Home | History | Annotate | Download | only in CodeGen
      1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This coordinates the per-module state used while generating code.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "CodeGenModule.h"
     15 #include "CGDebugInfo.h"
     16 #include "CodeGenFunction.h"
     17 #include "CodeGenTBAA.h"
     18 #include "CGCall.h"
     19 #include "CGCUDARuntime.h"
     20 #include "CGCXXABI.h"
     21 #include "CGObjCRuntime.h"
     22 #include "CGOpenCLRuntime.h"
     23 #include "TargetInfo.h"
     24 #include "clang/Frontend/CodeGenOptions.h"
     25 #include "clang/AST/ASTContext.h"
     26 #include "clang/AST/CharUnits.h"
     27 #include "clang/AST/DeclObjC.h"
     28 #include "clang/AST/DeclCXX.h"
     29 #include "clang/AST/DeclTemplate.h"
     30 #include "clang/AST/Mangle.h"
     31 #include "clang/AST/RecordLayout.h"
     32 #include "clang/Basic/Diagnostic.h"
     33 #include "clang/Basic/SourceManager.h"
     34 #include "clang/Basic/TargetInfo.h"
     35 #include "clang/Basic/ConvertUTF.h"
     36 #include "llvm/CallingConv.h"
     37 #include "llvm/Module.h"
     38 #include "llvm/Intrinsics.h"
     39 #include "llvm/LLVMContext.h"
     40 #include "llvm/ADT/Triple.h"
     41 #include "llvm/Target/Mangler.h"
     42 #include "llvm/Target/TargetData.h"
     43 #include "llvm/Support/CallSite.h"
     44 #include "llvm/Support/ErrorHandling.h"
     45 using namespace clang;
     46 using namespace CodeGen;
     47 
     48 static const char AnnotationSection[] = "llvm.metadata";
     49 
     50 static CGCXXABI &createCXXABI(CodeGenModule &CGM) {
     51   switch (CGM.getContext().getTargetInfo().getCXXABI()) {
     52   case CXXABI_ARM: return *CreateARMCXXABI(CGM);
     53   case CXXABI_Itanium: return *CreateItaniumCXXABI(CGM);
     54   case CXXABI_Microsoft: return *CreateMicrosoftCXXABI(CGM);
     55   }
     56 
     57   llvm_unreachable("invalid C++ ABI kind");
     58   return *CreateItaniumCXXABI(CGM);
     59 }
     60 
     61 
     62 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
     63                              llvm::Module &M, const llvm::TargetData &TD,
     64                              DiagnosticsEngine &diags)
     65   : Context(C), Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M),
     66     TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags),
     67     ABI(createCXXABI(*this)),
     68     Types(C, M, TD, getTargetCodeGenInfo().getABIInfo(), ABI, CGO),
     69     TBAA(0),
     70     VTables(*this), ObjCRuntime(0), OpenCLRuntime(0), CUDARuntime(0),
     71     DebugInfo(0), ARCData(0), RRData(0), CFConstantStringClassRef(0),
     72     ConstantStringClassRef(0), NSConstantStringType(0),
     73     VMContext(M.getContext()),
     74     NSConcreteGlobalBlock(0), NSConcreteStackBlock(0),
     75     BlockObjectAssign(0), BlockObjectDispose(0),
     76     BlockDescriptorType(0), GenericBlockLiteralType(0) {
     77   if (Features.ObjC1)
     78     createObjCRuntime();
     79   if (Features.OpenCL)
     80     createOpenCLRuntime();
     81   if (Features.CUDA)
     82     createCUDARuntime();
     83 
     84   // Enable TBAA unless it's suppressed.
     85   if (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)
     86     TBAA = new CodeGenTBAA(Context, VMContext, getLangOptions(),
     87                            ABI.getMangleContext());
     88 
     89   // If debug info or coverage generation is enabled, create the CGDebugInfo
     90   // object.
     91   if (CodeGenOpts.DebugInfo || CodeGenOpts.EmitGcovArcs ||
     92       CodeGenOpts.EmitGcovNotes)
     93     DebugInfo = new CGDebugInfo(*this);
     94 
     95   Block.GlobalUniqueCount = 0;
     96 
     97   if (C.getLangOptions().ObjCAutoRefCount)
     98     ARCData = new ARCEntrypoints();
     99   RRData = new RREntrypoints();
    100 
    101   // Initialize the type cache.
    102   llvm::LLVMContext &LLVMContext = M.getContext();
    103   VoidTy = llvm::Type::getVoidTy(LLVMContext);
    104   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
    105   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
    106   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
    107   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
    108   PointerAlignInBytes =
    109     C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
    110   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
    111   IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits);
    112   Int8PtrTy = Int8Ty->getPointerTo(0);
    113   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
    114 }
    115 
    116 CodeGenModule::~CodeGenModule() {
    117   delete ObjCRuntime;
    118   delete OpenCLRuntime;
    119   delete CUDARuntime;
    120   delete TheTargetCodeGenInfo;
    121   delete &ABI;
    122   delete TBAA;
    123   delete DebugInfo;
    124   delete ARCData;
    125   delete RRData;
    126 }
    127 
    128 void CodeGenModule::createObjCRuntime() {
    129   if (!Features.NeXTRuntime)
    130     ObjCRuntime = CreateGNUObjCRuntime(*this);
    131   else
    132     ObjCRuntime = CreateMacObjCRuntime(*this);
    133 }
    134 
    135 void CodeGenModule::createOpenCLRuntime() {
    136   OpenCLRuntime = new CGOpenCLRuntime(*this);
    137 }
    138 
    139 void CodeGenModule::createCUDARuntime() {
    140   CUDARuntime = CreateNVCUDARuntime(*this);
    141 }
    142 
    143 void CodeGenModule::Release() {
    144   EmitDeferred();
    145   EmitCXXGlobalInitFunc();
    146   EmitCXXGlobalDtorFunc();
    147   if (ObjCRuntime)
    148     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
    149       AddGlobalCtor(ObjCInitFunction);
    150   EmitCtorList(GlobalCtors, "llvm.global_ctors");
    151   EmitCtorList(GlobalDtors, "llvm.global_dtors");
    152   EmitGlobalAnnotations();
    153   EmitLLVMUsed();
    154 
    155   SimplifyPersonality();
    156 
    157   if (getCodeGenOpts().EmitDeclMetadata)
    158     EmitDeclMetadata();
    159 
    160   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
    161     EmitCoverageFile();
    162 
    163   if (DebugInfo)
    164     DebugInfo->finalize();
    165 }
    166 
    167 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
    168   // Make sure that this type is translated.
    169   Types.UpdateCompletedType(TD);
    170   if (DebugInfo)
    171     DebugInfo->UpdateCompletedType(TD);
    172 }
    173 
    174 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
    175   if (!TBAA)
    176     return 0;
    177   return TBAA->getTBAAInfo(QTy);
    178 }
    179 
    180 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst,
    181                                         llvm::MDNode *TBAAInfo) {
    182   Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
    183 }
    184 
    185 bool CodeGenModule::isTargetDarwin() const {
    186   return getContext().getTargetInfo().getTriple().isOSDarwin();
    187 }
    188 
    189 void CodeGenModule::Error(SourceLocation loc, StringRef error) {
    190   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, error);
    191   getDiags().Report(Context.getFullLoc(loc), diagID);
    192 }
    193 
    194 /// ErrorUnsupported - Print out an error that codegen doesn't support the
    195 /// specified stmt yet.
    196 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
    197                                      bool OmitOnError) {
    198   if (OmitOnError && getDiags().hasErrorOccurred())
    199     return;
    200   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
    201                                                "cannot compile this %0 yet");
    202   std::string Msg = Type;
    203   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
    204     << Msg << S->getSourceRange();
    205 }
    206 
    207 /// ErrorUnsupported - Print out an error that codegen doesn't support the
    208 /// specified decl yet.
    209 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
    210                                      bool OmitOnError) {
    211   if (OmitOnError && getDiags().hasErrorOccurred())
    212     return;
    213   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
    214                                                "cannot compile this %0 yet");
    215   std::string Msg = Type;
    216   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
    217 }
    218 
    219 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
    220   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
    221 }
    222 
    223 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
    224                                         const NamedDecl *D) const {
    225   // Internal definitions always have default visibility.
    226   if (GV->hasLocalLinkage()) {
    227     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
    228     return;
    229   }
    230 
    231   // Set visibility for definitions.
    232   NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility();
    233   if (LV.visibilityExplicit() || !GV->hasAvailableExternallyLinkage())
    234     GV->setVisibility(GetLLVMVisibility(LV.visibility()));
    235 }
    236 
    237 /// Set the symbol visibility of type information (vtable and RTTI)
    238 /// associated with the given type.
    239 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV,
    240                                       const CXXRecordDecl *RD,
    241                                       TypeVisibilityKind TVK) const {
    242   setGlobalVisibility(GV, RD);
    243 
    244   if (!CodeGenOpts.HiddenWeakVTables)
    245     return;
    246 
    247   // We never want to drop the visibility for RTTI names.
    248   if (TVK == TVK_ForRTTIName)
    249     return;
    250 
    251   // We want to drop the visibility to hidden for weak type symbols.
    252   // This isn't possible if there might be unresolved references
    253   // elsewhere that rely on this symbol being visible.
    254 
    255   // This should be kept roughly in sync with setThunkVisibility
    256   // in CGVTables.cpp.
    257 
    258   // Preconditions.
    259   if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage ||
    260       GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility)
    261     return;
    262 
    263   // Don't override an explicit visibility attribute.
    264   if (RD->getExplicitVisibility())
    265     return;
    266 
    267   switch (RD->getTemplateSpecializationKind()) {
    268   // We have to disable the optimization if this is an EI definition
    269   // because there might be EI declarations in other shared objects.
    270   case TSK_ExplicitInstantiationDefinition:
    271   case TSK_ExplicitInstantiationDeclaration:
    272     return;
    273 
    274   // Every use of a non-template class's type information has to emit it.
    275   case TSK_Undeclared:
    276     break;
    277 
    278   // In theory, implicit instantiations can ignore the possibility of
    279   // an explicit instantiation declaration because there necessarily
    280   // must be an EI definition somewhere with default visibility.  In
    281   // practice, it's possible to have an explicit instantiation for
    282   // an arbitrary template class, and linkers aren't necessarily able
    283   // to deal with mixed-visibility symbols.
    284   case TSK_ExplicitSpecialization:
    285   case TSK_ImplicitInstantiation:
    286     if (!CodeGenOpts.HiddenWeakTemplateVTables)
    287       return;
    288     break;
    289   }
    290 
    291   // If there's a key function, there may be translation units
    292   // that don't have the key function's definition.  But ignore
    293   // this if we're emitting RTTI under -fno-rtti.
    294   if (!(TVK != TVK_ForRTTI) || Features.RTTI) {
    295     if (Context.getKeyFunction(RD))
    296       return;
    297   }
    298 
    299   // Otherwise, drop the visibility to hidden.
    300   GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
    301   GV->setUnnamedAddr(true);
    302 }
    303 
    304 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
    305   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
    306 
    307   StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()];
    308   if (!Str.empty())
    309     return Str;
    310 
    311   if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
    312     IdentifierInfo *II = ND->getIdentifier();
    313     assert(II && "Attempt to mangle unnamed decl.");
    314 
    315     Str = II->getName();
    316     return Str;
    317   }
    318 
    319   llvm::SmallString<256> Buffer;
    320   llvm::raw_svector_ostream Out(Buffer);
    321   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
    322     getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
    323   else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
    324     getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
    325   else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND))
    326     getCXXABI().getMangleContext().mangleBlock(BD, Out);
    327   else
    328     getCXXABI().getMangleContext().mangleName(ND, Out);
    329 
    330   // Allocate space for the mangled name.
    331   Out.flush();
    332   size_t Length = Buffer.size();
    333   char *Name = MangledNamesAllocator.Allocate<char>(Length);
    334   std::copy(Buffer.begin(), Buffer.end(), Name);
    335 
    336   Str = StringRef(Name, Length);
    337 
    338   return Str;
    339 }
    340 
    341 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer,
    342                                         const BlockDecl *BD) {
    343   MangleContext &MangleCtx = getCXXABI().getMangleContext();
    344   const Decl *D = GD.getDecl();
    345   llvm::raw_svector_ostream Out(Buffer.getBuffer());
    346   if (D == 0)
    347     MangleCtx.mangleGlobalBlock(BD, Out);
    348   else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
    349     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
    350   else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
    351     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
    352   else
    353     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
    354 }
    355 
    356 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
    357   return getModule().getNamedValue(Name);
    358 }
    359 
    360 /// AddGlobalCtor - Add a function to the list that will be called before
    361 /// main() runs.
    362 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
    363   // FIXME: Type coercion of void()* types.
    364   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
    365 }
    366 
    367 /// AddGlobalDtor - Add a function to the list that will be called
    368 /// when the module is unloaded.
    369 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
    370   // FIXME: Type coercion of void()* types.
    371   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
    372 }
    373 
    374 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
    375   // Ctor function type is void()*.
    376   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
    377   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
    378 
    379   // Get the type of a ctor entry, { i32, void ()* }.
    380   llvm::StructType *CtorStructTy =
    381     llvm::StructType::get(llvm::Type::getInt32Ty(VMContext),
    382                           llvm::PointerType::getUnqual(CtorFTy), NULL);
    383 
    384   // Construct the constructor and destructor arrays.
    385   std::vector<llvm::Constant*> Ctors;
    386   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
    387     std::vector<llvm::Constant*> S;
    388     S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
    389                 I->second, false));
    390     S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
    391     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
    392   }
    393 
    394   if (!Ctors.empty()) {
    395     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
    396     new llvm::GlobalVariable(TheModule, AT, false,
    397                              llvm::GlobalValue::AppendingLinkage,
    398                              llvm::ConstantArray::get(AT, Ctors),
    399                              GlobalName);
    400   }
    401 }
    402 
    403 llvm::GlobalValue::LinkageTypes
    404 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) {
    405   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
    406 
    407   if (Linkage == GVA_Internal)
    408     return llvm::Function::InternalLinkage;
    409 
    410   if (D->hasAttr<DLLExportAttr>())
    411     return llvm::Function::DLLExportLinkage;
    412 
    413   if (D->hasAttr<WeakAttr>())
    414     return llvm::Function::WeakAnyLinkage;
    415 
    416   // In C99 mode, 'inline' functions are guaranteed to have a strong
    417   // definition somewhere else, so we can use available_externally linkage.
    418   if (Linkage == GVA_C99Inline)
    419     return llvm::Function::AvailableExternallyLinkage;
    420 
    421   // Note that Apple's kernel linker doesn't support symbol
    422   // coalescing, so we need to avoid linkonce and weak linkages there.
    423   // Normally, this means we just map to internal, but for explicit
    424   // instantiations we'll map to external.
    425 
    426   // In C++, the compiler has to emit a definition in every translation unit
    427   // that references the function.  We should use linkonce_odr because
    428   // a) if all references in this translation unit are optimized away, we
    429   // don't need to codegen it.  b) if the function persists, it needs to be
    430   // merged with other definitions. c) C++ has the ODR, so we know the
    431   // definition is dependable.
    432   if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
    433     return !Context.getLangOptions().AppleKext
    434              ? llvm::Function::LinkOnceODRLinkage
    435              : llvm::Function::InternalLinkage;
    436 
    437   // An explicit instantiation of a template has weak linkage, since
    438   // explicit instantiations can occur in multiple translation units
    439   // and must all be equivalent. However, we are not allowed to
    440   // throw away these explicit instantiations.
    441   if (Linkage == GVA_ExplicitTemplateInstantiation)
    442     return !Context.getLangOptions().AppleKext
    443              ? llvm::Function::WeakODRLinkage
    444              : llvm::Function::ExternalLinkage;
    445 
    446   // Otherwise, we have strong external linkage.
    447   assert(Linkage == GVA_StrongExternal);
    448   return llvm::Function::ExternalLinkage;
    449 }
    450 
    451 
    452 /// SetFunctionDefinitionAttributes - Set attributes for a global.
    453 ///
    454 /// FIXME: This is currently only done for aliases and functions, but not for
    455 /// variables (these details are set in EmitGlobalVarDefinition for variables).
    456 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
    457                                                     llvm::GlobalValue *GV) {
    458   SetCommonAttributes(D, GV);
    459 }
    460 
    461 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
    462                                               const CGFunctionInfo &Info,
    463                                               llvm::Function *F) {
    464   unsigned CallingConv;
    465   AttributeListType AttributeList;
    466   ConstructAttributeList(Info, D, AttributeList, CallingConv);
    467   F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
    468                                           AttributeList.size()));
    469   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
    470 }
    471 
    472 /// Determines whether the language options require us to model
    473 /// unwind exceptions.  We treat -fexceptions as mandating this
    474 /// except under the fragile ObjC ABI with only ObjC exceptions
    475 /// enabled.  This means, for example, that C with -fexceptions
    476 /// enables this.
    477 static bool hasUnwindExceptions(const LangOptions &Features) {
    478   // If exceptions are completely disabled, obviously this is false.
    479   if (!Features.Exceptions) return false;
    480 
    481   // If C++ exceptions are enabled, this is true.
    482   if (Features.CXXExceptions) return true;
    483 
    484   // If ObjC exceptions are enabled, this depends on the ABI.
    485   if (Features.ObjCExceptions) {
    486     if (!Features.ObjCNonFragileABI) return false;
    487   }
    488 
    489   return true;
    490 }
    491 
    492 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
    493                                                            llvm::Function *F) {
    494   if (CodeGenOpts.UnwindTables)
    495     F->setHasUWTable();
    496 
    497   if (!hasUnwindExceptions(Features))
    498     F->addFnAttr(llvm::Attribute::NoUnwind);
    499 
    500   if (D->hasAttr<NakedAttr>()) {
    501     // Naked implies noinline: we should not be inlining such functions.
    502     F->addFnAttr(llvm::Attribute::Naked);
    503     F->addFnAttr(llvm::Attribute::NoInline);
    504   }
    505 
    506   if (D->hasAttr<NoInlineAttr>())
    507     F->addFnAttr(llvm::Attribute::NoInline);
    508 
    509   // (noinline wins over always_inline, and we can't specify both in IR)
    510   if (D->hasAttr<AlwaysInlineAttr>() &&
    511       !F->hasFnAttr(llvm::Attribute::NoInline))
    512     F->addFnAttr(llvm::Attribute::AlwaysInline);
    513 
    514   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
    515     F->setUnnamedAddr(true);
    516 
    517   if (Features.getStackProtector() == LangOptions::SSPOn)
    518     F->addFnAttr(llvm::Attribute::StackProtect);
    519   else if (Features.getStackProtector() == LangOptions::SSPReq)
    520     F->addFnAttr(llvm::Attribute::StackProtectReq);
    521 
    522   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
    523   if (alignment)
    524     F->setAlignment(alignment);
    525 
    526   // C++ ABI requires 2-byte alignment for member functions.
    527   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
    528     F->setAlignment(2);
    529 }
    530 
    531 void CodeGenModule::SetCommonAttributes(const Decl *D,
    532                                         llvm::GlobalValue *GV) {
    533   if (const NamedDecl *ND = dyn_cast<NamedDecl>(D))
    534     setGlobalVisibility(GV, ND);
    535   else
    536     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
    537 
    538   if (D->hasAttr<UsedAttr>())
    539     AddUsedGlobal(GV);
    540 
    541   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
    542     GV->setSection(SA->getName());
    543 
    544   getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
    545 }
    546 
    547 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
    548                                                   llvm::Function *F,
    549                                                   const CGFunctionInfo &FI) {
    550   SetLLVMFunctionAttributes(D, FI, F);
    551   SetLLVMFunctionAttributesForDefinition(D, F);
    552 
    553   F->setLinkage(llvm::Function::InternalLinkage);
    554 
    555   SetCommonAttributes(D, F);
    556 }
    557 
    558 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
    559                                           llvm::Function *F,
    560                                           bool IsIncompleteFunction) {
    561   if (unsigned IID = F->getIntrinsicID()) {
    562     // If this is an intrinsic function, set the function's attributes
    563     // to the intrinsic's attributes.
    564     F->setAttributes(llvm::Intrinsic::getAttributes((llvm::Intrinsic::ID)IID));
    565     return;
    566   }
    567 
    568   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
    569 
    570   if (!IsIncompleteFunction)
    571     SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(GD), F);
    572 
    573   // Only a few attributes are set on declarations; these may later be
    574   // overridden by a definition.
    575 
    576   if (FD->hasAttr<DLLImportAttr>()) {
    577     F->setLinkage(llvm::Function::DLLImportLinkage);
    578   } else if (FD->hasAttr<WeakAttr>() ||
    579              FD->isWeakImported()) {
    580     // "extern_weak" is overloaded in LLVM; we probably should have
    581     // separate linkage types for this.
    582     F->setLinkage(llvm::Function::ExternalWeakLinkage);
    583   } else {
    584     F->setLinkage(llvm::Function::ExternalLinkage);
    585 
    586     NamedDecl::LinkageInfo LV = FD->getLinkageAndVisibility();
    587     if (LV.linkage() == ExternalLinkage && LV.visibilityExplicit()) {
    588       F->setVisibility(GetLLVMVisibility(LV.visibility()));
    589     }
    590   }
    591 
    592   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
    593     F->setSection(SA->getName());
    594 }
    595 
    596 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
    597   assert(!GV->isDeclaration() &&
    598          "Only globals with definition can force usage.");
    599   LLVMUsed.push_back(GV);
    600 }
    601 
    602 void CodeGenModule::EmitLLVMUsed() {
    603   // Don't create llvm.used if there is no need.
    604   if (LLVMUsed.empty())
    605     return;
    606 
    607   llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext);
    608 
    609   // Convert LLVMUsed to what ConstantArray needs.
    610   std::vector<llvm::Constant*> UsedArray;
    611   UsedArray.resize(LLVMUsed.size());
    612   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
    613     UsedArray[i] =
    614      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
    615                                       i8PTy);
    616   }
    617 
    618   if (UsedArray.empty())
    619     return;
    620   llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size());
    621 
    622   llvm::GlobalVariable *GV =
    623     new llvm::GlobalVariable(getModule(), ATy, false,
    624                              llvm::GlobalValue::AppendingLinkage,
    625                              llvm::ConstantArray::get(ATy, UsedArray),
    626                              "llvm.used");
    627 
    628   GV->setSection("llvm.metadata");
    629 }
    630 
    631 void CodeGenModule::EmitDeferred() {
    632   // Emit code for any potentially referenced deferred decls.  Since a
    633   // previously unused static decl may become used during the generation of code
    634   // for a static function, iterate until no changes are made.
    635 
    636   while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) {
    637     if (!DeferredVTables.empty()) {
    638       const CXXRecordDecl *RD = DeferredVTables.back();
    639       DeferredVTables.pop_back();
    640       getVTables().GenerateClassData(getVTableLinkage(RD), RD);
    641       continue;
    642     }
    643 
    644     GlobalDecl D = DeferredDeclsToEmit.back();
    645     DeferredDeclsToEmit.pop_back();
    646 
    647     // Check to see if we've already emitted this.  This is necessary
    648     // for a couple of reasons: first, decls can end up in the
    649     // deferred-decls queue multiple times, and second, decls can end
    650     // up with definitions in unusual ways (e.g. by an extern inline
    651     // function acquiring a strong function redefinition).  Just
    652     // ignore these cases.
    653     //
    654     // TODO: That said, looking this up multiple times is very wasteful.
    655     StringRef Name = getMangledName(D);
    656     llvm::GlobalValue *CGRef = GetGlobalValue(Name);
    657     assert(CGRef && "Deferred decl wasn't referenced?");
    658 
    659     if (!CGRef->isDeclaration())
    660       continue;
    661 
    662     // GlobalAlias::isDeclaration() defers to the aliasee, but for our
    663     // purposes an alias counts as a definition.
    664     if (isa<llvm::GlobalAlias>(CGRef))
    665       continue;
    666 
    667     // Otherwise, emit the definition and move on to the next one.
    668     EmitGlobalDefinition(D);
    669   }
    670 }
    671 
    672 void CodeGenModule::EmitGlobalAnnotations() {
    673   if (Annotations.empty())
    674     return;
    675 
    676   // Create a new global variable for the ConstantStruct in the Module.
    677   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
    678     Annotations[0]->getType(), Annotations.size()), Annotations);
    679   llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(),
    680     Array->getType(), false, llvm::GlobalValue::AppendingLinkage, Array,
    681     "llvm.global.annotations");
    682   gv->setSection(AnnotationSection);
    683 }
    684 
    685 llvm::Constant *CodeGenModule::EmitAnnotationString(llvm::StringRef Str) {
    686   llvm::StringMap<llvm::Constant*>::iterator i = AnnotationStrings.find(Str);
    687   if (i != AnnotationStrings.end())
    688     return i->second;
    689 
    690   // Not found yet, create a new global.
    691   llvm::Constant *s = llvm::ConstantArray::get(getLLVMContext(), Str, true);
    692   llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), s->getType(),
    693     true, llvm::GlobalValue::PrivateLinkage, s, ".str");
    694   gv->setSection(AnnotationSection);
    695   gv->setUnnamedAddr(true);
    696   AnnotationStrings[Str] = gv;
    697   return gv;
    698 }
    699 
    700 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
    701   SourceManager &SM = getContext().getSourceManager();
    702   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
    703   if (PLoc.isValid())
    704     return EmitAnnotationString(PLoc.getFilename());
    705   return EmitAnnotationString(SM.getBufferName(Loc));
    706 }
    707 
    708 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
    709   SourceManager &SM = getContext().getSourceManager();
    710   PresumedLoc PLoc = SM.getPresumedLoc(L);
    711   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
    712     SM.getExpansionLineNumber(L);
    713   return llvm::ConstantInt::get(Int32Ty, LineNo);
    714 }
    715 
    716 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
    717                                                 const AnnotateAttr *AA,
    718                                                 SourceLocation L) {
    719   // Get the globals for file name, annotation, and the line number.
    720   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
    721                  *UnitGV = EmitAnnotationUnit(L),
    722                  *LineNoCst = EmitAnnotationLineNo(L);
    723 
    724   // Create the ConstantStruct for the global annotation.
    725   llvm::Constant *Fields[4] = {
    726     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
    727     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
    728     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
    729     LineNoCst
    730   };
    731   return llvm::ConstantStruct::getAnon(Fields);
    732 }
    733 
    734 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
    735                                          llvm::GlobalValue *GV) {
    736   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
    737   // Get the struct elements for these annotations.
    738   for (specific_attr_iterator<AnnotateAttr>
    739        ai = D->specific_attr_begin<AnnotateAttr>(),
    740        ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai)
    741     Annotations.push_back(EmitAnnotateAttr(GV, *ai, D->getLocation()));
    742 }
    743 
    744 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
    745   // Never defer when EmitAllDecls is specified.
    746   if (Features.EmitAllDecls)
    747     return false;
    748 
    749   return !getContext().DeclMustBeEmitted(Global);
    750 }
    751 
    752 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
    753   const AliasAttr *AA = VD->getAttr<AliasAttr>();
    754   assert(AA && "No alias?");
    755 
    756   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
    757 
    758   // See if there is already something with the target's name in the module.
    759   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
    760 
    761   llvm::Constant *Aliasee;
    762   if (isa<llvm::FunctionType>(DeclTy))
    763     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(),
    764                                       /*ForVTable=*/false);
    765   else
    766     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
    767                                     llvm::PointerType::getUnqual(DeclTy), 0);
    768   if (!Entry) {
    769     llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
    770     F->setLinkage(llvm::Function::ExternalWeakLinkage);
    771     WeakRefReferences.insert(F);
    772   }
    773 
    774   return Aliasee;
    775 }
    776 
    777 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
    778   const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
    779 
    780   // Weak references don't produce any output by themselves.
    781   if (Global->hasAttr<WeakRefAttr>())
    782     return;
    783 
    784   // If this is an alias definition (which otherwise looks like a declaration)
    785   // emit it now.
    786   if (Global->hasAttr<AliasAttr>())
    787     return EmitAliasDefinition(GD);
    788 
    789   // If this is CUDA, be selective about which declarations we emit.
    790   if (Features.CUDA) {
    791     if (CodeGenOpts.CUDAIsDevice) {
    792       if (!Global->hasAttr<CUDADeviceAttr>() &&
    793           !Global->hasAttr<CUDAGlobalAttr>() &&
    794           !Global->hasAttr<CUDAConstantAttr>() &&
    795           !Global->hasAttr<CUDASharedAttr>())
    796         return;
    797     } else {
    798       if (!Global->hasAttr<CUDAHostAttr>() && (
    799             Global->hasAttr<CUDADeviceAttr>() ||
    800             Global->hasAttr<CUDAConstantAttr>() ||
    801             Global->hasAttr<CUDASharedAttr>()))
    802         return;
    803     }
    804   }
    805 
    806   // Ignore declarations, they will be emitted on their first use.
    807   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
    808     // Forward declarations are emitted lazily on first use.
    809     if (!FD->doesThisDeclarationHaveABody()) {
    810       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
    811         return;
    812 
    813       const FunctionDecl *InlineDefinition = 0;
    814       FD->getBody(InlineDefinition);
    815 
    816       StringRef MangledName = getMangledName(GD);
    817       llvm::StringMap<GlobalDecl>::iterator DDI =
    818           DeferredDecls.find(MangledName);
    819       if (DDI != DeferredDecls.end())
    820         DeferredDecls.erase(DDI);
    821       EmitGlobalDefinition(InlineDefinition);
    822       return;
    823     }
    824   } else {
    825     const VarDecl *VD = cast<VarDecl>(Global);
    826     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
    827 
    828     if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
    829       return;
    830   }
    831 
    832   // Defer code generation when possible if this is a static definition, inline
    833   // function etc.  These we only want to emit if they are used.
    834   if (!MayDeferGeneration(Global)) {
    835     // Emit the definition if it can't be deferred.
    836     EmitGlobalDefinition(GD);
    837     return;
    838   }
    839 
    840   // If we're deferring emission of a C++ variable with an
    841   // initializer, remember the order in which it appeared in the file.
    842   if (getLangOptions().CPlusPlus && isa<VarDecl>(Global) &&
    843       cast<VarDecl>(Global)->hasInit()) {
    844     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
    845     CXXGlobalInits.push_back(0);
    846   }
    847 
    848   // If the value has already been used, add it directly to the
    849   // DeferredDeclsToEmit list.
    850   StringRef MangledName = getMangledName(GD);
    851   if (GetGlobalValue(MangledName))
    852     DeferredDeclsToEmit.push_back(GD);
    853   else {
    854     // Otherwise, remember that we saw a deferred decl with this name.  The
    855     // first use of the mangled name will cause it to move into
    856     // DeferredDeclsToEmit.
    857     DeferredDecls[MangledName] = GD;
    858   }
    859 }
    860 
    861 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
    862   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
    863 
    864   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
    865                                  Context.getSourceManager(),
    866                                  "Generating code for declaration");
    867 
    868   if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
    869     // At -O0, don't generate IR for functions with available_externally
    870     // linkage.
    871     if (CodeGenOpts.OptimizationLevel == 0 &&
    872         !Function->hasAttr<AlwaysInlineAttr>() &&
    873         getFunctionLinkage(Function)
    874                                   == llvm::Function::AvailableExternallyLinkage)
    875       return;
    876 
    877     if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
    878       // Make sure to emit the definition(s) before we emit the thunks.
    879       // This is necessary for the generation of certain thunks.
    880       if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method))
    881         EmitCXXConstructor(CD, GD.getCtorType());
    882       else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method))
    883         EmitCXXDestructor(DD, GD.getDtorType());
    884       else
    885         EmitGlobalFunctionDefinition(GD);
    886 
    887       if (Method->isVirtual())
    888         getVTables().EmitThunks(GD);
    889 
    890       return;
    891     }
    892 
    893     return EmitGlobalFunctionDefinition(GD);
    894   }
    895 
    896   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
    897     return EmitGlobalVarDefinition(VD);
    898 
    899   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
    900 }
    901 
    902 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
    903 /// module, create and return an llvm Function with the specified type. If there
    904 /// is something in the module with the specified name, return it potentially
    905 /// bitcasted to the right type.
    906 ///
    907 /// If D is non-null, it specifies a decl that correspond to this.  This is used
    908 /// to set the attributes on the function when it is first created.
    909 llvm::Constant *
    910 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName,
    911                                        llvm::Type *Ty,
    912                                        GlobalDecl D, bool ForVTable,
    913                                        llvm::Attributes ExtraAttrs) {
    914   // Lookup the entry, lazily creating it if necessary.
    915   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
    916   if (Entry) {
    917     if (WeakRefReferences.count(Entry)) {
    918       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl());
    919       if (FD && !FD->hasAttr<WeakAttr>())
    920         Entry->setLinkage(llvm::Function::ExternalLinkage);
    921 
    922       WeakRefReferences.erase(Entry);
    923     }
    924 
    925     if (Entry->getType()->getElementType() == Ty)
    926       return Entry;
    927 
    928     // Make sure the result is of the correct type.
    929     return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
    930   }
    931 
    932   // This function doesn't have a complete type (for example, the return
    933   // type is an incomplete struct). Use a fake type instead, and make
    934   // sure not to try to set attributes.
    935   bool IsIncompleteFunction = false;
    936 
    937   llvm::FunctionType *FTy;
    938   if (isa<llvm::FunctionType>(Ty)) {
    939     FTy = cast<llvm::FunctionType>(Ty);
    940   } else {
    941     FTy = llvm::FunctionType::get(VoidTy, false);
    942     IsIncompleteFunction = true;
    943   }
    944 
    945   llvm::Function *F = llvm::Function::Create(FTy,
    946                                              llvm::Function::ExternalLinkage,
    947                                              MangledName, &getModule());
    948   assert(F->getName() == MangledName && "name was uniqued!");
    949   if (D.getDecl())
    950     SetFunctionAttributes(D, F, IsIncompleteFunction);
    951   if (ExtraAttrs != llvm::Attribute::None)
    952     F->addFnAttr(ExtraAttrs);
    953 
    954   // This is the first use or definition of a mangled name.  If there is a
    955   // deferred decl with this name, remember that we need to emit it at the end
    956   // of the file.
    957   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
    958   if (DDI != DeferredDecls.end()) {
    959     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
    960     // list, and remove it from DeferredDecls (since we don't need it anymore).
    961     DeferredDeclsToEmit.push_back(DDI->second);
    962     DeferredDecls.erase(DDI);
    963 
    964   // Otherwise, there are cases we have to worry about where we're
    965   // using a declaration for which we must emit a definition but where
    966   // we might not find a top-level definition:
    967   //   - member functions defined inline in their classes
    968   //   - friend functions defined inline in some class
    969   //   - special member functions with implicit definitions
    970   // If we ever change our AST traversal to walk into class methods,
    971   // this will be unnecessary.
    972   //
    973   // We also don't emit a definition for a function if it's going to be an entry
    974   // in a vtable, unless it's already marked as used.
    975   } else if (getLangOptions().CPlusPlus && D.getDecl()) {
    976     // Look for a declaration that's lexically in a record.
    977     const FunctionDecl *FD = cast<FunctionDecl>(D.getDecl());
    978     do {
    979       if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
    980         if (FD->isImplicit() && !ForVTable) {
    981           assert(FD->isUsed() && "Sema didn't mark implicit function as used!");
    982           DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
    983           break;
    984         } else if (FD->doesThisDeclarationHaveABody()) {
    985           DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
    986           break;
    987         }
    988       }
    989       FD = FD->getPreviousDeclaration();
    990     } while (FD);
    991   }
    992 
    993   // Make sure the result is of the requested type.
    994   if (!IsIncompleteFunction) {
    995     assert(F->getType()->getElementType() == Ty);
    996     return F;
    997   }
    998 
    999   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
   1000   return llvm::ConstantExpr::getBitCast(F, PTy);
   1001 }
   1002 
   1003 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
   1004 /// non-null, then this function will use the specified type if it has to
   1005 /// create it (this occurs when we see a definition of the function).
   1006 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
   1007                                                  llvm::Type *Ty,
   1008                                                  bool ForVTable) {
   1009   // If there was no specific requested type, just convert it now.
   1010   if (!Ty)
   1011     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
   1012 
   1013   StringRef MangledName = getMangledName(GD);
   1014   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable);
   1015 }
   1016 
   1017 /// CreateRuntimeFunction - Create a new runtime function with the specified
   1018 /// type and name.
   1019 llvm::Constant *
   1020 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy,
   1021                                      StringRef Name,
   1022                                      llvm::Attributes ExtraAttrs) {
   1023   return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
   1024                                  ExtraAttrs);
   1025 }
   1026 
   1027 static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D,
   1028                                  bool ConstantInit) {
   1029   if (!D->getType().isConstant(Context) && !D->getType()->isReferenceType())
   1030     return false;
   1031 
   1032   if (Context.getLangOptions().CPlusPlus) {
   1033     if (const RecordType *Record
   1034           = Context.getBaseElementType(D->getType())->getAs<RecordType>())
   1035       return ConstantInit &&
   1036              cast<CXXRecordDecl>(Record->getDecl())->isPOD() &&
   1037              !cast<CXXRecordDecl>(Record->getDecl())->hasMutableFields();
   1038   }
   1039 
   1040   return true;
   1041 }
   1042 
   1043 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
   1044 /// create and return an llvm GlobalVariable with the specified type.  If there
   1045 /// is something in the module with the specified name, return it potentially
   1046 /// bitcasted to the right type.
   1047 ///
   1048 /// If D is non-null, it specifies a decl that correspond to this.  This is used
   1049 /// to set the attributes on the global when it is first created.
   1050 llvm::Constant *
   1051 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
   1052                                      llvm::PointerType *Ty,
   1053                                      const VarDecl *D,
   1054                                      bool UnnamedAddr) {
   1055   // Lookup the entry, lazily creating it if necessary.
   1056   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
   1057   if (Entry) {
   1058     if (WeakRefReferences.count(Entry)) {
   1059       if (D && !D->hasAttr<WeakAttr>())
   1060         Entry->setLinkage(llvm::Function::ExternalLinkage);
   1061 
   1062       WeakRefReferences.erase(Entry);
   1063     }
   1064 
   1065     if (UnnamedAddr)
   1066       Entry->setUnnamedAddr(true);
   1067 
   1068     if (Entry->getType() == Ty)
   1069       return Entry;
   1070 
   1071     // Make sure the result is of the correct type.
   1072     return llvm::ConstantExpr::getBitCast(Entry, Ty);
   1073   }
   1074 
   1075   // This is the first use or definition of a mangled name.  If there is a
   1076   // deferred decl with this name, remember that we need to emit it at the end
   1077   // of the file.
   1078   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
   1079   if (DDI != DeferredDecls.end()) {
   1080     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
   1081     // list, and remove it from DeferredDecls (since we don't need it anymore).
   1082     DeferredDeclsToEmit.push_back(DDI->second);
   1083     DeferredDecls.erase(DDI);
   1084   }
   1085 
   1086   llvm::GlobalVariable *GV =
   1087     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
   1088                              llvm::GlobalValue::ExternalLinkage,
   1089                              0, MangledName, 0,
   1090                              false, Ty->getAddressSpace());
   1091 
   1092   // Handle things which are present even on external declarations.
   1093   if (D) {
   1094     // FIXME: This code is overly simple and should be merged with other global
   1095     // handling.
   1096     GV->setConstant(DeclIsConstantGlobal(Context, D, false));
   1097 
   1098     // Set linkage and visibility in case we never see a definition.
   1099     NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility();
   1100     if (LV.linkage() != ExternalLinkage) {
   1101       // Don't set internal linkage on declarations.
   1102     } else {
   1103       if (D->hasAttr<DLLImportAttr>())
   1104         GV->setLinkage(llvm::GlobalValue::DLLImportLinkage);
   1105       else if (D->hasAttr<WeakAttr>() || D->isWeakImported())
   1106         GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
   1107 
   1108       // Set visibility on a declaration only if it's explicit.
   1109       if (LV.visibilityExplicit())
   1110         GV->setVisibility(GetLLVMVisibility(LV.visibility()));
   1111     }
   1112 
   1113     GV->setThreadLocal(D->isThreadSpecified());
   1114   }
   1115 
   1116   return GV;
   1117 }
   1118 
   1119 
   1120 llvm::GlobalVariable *
   1121 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
   1122                                       llvm::Type *Ty,
   1123                                       llvm::GlobalValue::LinkageTypes Linkage) {
   1124   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
   1125   llvm::GlobalVariable *OldGV = 0;
   1126 
   1127 
   1128   if (GV) {
   1129     // Check if the variable has the right type.
   1130     if (GV->getType()->getElementType() == Ty)
   1131       return GV;
   1132 
   1133     // Because C++ name mangling, the only way we can end up with an already
   1134     // existing global with the same name is if it has been declared extern "C".
   1135       assert(GV->isDeclaration() && "Declaration has wrong type!");
   1136     OldGV = GV;
   1137   }
   1138 
   1139   // Create a new variable.
   1140   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
   1141                                 Linkage, 0, Name);
   1142 
   1143   if (OldGV) {
   1144     // Replace occurrences of the old variable if needed.
   1145     GV->takeName(OldGV);
   1146 
   1147     if (!OldGV->use_empty()) {
   1148       llvm::Constant *NewPtrForOldDecl =
   1149       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
   1150       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
   1151     }
   1152 
   1153     OldGV->eraseFromParent();
   1154   }
   1155 
   1156   return GV;
   1157 }
   1158 
   1159 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
   1160 /// given global variable.  If Ty is non-null and if the global doesn't exist,
   1161 /// then it will be greated with the specified type instead of whatever the
   1162 /// normal requested type would be.
   1163 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
   1164                                                   llvm::Type *Ty) {
   1165   assert(D->hasGlobalStorage() && "Not a global variable");
   1166   QualType ASTTy = D->getType();
   1167   if (Ty == 0)
   1168     Ty = getTypes().ConvertTypeForMem(ASTTy);
   1169 
   1170   llvm::PointerType *PTy =
   1171     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
   1172 
   1173   StringRef MangledName = getMangledName(D);
   1174   return GetOrCreateLLVMGlobal(MangledName, PTy, D);
   1175 }
   1176 
   1177 /// CreateRuntimeVariable - Create a new runtime global variable with the
   1178 /// specified type and name.
   1179 llvm::Constant *
   1180 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
   1181                                      StringRef Name) {
   1182   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0,
   1183                                true);
   1184 }
   1185 
   1186 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
   1187   assert(!D->getInit() && "Cannot emit definite definitions here!");
   1188 
   1189   if (MayDeferGeneration(D)) {
   1190     // If we have not seen a reference to this variable yet, place it
   1191     // into the deferred declarations table to be emitted if needed
   1192     // later.
   1193     StringRef MangledName = getMangledName(D);
   1194     if (!GetGlobalValue(MangledName)) {
   1195       DeferredDecls[MangledName] = D;
   1196       return;
   1197     }
   1198   }
   1199 
   1200   // The tentative definition is the only definition.
   1201   EmitGlobalVarDefinition(D);
   1202 }
   1203 
   1204 void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) {
   1205   if (DefinitionRequired)
   1206     getVTables().GenerateClassData(getVTableLinkage(Class), Class);
   1207 }
   1208 
   1209 llvm::GlobalVariable::LinkageTypes
   1210 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) {
   1211   if (RD->getLinkage() != ExternalLinkage)
   1212     return llvm::GlobalVariable::InternalLinkage;
   1213 
   1214   if (const CXXMethodDecl *KeyFunction
   1215                                     = RD->getASTContext().getKeyFunction(RD)) {
   1216     // If this class has a key function, use that to determine the linkage of
   1217     // the vtable.
   1218     const FunctionDecl *Def = 0;
   1219     if (KeyFunction->hasBody(Def))
   1220       KeyFunction = cast<CXXMethodDecl>(Def);
   1221 
   1222     switch (KeyFunction->getTemplateSpecializationKind()) {
   1223       case TSK_Undeclared:
   1224       case TSK_ExplicitSpecialization:
   1225         // When compiling with optimizations turned on, we emit all vtables,
   1226         // even if the key function is not defined in the current translation
   1227         // unit. If this is the case, use available_externally linkage.
   1228         if (!Def && CodeGenOpts.OptimizationLevel)
   1229           return llvm::GlobalVariable::AvailableExternallyLinkage;
   1230 
   1231         if (KeyFunction->isInlined())
   1232           return !Context.getLangOptions().AppleKext ?
   1233                    llvm::GlobalVariable::LinkOnceODRLinkage :
   1234                    llvm::Function::InternalLinkage;
   1235 
   1236         return llvm::GlobalVariable::ExternalLinkage;
   1237 
   1238       case TSK_ImplicitInstantiation:
   1239         return !Context.getLangOptions().AppleKext ?
   1240                  llvm::GlobalVariable::LinkOnceODRLinkage :
   1241                  llvm::Function::InternalLinkage;
   1242 
   1243       case TSK_ExplicitInstantiationDefinition:
   1244         return !Context.getLangOptions().AppleKext ?
   1245                  llvm::GlobalVariable::WeakODRLinkage :
   1246                  llvm::Function::InternalLinkage;
   1247 
   1248       case TSK_ExplicitInstantiationDeclaration:
   1249         // FIXME: Use available_externally linkage. However, this currently
   1250         // breaks LLVM's build due to undefined symbols.
   1251         //      return llvm::GlobalVariable::AvailableExternallyLinkage;
   1252         return !Context.getLangOptions().AppleKext ?
   1253                  llvm::GlobalVariable::LinkOnceODRLinkage :
   1254                  llvm::Function::InternalLinkage;
   1255     }
   1256   }
   1257 
   1258   if (Context.getLangOptions().AppleKext)
   1259     return llvm::Function::InternalLinkage;
   1260 
   1261   switch (RD->getTemplateSpecializationKind()) {
   1262   case TSK_Undeclared:
   1263   case TSK_ExplicitSpecialization:
   1264   case TSK_ImplicitInstantiation:
   1265     // FIXME: Use available_externally linkage. However, this currently
   1266     // breaks LLVM's build due to undefined symbols.
   1267     //   return llvm::GlobalVariable::AvailableExternallyLinkage;
   1268   case TSK_ExplicitInstantiationDeclaration:
   1269     return llvm::GlobalVariable::LinkOnceODRLinkage;
   1270 
   1271   case TSK_ExplicitInstantiationDefinition:
   1272       return llvm::GlobalVariable::WeakODRLinkage;
   1273   }
   1274 
   1275   // Silence GCC warning.
   1276   return llvm::GlobalVariable::LinkOnceODRLinkage;
   1277 }
   1278 
   1279 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
   1280     return Context.toCharUnitsFromBits(
   1281       TheTargetData.getTypeStoreSizeInBits(Ty));
   1282 }
   1283 
   1284 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
   1285   llvm::Constant *Init = 0;
   1286   QualType ASTTy = D->getType();
   1287   bool NonConstInit = false;
   1288 
   1289   const Expr *InitExpr = D->getAnyInitializer();
   1290 
   1291   if (!InitExpr) {
   1292     // This is a tentative definition; tentative definitions are
   1293     // implicitly initialized with { 0 }.
   1294     //
   1295     // Note that tentative definitions are only emitted at the end of
   1296     // a translation unit, so they should never have incomplete
   1297     // type. In addition, EmitTentativeDefinition makes sure that we
   1298     // never attempt to emit a tentative definition if a real one
   1299     // exists. A use may still exists, however, so we still may need
   1300     // to do a RAUW.
   1301     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
   1302     Init = EmitNullConstant(D->getType());
   1303   } else {
   1304     Init = EmitConstantExpr(InitExpr, D->getType());
   1305     if (!Init) {
   1306       QualType T = InitExpr->getType();
   1307       if (D->getType()->isReferenceType())
   1308         T = D->getType();
   1309 
   1310       if (getLangOptions().CPlusPlus) {
   1311         Init = EmitNullConstant(T);
   1312         NonConstInit = true;
   1313       } else {
   1314         ErrorUnsupported(D, "static initializer");
   1315         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
   1316       }
   1317     } else {
   1318       // We don't need an initializer, so remove the entry for the delayed
   1319       // initializer position (just in case this entry was delayed).
   1320       if (getLangOptions().CPlusPlus)
   1321         DelayedCXXInitPosition.erase(D);
   1322     }
   1323   }
   1324 
   1325   llvm::Type* InitType = Init->getType();
   1326   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
   1327 
   1328   // Strip off a bitcast if we got one back.
   1329   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
   1330     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
   1331            // all zero index gep.
   1332            CE->getOpcode() == llvm::Instruction::GetElementPtr);
   1333     Entry = CE->getOperand(0);
   1334   }
   1335 
   1336   // Entry is now either a Function or GlobalVariable.
   1337   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
   1338 
   1339   // We have a definition after a declaration with the wrong type.
   1340   // We must make a new GlobalVariable* and update everything that used OldGV
   1341   // (a declaration or tentative definition) with the new GlobalVariable*
   1342   // (which will be a definition).
   1343   //
   1344   // This happens if there is a prototype for a global (e.g.
   1345   // "extern int x[];") and then a definition of a different type (e.g.
   1346   // "int x[10];"). This also happens when an initializer has a different type
   1347   // from the type of the global (this happens with unions).
   1348   if (GV == 0 ||
   1349       GV->getType()->getElementType() != InitType ||
   1350       GV->getType()->getAddressSpace() !=
   1351         getContext().getTargetAddressSpace(ASTTy)) {
   1352 
   1353     // Move the old entry aside so that we'll create a new one.
   1354     Entry->setName(StringRef());
   1355 
   1356     // Make a new global with the correct type, this is now guaranteed to work.
   1357     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
   1358 
   1359     // Replace all uses of the old global with the new global
   1360     llvm::Constant *NewPtrForOldDecl =
   1361         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
   1362     Entry->replaceAllUsesWith(NewPtrForOldDecl);
   1363 
   1364     // Erase the old global, since it is no longer used.
   1365     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
   1366   }
   1367 
   1368   if (D->hasAttr<AnnotateAttr>())
   1369     AddGlobalAnnotations(D, GV);
   1370 
   1371   GV->setInitializer(Init);
   1372 
   1373   // If it is safe to mark the global 'constant', do so now.
   1374   GV->setConstant(false);
   1375   if (!NonConstInit && DeclIsConstantGlobal(Context, D, true))
   1376     GV->setConstant(true);
   1377 
   1378   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
   1379 
   1380   // Set the llvm linkage type as appropriate.
   1381   llvm::GlobalValue::LinkageTypes Linkage =
   1382     GetLLVMLinkageVarDefinition(D, GV);
   1383   GV->setLinkage(Linkage);
   1384   if (Linkage == llvm::GlobalVariable::CommonLinkage)
   1385     // common vars aren't constant even if declared const.
   1386     GV->setConstant(false);
   1387 
   1388   SetCommonAttributes(D, GV);
   1389 
   1390   // Emit the initializer function if necessary.
   1391   if (NonConstInit)
   1392     EmitCXXGlobalVarDeclInitFunc(D, GV);
   1393 
   1394   // Emit global variable debug information.
   1395   if (CGDebugInfo *DI = getModuleDebugInfo())
   1396     DI->EmitGlobalVariable(GV, D);
   1397 }
   1398 
   1399 llvm::GlobalValue::LinkageTypes
   1400 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D,
   1401                                            llvm::GlobalVariable *GV) {
   1402   GVALinkage Linkage = getContext().GetGVALinkageForVariable(D);
   1403   if (Linkage == GVA_Internal)
   1404     return llvm::Function::InternalLinkage;
   1405   else if (D->hasAttr<DLLImportAttr>())
   1406     return llvm::Function::DLLImportLinkage;
   1407   else if (D->hasAttr<DLLExportAttr>())
   1408     return llvm::Function::DLLExportLinkage;
   1409   else if (D->hasAttr<WeakAttr>()) {
   1410     if (GV->isConstant())
   1411       return llvm::GlobalVariable::WeakODRLinkage;
   1412     else
   1413       return llvm::GlobalVariable::WeakAnyLinkage;
   1414   } else if (Linkage == GVA_TemplateInstantiation ||
   1415              Linkage == GVA_ExplicitTemplateInstantiation)
   1416     return llvm::GlobalVariable::WeakODRLinkage;
   1417   else if (!getLangOptions().CPlusPlus &&
   1418            ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) ||
   1419              D->getAttr<CommonAttr>()) &&
   1420            !D->hasExternalStorage() && !D->getInit() &&
   1421            !D->getAttr<SectionAttr>() && !D->isThreadSpecified() &&
   1422            !D->getAttr<WeakImportAttr>()) {
   1423     // Thread local vars aren't considered common linkage.
   1424     return llvm::GlobalVariable::CommonLinkage;
   1425   }
   1426   return llvm::GlobalVariable::ExternalLinkage;
   1427 }
   1428 
   1429 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
   1430 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
   1431 /// existing call uses of the old function in the module, this adjusts them to
   1432 /// call the new function directly.
   1433 ///
   1434 /// This is not just a cleanup: the always_inline pass requires direct calls to
   1435 /// functions to be able to inline them.  If there is a bitcast in the way, it
   1436 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
   1437 /// run at -O0.
   1438 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
   1439                                                       llvm::Function *NewFn) {
   1440   // If we're redefining a global as a function, don't transform it.
   1441   llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
   1442   if (OldFn == 0) return;
   1443 
   1444   llvm::Type *NewRetTy = NewFn->getReturnType();
   1445   SmallVector<llvm::Value*, 4> ArgList;
   1446 
   1447   for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
   1448        UI != E; ) {
   1449     // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
   1450     llvm::Value::use_iterator I = UI++; // Increment before the CI is erased.
   1451     llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I);
   1452     if (!CI) continue; // FIXME: when we allow Invoke, just do CallSite CS(*I)
   1453     llvm::CallSite CS(CI);
   1454     if (!CI || !CS.isCallee(I)) continue;
   1455 
   1456     // If the return types don't match exactly, and if the call isn't dead, then
   1457     // we can't transform this call.
   1458     if (CI->getType() != NewRetTy && !CI->use_empty())
   1459       continue;
   1460 
   1461     // Get the attribute list.
   1462     llvm::SmallVector<llvm::AttributeWithIndex, 8> AttrVec;
   1463     llvm::AttrListPtr AttrList = CI->getAttributes();
   1464 
   1465     // Get any return attributes.
   1466     llvm::Attributes RAttrs = AttrList.getRetAttributes();
   1467 
   1468     // Add the return attributes.
   1469     if (RAttrs)
   1470       AttrVec.push_back(llvm::AttributeWithIndex::get(0, RAttrs));
   1471 
   1472     // If the function was passed too few arguments, don't transform.  If extra
   1473     // arguments were passed, we silently drop them.  If any of the types
   1474     // mismatch, we don't transform.
   1475     unsigned ArgNo = 0;
   1476     bool DontTransform = false;
   1477     for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
   1478          E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
   1479       if (CS.arg_size() == ArgNo ||
   1480           CS.getArgument(ArgNo)->getType() != AI->getType()) {
   1481         DontTransform = true;
   1482         break;
   1483       }
   1484 
   1485       // Add any parameter attributes.
   1486       if (llvm::Attributes PAttrs = AttrList.getParamAttributes(ArgNo + 1))
   1487         AttrVec.push_back(llvm::AttributeWithIndex::get(ArgNo + 1, PAttrs));
   1488     }
   1489     if (DontTransform)
   1490       continue;
   1491 
   1492     if (llvm::Attributes FnAttrs =  AttrList.getFnAttributes())
   1493       AttrVec.push_back(llvm::AttributeWithIndex::get(~0, FnAttrs));
   1494 
   1495     // Okay, we can transform this.  Create the new call instruction and copy
   1496     // over the required information.
   1497     ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo);
   1498     llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList, "", CI);
   1499     ArgList.clear();
   1500     if (!NewCall->getType()->isVoidTy())
   1501       NewCall->takeName(CI);
   1502     NewCall->setAttributes(llvm::AttrListPtr::get(AttrVec.begin(),
   1503                                                   AttrVec.end()));
   1504     NewCall->setCallingConv(CI->getCallingConv());
   1505 
   1506     // Finally, remove the old call, replacing any uses with the new one.
   1507     if (!CI->use_empty())
   1508       CI->replaceAllUsesWith(NewCall);
   1509 
   1510     // Copy debug location attached to CI.
   1511     if (!CI->getDebugLoc().isUnknown())
   1512       NewCall->setDebugLoc(CI->getDebugLoc());
   1513     CI->eraseFromParent();
   1514   }
   1515 }
   1516 
   1517 
   1518 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
   1519   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
   1520 
   1521   // Compute the function info and LLVM type.
   1522   const CGFunctionInfo &FI = getTypes().getFunctionInfo(GD);
   1523   bool variadic = false;
   1524   if (const FunctionProtoType *fpt = D->getType()->getAs<FunctionProtoType>())
   1525     variadic = fpt->isVariadic();
   1526   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI, variadic);
   1527 
   1528   // Get or create the prototype for the function.
   1529   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
   1530 
   1531   // Strip off a bitcast if we got one back.
   1532   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
   1533     assert(CE->getOpcode() == llvm::Instruction::BitCast);
   1534     Entry = CE->getOperand(0);
   1535   }
   1536 
   1537 
   1538   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
   1539     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
   1540 
   1541     // If the types mismatch then we have to rewrite the definition.
   1542     assert(OldFn->isDeclaration() &&
   1543            "Shouldn't replace non-declaration");
   1544 
   1545     // F is the Function* for the one with the wrong type, we must make a new
   1546     // Function* and update everything that used F (a declaration) with the new
   1547     // Function* (which will be a definition).
   1548     //
   1549     // This happens if there is a prototype for a function
   1550     // (e.g. "int f()") and then a definition of a different type
   1551     // (e.g. "int f(int x)").  Move the old function aside so that it
   1552     // doesn't interfere with GetAddrOfFunction.
   1553     OldFn->setName(StringRef());
   1554     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
   1555 
   1556     // If this is an implementation of a function without a prototype, try to
   1557     // replace any existing uses of the function (which may be calls) with uses
   1558     // of the new function
   1559     if (D->getType()->isFunctionNoProtoType()) {
   1560       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
   1561       OldFn->removeDeadConstantUsers();
   1562     }
   1563 
   1564     // Replace uses of F with the Function we will endow with a body.
   1565     if (!Entry->use_empty()) {
   1566       llvm::Constant *NewPtrForOldDecl =
   1567         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
   1568       Entry->replaceAllUsesWith(NewPtrForOldDecl);
   1569     }
   1570 
   1571     // Ok, delete the old function now, which is dead.
   1572     OldFn->eraseFromParent();
   1573 
   1574     Entry = NewFn;
   1575   }
   1576 
   1577   // We need to set linkage and visibility on the function before
   1578   // generating code for it because various parts of IR generation
   1579   // want to propagate this information down (e.g. to local static
   1580   // declarations).
   1581   llvm::Function *Fn = cast<llvm::Function>(Entry);
   1582   setFunctionLinkage(D, Fn);
   1583 
   1584   // FIXME: this is redundant with part of SetFunctionDefinitionAttributes
   1585   setGlobalVisibility(Fn, D);
   1586 
   1587   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
   1588 
   1589   SetFunctionDefinitionAttributes(D, Fn);
   1590   SetLLVMFunctionAttributesForDefinition(D, Fn);
   1591 
   1592   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
   1593     AddGlobalCtor(Fn, CA->getPriority());
   1594   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
   1595     AddGlobalDtor(Fn, DA->getPriority());
   1596   if (D->hasAttr<AnnotateAttr>())
   1597     AddGlobalAnnotations(D, Fn);
   1598 }
   1599 
   1600 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
   1601   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
   1602   const AliasAttr *AA = D->getAttr<AliasAttr>();
   1603   assert(AA && "Not an alias?");
   1604 
   1605   StringRef MangledName = getMangledName(GD);
   1606 
   1607   // If there is a definition in the module, then it wins over the alias.
   1608   // This is dubious, but allow it to be safe.  Just ignore the alias.
   1609   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
   1610   if (Entry && !Entry->isDeclaration())
   1611     return;
   1612 
   1613   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
   1614 
   1615   // Create a reference to the named value.  This ensures that it is emitted
   1616   // if a deferred decl.
   1617   llvm::Constant *Aliasee;
   1618   if (isa<llvm::FunctionType>(DeclTy))
   1619     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(),
   1620                                       /*ForVTable=*/false);
   1621   else
   1622     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
   1623                                     llvm::PointerType::getUnqual(DeclTy), 0);
   1624 
   1625   // Create the new alias itself, but don't set a name yet.
   1626   llvm::GlobalValue *GA =
   1627     new llvm::GlobalAlias(Aliasee->getType(),
   1628                           llvm::Function::ExternalLinkage,
   1629                           "", Aliasee, &getModule());
   1630 
   1631   if (Entry) {
   1632     assert(Entry->isDeclaration());
   1633 
   1634     // If there is a declaration in the module, then we had an extern followed
   1635     // by the alias, as in:
   1636     //   extern int test6();
   1637     //   ...
   1638     //   int test6() __attribute__((alias("test7")));
   1639     //
   1640     // Remove it and replace uses of it with the alias.
   1641     GA->takeName(Entry);
   1642 
   1643     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
   1644                                                           Entry->getType()));
   1645     Entry->eraseFromParent();
   1646   } else {
   1647     GA->setName(MangledName);
   1648   }
   1649 
   1650   // Set attributes which are particular to an alias; this is a
   1651   // specialization of the attributes which may be set on a global
   1652   // variable/function.
   1653   if (D->hasAttr<DLLExportAttr>()) {
   1654     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
   1655       // The dllexport attribute is ignored for undefined symbols.
   1656       if (FD->hasBody())
   1657         GA->setLinkage(llvm::Function::DLLExportLinkage);
   1658     } else {
   1659       GA->setLinkage(llvm::Function::DLLExportLinkage);
   1660     }
   1661   } else if (D->hasAttr<WeakAttr>() ||
   1662              D->hasAttr<WeakRefAttr>() ||
   1663              D->isWeakImported()) {
   1664     GA->setLinkage(llvm::Function::WeakAnyLinkage);
   1665   }
   1666 
   1667   SetCommonAttributes(D, GA);
   1668 }
   1669 
   1670 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
   1671                                             ArrayRef<llvm::Type*> Tys) {
   1672   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
   1673                                          Tys);
   1674 }
   1675 
   1676 static llvm::StringMapEntry<llvm::Constant*> &
   1677 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
   1678                          const StringLiteral *Literal,
   1679                          bool TargetIsLSB,
   1680                          bool &IsUTF16,
   1681                          unsigned &StringLength) {
   1682   StringRef String = Literal->getString();
   1683   unsigned NumBytes = String.size();
   1684 
   1685   // Check for simple case.
   1686   if (!Literal->containsNonAsciiOrNull()) {
   1687     StringLength = NumBytes;
   1688     return Map.GetOrCreateValue(String);
   1689   }
   1690 
   1691   // Otherwise, convert the UTF8 literals into a byte string.
   1692   SmallVector<UTF16, 128> ToBuf(NumBytes);
   1693   const UTF8 *FromPtr = (UTF8 *)String.data();
   1694   UTF16 *ToPtr = &ToBuf[0];
   1695 
   1696   (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
   1697                            &ToPtr, ToPtr + NumBytes,
   1698                            strictConversion);
   1699 
   1700   // ConvertUTF8toUTF16 returns the length in ToPtr.
   1701   StringLength = ToPtr - &ToBuf[0];
   1702 
   1703   // Render the UTF-16 string into a byte array and convert to the target byte
   1704   // order.
   1705   //
   1706   // FIXME: This isn't something we should need to do here.
   1707   llvm::SmallString<128> AsBytes;
   1708   AsBytes.reserve(StringLength * 2);
   1709   for (unsigned i = 0; i != StringLength; ++i) {
   1710     unsigned short Val = ToBuf[i];
   1711     if (TargetIsLSB) {
   1712       AsBytes.push_back(Val & 0xFF);
   1713       AsBytes.push_back(Val >> 8);
   1714     } else {
   1715       AsBytes.push_back(Val >> 8);
   1716       AsBytes.push_back(Val & 0xFF);
   1717     }
   1718   }
   1719   // Append one extra null character, the second is automatically added by our
   1720   // caller.
   1721   AsBytes.push_back(0);
   1722 
   1723   IsUTF16 = true;
   1724   return Map.GetOrCreateValue(StringRef(AsBytes.data(), AsBytes.size()));
   1725 }
   1726 
   1727 static llvm::StringMapEntry<llvm::Constant*> &
   1728 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map,
   1729 		       const StringLiteral *Literal,
   1730 		       unsigned &StringLength)
   1731 {
   1732 	StringRef String = Literal->getString();
   1733 	StringLength = String.size();
   1734 	return Map.GetOrCreateValue(String);
   1735 }
   1736 
   1737 llvm::Constant *
   1738 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
   1739   unsigned StringLength = 0;
   1740   bool isUTF16 = false;
   1741   llvm::StringMapEntry<llvm::Constant*> &Entry =
   1742     GetConstantCFStringEntry(CFConstantStringMap, Literal,
   1743                              getTargetData().isLittleEndian(),
   1744                              isUTF16, StringLength);
   1745 
   1746   if (llvm::Constant *C = Entry.getValue())
   1747     return C;
   1748 
   1749   llvm::Constant *Zero =
   1750       llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
   1751   llvm::Constant *Zeros[] = { Zero, Zero };
   1752 
   1753   // If we don't already have it, get __CFConstantStringClassReference.
   1754   if (!CFConstantStringClassRef) {
   1755     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
   1756     Ty = llvm::ArrayType::get(Ty, 0);
   1757     llvm::Constant *GV = CreateRuntimeVariable(Ty,
   1758                                            "__CFConstantStringClassReference");
   1759     // Decay array -> ptr
   1760     CFConstantStringClassRef =
   1761       llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
   1762   }
   1763 
   1764   QualType CFTy = getContext().getCFConstantStringType();
   1765 
   1766   llvm::StructType *STy =
   1767     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
   1768 
   1769   llvm::Constant *Fields[4];
   1770 
   1771   // Class pointer.
   1772   Fields[0] = CFConstantStringClassRef;
   1773 
   1774   // Flags.
   1775   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
   1776   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
   1777     llvm::ConstantInt::get(Ty, 0x07C8);
   1778 
   1779   // String pointer.
   1780   llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
   1781 
   1782   llvm::GlobalValue::LinkageTypes Linkage;
   1783   bool isConstant;
   1784   if (isUTF16) {
   1785     // FIXME: why do utf strings get "_" labels instead of "L" labels?
   1786     Linkage = llvm::GlobalValue::InternalLinkage;
   1787     // Note: -fwritable-strings doesn't make unicode CFStrings writable, but
   1788     // does make plain ascii ones writable.
   1789     isConstant = true;
   1790   } else {
   1791     // FIXME: With OS X ld 123.2 (xcode 4) and LTO we would get a linker error
   1792     // when using private linkage. It is not clear if this is a bug in ld
   1793     // or a reasonable new restriction.
   1794     Linkage = llvm::GlobalValue::LinkerPrivateLinkage;
   1795     isConstant = !Features.WritableStrings;
   1796   }
   1797 
   1798   llvm::GlobalVariable *GV =
   1799     new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
   1800                              ".str");
   1801   GV->setUnnamedAddr(true);
   1802   if (isUTF16) {
   1803     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
   1804     GV->setAlignment(Align.getQuantity());
   1805   } else {
   1806     CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
   1807     GV->setAlignment(Align.getQuantity());
   1808   }
   1809   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
   1810 
   1811   // String length.
   1812   Ty = getTypes().ConvertType(getContext().LongTy);
   1813   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
   1814 
   1815   // The struct.
   1816   C = llvm::ConstantStruct::get(STy, Fields);
   1817   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
   1818                                 llvm::GlobalVariable::PrivateLinkage, C,
   1819                                 "_unnamed_cfstring_");
   1820   if (const char *Sect = getContext().getTargetInfo().getCFStringSection())
   1821     GV->setSection(Sect);
   1822   Entry.setValue(GV);
   1823 
   1824   return GV;
   1825 }
   1826 
   1827 static RecordDecl *
   1828 CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK,
   1829                  DeclContext *DC, IdentifierInfo *Id) {
   1830   SourceLocation Loc;
   1831   if (Ctx.getLangOptions().CPlusPlus)
   1832     return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
   1833   else
   1834     return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
   1835 }
   1836 
   1837 llvm::Constant *
   1838 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
   1839   unsigned StringLength = 0;
   1840   llvm::StringMapEntry<llvm::Constant*> &Entry =
   1841     GetConstantStringEntry(CFConstantStringMap, Literal, StringLength);
   1842 
   1843   if (llvm::Constant *C = Entry.getValue())
   1844     return C;
   1845 
   1846   llvm::Constant *Zero =
   1847   llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
   1848   llvm::Constant *Zeros[] = { Zero, Zero };
   1849 
   1850   // If we don't already have it, get _NSConstantStringClassReference.
   1851   if (!ConstantStringClassRef) {
   1852     std::string StringClass(getLangOptions().ObjCConstantStringClass);
   1853     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
   1854     llvm::Constant *GV;
   1855     if (Features.ObjCNonFragileABI) {
   1856       std::string str =
   1857         StringClass.empty() ? "OBJC_CLASS_$_NSConstantString"
   1858                             : "OBJC_CLASS_$_" + StringClass;
   1859       GV = getObjCRuntime().GetClassGlobal(str);
   1860       // Make sure the result is of the correct type.
   1861       llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
   1862       ConstantStringClassRef =
   1863         llvm::ConstantExpr::getBitCast(GV, PTy);
   1864     } else {
   1865       std::string str =
   1866         StringClass.empty() ? "_NSConstantStringClassReference"
   1867                             : "_" + StringClass + "ClassReference";
   1868       llvm::Type *PTy = llvm::ArrayType::get(Ty, 0);
   1869       GV = CreateRuntimeVariable(PTy, str);
   1870       // Decay array -> ptr
   1871       ConstantStringClassRef =
   1872         llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
   1873     }
   1874   }
   1875 
   1876   if (!NSConstantStringType) {
   1877     // Construct the type for a constant NSString.
   1878     RecordDecl *D = CreateRecordDecl(Context, TTK_Struct,
   1879                                      Context.getTranslationUnitDecl(),
   1880                                    &Context.Idents.get("__builtin_NSString"));
   1881     D->startDefinition();
   1882 
   1883     QualType FieldTypes[3];
   1884 
   1885     // const int *isa;
   1886     FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst());
   1887     // const char *str;
   1888     FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst());
   1889     // unsigned int length;
   1890     FieldTypes[2] = Context.UnsignedIntTy;
   1891 
   1892     // Create fields
   1893     for (unsigned i = 0; i < 3; ++i) {
   1894       FieldDecl *Field = FieldDecl::Create(Context, D,
   1895                                            SourceLocation(),
   1896                                            SourceLocation(), 0,
   1897                                            FieldTypes[i], /*TInfo=*/0,
   1898                                            /*BitWidth=*/0,
   1899                                            /*Mutable=*/false,
   1900                                            /*HasInit=*/false);
   1901       Field->setAccess(AS_public);
   1902       D->addDecl(Field);
   1903     }
   1904 
   1905     D->completeDefinition();
   1906     QualType NSTy = Context.getTagDeclType(D);
   1907     NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy));
   1908   }
   1909 
   1910   llvm::Constant *Fields[3];
   1911 
   1912   // Class pointer.
   1913   Fields[0] = ConstantStringClassRef;
   1914 
   1915   // String pointer.
   1916   llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
   1917 
   1918   llvm::GlobalValue::LinkageTypes Linkage;
   1919   bool isConstant;
   1920   Linkage = llvm::GlobalValue::PrivateLinkage;
   1921   isConstant = !Features.WritableStrings;
   1922 
   1923   llvm::GlobalVariable *GV =
   1924   new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
   1925                            ".str");
   1926   GV->setUnnamedAddr(true);
   1927   CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
   1928   GV->setAlignment(Align.getQuantity());
   1929   Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
   1930 
   1931   // String length.
   1932   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
   1933   Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
   1934 
   1935   // The struct.
   1936   C = llvm::ConstantStruct::get(NSConstantStringType, Fields);
   1937   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
   1938                                 llvm::GlobalVariable::PrivateLinkage, C,
   1939                                 "_unnamed_nsstring_");
   1940   // FIXME. Fix section.
   1941   if (const char *Sect =
   1942         Features.ObjCNonFragileABI
   1943           ? getContext().getTargetInfo().getNSStringNonFragileABISection()
   1944           : getContext().getTargetInfo().getNSStringSection())
   1945     GV->setSection(Sect);
   1946   Entry.setValue(GV);
   1947 
   1948   return GV;
   1949 }
   1950 
   1951 QualType CodeGenModule::getObjCFastEnumerationStateType() {
   1952   if (ObjCFastEnumerationStateType.isNull()) {
   1953     RecordDecl *D = CreateRecordDecl(Context, TTK_Struct,
   1954                                      Context.getTranslationUnitDecl(),
   1955                       &Context.Idents.get("__objcFastEnumerationState"));
   1956     D->startDefinition();
   1957 
   1958     QualType FieldTypes[] = {
   1959       Context.UnsignedLongTy,
   1960       Context.getPointerType(Context.getObjCIdType()),
   1961       Context.getPointerType(Context.UnsignedLongTy),
   1962       Context.getConstantArrayType(Context.UnsignedLongTy,
   1963                            llvm::APInt(32, 5), ArrayType::Normal, 0)
   1964     };
   1965 
   1966     for (size_t i = 0; i < 4; ++i) {
   1967       FieldDecl *Field = FieldDecl::Create(Context,
   1968                                            D,
   1969                                            SourceLocation(),
   1970                                            SourceLocation(), 0,
   1971                                            FieldTypes[i], /*TInfo=*/0,
   1972                                            /*BitWidth=*/0,
   1973                                            /*Mutable=*/false,
   1974                                            /*HasInit=*/false);
   1975       Field->setAccess(AS_public);
   1976       D->addDecl(Field);
   1977     }
   1978 
   1979     D->completeDefinition();
   1980     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
   1981   }
   1982 
   1983   return ObjCFastEnumerationStateType;
   1984 }
   1985 
   1986 /// GetStringForStringLiteral - Return the appropriate bytes for a
   1987 /// string literal, properly padded to match the literal type.
   1988 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
   1989   const ASTContext &Context = getContext();
   1990   const ConstantArrayType *CAT =
   1991     Context.getAsConstantArrayType(E->getType());
   1992   assert(CAT && "String isn't pointer or array!");
   1993 
   1994   // Resize the string to the right size.
   1995   uint64_t RealLen = CAT->getSize().getZExtValue();
   1996 
   1997   switch (E->getKind()) {
   1998   case StringLiteral::Ascii:
   1999   case StringLiteral::UTF8:
   2000     break;
   2001   case StringLiteral::Wide:
   2002     RealLen *= Context.getTargetInfo().getWCharWidth() / Context.getCharWidth();
   2003     break;
   2004   case StringLiteral::UTF16:
   2005     RealLen *= Context.getTargetInfo().getChar16Width() / Context.getCharWidth();
   2006     break;
   2007   case StringLiteral::UTF32:
   2008     RealLen *= Context.getTargetInfo().getChar32Width() / Context.getCharWidth();
   2009     break;
   2010   }
   2011 
   2012   std::string Str = E->getString().str();
   2013   Str.resize(RealLen, '\0');
   2014 
   2015   return Str;
   2016 }
   2017 
   2018 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
   2019 /// constant array for the given string literal.
   2020 llvm::Constant *
   2021 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
   2022   // FIXME: This can be more efficient.
   2023   // FIXME: We shouldn't need to bitcast the constant in the wide string case.
   2024   CharUnits Align = getContext().getTypeAlignInChars(S->getType());
   2025   llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S),
   2026                                               /* GlobalName */ 0,
   2027                                               Align.getQuantity());
   2028   if (S->isWide() || S->isUTF16() || S->isUTF32()) {
   2029     llvm::Type *DestTy =
   2030         llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType()));
   2031     C = llvm::ConstantExpr::getBitCast(C, DestTy);
   2032   }
   2033   return C;
   2034 }
   2035 
   2036 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
   2037 /// array for the given ObjCEncodeExpr node.
   2038 llvm::Constant *
   2039 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
   2040   std::string Str;
   2041   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
   2042 
   2043   return GetAddrOfConstantCString(Str);
   2044 }
   2045 
   2046 
   2047 /// GenerateWritableString -- Creates storage for a string literal.
   2048 static llvm::GlobalVariable *GenerateStringLiteral(StringRef str,
   2049                                              bool constant,
   2050                                              CodeGenModule &CGM,
   2051                                              const char *GlobalName,
   2052                                              unsigned Alignment) {
   2053   // Create Constant for this string literal. Don't add a '\0'.
   2054   llvm::Constant *C =
   2055       llvm::ConstantArray::get(CGM.getLLVMContext(), str, false);
   2056 
   2057   // Create a global variable for this string
   2058   llvm::GlobalVariable *GV =
   2059     new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
   2060                              llvm::GlobalValue::PrivateLinkage,
   2061                              C, GlobalName);
   2062   GV->setAlignment(Alignment);
   2063   GV->setUnnamedAddr(true);
   2064   return GV;
   2065 }
   2066 
   2067 /// GetAddrOfConstantString - Returns a pointer to a character array
   2068 /// containing the literal. This contents are exactly that of the
   2069 /// given string, i.e. it will not be null terminated automatically;
   2070 /// see GetAddrOfConstantCString. Note that whether the result is
   2071 /// actually a pointer to an LLVM constant depends on
   2072 /// Feature.WriteableStrings.
   2073 ///
   2074 /// The result has pointer to array type.
   2075 llvm::Constant *CodeGenModule::GetAddrOfConstantString(StringRef Str,
   2076                                                        const char *GlobalName,
   2077                                                        unsigned Alignment) {
   2078   bool IsConstant = !Features.WritableStrings;
   2079 
   2080   // Get the default prefix if a name wasn't specified.
   2081   if (!GlobalName)
   2082     GlobalName = ".str";
   2083 
   2084   // Don't share any string literals if strings aren't constant.
   2085   if (!IsConstant)
   2086     return GenerateStringLiteral(Str, false, *this, GlobalName, Alignment);
   2087 
   2088   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
   2089     ConstantStringMap.GetOrCreateValue(Str);
   2090 
   2091   if (llvm::GlobalVariable *GV = Entry.getValue()) {
   2092     if (Alignment > GV->getAlignment()) {
   2093       GV->setAlignment(Alignment);
   2094     }
   2095     return GV;
   2096   }
   2097 
   2098   // Create a global variable for this.
   2099   llvm::GlobalVariable *GV = GenerateStringLiteral(Str, true, *this, GlobalName, Alignment);
   2100   Entry.setValue(GV);
   2101   return GV;
   2102 }
   2103 
   2104 /// GetAddrOfConstantCString - Returns a pointer to a character
   2105 /// array containing the literal and a terminating '\0'
   2106 /// character. The result has pointer to array type.
   2107 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str,
   2108                                                         const char *GlobalName,
   2109                                                         unsigned Alignment) {
   2110   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
   2111   return GetAddrOfConstantString(StrWithNull, GlobalName, Alignment);
   2112 }
   2113 
   2114 /// EmitObjCPropertyImplementations - Emit information for synthesized
   2115 /// properties for an implementation.
   2116 void CodeGenModule::EmitObjCPropertyImplementations(const
   2117                                                     ObjCImplementationDecl *D) {
   2118   for (ObjCImplementationDecl::propimpl_iterator
   2119          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
   2120     ObjCPropertyImplDecl *PID = *i;
   2121 
   2122     // Dynamic is just for type-checking.
   2123     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
   2124       ObjCPropertyDecl *PD = PID->getPropertyDecl();
   2125 
   2126       // Determine which methods need to be implemented, some may have
   2127       // been overridden. Note that ::isSynthesized is not the method
   2128       // we want, that just indicates if the decl came from a
   2129       // property. What we want to know is if the method is defined in
   2130       // this implementation.
   2131       if (!D->getInstanceMethod(PD->getGetterName()))
   2132         CodeGenFunction(*this).GenerateObjCGetter(
   2133                                  const_cast<ObjCImplementationDecl *>(D), PID);
   2134       if (!PD->isReadOnly() &&
   2135           !D->getInstanceMethod(PD->getSetterName()))
   2136         CodeGenFunction(*this).GenerateObjCSetter(
   2137                                  const_cast<ObjCImplementationDecl *>(D), PID);
   2138     }
   2139   }
   2140 }
   2141 
   2142 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
   2143   const ObjCInterfaceDecl *iface = impl->getClassInterface();
   2144   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
   2145        ivar; ivar = ivar->getNextIvar())
   2146     if (ivar->getType().isDestructedType())
   2147       return true;
   2148 
   2149   return false;
   2150 }
   2151 
   2152 /// EmitObjCIvarInitializations - Emit information for ivar initialization
   2153 /// for an implementation.
   2154 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
   2155   // We might need a .cxx_destruct even if we don't have any ivar initializers.
   2156   if (needsDestructMethod(D)) {
   2157     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
   2158     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
   2159     ObjCMethodDecl *DTORMethod =
   2160       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
   2161                              cxxSelector, getContext().VoidTy, 0, D,
   2162                              /*isInstance=*/true, /*isVariadic=*/false,
   2163                           /*isSynthesized=*/true, /*isImplicitlyDeclared=*/true,
   2164                              /*isDefined=*/false, ObjCMethodDecl::Required);
   2165     D->addInstanceMethod(DTORMethod);
   2166     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
   2167     D->setHasCXXStructors(true);
   2168   }
   2169 
   2170   // If the implementation doesn't have any ivar initializers, we don't need
   2171   // a .cxx_construct.
   2172   if (D->getNumIvarInitializers() == 0)
   2173     return;
   2174 
   2175   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
   2176   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
   2177   // The constructor returns 'self'.
   2178   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
   2179                                                 D->getLocation(),
   2180                                                 D->getLocation(),
   2181                                                 cxxSelector,
   2182                                                 getContext().getObjCIdType(), 0,
   2183                                                 D, /*isInstance=*/true,
   2184                                                 /*isVariadic=*/false,
   2185                                                 /*isSynthesized=*/true,
   2186                                                 /*isImplicitlyDeclared=*/true,
   2187                                                 /*isDefined=*/false,
   2188                                                 ObjCMethodDecl::Required);
   2189   D->addInstanceMethod(CTORMethod);
   2190   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
   2191   D->setHasCXXStructors(true);
   2192 }
   2193 
   2194 /// EmitNamespace - Emit all declarations in a namespace.
   2195 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
   2196   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
   2197        I != E; ++I)
   2198     EmitTopLevelDecl(*I);
   2199 }
   2200 
   2201 // EmitLinkageSpec - Emit all declarations in a linkage spec.
   2202 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
   2203   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
   2204       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
   2205     ErrorUnsupported(LSD, "linkage spec");
   2206     return;
   2207   }
   2208 
   2209   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
   2210        I != E; ++I)
   2211     EmitTopLevelDecl(*I);
   2212 }
   2213 
   2214 /// EmitTopLevelDecl - Emit code for a single top level declaration.
   2215 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
   2216   // If an error has occurred, stop code generation, but continue
   2217   // parsing and semantic analysis (to ensure all warnings and errors
   2218   // are emitted).
   2219   if (Diags.hasErrorOccurred())
   2220     return;
   2221 
   2222   // Ignore dependent declarations.
   2223   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
   2224     return;
   2225 
   2226   switch (D->getKind()) {
   2227   case Decl::CXXConversion:
   2228   case Decl::CXXMethod:
   2229   case Decl::Function:
   2230     // Skip function templates
   2231     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
   2232         cast<FunctionDecl>(D)->isLateTemplateParsed())
   2233       return;
   2234 
   2235     EmitGlobal(cast<FunctionDecl>(D));
   2236     break;
   2237 
   2238   case Decl::Var:
   2239     EmitGlobal(cast<VarDecl>(D));
   2240     break;
   2241 
   2242   // Indirect fields from global anonymous structs and unions can be
   2243   // ignored; only the actual variable requires IR gen support.
   2244   case Decl::IndirectField:
   2245     break;
   2246 
   2247   // C++ Decls
   2248   case Decl::Namespace:
   2249     EmitNamespace(cast<NamespaceDecl>(D));
   2250     break;
   2251     // No code generation needed.
   2252   case Decl::UsingShadow:
   2253   case Decl::Using:
   2254   case Decl::UsingDirective:
   2255   case Decl::ClassTemplate:
   2256   case Decl::FunctionTemplate:
   2257   case Decl::TypeAliasTemplate:
   2258   case Decl::NamespaceAlias:
   2259   case Decl::Block:
   2260     break;
   2261   case Decl::CXXConstructor:
   2262     // Skip function templates
   2263     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
   2264         cast<FunctionDecl>(D)->isLateTemplateParsed())
   2265       return;
   2266 
   2267     EmitCXXConstructors(cast<CXXConstructorDecl>(D));
   2268     break;
   2269   case Decl::CXXDestructor:
   2270     if (cast<FunctionDecl>(D)->isLateTemplateParsed())
   2271       return;
   2272     EmitCXXDestructors(cast<CXXDestructorDecl>(D));
   2273     break;
   2274 
   2275   case Decl::StaticAssert:
   2276     // Nothing to do.
   2277     break;
   2278 
   2279   // Objective-C Decls
   2280 
   2281   // Forward declarations, no (immediate) code generation.
   2282   case Decl::ObjCClass:
   2283   case Decl::ObjCForwardProtocol:
   2284   case Decl::ObjCInterface:
   2285     break;
   2286 
   2287   case Decl::ObjCCategory: {
   2288     ObjCCategoryDecl *CD = cast<ObjCCategoryDecl>(D);
   2289     if (CD->IsClassExtension() && CD->hasSynthBitfield())
   2290       Context.ResetObjCLayout(CD->getClassInterface());
   2291     break;
   2292   }
   2293 
   2294   case Decl::ObjCProtocol:
   2295     ObjCRuntime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
   2296     break;
   2297 
   2298   case Decl::ObjCCategoryImpl:
   2299     // Categories have properties but don't support synthesize so we
   2300     // can ignore them here.
   2301     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
   2302     break;
   2303 
   2304   case Decl::ObjCImplementation: {
   2305     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
   2306     if (Features.ObjCNonFragileABI2 && OMD->hasSynthBitfield())
   2307       Context.ResetObjCLayout(OMD->getClassInterface());
   2308     EmitObjCPropertyImplementations(OMD);
   2309     EmitObjCIvarInitializations(OMD);
   2310     ObjCRuntime->GenerateClass(OMD);
   2311     break;
   2312   }
   2313   case Decl::ObjCMethod: {
   2314     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
   2315     // If this is not a prototype, emit the body.
   2316     if (OMD->getBody())
   2317       CodeGenFunction(*this).GenerateObjCMethod(OMD);
   2318     break;
   2319   }
   2320   case Decl::ObjCCompatibleAlias:
   2321     // compatibility-alias is a directive and has no code gen.
   2322     break;
   2323 
   2324   case Decl::LinkageSpec:
   2325     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
   2326     break;
   2327 
   2328   case Decl::FileScopeAsm: {
   2329     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
   2330     StringRef AsmString = AD->getAsmString()->getString();
   2331 
   2332     const std::string &S = getModule().getModuleInlineAsm();
   2333     if (S.empty())
   2334       getModule().setModuleInlineAsm(AsmString);
   2335     else if (*--S.end() == '\n')
   2336       getModule().setModuleInlineAsm(S + AsmString.str());
   2337     else
   2338       getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
   2339     break;
   2340   }
   2341 
   2342   default:
   2343     // Make sure we handled everything we should, every other kind is a
   2344     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
   2345     // function. Need to recode Decl::Kind to do that easily.
   2346     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
   2347   }
   2348 }
   2349 
   2350 /// Turns the given pointer into a constant.
   2351 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
   2352                                           const void *Ptr) {
   2353   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
   2354   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
   2355   return llvm::ConstantInt::get(i64, PtrInt);
   2356 }
   2357 
   2358 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
   2359                                    llvm::NamedMDNode *&GlobalMetadata,
   2360                                    GlobalDecl D,
   2361                                    llvm::GlobalValue *Addr) {
   2362   if (!GlobalMetadata)
   2363     GlobalMetadata =
   2364       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
   2365 
   2366   // TODO: should we report variant information for ctors/dtors?
   2367   llvm::Value *Ops[] = {
   2368     Addr,
   2369     GetPointerConstant(CGM.getLLVMContext(), D.getDecl())
   2370   };
   2371   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
   2372 }
   2373 
   2374 /// Emits metadata nodes associating all the global values in the
   2375 /// current module with the Decls they came from.  This is useful for
   2376 /// projects using IR gen as a subroutine.
   2377 ///
   2378 /// Since there's currently no way to associate an MDNode directly
   2379 /// with an llvm::GlobalValue, we create a global named metadata
   2380 /// with the name 'clang.global.decl.ptrs'.
   2381 void CodeGenModule::EmitDeclMetadata() {
   2382   llvm::NamedMDNode *GlobalMetadata = 0;
   2383 
   2384   // StaticLocalDeclMap
   2385   for (llvm::DenseMap<GlobalDecl,StringRef>::iterator
   2386          I = MangledDeclNames.begin(), E = MangledDeclNames.end();
   2387        I != E; ++I) {
   2388     llvm::GlobalValue *Addr = getModule().getNamedValue(I->second);
   2389     EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr);
   2390   }
   2391 }
   2392 
   2393 /// Emits metadata nodes for all the local variables in the current
   2394 /// function.
   2395 void CodeGenFunction::EmitDeclMetadata() {
   2396   if (LocalDeclMap.empty()) return;
   2397 
   2398   llvm::LLVMContext &Context = getLLVMContext();
   2399 
   2400   // Find the unique metadata ID for this name.
   2401   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
   2402 
   2403   llvm::NamedMDNode *GlobalMetadata = 0;
   2404 
   2405   for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator
   2406          I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) {
   2407     const Decl *D = I->first;
   2408     llvm::Value *Addr = I->second;
   2409 
   2410     if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
   2411       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
   2412       Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr));
   2413     } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
   2414       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
   2415       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
   2416     }
   2417   }
   2418 }
   2419 
   2420 void CodeGenModule::EmitCoverageFile() {
   2421   if (!getCodeGenOpts().CoverageFile.empty()) {
   2422     if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) {
   2423       llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
   2424       llvm::LLVMContext &Ctx = TheModule.getContext();
   2425       llvm::MDString *CoverageFile =
   2426           llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile);
   2427       for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
   2428         llvm::MDNode *CU = CUNode->getOperand(i);
   2429         llvm::Value *node[] = { CoverageFile, CU };
   2430         llvm::MDNode *N = llvm::MDNode::get(Ctx, node);
   2431         GCov->addOperand(N);
   2432       }
   2433     }
   2434   }
   2435 }
   2436