    185   CFGMemberDtor(const FieldDecl *field)
    186       : CFGImplicitDtor(MemberDtor, field, 0) {}
    187 
    188   const FieldDecl *getFieldDecl() const {
    189     return static_cast<const FieldDecl*>(Data1.getPointer());
    190   }
    191 
    192   static bool classof(const CFGElement *E) {
    193     return E->getKind() == MemberDtor;
    194   }
    195 };
    196 
    197 /// CFGTemporaryDtor - Represents C++ object destructor implicitly generated
    198 /// at the end of full expression for temporary object.
    199 class CFGTemporaryDtor : public CFGImplicitDtor {
    200 public:
    201   CFGTemporaryDtor(CXXBindTemporaryExpr *expr)
    202       : CFGImplicitDtor(TemporaryDtor, expr, 0) {}
    203 
    204   const CXXBindTemporaryExpr *getBindTemporaryExpr() const {
    205     return static_cast<const CXXBindTemporaryExpr *>(Data1.getPointer());
    206   }
    207 
    208   static bool classof(const CFGElement *E) {
    209     return E->getKind() == TemporaryDtor;
    210   }
    211 };
    212 
    213 /// CFGTerminator - Represents CFGBlock terminator statement.
    214 ///
    215 /// TemporaryDtorsBranch bit is set to true if the terminator marks a branch
    216 /// in control flow of destructors of temporaries. In this case terminator
    217 /// statement is the same statement that branches control flow in evaluation
    218 /// of matching full expression.
    219 class CFGTerminator {
    220   llvm::PointerIntPair<Stmt *, 1> Data;
    221 public:
    222   CFGTerminator() {}
    223   CFGTerminator(Stmt *S, bool TemporaryDtorsBranch = false)
    224       : Data(S, TemporaryDtorsBranch) {}
    225 
    226   Stmt *getStmt() { return Data.getPointer(); }
    227   const Stmt *getStmt() const { return Data.getPointer(); }
    228 
    229   bool isTemporaryDtorsBranch() const { return Data.getInt(); }
    230 
    231   operator Stmt *() { return getStmt(); }
    232   operator const Stmt *() const { return getStmt(); }
    233 
    234   Stmt *operator->() { return getStmt(); }
    235   const Stmt *operator->() const { return getStmt(); }
    236 
    237   Stmt &operator*() { return *getStmt(); }
    238   const Stmt &operator*() const { return *getStmt(); }
    239 
    240   operator bool() const { return getStmt(); }
    241 };
    242 
    243 /// CFGBlock - Represents a single basic block in a source-level CFG.
    244 ///  It consists of:
    245 ///
    246 ///  (1) A set of statements/expressions (which may contain subexpressions).
    247 ///  (2) A "terminator" statement (not in the set of statements).
    248 ///  (3) A list of successors and predecessors.
    249 ///
    250 /// Terminator: The terminator represents the type of control-flow that occurs
    251 /// at the end of the basic block.  The terminator is a Stmt* referring to an
    252 /// AST node that has control-flow: if-statements, breaks, loops, etc.
    253 /// If the control-flow is conditional, the condition expression will appear
    254 /// within the set of statements in the block (usually the last statement).
    255 ///
    256 /// Predecessors: the order in the set of predecessors is arbitrary.
    257 ///
    258 /// Successors: the order in the set of successors is NOT arbitrary.  We
    259 ///  currently have the following orderings based on the terminator:
    260 ///
    261 ///     Terminator       Successor Ordering
    262 ///  -----------------------------------------------------
    263 ///       if            Then Block;  Else Block
    264 ///     ? operator      LHS expression;  RHS expression
    265 ///     &&, ||          expression that uses result of && or ||, RHS
    266 ///
    267 /// But note that any of that may be NULL in case of optimized-out edges.
    268 ///
    269 class CFGBlock {
    270   class ElementList {
    271     typedef BumpVector<CFGElement> ImplTy;
    272     ImplTy Impl;
    273   public:
    274     ElementList(BumpVectorContext &C) : Impl(C, 4) {}
    275 
    276     typedef std::reverse_iterator<ImplTy::iterator>       iterator;
    277     typedef std::reverse_iterator<ImplTy::const_iterator> const_iterator;
    278     typedef ImplTy::iterator                              reverse_iterator;
    279     typedef ImplTy::const_iterator                        const_reverse_iterator;
    280 
    281     void push_back(CFGElement e, BumpVectorContext &C) { Impl.push_back(e, C); }
    282     reverse_iterator insert(reverse_iterator I, size_t Cnt, CFGElement E,
    283         BumpVectorContext &C) {
    284       return Impl.insert(I, Cnt, E, C);
    285     }
    286 
    287     CFGElement front() const { return Impl.back(); }
    288     CFGElement back() const { return Impl.front(); }
    289 
    290     iterator begin() { return Impl.rbegin(); }
    291     iterator end() { return Impl.rend(); }
    292     const_iterator begin() const { return Impl.rbegin(); }
    293     const_iterator end() const { return Impl.rend(); }
    294     reverse_iterator rbegin() { return Impl.begin(); }
    295     reverse_iterator rend() { return Impl.end(); }
    296     const_reverse_iterator rbegin() const { return Impl.begin(); }
    297     const_reverse_iterator rend() const { return Impl.end(); }
    298 
    299    CFGElement operator[](size_t i) const  {
    300      assert(i < Impl.size());
    301      return Impl[Impl.size() - 1 - i];
    302    }
    303 
    304     size_t size() const { return Impl.size(); }
    305     bool empty() const { return Impl.empty(); }
    306   };
    307 
    308   /// Stmts - The set of statements in the basic block.
    309   ElementList Elements;
    310 
    311   /// Label - An (optional) label that prefixes the executable
    312   ///  statements in the block.  When this variable is non-NULL, it is
    313   ///  either an instance of LabelStmt, SwitchCase or CXXCatchStmt.
    314   Stmt *Label;
    315 
    316   /// Terminator - The terminator for a basic block that
    317   ///  indicates the type of control-flow that occurs between a block
    318   ///  and its successors.
    319   CFGTerminator Terminator;
    320 
    321   /// LoopTarget - Some blocks are used to represent the "loop edge" to
    322   ///  the start of a loop from within the loop body.  This Stmt* will be
    323   ///  refer to the loop statement for such blocks (and be null otherwise).
    324   const Stmt *LoopTarget;
    325 
    326   /// BlockID - A numerical ID assigned to a CFGBlock during construction
    327   ///   of the CFG.
    328   unsigned BlockID;
    329 
    330   /// Predecessors/Successors - Keep track of the predecessor / successor
    331   /// CFG blocks.
    332   typedef BumpVector<CFGBlock*> AdjacentBlocks;
    333   AdjacentBlocks Preds;
    334   AdjacentBlocks Succs;
    335 
    336   /// NoReturn - This bit is set when the basic block contains a function call
    337   /// or implicit destructor that is attributed as 'noreturn'. In that case,
    338   /// control cannot technically ever proceed past this block. All such blocks
    339   /// will have a single immediate successor: the exit block. This allows them
    340   /// to be easily reached from the exit block and using this bit quickly
    341   /// recognized without scanning the contents of the block.
    342   ///
    343   /// Optimization Note: This bit could be profitably folded with Terminator's
    344   /// storage if the memory usage of CFGBlock becomes an issue.
    345   unsigned HasNoReturnElement : 1;
    346 
    347 public:
    348   explicit CFGBlock(unsigned blockid, BumpVectorContext &C)
    349     : Elements(C), Label(NULL), Terminator(NULL), LoopTarget(NULL),
    350       BlockID(blockid), Preds(C, 1), Succs(C, 1), HasNoReturnElement(false) {}
    351   ~CFGBlock() {}
    352 
    353   // Statement iterators
    354   typedef ElementList::iterator                      iterator;
    355   typedef ElementList::const_iterator                const_iterator;
    356   typedef ElementList::reverse_iterator              reverse_iterator;
    357   typedef ElementList::const_reverse_iterator        const_reverse_iterator;
    358 
    359   CFGElement                 front()       const { return Elements.front();   }
    360   CFGElement                 back()        const { return Elements.back();    }
    361 
    362   iterator                   begin()             { return Elements.begin();   }
    363   iterator                   end()               { return Elements.end();     }
    364   const_iterator             begin()       const { return Elements.begin();   }
    365   const_iterator             end()         const { return Elements.end();     }
    366 
    367   reverse_iterator           rbegin()            { return Elements.rbegin();  }
    368   reverse_iterator           rend()              { return Elements.rend();    }
    369   const_reverse_iterator     rbegin()      const { return Elements.rbegin();  }
    370   const_reverse_iterator     rend()        const { return Elements.rend();    }
    371 
    372   unsigned                   size()        const { return Elements.size();    }
    373   bool                       empty()       const { return Elements.empty();   }
    374 
    375   CFGElement operator[](size_t i) const  { return Elements[i]; }
    376 
    377   // CFG iterators
    378   typedef AdjacentBlocks::iterator                              pred_iterator;
    379   typedef AdjacentBlocks::const_iterator                  const_pred_iterator;
    380   typedef AdjacentBlocks::reverse_iterator              pred_reverse_iterator;
    381   typedef AdjacentBlocks::const_reverse_iterator  const_pred_reverse_iterator;
    382 
    383   typedef AdjacentBlocks::iterator                              succ_iterator;
    384   typedef AdjacentBlocks::const_iterator                  const_succ_iterator;
    385   typedef AdjacentBlocks::reverse_iterator              succ_reverse_iterator;
    386   typedef AdjacentBlocks::const_reverse_iterator  const_succ_reverse_iterator;
    387 
    388   pred_iterator                pred_begin()        { return Preds.begin();   }
    389   pred_iterator                pred_end()          { return Preds.end();     }
    390   const_pred_iterator          pred_begin()  const { return Preds.begin();   }
    391   const_pred_iterator          pred_end()    const { return Preds.end();     }
    392 
    393   pred_reverse_iterator        pred_rbegin()       { return Preds.rbegin();  }
    394   pred_reverse_iterator        pred_rend()         { return Preds.rend();    }
    395   const_pred_reverse_iterator  pred_rbegin() const { return Preds.rbegin();  }
    396   const_pred_reverse_iterator  pred_rend()   const { return Preds.rend();    }
    397 
    398   succ_iterator                succ_begin()        { return Succs.begin();   }
    399   succ_iterator                succ_end()          { return Succs.end();     }
    400   const_succ_iterator          succ_begin()  const { return Succs.begin();   }
    401   const_succ_iterator          succ_end()    const { return Succs.end();     }
    402 
    403   succ_reverse_iterator        succ_rbegin()       { return Succs.rbegin();  }
    404   succ_reverse_iterator        succ_rend()         { return Succs.rend();    }
    405   const_succ_reverse_iterator  succ_rbegin() const { return Succs.rbegin();  }
    406   const_succ_reverse_iterator  succ_rend()   const { return Succs.rend();    }
    407 
    408   unsigned                     succ_size()   const { return Succs.size();    }
    409   bool                         succ_empty()  const { return Succs.empty();   }
    410 
    411   unsigned                     pred_size()   const { return Preds.size();    }
    412   bool                         pred_empty()  const { return Preds.empty();   }
    413 
    414 
    415   class FilterOptions {
    416   public:
    417     FilterOptions() {
    418       IgnoreDefaultsWithCoveredEnums = 0;
    419     }
    420 
    421     unsigned IgnoreDefaultsWithCoveredEnums : 1;
    422   };
    423 
    424   static bool FilterEdge(const FilterOptions &F, const CFGBlock *Src,
    425        const CFGBlock *Dst);
    426 
    427   template <typename IMPL, bool IsPred>
    428   class FilteredCFGBlockIterator {
    429   private:
    430     IMPL I, E;
    431     const FilterOptions F;
    432     const CFGBlock *From;
    433    public:
    434     explicit FilteredCFGBlockIterator(const IMPL &i, const IMPL &e,
    435               const CFGBlock *from,
    436               const FilterOptions &f)
    437       : I(i), E(e), F(f), From(from) {}
    438 
    439     bool hasMore() const { return I != E; }
    440 
    441     FilteredCFGBlockIterator &operator++() {
    442       do { ++I; } while (hasMore() && Filter(*I));
    443       return *this;
    444     }
    445 
    446     const CFGBlock *operator*() const { return *I; }
    447   private:
    448     bool Filter(const CFGBlock *To) {
    449       return IsPred ? FilterEdge(F, To, From) : FilterEdge(F, From, To);
    450     }
    451   };
    452 
    453   typedef FilteredCFGBlockIterator<const_pred_iterator, true>
    454           filtered_pred_iterator;
    455 
    456   typedef FilteredCFGBlockIterator<const_succ_iterator, false>
    457           filtered_succ_iterator;
    458 
    459   filtered_pred_iterator filtered_pred_start_end(const FilterOptions &f) const {
    460     return filtered_pred_iterator(pred_begin(), pred_end(), this, f);
    461   }
    462 
    463   filtered_succ_iterator filtered_succ_start_end(const FilterOptions &f) const {
    464     return filtered_succ_iterator(succ_begin(), succ_end(), this, f);
    465   }
    466 
    467   // Manipulation of block contents
    468 
    469   void setTerminator(Stmt *Statement) { Terminator = Statement; }
    470   void setLabel(Stmt *Statement) { Label = Statement; }
    471   void setLoopTarget(const Stmt *loopTarget) { LoopTarget = loopTarget; }
    472   void setHasNoReturnElement() { HasNoReturnElement = true; }
    473 
    474   CFGTerminator getTerminator() { return Terminator; }
    475   const CFGTerminator getTerminator() const { return Terminator; }
    476 
    477   Stmt *getTerminatorCondition();
    478 
    479   const Stmt *getTerminatorCondition() const {
    480     return const_cast<CFGBlock*>(this)->getTerminatorCondition();
    481   }
    482 
    483   const Stmt *getLoopTarget() const { return LoopTarget; }
    484 
    485   Stmt *getLabel() { return Label; }
    486   const Stmt *getLabel() const { return Label; }
    487 
    488   bool hasNoReturnElement() const { return HasNoReturnElement; }
    489 
    490   unsigned getBlockID() const { return BlockID; }
    491 
    492   void dump(const CFG *cfg, const LangOptions &LO) const;
    493   void print(raw_ostream &OS, const CFG* cfg, const LangOptions &LO) const;
    494   void printTerminator(raw_ostream &OS, const LangOptions &LO) const;
    495 
    496   void addSuccessor(CFGBlock *Block, BumpVectorContext &C) {
    497     if (Block)
    498       Block->Preds.push_back(this, C);
    499     Succs.push_back(Block, C);
    500   }
    501 
    502   void appendStmt(Stmt *statement, BumpVectorContext &C) {
    503     Elements.push_back(CFGStmt(statement), C);
    504   }
    505 
    506   void appendInitializer(CXXCtorInitializer *initializer,
    507                         BumpVectorContext &C) {
    508     Elements.push_back(CFGInitializer(initializer), C);
    509   }
    510 
    511   void appendBaseDtor(const CXXBaseSpecifier *BS, BumpVectorContext &C) {
    512     Elements.push_back(CFGBaseDtor(BS), C);
    513   }
    514 
    515   void appendMemberDtor(FieldDecl *FD, BumpVectorContext &C) {
    516     Elements.push_back(CFGMemberDtor(FD), C);
    517   }
    518 
    519   void appendTemporaryDtor(CXXBindTemporaryExpr *E, BumpVectorContext &C) {
    520     Elements.push_back(CFGTemporaryDtor(E), C);
    521   }
    522 
    523   void appendAutomaticObjDtor(VarDecl *VD, Stmt *S, BumpVectorContext &C) {
    524     Elements.push_back(CFGAutomaticObjDtor(VD, S), C);
    525   }
    526 
    527   // Destructors must be inserted in reversed order. So insertion is in two
    528   // steps. First we prepare space for some number of elements, then we insert
    529   // the elements beginning at the last position in prepared space.
    530   iterator beginAutomaticObjDtorsInsert(iterator I, size_t Cnt,
    531       BumpVectorContext &C) {
    532     return iterator(Elements.insert(I.base(), Cnt, CFGElement(), C));
    533   }
    534   iterator insertAutomaticObjDtor(iterator I, VarDecl *VD, Stmt *S) {
    535     *I = CFGAutomaticObjDtor(VD, S);
    536     return ++I;
    537   }
    538 };
    539 
    540 /// CFG - Represents a source-level, intra-procedural CFG that represents the
    541 ///  control-flow of a Stmt.  The Stmt can represent an entire function body,
    542 ///  or a single expression.  A CFG will always contain one empty block that
    543 ///  represents the Exit point of the CFG.  A CFG will also contain a designated
    544 ///  Entry block.  The CFG solely represents control-flow; it consists of
    545 ///  CFGBlocks which are simply containers of Stmt*'s in the AST the CFG
    546 ///  was constructed from.
    547 class CFG {
    548 public:
    549   //===--------------------------------------------------------------------===//
    550   // CFG Construction & Manipulation.
    551   //===--------------------------------------------------------------------===//
    552 
    553   class BuildOptions {
    554     llvm::BitVector alwaysAddMask;
    555   public:
    556     typedef llvm::DenseMap<const Stmt *, const CFGBlock*> ForcedBlkExprs;
    557     ForcedBlkExprs **forcedBlkExprs;
    558 
    559     bool PruneTriviallyFalseEdges;
    560     bool AddEHEdges;
    561     bool AddInitializers;
    562     bool AddImplicitDtors;
    563 
    564     bool alwaysAdd(const Stmt *stmt) const {
    565       return alwaysAddMask[stmt->getStmtClass()];
    566     }
    567 
    568     BuildOptions &setAlwaysAdd(Stmt::StmtClass stmtClass, bool val = true) {
    569       alwaysAddMask[stmtClass] = val;
    570       return *this;
    571     }
    572 
    573     BuildOptions &setAllAlwaysAdd() {
    574       alwaysAddMask.set();
    575       return *this;
    576     }
    577 
    578     BuildOptions()
    579     : alwaysAddMask(Stmt::lastStmtConstant, false)
    580       ,forcedBlkExprs(0), PruneTriviallyFalseEdges(true)
    581       ,AddEHEdges(false)
    582       ,AddInitializers(false)
    583       ,AddImplicitDtors(false) {}
    584   };
    585 
    586   /// buildCFG - Builds a CFG from an AST.  The responsibility to free the
    587   ///   constructed CFG belongs to the caller.
    588   static CFG* buildCFG(const Decl *D, Stmt *AST, ASTContext *C,
    589                        const BuildOptions &BO);
    590 
    591   /// createBlock - Create a new block in the CFG.  The CFG owns the block;
    592   ///  the caller should not directly free it.
    593   CFGBlock *createBlock();
    594 
    595   /// setEntry - Set the entry block of the CFG.  This is typically used
    596   ///  only during CFG construction.  Most CFG clients expect that the
    597   ///  entry block has no predecessors and contains no statements.
    598   void setEntry(CFGBlock *B) { Entry = B; }
    599 
    600   /// setIndirectGotoBlock - Set the block used for indirect goto jumps.
    601   ///  This is typically used only during CFG construction.
    602   void setIndirectGotoBlock(CFGBlock *B) { IndirectGotoBlock = B; }
    603 
    604   //===--------------------------------------------------------------------===//
    605   // Block Iterators
    606   //===--------------------------------------------------------------------===//
    607 
    608   typedef BumpVector<CFGBlock*>                    CFGBlockListTy;
    609   typedef CFGBlockListTy::iterator                 iterator;
    610   typedef CFGBlockListTy::const_iterator           const_iterator;
    611   typedef std::reverse_iterator<iterator>          reverse_iterator;
    612   typedef std::reverse_iterator<const_iterator>    const_reverse_iterator;
    613 
    614   CFGBlock &                front()                { return *Blocks.front(); }
    615   CFGBlock &                back()                 { return *Blocks.back(); }
    616 
    617   iterator                  begin()                { return Blocks.begin(); }
    618   iterator                  end()                  { return Blocks.end(); }
    619   const_iterator            begin()       const    { return Blocks.begin(); }
    620   const_iterator            end()         const    { return Blocks.end(); }
    621 
    622   reverse_iterator          rbegin()               { return Blocks.rbegin(); }
    623   reverse_iterator          rend()                 { return Blocks.rend(); }
    624   const_reverse_iterator    rbegin()      const    { return Blocks.rbegin(); }
    625   const_reverse_iterator    rend()        const    { return Blocks.rend(); }
    626 
    627   CFGBlock &                getEntry()             { return *Entry; }
    628   const CFGBlock &          getEntry()    const    { return *Entry; }
    629   CFGBlock &                getExit()              { return *Exit; }
    630   const CFGBlock &          getExit()     const    { return *Exit; }
    631 
    632   CFGBlock *       getIndirectGotoBlock() { return IndirectGotoBlock; }
    633   const CFGBlock * getIndirectGotoBlock() const { return IndirectGotoBlock; }
    634 
    635   typedef std::vector<const CFGBlock*>::const_iterator try_block_iterator;
    636   try_block_iterator try_blocks_begin() const {
    637     return TryDispatchBlocks.begin();
    638   }
    639   try_block_iterator try_blocks_end() const {
    640     return TryDispatchBlocks.end();
    641   }
    642 
    643   void addTryDispatchBlock(const CFGBlock *block) {
    644     TryDispatchBlocks.push_back(block);
    645   }
    646 
    647   //===--------------------------------------------------------------------===//
    648   // Member templates useful for various batch operations over CFGs.
    649   //===--------------------------------------------------------------------===//
    650 
    651   template <typename CALLBACK>
    652   void VisitBlockStmts(CALLBACK& O) const {
    653     for (const_iterator I=begin(), E=end(); I != E; ++I)
    654       for (CFGBlock::const_iterator BI=(*I)->begin(), BE=(*I)->end();
    655            BI != BE; ++BI) {
    656         if (const CFGStmt *stmt = BI->getAs<CFGStmt>())
    657           O(const_cast<Stmt*>(stmt->getStmt()));
    658       }
    659   }
    660 
    661   //===--------------------------------------------------------------------===//
    662   // CFG Introspection.
    663   //===--------------------------------------------------------------------===//
    664 
    665   struct   BlkExprNumTy {
    666     const signed Idx;
    667     explicit BlkExprNumTy(signed idx) : Idx(idx) {}
    668     explicit BlkExprNumTy() : Idx(-1) {}
    669     operator bool() const { return Idx >= 0; }
    670     operator unsigned() const { assert(Idx >=0); return (unsigned) Idx; }
    671   };
    672 
    673   bool isBlkExpr(const Stmt *S) { return getBlkExprNum(S); }
    674   bool isBlkExpr(const Stmt *S) const {
    675     return const_cast<CFG*>(this)->isBlkExpr(S);
    676   }
    677   BlkExprNumTy  getBlkExprNum(const Stmt *S);
    678   unsigned      getNumBlkExprs();
    679 
    680   /// getNumBlockIDs - Returns the total number of BlockIDs allocated (which
    681   /// start at 0).
    682   unsigned getNumBlockIDs() const { return NumBlockIDs; }
    683 
    684   //===--------------------------------------------------------------------===//
    685   // CFG Debugging: Pretty-Printing and Visualization.
    686   //===--------------------------------------------------------------------===//
    687 
    688   void viewCFG(const LangOptions &LO) const;
    689   void print(raw_ostream &OS, const LangOptions &LO) const;
    690   void dump(const LangOptions &LO) const;
    691 
    692   //===--------------------------------------------------------------------===//
    693   // Internal: constructors and data.
    694   //===--------------------------------------------------------------------===//
    695 
    696   CFG() : Entry(NULL), Exit(NULL), IndirectGotoBlock(NULL), NumBlockIDs(0),
    697           BlkExprMap(NULL), Blocks(BlkBVC, 10) {}
    698 
    699   ~CFG();
    700 
    701   llvm::BumpPtrAllocator& getAllocator() {
    702     return BlkBVC.getAllocator();
    703   }
    704 
    705   BumpVectorContext &getBumpVectorContext() {
    706     return BlkBVC;
    707   }
    708 
    709 private:
    710   CFGBlock *Entry;
    711   CFGBlock *Exit;
    712   CFGBlock* IndirectGotoBlock;  // Special block to contain collective dispatch
    713                                 // for indirect gotos
    714   unsigned  NumBlockIDs;
    715 
    716   // BlkExprMap - An opaque pointer to prevent inclusion of DenseMap.h.
    717   //  It represents a map from Expr* to integers to record the set of
    718   //  block-level expressions and their "statement number" in the CFG.
    719   void *    BlkExprMap;
    720 
    721   BumpVectorContext BlkBVC;
    722 
    723   CFGBlockListTy Blocks;
    724 
    725   /// C++ 'try' statements are modeled with an indirect dispatch block.
    726   /// This is the collection of such blocks present in the CFG.
    727   std::vector<const CFGBlock *> TryDispatchBlocks;
    728 
    729 };
    730 } // end namespace clang
    731 
    732 //===----------------------------------------------------------------------===//
    733 // GraphTraits specializations for CFG basic block graphs (source-level CFGs)
    734 //===----------------------------------------------------------------------===//
    735 
    736 namespace llvm {
    737 
    738 /// Implement simplify_type for CFGTerminator, so that we can dyn_cast from
    739 /// CFGTerminator to a specific Stmt class.
    740 template <> struct simplify_type<const ::clang::CFGTerminator> {
    741   typedef const ::clang::Stmt *SimpleType;
    742   static SimpleType getSimplifiedValue(const ::clang::CFGTerminator &Val) {
    743     return Val.getStmt();
    744   }
    745 };
    746 
    747 template <> struct simplify_type< ::clang::CFGTerminator> {
    748   typedef ::clang::Stmt *SimpleType;
    749   static SimpleType getSimplifiedValue(const ::clang::CFGTerminator &Val) {
    750     return const_cast<SimpleType>(Val.getStmt());
    751   }
    752 };
    753 
    754 // Traits for: CFGBlock
    755 
    756 template <> struct GraphTraits< ::clang::CFGBlock *> {
    757   typedef ::clang::CFGBlock NodeType;
    758   typedef ::clang::CFGBlock::succ_iterator ChildIteratorType;
    759 
    760   static NodeType* getEntryNode(::clang::CFGBlock *BB)
    761   { return BB; }
    762 
    763   static inline ChildIteratorType child_begin(NodeType* N)
    764   { return N->succ_begin(); }
    765 
    766   static inline ChildIteratorType child_end(NodeType* N)
    767   { return N->succ_end(); }
    768 };
    769 
    770 template <> struct GraphTraits< const ::clang::CFGBlock *> {
    771   typedef const ::clang::CFGBlock NodeType;
    772   typedef ::clang::CFGBlock::const_succ_iterator ChildIteratorType;
    773 
    774   static NodeType* getEntryNode(const clang::CFGBlock *BB)
    775   { return BB; }
    776 
    777   static inline ChildIteratorType child_begin(NodeType* N)
    778   { return N->succ_begin(); }
    779 
    780   static inline ChildIteratorType child_end(NodeType* N)
    781   { return N->succ_end(); }
    782 };
    783 
    784 template <> struct GraphTraits<Inverse<const ::clang::CFGBlock*> > {
    785   typedef const ::clang::CFGBlock NodeType;
    786   typedef ::clang::CFGBlock::const_pred_iterator ChildIteratorType;
    787 
    788   static NodeType *getEntryNode(Inverse<const ::clang::CFGBlock*> G)
    789   { return G.Graph; }
    790 
    791   static inline ChildIteratorType child_begin(NodeType* N)
    792   { return N->pred_begin(); }
    793 
    794   static inline ChildIteratorType child_end(NodeType* N)
    795   { return N->pred_end(); }
    796 };
    797 
    798 // Traits for: CFG
    799 
    800 template <> struct GraphTraits< ::clang::CFG* >
    801     : public GraphTraits< ::clang::CFGBlock *>  {
    802 
    803   typedef ::clang::CFG::iterator nodes_iterator;
    804 
    805   static NodeType *getEntryNode(::clang::CFG* F) { return &F->getEntry(); }
    806   static nodes_iterator nodes_begin(::clang::CFG* F) { return F->begin(); }
    807   static nodes_iterator nodes_end(::clang::CFG* F) { return F->end(); }
    808 };
    809 
    810 template <> struct GraphTraits<const ::clang::CFG* >
    811     : public GraphTraits<const ::clang::CFGBlock *>  {
    812 
    813   typedef ::clang::CFG::const_iterator nodes_iterator;
    814 
    815   static NodeType *getEntryNode( const ::clang::CFG* F) {
    816     return &F->getEntry();
    817   }
    818   static nodes_iterator nodes_begin( const ::clang::CFG* F) {
    819     return F->begin();
    820   }
    821   static nodes_iterator nodes_end( const ::clang::CFG* F) {
    822     return F->end();
    823   }
    824 };
    825 
    826 template <> struct GraphTraits<Inverse<const ::clang::CFG*> >
    827   : public GraphTraits<Inverse<const ::clang::CFGBlock*> > {
    828 
    829   typedef ::clang::CFG::const_iterator nodes_iterator;
    830 
    831   static NodeType *getEntryNode(const ::clang::CFG* F) { return &F->getExit(); }
    832   static nodes_iterator nodes_begin(const ::clang::CFG* F) { return F->begin();}
    833   static nodes_iterator nodes_end(const ::clang::CFG* F) { return F->end(); }
    834 };
    835 } // end llvm namespace
    836 #endif
    837