Home | History | Annotate | Download | only in CodeGen
      1 //===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This contains code to emit Stmt nodes as LLVM code.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "CGDebugInfo.h"
     15 #include "CodeGenModule.h"
     16 #include "CodeGenFunction.h"
     17 #include "TargetInfo.h"
     18 #include "clang/AST/StmtVisitor.h"
     19 #include "clang/Basic/PrettyStackTrace.h"
     20 #include "clang/Basic/TargetInfo.h"
     21 #include "llvm/ADT/StringExtras.h"
     22 #include "llvm/InlineAsm.h"
     23 #include "llvm/Intrinsics.h"
     24 #include "llvm/Target/TargetData.h"
     25 using namespace clang;
     26 using namespace CodeGen;
     27 
     28 //===----------------------------------------------------------------------===//
     29 //                              Statement Emission
     30 //===----------------------------------------------------------------------===//
     31 
     32 void CodeGenFunction::EmitStopPoint(const Stmt *S) {
     33   if (CGDebugInfo *DI = getDebugInfo()) {
     34     SourceLocation Loc;
     35     if (isa<DeclStmt>(S))
     36       Loc = S->getLocEnd();
     37     else
     38       Loc = S->getLocStart();
     39     DI->EmitLocation(Builder, Loc);
     40   }
     41 }
     42 
     43 void CodeGenFunction::EmitStmt(const Stmt *S) {
     44   assert(S && "Null statement?");
     45 
     46   // These statements have their own debug info handling.
     47   if (EmitSimpleStmt(S))
     48     return;
     49 
     50   // Check if we are generating unreachable code.
     51   if (!HaveInsertPoint()) {
     52     // If so, and the statement doesn't contain a label, then we do not need to
     53     // generate actual code. This is safe because (1) the current point is
     54     // unreachable, so we don't need to execute the code, and (2) we've already
     55     // handled the statements which update internal data structures (like the
     56     // local variable map) which could be used by subsequent statements.
     57     if (!ContainsLabel(S)) {
     58       // Verify that any decl statements were handled as simple, they may be in
     59       // scope of subsequent reachable statements.
     60       assert(!isa<DeclStmt>(*S) && "Unexpected DeclStmt!");
     61       return;
     62     }
     63 
     64     // Otherwise, make a new block to hold the code.
     65     EnsureInsertPoint();
     66   }
     67 
     68   // Generate a stoppoint if we are emitting debug info.
     69   EmitStopPoint(S);
     70 
     71   switch (S->getStmtClass()) {
     72   case Stmt::NoStmtClass:
     73   case Stmt::CXXCatchStmtClass:
     74   case Stmt::SEHExceptStmtClass:
     75   case Stmt::SEHFinallyStmtClass:
     76     llvm_unreachable("invalid statement class to emit generically");
     77   case Stmt::NullStmtClass:
     78   case Stmt::CompoundStmtClass:
     79   case Stmt::DeclStmtClass:
     80   case Stmt::LabelStmtClass:
     81   case Stmt::GotoStmtClass:
     82   case Stmt::BreakStmtClass:
     83   case Stmt::ContinueStmtClass:
     84   case Stmt::DefaultStmtClass:
     85   case Stmt::CaseStmtClass:
     86     llvm_unreachable("should have emitted these statements as simple");
     87 
     88 #define STMT(Type, Base)
     89 #define ABSTRACT_STMT(Op)
     90 #define EXPR(Type, Base) \
     91   case Stmt::Type##Class:
     92 #include "clang/AST/StmtNodes.inc"
     93   {
     94     // Remember the block we came in on.
     95     llvm::BasicBlock *incoming = Builder.GetInsertBlock();
     96     assert(incoming && "expression emission must have an insertion point");
     97 
     98     EmitIgnoredExpr(cast<Expr>(S));
     99 
    100     llvm::BasicBlock *outgoing = Builder.GetInsertBlock();
    101     assert(outgoing && "expression emission cleared block!");
    102 
    103     // The expression emitters assume (reasonably!) that the insertion
    104     // point is always set.  To maintain that, the call-emission code
    105     // for noreturn functions has to enter a new block with no
    106     // predecessors.  We want to kill that block and mark the current
    107     // insertion point unreachable in the common case of a call like
    108     // "exit();".  Since expression emission doesn't otherwise create
    109     // blocks with no predecessors, we can just test for that.
    110     // However, we must be careful not to do this to our incoming
    111     // block, because *statement* emission does sometimes create
    112     // reachable blocks which will have no predecessors until later in
    113     // the function.  This occurs with, e.g., labels that are not
    114     // reachable by fallthrough.
    115     if (incoming != outgoing && outgoing->use_empty()) {
    116       outgoing->eraseFromParent();
    117       Builder.ClearInsertionPoint();
    118     }
    119     break;
    120   }
    121 
    122   case Stmt::IndirectGotoStmtClass:
    123     EmitIndirectGotoStmt(cast<IndirectGotoStmt>(*S)); break;
    124 
    125   case Stmt::IfStmtClass:       EmitIfStmt(cast<IfStmt>(*S));             break;
    126   case Stmt::WhileStmtClass:    EmitWhileStmt(cast<WhileStmt>(*S));       break;
    127   case Stmt::DoStmtClass:       EmitDoStmt(cast<DoStmt>(*S));             break;
    128   case Stmt::ForStmtClass:      EmitForStmt(cast<ForStmt>(*S));           break;
    129 
    130   case Stmt::ReturnStmtClass:   EmitReturnStmt(cast<ReturnStmt>(*S));     break;
    131 
    132   case Stmt::SwitchStmtClass:   EmitSwitchStmt(cast<SwitchStmt>(*S));     break;
    133   case Stmt::AsmStmtClass:      EmitAsmStmt(cast<AsmStmt>(*S));           break;
    134 
    135   case Stmt::ObjCAtTryStmtClass:
    136     EmitObjCAtTryStmt(cast<ObjCAtTryStmt>(*S));
    137     break;
    138   case Stmt::ObjCAtCatchStmtClass:
    139     llvm_unreachable(
    140                     "@catch statements should be handled by EmitObjCAtTryStmt");
    141   case Stmt::ObjCAtFinallyStmtClass:
    142     llvm_unreachable(
    143                   "@finally statements should be handled by EmitObjCAtTryStmt");
    144   case Stmt::ObjCAtThrowStmtClass:
    145     EmitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(*S));
    146     break;
    147   case Stmt::ObjCAtSynchronizedStmtClass:
    148     EmitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(*S));
    149     break;
    150   case Stmt::ObjCForCollectionStmtClass:
    151     EmitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(*S));
    152     break;
    153   case Stmt::ObjCAutoreleasePoolStmtClass:
    154     EmitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(*S));
    155     break;
    156 
    157   case Stmt::CXXTryStmtClass:
    158     EmitCXXTryStmt(cast<CXXTryStmt>(*S));
    159     break;
    160   case Stmt::CXXForRangeStmtClass:
    161     EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*S));
    162   case Stmt::SEHTryStmtClass:
    163     // FIXME Not yet implemented
    164     break;
    165   }
    166 }
    167 
    168 bool CodeGenFunction::EmitSimpleStmt(const Stmt *S) {
    169   switch (S->getStmtClass()) {
    170   default: return false;
    171   case Stmt::NullStmtClass: break;
    172   case Stmt::CompoundStmtClass: EmitCompoundStmt(cast<CompoundStmt>(*S)); break;
    173   case Stmt::DeclStmtClass:     EmitDeclStmt(cast<DeclStmt>(*S));         break;
    174   case Stmt::LabelStmtClass:    EmitLabelStmt(cast<LabelStmt>(*S));       break;
    175   case Stmt::GotoStmtClass:     EmitGotoStmt(cast<GotoStmt>(*S));         break;
    176   case Stmt::BreakStmtClass:    EmitBreakStmt(cast<BreakStmt>(*S));       break;
    177   case Stmt::ContinueStmtClass: EmitContinueStmt(cast<ContinueStmt>(*S)); break;
    178   case Stmt::DefaultStmtClass:  EmitDefaultStmt(cast<DefaultStmt>(*S));   break;
    179   case Stmt::CaseStmtClass:     EmitCaseStmt(cast<CaseStmt>(*S));         break;
    180   }
    181 
    182   return true;
    183 }
    184 
    185 /// EmitCompoundStmt - Emit a compound statement {..} node.  If GetLast is true,
    186 /// this captures the expression result of the last sub-statement and returns it
    187 /// (for use by the statement expression extension).
    188 RValue CodeGenFunction::EmitCompoundStmt(const CompoundStmt &S, bool GetLast,
    189                                          AggValueSlot AggSlot) {
    190   PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),S.getLBracLoc(),
    191                              "LLVM IR generation of compound statement ('{}')");
    192 
    193   CGDebugInfo *DI = getDebugInfo();
    194   if (DI)
    195     DI->EmitLexicalBlockStart(Builder, S.getLBracLoc());
    196 
    197   // Keep track of the current cleanup stack depth.
    198   RunCleanupsScope Scope(*this);
    199 
    200   for (CompoundStmt::const_body_iterator I = S.body_begin(),
    201        E = S.body_end()-GetLast; I != E; ++I)
    202     EmitStmt(*I);
    203 
    204   if (DI)
    205     DI->EmitLexicalBlockEnd(Builder, S.getRBracLoc());
    206 
    207   RValue RV;
    208   if (!GetLast)
    209     RV = RValue::get(0);
    210   else {
    211     // We have to special case labels here.  They are statements, but when put
    212     // at the end of a statement expression, they yield the value of their
    213     // subexpression.  Handle this by walking through all labels we encounter,
    214     // emitting them before we evaluate the subexpr.
    215     const Stmt *LastStmt = S.body_back();
    216     while (const LabelStmt *LS = dyn_cast<LabelStmt>(LastStmt)) {
    217       EmitLabel(LS->getDecl());
    218       LastStmt = LS->getSubStmt();
    219     }
    220 
    221     EnsureInsertPoint();
    222 
    223     RV = EmitAnyExpr(cast<Expr>(LastStmt), AggSlot);
    224   }
    225 
    226   return RV;
    227 }
    228 
    229 void CodeGenFunction::SimplifyForwardingBlocks(llvm::BasicBlock *BB) {
    230   llvm::BranchInst *BI = dyn_cast<llvm::BranchInst>(BB->getTerminator());
    231 
    232   // If there is a cleanup stack, then we it isn't worth trying to
    233   // simplify this block (we would need to remove it from the scope map
    234   // and cleanup entry).
    235   if (!EHStack.empty())
    236     return;
    237 
    238   // Can only simplify direct branches.
    239   if (!BI || !BI->isUnconditional())
    240     return;
    241 
    242   BB->replaceAllUsesWith(BI->getSuccessor(0));
    243   BI->eraseFromParent();
    244   BB->eraseFromParent();
    245 }
    246 
    247 void CodeGenFunction::EmitBlock(llvm::BasicBlock *BB, bool IsFinished) {
    248   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
    249 
    250   // Fall out of the current block (if necessary).
    251   EmitBranch(BB);
    252 
    253   if (IsFinished && BB->use_empty()) {
    254     delete BB;
    255     return;
    256   }
    257 
    258   // Place the block after the current block, if possible, or else at
    259   // the end of the function.
    260   if (CurBB && CurBB->getParent())
    261     CurFn->getBasicBlockList().insertAfter(CurBB, BB);
    262   else
    263     CurFn->getBasicBlockList().push_back(BB);
    264   Builder.SetInsertPoint(BB);
    265 }
    266 
    267 void CodeGenFunction::EmitBranch(llvm::BasicBlock *Target) {
    268   // Emit a branch from the current block to the target one if this
    269   // was a real block.  If this was just a fall-through block after a
    270   // terminator, don't emit it.
    271   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
    272 
    273   if (!CurBB || CurBB->getTerminator()) {
    274     // If there is no insert point or the previous block is already
    275     // terminated, don't touch it.
    276   } else {
    277     // Otherwise, create a fall-through branch.
    278     Builder.CreateBr(Target);
    279   }
    280 
    281   Builder.ClearInsertionPoint();
    282 }
    283 
    284 void CodeGenFunction::EmitBlockAfterUses(llvm::BasicBlock *block) {
    285   bool inserted = false;
    286   for (llvm::BasicBlock::use_iterator
    287          i = block->use_begin(), e = block->use_end(); i != e; ++i) {
    288     if (llvm::Instruction *insn = dyn_cast<llvm::Instruction>(*i)) {
    289       CurFn->getBasicBlockList().insertAfter(insn->getParent(), block);
    290       inserted = true;
    291       break;
    292     }
    293   }
    294 
    295   if (!inserted)
    296     CurFn->getBasicBlockList().push_back(block);
    297 
    298   Builder.SetInsertPoint(block);
    299 }
    300 
    301 CodeGenFunction::JumpDest
    302 CodeGenFunction::getJumpDestForLabel(const LabelDecl *D) {
    303   JumpDest &Dest = LabelMap[D];
    304   if (Dest.isValid()) return Dest;
    305 
    306   // Create, but don't insert, the new block.
    307   Dest = JumpDest(createBasicBlock(D->getName()),
    308                   EHScopeStack::stable_iterator::invalid(),
    309                   NextCleanupDestIndex++);
    310   return Dest;
    311 }
    312 
    313 void CodeGenFunction::EmitLabel(const LabelDecl *D) {
    314   JumpDest &Dest = LabelMap[D];
    315 
    316   // If we didn't need a forward reference to this label, just go
    317   // ahead and create a destination at the current scope.
    318   if (!Dest.isValid()) {
    319     Dest = getJumpDestInCurrentScope(D->getName());
    320 
    321   // Otherwise, we need to give this label a target depth and remove
    322   // it from the branch-fixups list.
    323   } else {
    324     assert(!Dest.getScopeDepth().isValid() && "already emitted label!");
    325     Dest = JumpDest(Dest.getBlock(),
    326                     EHStack.stable_begin(),
    327                     Dest.getDestIndex());
    328 
    329     ResolveBranchFixups(Dest.getBlock());
    330   }
    331 
    332   EmitBlock(Dest.getBlock());
    333 }
    334 
    335 
    336 void CodeGenFunction::EmitLabelStmt(const LabelStmt &S) {
    337   EmitLabel(S.getDecl());
    338   EmitStmt(S.getSubStmt());
    339 }
    340 
    341 void CodeGenFunction::EmitGotoStmt(const GotoStmt &S) {
    342   // If this code is reachable then emit a stop point (if generating
    343   // debug info). We have to do this ourselves because we are on the
    344   // "simple" statement path.
    345   if (HaveInsertPoint())
    346     EmitStopPoint(&S);
    347 
    348   EmitBranchThroughCleanup(getJumpDestForLabel(S.getLabel()));
    349 }
    350 
    351 
    352 void CodeGenFunction::EmitIndirectGotoStmt(const IndirectGotoStmt &S) {
    353   if (const LabelDecl *Target = S.getConstantTarget()) {
    354     EmitBranchThroughCleanup(getJumpDestForLabel(Target));
    355     return;
    356   }
    357 
    358   // Ensure that we have an i8* for our PHI node.
    359   llvm::Value *V = Builder.CreateBitCast(EmitScalarExpr(S.getTarget()),
    360                                          Int8PtrTy, "addr");
    361   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
    362 
    363 
    364   // Get the basic block for the indirect goto.
    365   llvm::BasicBlock *IndGotoBB = GetIndirectGotoBlock();
    366 
    367   // The first instruction in the block has to be the PHI for the switch dest,
    368   // add an entry for this branch.
    369   cast<llvm::PHINode>(IndGotoBB->begin())->addIncoming(V, CurBB);
    370 
    371   EmitBranch(IndGotoBB);
    372 }
    373 
    374 void CodeGenFunction::EmitIfStmt(const IfStmt &S) {
    375   // C99 6.8.4.1: The first substatement is executed if the expression compares
    376   // unequal to 0.  The condition must be a scalar type.
    377   RunCleanupsScope ConditionScope(*this);
    378 
    379   if (S.getConditionVariable())
    380     EmitAutoVarDecl(*S.getConditionVariable());
    381 
    382   // If the condition constant folds and can be elided, try to avoid emitting
    383   // the condition and the dead arm of the if/else.
    384   bool CondConstant;
    385   if (ConstantFoldsToSimpleInteger(S.getCond(), CondConstant)) {
    386     // Figure out which block (then or else) is executed.
    387     const Stmt *Executed = S.getThen();
    388     const Stmt *Skipped  = S.getElse();
    389     if (!CondConstant)  // Condition false?
    390       std::swap(Executed, Skipped);
    391 
    392     // If the skipped block has no labels in it, just emit the executed block.
    393     // This avoids emitting dead code and simplifies the CFG substantially.
    394     if (!ContainsLabel(Skipped)) {
    395       if (Executed) {
    396         RunCleanupsScope ExecutedScope(*this);
    397         EmitStmt(Executed);
    398       }
    399       return;
    400     }
    401   }
    402 
    403   // Otherwise, the condition did not fold, or we couldn't elide it.  Just emit
    404   // the conditional branch.
    405   llvm::BasicBlock *ThenBlock = createBasicBlock("if.then");
    406   llvm::BasicBlock *ContBlock = createBasicBlock("if.end");
    407   llvm::BasicBlock *ElseBlock = ContBlock;
    408   if (S.getElse())
    409     ElseBlock = createBasicBlock("if.else");
    410   EmitBranchOnBoolExpr(S.getCond(), ThenBlock, ElseBlock);
    411 
    412   // Emit the 'then' code.
    413   EmitBlock(ThenBlock);
    414   {
    415     RunCleanupsScope ThenScope(*this);
    416     EmitStmt(S.getThen());
    417   }
    418   EmitBranch(ContBlock);
    419 
    420   // Emit the 'else' code if present.
    421   if (const Stmt *Else = S.getElse()) {
    422     // There is no need to emit line number for unconditional branch.
    423     if (getDebugInfo())
    424       Builder.SetCurrentDebugLocation(llvm::DebugLoc());
    425     EmitBlock(ElseBlock);
    426     {
    427       RunCleanupsScope ElseScope(*this);
    428       EmitStmt(Else);
    429     }
    430     // There is no need to emit line number for unconditional branch.
    431     if (getDebugInfo())
    432       Builder.SetCurrentDebugLocation(llvm::DebugLoc());
    433     EmitBranch(ContBlock);
    434   }
    435 
    436   // Emit the continuation block for code after the if.
    437   EmitBlock(ContBlock, true);
    438 }
    439 
    440 void CodeGenFunction::EmitWhileStmt(const WhileStmt &S) {
    441   // Emit the header for the loop, which will also become
    442   // the continue target.
    443   JumpDest LoopHeader = getJumpDestInCurrentScope("while.cond");
    444   EmitBlock(LoopHeader.getBlock());
    445 
    446   // Create an exit block for when the condition fails, which will
    447   // also become the break target.
    448   JumpDest LoopExit = getJumpDestInCurrentScope("while.end");
    449 
    450   // Store the blocks to use for break and continue.
    451   BreakContinueStack.push_back(BreakContinue(LoopExit, LoopHeader));
    452 
    453   // C++ [stmt.while]p2:
    454   //   When the condition of a while statement is a declaration, the
    455   //   scope of the variable that is declared extends from its point
    456   //   of declaration (3.3.2) to the end of the while statement.
    457   //   [...]
    458   //   The object created in a condition is destroyed and created
    459   //   with each iteration of the loop.
    460   RunCleanupsScope ConditionScope(*this);
    461 
    462   if (S.getConditionVariable())
    463     EmitAutoVarDecl(*S.getConditionVariable());
    464 
    465   // Evaluate the conditional in the while header.  C99 6.8.5.1: The
    466   // evaluation of the controlling expression takes place before each
    467   // execution of the loop body.
    468   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
    469 
    470   // while(1) is common, avoid extra exit blocks.  Be sure
    471   // to correctly handle break/continue though.
    472   bool EmitBoolCondBranch = true;
    473   if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal))
    474     if (C->isOne())
    475       EmitBoolCondBranch = false;
    476 
    477   // As long as the condition is true, go to the loop body.
    478   llvm::BasicBlock *LoopBody = createBasicBlock("while.body");
    479   if (EmitBoolCondBranch) {
    480     llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
    481     if (ConditionScope.requiresCleanups())
    482       ExitBlock = createBasicBlock("while.exit");
    483 
    484     Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock);
    485 
    486     if (ExitBlock != LoopExit.getBlock()) {
    487       EmitBlock(ExitBlock);
    488       EmitBranchThroughCleanup(LoopExit);
    489     }
    490   }
    491 
    492   // Emit the loop body.  We have to emit this in a cleanup scope
    493   // because it might be a singleton DeclStmt.
    494   {
    495     RunCleanupsScope BodyScope(*this);
    496     EmitBlock(LoopBody);
    497     EmitStmt(S.getBody());
    498   }
    499 
    500   BreakContinueStack.pop_back();
    501 
    502   // Immediately force cleanup.
    503   ConditionScope.ForceCleanup();
    504 
    505   // Branch to the loop header again.
    506   EmitBranch(LoopHeader.getBlock());
    507 
    508   // Emit the exit block.
    509   EmitBlock(LoopExit.getBlock(), true);
    510 
    511   // The LoopHeader typically is just a branch if we skipped emitting
    512   // a branch, try to erase it.
    513   if (!EmitBoolCondBranch)
    514     SimplifyForwardingBlocks(LoopHeader.getBlock());
    515 }
    516 
    517 void CodeGenFunction::EmitDoStmt(const DoStmt &S) {
    518   JumpDest LoopExit = getJumpDestInCurrentScope("do.end");
    519   JumpDest LoopCond = getJumpDestInCurrentScope("do.cond");
    520 
    521   // Store the blocks to use for break and continue.
    522   BreakContinueStack.push_back(BreakContinue(LoopExit, LoopCond));
    523 
    524   // Emit the body of the loop.
    525   llvm::BasicBlock *LoopBody = createBasicBlock("do.body");
    526   EmitBlock(LoopBody);
    527   {
    528     RunCleanupsScope BodyScope(*this);
    529     EmitStmt(S.getBody());
    530   }
    531 
    532   BreakContinueStack.pop_back();
    533 
    534   EmitBlock(LoopCond.getBlock());
    535 
    536   // C99 6.8.5.2: "The evaluation of the controlling expression takes place
    537   // after each execution of the loop body."
    538 
    539   // Evaluate the conditional in the while header.
    540   // C99 6.8.5p2/p4: The first substatement is executed if the expression
    541   // compares unequal to 0.  The condition must be a scalar type.
    542   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
    543 
    544   // "do {} while (0)" is common in macros, avoid extra blocks.  Be sure
    545   // to correctly handle break/continue though.
    546   bool EmitBoolCondBranch = true;
    547   if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal))
    548     if (C->isZero())
    549       EmitBoolCondBranch = false;
    550 
    551   // As long as the condition is true, iterate the loop.
    552   if (EmitBoolCondBranch)
    553     Builder.CreateCondBr(BoolCondVal, LoopBody, LoopExit.getBlock());
    554 
    555   // Emit the exit block.
    556   EmitBlock(LoopExit.getBlock());
    557 
    558   // The DoCond block typically is just a branch if we skipped
    559   // emitting a branch, try to erase it.
    560   if (!EmitBoolCondBranch)
    561     SimplifyForwardingBlocks(LoopCond.getBlock());
    562 }
    563 
    564 void CodeGenFunction::EmitForStmt(const ForStmt &S) {
    565   JumpDest LoopExit = getJumpDestInCurrentScope("for.end");
    566 
    567   RunCleanupsScope ForScope(*this);
    568 
    569   CGDebugInfo *DI = getDebugInfo();
    570   if (DI)
    571     DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin());
    572 
    573   // Evaluate the first part before the loop.
    574   if (S.getInit())
    575     EmitStmt(S.getInit());
    576 
    577   // Start the loop with a block that tests the condition.
    578   // If there's an increment, the continue scope will be overwritten
    579   // later.
    580   JumpDest Continue = getJumpDestInCurrentScope("for.cond");
    581   llvm::BasicBlock *CondBlock = Continue.getBlock();
    582   EmitBlock(CondBlock);
    583 
    584   // Create a cleanup scope for the condition variable cleanups.
    585   RunCleanupsScope ConditionScope(*this);
    586 
    587   llvm::Value *BoolCondVal = 0;
    588   if (S.getCond()) {
    589     // If the for statement has a condition scope, emit the local variable
    590     // declaration.
    591     llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
    592     if (S.getConditionVariable()) {
    593       EmitAutoVarDecl(*S.getConditionVariable());
    594     }
    595 
    596     // If there are any cleanups between here and the loop-exit scope,
    597     // create a block to stage a loop exit along.
    598     if (ForScope.requiresCleanups())
    599       ExitBlock = createBasicBlock("for.cond.cleanup");
    600 
    601     // As long as the condition is true, iterate the loop.
    602     llvm::BasicBlock *ForBody = createBasicBlock("for.body");
    603 
    604     // C99 6.8.5p2/p4: The first substatement is executed if the expression
    605     // compares unequal to 0.  The condition must be a scalar type.
    606     BoolCondVal = EvaluateExprAsBool(S.getCond());
    607     Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock);
    608 
    609     if (ExitBlock != LoopExit.getBlock()) {
    610       EmitBlock(ExitBlock);
    611       EmitBranchThroughCleanup(LoopExit);
    612     }
    613 
    614     EmitBlock(ForBody);
    615   } else {
    616     // Treat it as a non-zero constant.  Don't even create a new block for the
    617     // body, just fall into it.
    618   }
    619 
    620   // If the for loop doesn't have an increment we can just use the
    621   // condition as the continue block.  Otherwise we'll need to create
    622   // a block for it (in the current scope, i.e. in the scope of the
    623   // condition), and that we will become our continue block.
    624   if (S.getInc())
    625     Continue = getJumpDestInCurrentScope("for.inc");
    626 
    627   // Store the blocks to use for break and continue.
    628   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
    629 
    630   {
    631     // Create a separate cleanup scope for the body, in case it is not
    632     // a compound statement.
    633     RunCleanupsScope BodyScope(*this);
    634     EmitStmt(S.getBody());
    635   }
    636 
    637   // If there is an increment, emit it next.
    638   if (S.getInc()) {
    639     EmitBlock(Continue.getBlock());
    640     EmitStmt(S.getInc());
    641   }
    642 
    643   BreakContinueStack.pop_back();
    644 
    645   ConditionScope.ForceCleanup();
    646   EmitBranch(CondBlock);
    647 
    648   ForScope.ForceCleanup();
    649 
    650   if (DI)
    651     DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd());
    652 
    653   // Emit the fall-through block.
    654   EmitBlock(LoopExit.getBlock(), true);
    655 }
    656 
    657 void CodeGenFunction::EmitCXXForRangeStmt(const CXXForRangeStmt &S) {
    658   JumpDest LoopExit = getJumpDestInCurrentScope("for.end");
    659 
    660   RunCleanupsScope ForScope(*this);
    661 
    662   CGDebugInfo *DI = getDebugInfo();
    663   if (DI)
    664     DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin());
    665 
    666   // Evaluate the first pieces before the loop.
    667   EmitStmt(S.getRangeStmt());
    668   EmitStmt(S.getBeginEndStmt());
    669 
    670   // Start the loop with a block that tests the condition.
    671   // If there's an increment, the continue scope will be overwritten
    672   // later.
    673   llvm::BasicBlock *CondBlock = createBasicBlock("for.cond");
    674   EmitBlock(CondBlock);
    675 
    676   // If there are any cleanups between here and the loop-exit scope,
    677   // create a block to stage a loop exit along.
    678   llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
    679   if (ForScope.requiresCleanups())
    680     ExitBlock = createBasicBlock("for.cond.cleanup");
    681 
    682   // The loop body, consisting of the specified body and the loop variable.
    683   llvm::BasicBlock *ForBody = createBasicBlock("for.body");
    684 
    685   // The body is executed if the expression, contextually converted
    686   // to bool, is true.
    687   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
    688   Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock);
    689 
    690   if (ExitBlock != LoopExit.getBlock()) {
    691     EmitBlock(ExitBlock);
    692     EmitBranchThroughCleanup(LoopExit);
    693   }
    694 
    695   EmitBlock(ForBody);
    696 
    697   // Create a block for the increment. In case of a 'continue', we jump there.
    698   JumpDest Continue = getJumpDestInCurrentScope("for.inc");
    699 
    700   // Store the blocks to use for break and continue.
    701   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
    702 
    703   {
    704     // Create a separate cleanup scope for the loop variable and body.
    705     RunCleanupsScope BodyScope(*this);
    706     EmitStmt(S.getLoopVarStmt());
    707     EmitStmt(S.getBody());
    708   }
    709 
    710   // If there is an increment, emit it next.
    711   EmitBlock(Continue.getBlock());
    712   EmitStmt(S.getInc());
    713 
    714   BreakContinueStack.pop_back();
    715 
    716   EmitBranch(CondBlock);
    717 
    718   ForScope.ForceCleanup();
    719 
    720   if (DI)
    721     DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd());
    722 
    723   // Emit the fall-through block.
    724   EmitBlock(LoopExit.getBlock(), true);
    725 }
    726 
    727 void CodeGenFunction::EmitReturnOfRValue(RValue RV, QualType Ty) {
    728   if (RV.isScalar()) {
    729     Builder.CreateStore(RV.getScalarVal(), ReturnValue);
    730   } else if (RV.isAggregate()) {
    731     EmitAggregateCopy(ReturnValue, RV.getAggregateAddr(), Ty);
    732   } else {
    733     StoreComplexToAddr(RV.getComplexVal(), ReturnValue, false);
    734   }
    735   EmitBranchThroughCleanup(ReturnBlock);
    736 }
    737 
    738 /// EmitReturnStmt - Note that due to GCC extensions, this can have an operand
    739 /// if the function returns void, or may be missing one if the function returns
    740 /// non-void.  Fun stuff :).
    741 void CodeGenFunction::EmitReturnStmt(const ReturnStmt &S) {
    742   // Emit the result value, even if unused, to evalute the side effects.
    743   const Expr *RV = S.getRetValue();
    744 
    745   // FIXME: Clean this up by using an LValue for ReturnTemp,
    746   // EmitStoreThroughLValue, and EmitAnyExpr.
    747   if (S.getNRVOCandidate() && S.getNRVOCandidate()->isNRVOVariable() &&
    748       !Target.useGlobalsForAutomaticVariables()) {
    749     // Apply the named return value optimization for this return statement,
    750     // which means doing nothing: the appropriate result has already been
    751     // constructed into the NRVO variable.
    752 
    753     // If there is an NRVO flag for this variable, set it to 1 into indicate
    754     // that the cleanup code should not destroy the variable.
    755     if (llvm::Value *NRVOFlag = NRVOFlags[S.getNRVOCandidate()])
    756       Builder.CreateStore(Builder.getTrue(), NRVOFlag);
    757   } else if (!ReturnValue) {
    758     // Make sure not to return anything, but evaluate the expression
    759     // for side effects.
    760     if (RV)
    761       EmitAnyExpr(RV);
    762   } else if (RV == 0) {
    763     // Do nothing (return value is left uninitialized)
    764   } else if (FnRetTy->isReferenceType()) {
    765     // If this function returns a reference, take the address of the expression
    766     // rather than the value.
    767     RValue Result = EmitReferenceBindingToExpr(RV, /*InitializedDecl=*/0);
    768     Builder.CreateStore(Result.getScalarVal(), ReturnValue);
    769   } else if (!hasAggregateLLVMType(RV->getType())) {
    770     Builder.CreateStore(EmitScalarExpr(RV), ReturnValue);
    771   } else if (RV->getType()->isAnyComplexType()) {
    772     EmitComplexExprIntoAddr(RV, ReturnValue, false);
    773   } else {
    774     EmitAggExpr(RV, AggValueSlot::forAddr(ReturnValue, Qualifiers(),
    775                                           AggValueSlot::IsDestructed,
    776                                           AggValueSlot::DoesNotNeedGCBarriers,
    777                                           AggValueSlot::IsNotAliased));
    778   }
    779 
    780   EmitBranchThroughCleanup(ReturnBlock);
    781 }
    782 
    783 void CodeGenFunction::EmitDeclStmt(const DeclStmt &S) {
    784   // As long as debug info is modeled with instructions, we have to ensure we
    785   // have a place to insert here and write the stop point here.
    786   if (getDebugInfo() && HaveInsertPoint())
    787     EmitStopPoint(&S);
    788 
    789   for (DeclStmt::const_decl_iterator I = S.decl_begin(), E = S.decl_end();
    790        I != E; ++I)
    791     EmitDecl(**I);
    792 }
    793 
    794 void CodeGenFunction::EmitBreakStmt(const BreakStmt &S) {
    795   assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!");
    796 
    797   // If this code is reachable then emit a stop point (if generating
    798   // debug info). We have to do this ourselves because we are on the
    799   // "simple" statement path.
    800   if (HaveInsertPoint())
    801     EmitStopPoint(&S);
    802 
    803   JumpDest Block = BreakContinueStack.back().BreakBlock;
    804   EmitBranchThroughCleanup(Block);
    805 }
    806 
    807 void CodeGenFunction::EmitContinueStmt(const ContinueStmt &S) {
    808   assert(!BreakContinueStack.empty() && "continue stmt not in a loop!");
    809 
    810   // If this code is reachable then emit a stop point (if generating
    811   // debug info). We have to do this ourselves because we are on the
    812   // "simple" statement path.
    813   if (HaveInsertPoint())
    814     EmitStopPoint(&S);
    815 
    816   JumpDest Block = BreakContinueStack.back().ContinueBlock;
    817   EmitBranchThroughCleanup(Block);
    818 }
    819 
    820 /// EmitCaseStmtRange - If case statement range is not too big then
    821 /// add multiple cases to switch instruction, one for each value within
    822 /// the range. If range is too big then emit "if" condition check.
    823 void CodeGenFunction::EmitCaseStmtRange(const CaseStmt &S) {
    824   assert(S.getRHS() && "Expected RHS value in CaseStmt");
    825 
    826   llvm::APSInt LHS = S.getLHS()->EvaluateKnownConstInt(getContext());
    827   llvm::APSInt RHS = S.getRHS()->EvaluateKnownConstInt(getContext());
    828 
    829   // Emit the code for this case. We do this first to make sure it is
    830   // properly chained from our predecessor before generating the
    831   // switch machinery to enter this block.
    832   EmitBlock(createBasicBlock("sw.bb"));
    833   llvm::BasicBlock *CaseDest = Builder.GetInsertBlock();
    834   EmitStmt(S.getSubStmt());
    835 
    836   // If range is empty, do nothing.
    837   if (LHS.isSigned() ? RHS.slt(LHS) : RHS.ult(LHS))
    838     return;
    839 
    840   llvm::APInt Range = RHS - LHS;
    841   // FIXME: parameters such as this should not be hardcoded.
    842   if (Range.ult(llvm::APInt(Range.getBitWidth(), 64))) {
    843     // Range is small enough to add multiple switch instruction cases.
    844     for (unsigned i = 0, e = Range.getZExtValue() + 1; i != e; ++i) {
    845       SwitchInsn->addCase(Builder.getInt(LHS), CaseDest);
    846       LHS++;
    847     }
    848     return;
    849   }
    850 
    851   // The range is too big. Emit "if" condition into a new block,
    852   // making sure to save and restore the current insertion point.
    853   llvm::BasicBlock *RestoreBB = Builder.GetInsertBlock();
    854 
    855   // Push this test onto the chain of range checks (which terminates
    856   // in the default basic block). The switch's default will be changed
    857   // to the top of this chain after switch emission is complete.
    858   llvm::BasicBlock *FalseDest = CaseRangeBlock;
    859   CaseRangeBlock = createBasicBlock("sw.caserange");
    860 
    861   CurFn->getBasicBlockList().push_back(CaseRangeBlock);
    862   Builder.SetInsertPoint(CaseRangeBlock);
    863 
    864   // Emit range check.
    865   llvm::Value *Diff =
    866     Builder.CreateSub(SwitchInsn->getCondition(), Builder.getInt(LHS));
    867   llvm::Value *Cond =
    868     Builder.CreateICmpULE(Diff, Builder.getInt(Range), "inbounds");
    869   Builder.CreateCondBr(Cond, CaseDest, FalseDest);
    870 
    871   // Restore the appropriate insertion point.
    872   if (RestoreBB)
    873     Builder.SetInsertPoint(RestoreBB);
    874   else
    875     Builder.ClearInsertionPoint();
    876 }
    877 
    878 void CodeGenFunction::EmitCaseStmt(const CaseStmt &S) {
    879   // Handle case ranges.
    880   if (S.getRHS()) {
    881     EmitCaseStmtRange(S);
    882     return;
    883   }
    884 
    885   llvm::ConstantInt *CaseVal =
    886     Builder.getInt(S.getLHS()->EvaluateKnownConstInt(getContext()));
    887 
    888   // If the body of the case is just a 'break', and if there was no fallthrough,
    889   // try to not emit an empty block.
    890   if (isa<BreakStmt>(S.getSubStmt())) {
    891     JumpDest Block = BreakContinueStack.back().BreakBlock;
    892 
    893     // Only do this optimization if there are no cleanups that need emitting.
    894     if (isObviouslyBranchWithoutCleanups(Block)) {
    895       SwitchInsn->addCase(CaseVal, Block.getBlock());
    896 
    897       // If there was a fallthrough into this case, make sure to redirect it to
    898       // the end of the switch as well.
    899       if (Builder.GetInsertBlock()) {
    900         Builder.CreateBr(Block.getBlock());
    901         Builder.ClearInsertionPoint();
    902       }
    903       return;
    904     }
    905   }
    906 
    907   EmitBlock(createBasicBlock("sw.bb"));
    908   llvm::BasicBlock *CaseDest = Builder.GetInsertBlock();
    909   SwitchInsn->addCase(CaseVal, CaseDest);
    910 
    911   // Recursively emitting the statement is acceptable, but is not wonderful for
    912   // code where we have many case statements nested together, i.e.:
    913   //  case 1:
    914   //    case 2:
    915   //      case 3: etc.
    916   // Handling this recursively will create a new block for each case statement
    917   // that falls through to the next case which is IR intensive.  It also causes
    918   // deep recursion which can run into stack depth limitations.  Handle
    919   // sequential non-range case statements specially.
    920   const CaseStmt *CurCase = &S;
    921   const CaseStmt *NextCase = dyn_cast<CaseStmt>(S.getSubStmt());
    922 
    923   // Otherwise, iteratively add consecutive cases to this switch stmt.
    924   while (NextCase && NextCase->getRHS() == 0) {
    925     CurCase = NextCase;
    926     llvm::ConstantInt *CaseVal =
    927       Builder.getInt(CurCase->getLHS()->EvaluateKnownConstInt(getContext()));
    928     SwitchInsn->addCase(CaseVal, CaseDest);
    929     NextCase = dyn_cast<CaseStmt>(CurCase->getSubStmt());
    930   }
    931 
    932   // Normal default recursion for non-cases.
    933   EmitStmt(CurCase->getSubStmt());
    934 }
    935 
    936 void CodeGenFunction::EmitDefaultStmt(const DefaultStmt &S) {
    937   llvm::BasicBlock *DefaultBlock = SwitchInsn->getDefaultDest();
    938   assert(DefaultBlock->empty() &&
    939          "EmitDefaultStmt: Default block already defined?");
    940   EmitBlock(DefaultBlock);
    941   EmitStmt(S.getSubStmt());
    942 }
    943 
    944 /// CollectStatementsForCase - Given the body of a 'switch' statement and a
    945 /// constant value that is being switched on, see if we can dead code eliminate
    946 /// the body of the switch to a simple series of statements to emit.  Basically,
    947 /// on a switch (5) we want to find these statements:
    948 ///    case 5:
    949 ///      printf(...);    <--
    950 ///      ++i;            <--
    951 ///      break;
    952 ///
    953 /// and add them to the ResultStmts vector.  If it is unsafe to do this
    954 /// transformation (for example, one of the elided statements contains a label
    955 /// that might be jumped to), return CSFC_Failure.  If we handled it and 'S'
    956 /// should include statements after it (e.g. the printf() line is a substmt of
    957 /// the case) then return CSFC_FallThrough.  If we handled it and found a break
    958 /// statement, then return CSFC_Success.
    959 ///
    960 /// If Case is non-null, then we are looking for the specified case, checking
    961 /// that nothing we jump over contains labels.  If Case is null, then we found
    962 /// the case and are looking for the break.
    963 ///
    964 /// If the recursive walk actually finds our Case, then we set FoundCase to
    965 /// true.
    966 ///
    967 enum CSFC_Result { CSFC_Failure, CSFC_FallThrough, CSFC_Success };
    968 static CSFC_Result CollectStatementsForCase(const Stmt *S,
    969                                             const SwitchCase *Case,
    970                                             bool &FoundCase,
    971                               SmallVectorImpl<const Stmt*> &ResultStmts) {
    972   // If this is a null statement, just succeed.
    973   if (S == 0)
    974     return Case ? CSFC_Success : CSFC_FallThrough;
    975 
    976   // If this is the switchcase (case 4: or default) that we're looking for, then
    977   // we're in business.  Just add the substatement.
    978   if (const SwitchCase *SC = dyn_cast<SwitchCase>(S)) {
    979     if (S == Case) {
    980       FoundCase = true;
    981       return CollectStatementsForCase(SC->getSubStmt(), 0, FoundCase,
    982                                       ResultStmts);
    983     }
    984 
    985     // Otherwise, this is some other case or default statement, just ignore it.
    986     return CollectStatementsForCase(SC->getSubStmt(), Case, FoundCase,
    987                                     ResultStmts);
    988   }
    989 
    990   // If we are in the live part of the code and we found our break statement,
    991   // return a success!
    992   if (Case == 0 && isa<BreakStmt>(S))
    993     return CSFC_Success;
    994 
    995   // If this is a switch statement, then it might contain the SwitchCase, the
    996   // break, or neither.
    997   if (const CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) {
    998     // Handle this as two cases: we might be looking for the SwitchCase (if so
    999     // the skipped statements must be skippable) or we might already have it.
   1000     CompoundStmt::const_body_iterator I = CS->body_begin(), E = CS->body_end();
   1001     if (Case) {
   1002       // Keep track of whether we see a skipped declaration.  The code could be
   1003       // using the declaration even if it is skipped, so we can't optimize out
   1004       // the decl if the kept statements might refer to it.
   1005       bool HadSkippedDecl = false;
   1006 
   1007       // If we're looking for the case, just see if we can skip each of the
   1008       // substatements.
   1009       for (; Case && I != E; ++I) {
   1010         HadSkippedDecl |= isa<DeclStmt>(*I);
   1011 
   1012         switch (CollectStatementsForCase(*I, Case, FoundCase, ResultStmts)) {
   1013         case CSFC_Failure: return CSFC_Failure;
   1014         case CSFC_Success:
   1015           // A successful result means that either 1) that the statement doesn't
   1016           // have the case and is skippable, or 2) does contain the case value
   1017           // and also contains the break to exit the switch.  In the later case,
   1018           // we just verify the rest of the statements are elidable.
   1019           if (FoundCase) {
   1020             // If we found the case and skipped declarations, we can't do the
   1021             // optimization.
   1022             if (HadSkippedDecl)
   1023               return CSFC_Failure;
   1024 
   1025             for (++I; I != E; ++I)
   1026               if (CodeGenFunction::ContainsLabel(*I, true))
   1027                 return CSFC_Failure;
   1028             return CSFC_Success;
   1029           }
   1030           break;
   1031         case CSFC_FallThrough:
   1032           // If we have a fallthrough condition, then we must have found the
   1033           // case started to include statements.  Consider the rest of the
   1034           // statements in the compound statement as candidates for inclusion.
   1035           assert(FoundCase && "Didn't find case but returned fallthrough?");
   1036           // We recursively found Case, so we're not looking for it anymore.
   1037           Case = 0;
   1038 
   1039           // If we found the case and skipped declarations, we can't do the
   1040           // optimization.
   1041           if (HadSkippedDecl)
   1042             return CSFC_Failure;
   1043           break;
   1044         }
   1045       }
   1046     }
   1047 
   1048     // If we have statements in our range, then we know that the statements are
   1049     // live and need to be added to the set of statements we're tracking.
   1050     for (; I != E; ++I) {
   1051       switch (CollectStatementsForCase(*I, 0, FoundCase, ResultStmts)) {
   1052       case CSFC_Failure: return CSFC_Failure;
   1053       case CSFC_FallThrough:
   1054         // A fallthrough result means that the statement was simple and just
   1055         // included in ResultStmt, keep adding them afterwards.
   1056         break;
   1057       case CSFC_Success:
   1058         // A successful result means that we found the break statement and
   1059         // stopped statement inclusion.  We just ensure that any leftover stmts
   1060         // are skippable and return success ourselves.
   1061         for (++I; I != E; ++I)
   1062           if (CodeGenFunction::ContainsLabel(*I, true))
   1063             return CSFC_Failure;
   1064         return CSFC_Success;
   1065       }
   1066     }
   1067 
   1068     return Case ? CSFC_Success : CSFC_FallThrough;
   1069   }
   1070 
   1071   // Okay, this is some other statement that we don't handle explicitly, like a
   1072   // for statement or increment etc.  If we are skipping over this statement,
   1073   // just verify it doesn't have labels, which would make it invalid to elide.
   1074   if (Case) {
   1075     if (CodeGenFunction::ContainsLabel(S, true))
   1076       return CSFC_Failure;
   1077     return CSFC_Success;
   1078   }
   1079 
   1080   // Otherwise, we want to include this statement.  Everything is cool with that
   1081   // so long as it doesn't contain a break out of the switch we're in.
   1082   if (CodeGenFunction::containsBreak(S)) return CSFC_Failure;
   1083 
   1084   // Otherwise, everything is great.  Include the statement and tell the caller
   1085   // that we fall through and include the next statement as well.
   1086   ResultStmts.push_back(S);
   1087   return CSFC_FallThrough;
   1088 }
   1089 
   1090 /// FindCaseStatementsForValue - Find the case statement being jumped to and
   1091 /// then invoke CollectStatementsForCase to find the list of statements to emit
   1092 /// for a switch on constant.  See the comment above CollectStatementsForCase
   1093 /// for more details.
   1094 static bool FindCaseStatementsForValue(const SwitchStmt &S,
   1095                                        const llvm::APInt &ConstantCondValue,
   1096                                 SmallVectorImpl<const Stmt*> &ResultStmts,
   1097                                        ASTContext &C) {
   1098   // First step, find the switch case that is being branched to.  We can do this
   1099   // efficiently by scanning the SwitchCase list.
   1100   const SwitchCase *Case = S.getSwitchCaseList();
   1101   const DefaultStmt *DefaultCase = 0;
   1102 
   1103   for (; Case; Case = Case->getNextSwitchCase()) {
   1104     // It's either a default or case.  Just remember the default statement in
   1105     // case we're not jumping to any numbered cases.
   1106     if (const DefaultStmt *DS = dyn_cast<DefaultStmt>(Case)) {
   1107       DefaultCase = DS;
   1108       continue;
   1109     }
   1110 
   1111     // Check to see if this case is the one we're looking for.
   1112     const CaseStmt *CS = cast<CaseStmt>(Case);
   1113     // Don't handle case ranges yet.
   1114     if (CS->getRHS()) return false;
   1115 
   1116     // If we found our case, remember it as 'case'.
   1117     if (CS->getLHS()->EvaluateKnownConstInt(C) == ConstantCondValue)
   1118       break;
   1119   }
   1120 
   1121   // If we didn't find a matching case, we use a default if it exists, or we
   1122   // elide the whole switch body!
   1123   if (Case == 0) {
   1124     // It is safe to elide the body of the switch if it doesn't contain labels
   1125     // etc.  If it is safe, return successfully with an empty ResultStmts list.
   1126     if (DefaultCase == 0)
   1127       return !CodeGenFunction::ContainsLabel(&S);
   1128     Case = DefaultCase;
   1129   }
   1130 
   1131   // Ok, we know which case is being jumped to, try to collect all the
   1132   // statements that follow it.  This can fail for a variety of reasons.  Also,
   1133   // check to see that the recursive walk actually found our case statement.
   1134   // Insane cases like this can fail to find it in the recursive walk since we
   1135   // don't handle every stmt kind:
   1136   // switch (4) {
   1137   //   while (1) {
   1138   //     case 4: ...
   1139   bool FoundCase = false;
   1140   return CollectStatementsForCase(S.getBody(), Case, FoundCase,
   1141                                   ResultStmts) != CSFC_Failure &&
   1142          FoundCase;
   1143 }
   1144 
   1145 void CodeGenFunction::EmitSwitchStmt(const SwitchStmt &S) {
   1146   JumpDest SwitchExit = getJumpDestInCurrentScope("sw.epilog");
   1147 
   1148   RunCleanupsScope ConditionScope(*this);
   1149 
   1150   if (S.getConditionVariable())
   1151     EmitAutoVarDecl(*S.getConditionVariable());
   1152 
   1153   // See if we can constant fold the condition of the switch and therefore only
   1154   // emit the live case statement (if any) of the switch.
   1155   llvm::APInt ConstantCondValue;
   1156   if (ConstantFoldsToSimpleInteger(S.getCond(), ConstantCondValue)) {
   1157     SmallVector<const Stmt*, 4> CaseStmts;
   1158     if (FindCaseStatementsForValue(S, ConstantCondValue, CaseStmts,
   1159                                    getContext())) {
   1160       RunCleanupsScope ExecutedScope(*this);
   1161 
   1162       // Okay, we can dead code eliminate everything except this case.  Emit the
   1163       // specified series of statements and we're good.
   1164       for (unsigned i = 0, e = CaseStmts.size(); i != e; ++i)
   1165         EmitStmt(CaseStmts[i]);
   1166       return;
   1167     }
   1168   }
   1169 
   1170   llvm::Value *CondV = EmitScalarExpr(S.getCond());
   1171 
   1172   // Handle nested switch statements.
   1173   llvm::SwitchInst *SavedSwitchInsn = SwitchInsn;
   1174   llvm::BasicBlock *SavedCRBlock = CaseRangeBlock;
   1175 
   1176   // Create basic block to hold stuff that comes after switch
   1177   // statement. We also need to create a default block now so that
   1178   // explicit case ranges tests can have a place to jump to on
   1179   // failure.
   1180   llvm::BasicBlock *DefaultBlock = createBasicBlock("sw.default");
   1181   SwitchInsn = Builder.CreateSwitch(CondV, DefaultBlock);
   1182   CaseRangeBlock = DefaultBlock;
   1183 
   1184   // Clear the insertion point to indicate we are in unreachable code.
   1185   Builder.ClearInsertionPoint();
   1186 
   1187   // All break statements jump to NextBlock. If BreakContinueStack is non empty
   1188   // then reuse last ContinueBlock.
   1189   JumpDest OuterContinue;
   1190   if (!BreakContinueStack.empty())
   1191     OuterContinue = BreakContinueStack.back().ContinueBlock;
   1192 
   1193   BreakContinueStack.push_back(BreakContinue(SwitchExit, OuterContinue));
   1194 
   1195   // Emit switch body.
   1196   EmitStmt(S.getBody());
   1197 
   1198   BreakContinueStack.pop_back();
   1199 
   1200   // Update the default block in case explicit case range tests have
   1201   // been chained on top.
   1202   SwitchInsn->setSuccessor(0, CaseRangeBlock);
   1203 
   1204   // If a default was never emitted:
   1205   if (!DefaultBlock->getParent()) {
   1206     // If we have cleanups, emit the default block so that there's a
   1207     // place to jump through the cleanups from.
   1208     if (ConditionScope.requiresCleanups()) {
   1209       EmitBlock(DefaultBlock);
   1210 
   1211     // Otherwise, just forward the default block to the switch end.
   1212     } else {
   1213       DefaultBlock->replaceAllUsesWith(SwitchExit.getBlock());
   1214       delete DefaultBlock;
   1215     }
   1216   }
   1217 
   1218   ConditionScope.ForceCleanup();
   1219 
   1220   // Emit continuation.
   1221   EmitBlock(SwitchExit.getBlock(), true);
   1222 
   1223   SwitchInsn = SavedSwitchInsn;
   1224   CaseRangeBlock = SavedCRBlock;
   1225 }
   1226 
   1227 static std::string
   1228 SimplifyConstraint(const char *Constraint, const TargetInfo &Target,
   1229                  SmallVectorImpl<TargetInfo::ConstraintInfo> *OutCons=0) {
   1230   std::string Result;
   1231 
   1232   while (*Constraint) {
   1233     switch (*Constraint) {
   1234     default:
   1235       Result += Target.convertConstraint(Constraint);
   1236       break;
   1237     // Ignore these
   1238     case '*':
   1239     case '?':
   1240     case '!':
   1241     case '=': // Will see this and the following in mult-alt constraints.
   1242     case '+':
   1243       break;
   1244     case ',':
   1245       Result += "|";
   1246       break;
   1247     case 'g':
   1248       Result += "imr";
   1249       break;
   1250     case '[': {
   1251       assert(OutCons &&
   1252              "Must pass output names to constraints with a symbolic name");
   1253       unsigned Index;
   1254       bool result = Target.resolveSymbolicName(Constraint,
   1255                                                &(*OutCons)[0],
   1256                                                OutCons->size(), Index);
   1257       assert(result && "Could not resolve symbolic name"); (void)result;
   1258       Result += llvm::utostr(Index);
   1259       break;
   1260     }
   1261     }
   1262 
   1263     Constraint++;
   1264   }
   1265 
   1266   return Result;
   1267 }
   1268 
   1269 /// AddVariableConstraints - Look at AsmExpr and if it is a variable declared
   1270 /// as using a particular register add that as a constraint that will be used
   1271 /// in this asm stmt.
   1272 static std::string
   1273 AddVariableConstraints(const std::string &Constraint, const Expr &AsmExpr,
   1274                        const TargetInfo &Target, CodeGenModule &CGM,
   1275                        const AsmStmt &Stmt) {
   1276   const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(&AsmExpr);
   1277   if (!AsmDeclRef)
   1278     return Constraint;
   1279   const ValueDecl &Value = *AsmDeclRef->getDecl();
   1280   const VarDecl *Variable = dyn_cast<VarDecl>(&Value);
   1281   if (!Variable)
   1282     return Constraint;
   1283   AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>();
   1284   if (!Attr)
   1285     return Constraint;
   1286   StringRef Register = Attr->getLabel();
   1287   assert(Target.isValidGCCRegisterName(Register));
   1288   // We're using validateOutputConstraint here because we only care if
   1289   // this is a register constraint.
   1290   TargetInfo::ConstraintInfo Info(Constraint, "");
   1291   if (Target.validateOutputConstraint(Info) &&
   1292       !Info.allowsRegister()) {
   1293     CGM.ErrorUnsupported(&Stmt, "__asm__");
   1294     return Constraint;
   1295   }
   1296   // Canonicalize the register here before returning it.
   1297   Register = Target.getNormalizedGCCRegisterName(Register);
   1298   return "{" + Register.str() + "}";
   1299 }
   1300 
   1301 llvm::Value*
   1302 CodeGenFunction::EmitAsmInputLValue(const AsmStmt &S,
   1303                                     const TargetInfo::ConstraintInfo &Info,
   1304                                     LValue InputValue, QualType InputType,
   1305                                     std::string &ConstraintStr) {
   1306   llvm::Value *Arg;
   1307   if (Info.allowsRegister() || !Info.allowsMemory()) {
   1308     if (!CodeGenFunction::hasAggregateLLVMType(InputType)) {
   1309       Arg = EmitLoadOfLValue(InputValue).getScalarVal();
   1310     } else {
   1311       llvm::Type *Ty = ConvertType(InputType);
   1312       uint64_t Size = CGM.getTargetData().getTypeSizeInBits(Ty);
   1313       if (Size <= 64 && llvm::isPowerOf2_64(Size)) {
   1314         Ty = llvm::IntegerType::get(getLLVMContext(), Size);
   1315         Ty = llvm::PointerType::getUnqual(Ty);
   1316 
   1317         Arg = Builder.CreateLoad(Builder.CreateBitCast(InputValue.getAddress(),
   1318                                                        Ty));
   1319       } else {
   1320         Arg = InputValue.getAddress();
   1321         ConstraintStr += '*';
   1322       }
   1323     }
   1324   } else {
   1325     Arg = InputValue.getAddress();
   1326     ConstraintStr += '*';
   1327   }
   1328 
   1329   return Arg;
   1330 }
   1331 
   1332 llvm::Value* CodeGenFunction::EmitAsmInput(const AsmStmt &S,
   1333                                          const TargetInfo::ConstraintInfo &Info,
   1334                                            const Expr *InputExpr,
   1335                                            std::string &ConstraintStr) {
   1336   if (Info.allowsRegister() || !Info.allowsMemory())
   1337     if (!CodeGenFunction::hasAggregateLLVMType(InputExpr->getType()))
   1338       return EmitScalarExpr(InputExpr);
   1339 
   1340   InputExpr = InputExpr->IgnoreParenNoopCasts(getContext());
   1341   LValue Dest = EmitLValue(InputExpr);
   1342   return EmitAsmInputLValue(S, Info, Dest, InputExpr->getType(), ConstraintStr);
   1343 }
   1344 
   1345 /// getAsmSrcLocInfo - Return the !srcloc metadata node to attach to an inline
   1346 /// asm call instruction.  The !srcloc MDNode contains a list of constant
   1347 /// integers which are the source locations of the start of each line in the
   1348 /// asm.
   1349 static llvm::MDNode *getAsmSrcLocInfo(const StringLiteral *Str,
   1350                                       CodeGenFunction &CGF) {
   1351   SmallVector<llvm::Value *, 8> Locs;
   1352   // Add the location of the first line to the MDNode.
   1353   Locs.push_back(llvm::ConstantInt::get(CGF.Int32Ty,
   1354                                         Str->getLocStart().getRawEncoding()));
   1355   StringRef StrVal = Str->getString();
   1356   if (!StrVal.empty()) {
   1357     const SourceManager &SM = CGF.CGM.getContext().getSourceManager();
   1358     const LangOptions &LangOpts = CGF.CGM.getLangOptions();
   1359 
   1360     // Add the location of the start of each subsequent line of the asm to the
   1361     // MDNode.
   1362     for (unsigned i = 0, e = StrVal.size()-1; i != e; ++i) {
   1363       if (StrVal[i] != '\n') continue;
   1364       SourceLocation LineLoc = Str->getLocationOfByte(i+1, SM, LangOpts,
   1365                                                       CGF.Target);
   1366       Locs.push_back(llvm::ConstantInt::get(CGF.Int32Ty,
   1367                                             LineLoc.getRawEncoding()));
   1368     }
   1369   }
   1370 
   1371   return llvm::MDNode::get(CGF.getLLVMContext(), Locs);
   1372 }
   1373 
   1374 void CodeGenFunction::EmitAsmStmt(const AsmStmt &S) {
   1375   // Analyze the asm string to decompose it into its pieces.  We know that Sema
   1376   // has already done this, so it is guaranteed to be successful.
   1377   SmallVector<AsmStmt::AsmStringPiece, 4> Pieces;
   1378   unsigned DiagOffs;
   1379   S.AnalyzeAsmString(Pieces, getContext(), DiagOffs);
   1380 
   1381   // Assemble the pieces into the final asm string.
   1382   std::string AsmString;
   1383   for (unsigned i = 0, e = Pieces.size(); i != e; ++i) {
   1384     if (Pieces[i].isString())
   1385       AsmString += Pieces[i].getString();
   1386     else if (Pieces[i].getModifier() == '\0')
   1387       AsmString += '$' + llvm::utostr(Pieces[i].getOperandNo());
   1388     else
   1389       AsmString += "${" + llvm::utostr(Pieces[i].getOperandNo()) + ':' +
   1390                    Pieces[i].getModifier() + '}';
   1391   }
   1392 
   1393   // Get all the output and input constraints together.
   1394   SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
   1395   SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
   1396 
   1397   for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
   1398     TargetInfo::ConstraintInfo Info(S.getOutputConstraint(i),
   1399                                     S.getOutputName(i));
   1400     bool IsValid = Target.validateOutputConstraint(Info); (void)IsValid;
   1401     assert(IsValid && "Failed to parse output constraint");
   1402     OutputConstraintInfos.push_back(Info);
   1403   }
   1404 
   1405   for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
   1406     TargetInfo::ConstraintInfo Info(S.getInputConstraint(i),
   1407                                     S.getInputName(i));
   1408     bool IsValid = Target.validateInputConstraint(OutputConstraintInfos.data(),
   1409                                                   S.getNumOutputs(), Info);
   1410     assert(IsValid && "Failed to parse input constraint"); (void)IsValid;
   1411     InputConstraintInfos.push_back(Info);
   1412   }
   1413 
   1414   std::string Constraints;
   1415 
   1416   std::vector<LValue> ResultRegDests;
   1417   std::vector<QualType> ResultRegQualTys;
   1418   std::vector<llvm::Type *> ResultRegTypes;
   1419   std::vector<llvm::Type *> ResultTruncRegTypes;
   1420   std::vector<llvm::Type*> ArgTypes;
   1421   std::vector<llvm::Value*> Args;
   1422 
   1423   // Keep track of inout constraints.
   1424   std::string InOutConstraints;
   1425   std::vector<llvm::Value*> InOutArgs;
   1426   std::vector<llvm::Type*> InOutArgTypes;
   1427 
   1428   for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
   1429     TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i];
   1430 
   1431     // Simplify the output constraint.
   1432     std::string OutputConstraint(S.getOutputConstraint(i));
   1433     OutputConstraint = SimplifyConstraint(OutputConstraint.c_str() + 1, Target);
   1434 
   1435     const Expr *OutExpr = S.getOutputExpr(i);
   1436     OutExpr = OutExpr->IgnoreParenNoopCasts(getContext());
   1437 
   1438     OutputConstraint = AddVariableConstraints(OutputConstraint, *OutExpr,
   1439                                               Target, CGM, S);
   1440 
   1441     LValue Dest = EmitLValue(OutExpr);
   1442     if (!Constraints.empty())
   1443       Constraints += ',';
   1444 
   1445     // If this is a register output, then make the inline asm return it
   1446     // by-value.  If this is a memory result, return the value by-reference.
   1447     if (!Info.allowsMemory() && !hasAggregateLLVMType(OutExpr->getType())) {
   1448       Constraints += "=" + OutputConstraint;
   1449       ResultRegQualTys.push_back(OutExpr->getType());
   1450       ResultRegDests.push_back(Dest);
   1451       ResultRegTypes.push_back(ConvertTypeForMem(OutExpr->getType()));
   1452       ResultTruncRegTypes.push_back(ResultRegTypes.back());
   1453 
   1454       // If this output is tied to an input, and if the input is larger, then
   1455       // we need to set the actual result type of the inline asm node to be the
   1456       // same as the input type.
   1457       if (Info.hasMatchingInput()) {
   1458         unsigned InputNo;
   1459         for (InputNo = 0; InputNo != S.getNumInputs(); ++InputNo) {
   1460           TargetInfo::ConstraintInfo &Input = InputConstraintInfos[InputNo];
   1461           if (Input.hasTiedOperand() && Input.getTiedOperand() == i)
   1462             break;
   1463         }
   1464         assert(InputNo != S.getNumInputs() && "Didn't find matching input!");
   1465 
   1466         QualType InputTy = S.getInputExpr(InputNo)->getType();
   1467         QualType OutputType = OutExpr->getType();
   1468 
   1469         uint64_t InputSize = getContext().getTypeSize(InputTy);
   1470         if (getContext().getTypeSize(OutputType) < InputSize) {
   1471           // Form the asm to return the value as a larger integer or fp type.
   1472           ResultRegTypes.back() = ConvertType(InputTy);
   1473         }
   1474       }
   1475       if (llvm::Type* AdjTy =
   1476             getTargetHooks().adjustInlineAsmType(*this, OutputConstraint,
   1477                                                  ResultRegTypes.back()))
   1478         ResultRegTypes.back() = AdjTy;
   1479     } else {
   1480       ArgTypes.push_back(Dest.getAddress()->getType());
   1481       Args.push_back(Dest.getAddress());
   1482       Constraints += "=*";
   1483       Constraints += OutputConstraint;
   1484     }
   1485 
   1486     if (Info.isReadWrite()) {
   1487       InOutConstraints += ',';
   1488 
   1489       const Expr *InputExpr = S.getOutputExpr(i);
   1490       llvm::Value *Arg = EmitAsmInputLValue(S, Info, Dest, InputExpr->getType(),
   1491                                             InOutConstraints);
   1492 
   1493       if (Info.allowsRegister())
   1494         InOutConstraints += llvm::utostr(i);
   1495       else
   1496         InOutConstraints += OutputConstraint;
   1497 
   1498       InOutArgTypes.push_back(Arg->getType());
   1499       InOutArgs.push_back(Arg);
   1500     }
   1501   }
   1502 
   1503   unsigned NumConstraints = S.getNumOutputs() + S.getNumInputs();
   1504 
   1505   for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
   1506     const Expr *InputExpr = S.getInputExpr(i);
   1507 
   1508     TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
   1509 
   1510     if (!Constraints.empty())
   1511       Constraints += ',';
   1512 
   1513     // Simplify the input constraint.
   1514     std::string InputConstraint(S.getInputConstraint(i));
   1515     InputConstraint = SimplifyConstraint(InputConstraint.c_str(), Target,
   1516                                          &OutputConstraintInfos);
   1517 
   1518     InputConstraint =
   1519       AddVariableConstraints(InputConstraint,
   1520                             *InputExpr->IgnoreParenNoopCasts(getContext()),
   1521                             Target, CGM, S);
   1522 
   1523     llvm::Value *Arg = EmitAsmInput(S, Info, InputExpr, Constraints);
   1524 
   1525     // If this input argument is tied to a larger output result, extend the
   1526     // input to be the same size as the output.  The LLVM backend wants to see
   1527     // the input and output of a matching constraint be the same size.  Note
   1528     // that GCC does not define what the top bits are here.  We use zext because
   1529     // that is usually cheaper, but LLVM IR should really get an anyext someday.
   1530     if (Info.hasTiedOperand()) {
   1531       unsigned Output = Info.getTiedOperand();
   1532       QualType OutputType = S.getOutputExpr(Output)->getType();
   1533       QualType InputTy = InputExpr->getType();
   1534 
   1535       if (getContext().getTypeSize(OutputType) >
   1536           getContext().getTypeSize(InputTy)) {
   1537         // Use ptrtoint as appropriate so that we can do our extension.
   1538         if (isa<llvm::PointerType>(Arg->getType()))
   1539           Arg = Builder.CreatePtrToInt(Arg, IntPtrTy);
   1540         llvm::Type *OutputTy = ConvertType(OutputType);
   1541         if (isa<llvm::IntegerType>(OutputTy))
   1542           Arg = Builder.CreateZExt(Arg, OutputTy);
   1543         else if (isa<llvm::PointerType>(OutputTy))
   1544           Arg = Builder.CreateZExt(Arg, IntPtrTy);
   1545         else {
   1546           assert(OutputTy->isFloatingPointTy() && "Unexpected output type");
   1547           Arg = Builder.CreateFPExt(Arg, OutputTy);
   1548         }
   1549       }
   1550     }
   1551     if (llvm::Type* AdjTy =
   1552               getTargetHooks().adjustInlineAsmType(*this, InputConstraint,
   1553                                                    Arg->getType()))
   1554       Arg = Builder.CreateBitCast(Arg, AdjTy);
   1555 
   1556     ArgTypes.push_back(Arg->getType());
   1557     Args.push_back(Arg);
   1558     Constraints += InputConstraint;
   1559   }
   1560 
   1561   // Append the "input" part of inout constraints last.
   1562   for (unsigned i = 0, e = InOutArgs.size(); i != e; i++) {
   1563     ArgTypes.push_back(InOutArgTypes[i]);
   1564     Args.push_back(InOutArgs[i]);
   1565   }
   1566   Constraints += InOutConstraints;
   1567 
   1568   // Clobbers
   1569   for (unsigned i = 0, e = S.getNumClobbers(); i != e; i++) {
   1570     StringRef Clobber = S.getClobber(i)->getString();
   1571 
   1572     if (Clobber != "memory" && Clobber != "cc")
   1573     Clobber = Target.getNormalizedGCCRegisterName(Clobber);
   1574 
   1575     if (i != 0 || NumConstraints != 0)
   1576       Constraints += ',';
   1577 
   1578     Constraints += "~{";
   1579     Constraints += Clobber;
   1580     Constraints += '}';
   1581   }
   1582 
   1583   // Add machine specific clobbers
   1584   std::string MachineClobbers = Target.getClobbers();
   1585   if (!MachineClobbers.empty()) {
   1586     if (!Constraints.empty())
   1587       Constraints += ',';
   1588     Constraints += MachineClobbers;
   1589   }
   1590 
   1591   llvm::Type *ResultType;
   1592   if (ResultRegTypes.empty())
   1593     ResultType = llvm::Type::getVoidTy(getLLVMContext());
   1594   else if (ResultRegTypes.size() == 1)
   1595     ResultType = ResultRegTypes[0];
   1596   else
   1597     ResultType = llvm::StructType::get(getLLVMContext(), ResultRegTypes);
   1598 
   1599   llvm::FunctionType *FTy =
   1600     llvm::FunctionType::get(ResultType, ArgTypes, false);
   1601 
   1602   llvm::InlineAsm *IA =
   1603     llvm::InlineAsm::get(FTy, AsmString, Constraints,
   1604                          S.isVolatile() || S.getNumOutputs() == 0);
   1605   llvm::CallInst *Result = Builder.CreateCall(IA, Args);
   1606   Result->addAttribute(~0, llvm::Attribute::NoUnwind);
   1607 
   1608   // Slap the source location of the inline asm into a !srcloc metadata on the
   1609   // call.
   1610   Result->setMetadata("srcloc", getAsmSrcLocInfo(S.getAsmString(), *this));
   1611 
   1612   // Extract all of the register value results from the asm.
   1613   std::vector<llvm::Value*> RegResults;
   1614   if (ResultRegTypes.size() == 1) {
   1615     RegResults.push_back(Result);
   1616   } else {
   1617     for (unsigned i = 0, e = ResultRegTypes.size(); i != e; ++i) {
   1618       llvm::Value *Tmp = Builder.CreateExtractValue(Result, i, "asmresult");
   1619       RegResults.push_back(Tmp);
   1620     }
   1621   }
   1622 
   1623   for (unsigned i = 0, e = RegResults.size(); i != e; ++i) {
   1624     llvm::Value *Tmp = RegResults[i];
   1625 
   1626     // If the result type of the LLVM IR asm doesn't match the result type of
   1627     // the expression, do the conversion.
   1628     if (ResultRegTypes[i] != ResultTruncRegTypes[i]) {
   1629       llvm::Type *TruncTy = ResultTruncRegTypes[i];
   1630 
   1631       // Truncate the integer result to the right size, note that TruncTy can be
   1632       // a pointer.
   1633       if (TruncTy->isFloatingPointTy())
   1634         Tmp = Builder.CreateFPTrunc(Tmp, TruncTy);
   1635       else if (TruncTy->isPointerTy() && Tmp->getType()->isIntegerTy()) {
   1636         uint64_t ResSize = CGM.getTargetData().getTypeSizeInBits(TruncTy);
   1637         Tmp = Builder.CreateTrunc(Tmp,
   1638                    llvm::IntegerType::get(getLLVMContext(), (unsigned)ResSize));
   1639         Tmp = Builder.CreateIntToPtr(Tmp, TruncTy);
   1640       } else if (Tmp->getType()->isPointerTy() && TruncTy->isIntegerTy()) {
   1641         uint64_t TmpSize =CGM.getTargetData().getTypeSizeInBits(Tmp->getType());
   1642         Tmp = Builder.CreatePtrToInt(Tmp,
   1643                    llvm::IntegerType::get(getLLVMContext(), (unsigned)TmpSize));
   1644         Tmp = Builder.CreateTrunc(Tmp, TruncTy);
   1645       } else if (TruncTy->isIntegerTy()) {
   1646         Tmp = Builder.CreateTrunc(Tmp, TruncTy);
   1647       } else if (TruncTy->isVectorTy()) {
   1648         Tmp = Builder.CreateBitCast(Tmp, TruncTy);
   1649       }
   1650     }
   1651 
   1652     EmitStoreThroughLValue(RValue::get(Tmp), ResultRegDests[i]);
   1653   }
   1654 }
   1655