Home | History | Annotate | Download | only in src
      1 // Copyright 2006-2009 the V8 project authors. All rights reserved.
      2 // Redistribution and use in source and binary forms, with or without
      3 // modification, are permitted provided that the following conditions are
      4 // met:
      5 //
      6 //     * Redistributions of source code must retain the above copyright
      7 //       notice, this list of conditions and the following disclaimer.
      8 //     * Redistributions in binary form must reproduce the above
      9 //       copyright notice, this list of conditions and the following
     10 //       disclaimer in the documentation and/or other materials provided
     11 //       with the distribution.
     12 //     * Neither the name of Google Inc. nor the names of its
     13 //       contributors may be used to endorse or promote products derived
     14 //       from this software without specific prior written permission.
     15 //
     16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     27 
     28 #include "v8.h"
     29 
     30 #include "ast.h"
     31 #include "compiler.h"
     32 #include "execution.h"
     33 #include "factory.h"
     34 #include "jsregexp.h"
     35 #include "platform.h"
     36 #include "string-search.h"
     37 #include "runtime.h"
     38 #include "compilation-cache.h"
     39 #include "string-stream.h"
     40 #include "parser.h"
     41 #include "regexp-macro-assembler.h"
     42 #include "regexp-macro-assembler-tracer.h"
     43 #include "regexp-macro-assembler-irregexp.h"
     44 #include "regexp-stack.h"
     45 
     46 #ifndef V8_INTERPRETED_REGEXP
     47 #if V8_TARGET_ARCH_IA32
     48 #include "ia32/regexp-macro-assembler-ia32.h"
     49 #elif V8_TARGET_ARCH_X64
     50 #include "x64/regexp-macro-assembler-x64.h"
     51 #elif V8_TARGET_ARCH_ARM
     52 #include "arm/regexp-macro-assembler-arm.h"
     53 #elif V8_TARGET_ARCH_MIPS
     54 #include "mips/regexp-macro-assembler-mips.h"
     55 #else
     56 #error Unsupported target architecture.
     57 #endif
     58 #endif
     59 
     60 #include "interpreter-irregexp.h"
     61 
     62 
     63 namespace v8 {
     64 namespace internal {
     65 
     66 Handle<Object> RegExpImpl::CreateRegExpLiteral(Handle<JSFunction> constructor,
     67                                                Handle<String> pattern,
     68                                                Handle<String> flags,
     69                                                bool* has_pending_exception) {
     70   // Call the construct code with 2 arguments.
     71   Object** argv[2] = { Handle<Object>::cast(pattern).location(),
     72                        Handle<Object>::cast(flags).location() };
     73   return Execution::New(constructor, 2, argv, has_pending_exception);
     74 }
     75 
     76 
     77 static JSRegExp::Flags RegExpFlagsFromString(Handle<String> str) {
     78   int flags = JSRegExp::NONE;
     79   for (int i = 0; i < str->length(); i++) {
     80     switch (str->Get(i)) {
     81       case 'i':
     82         flags |= JSRegExp::IGNORE_CASE;
     83         break;
     84       case 'g':
     85         flags |= JSRegExp::GLOBAL;
     86         break;
     87       case 'm':
     88         flags |= JSRegExp::MULTILINE;
     89         break;
     90     }
     91   }
     92   return JSRegExp::Flags(flags);
     93 }
     94 
     95 
     96 static inline void ThrowRegExpException(Handle<JSRegExp> re,
     97                                         Handle<String> pattern,
     98                                         Handle<String> error_text,
     99                                         const char* message) {
    100   Isolate* isolate = re->GetIsolate();
    101   Factory* factory = isolate->factory();
    102   Handle<FixedArray> elements = factory->NewFixedArray(2);
    103   elements->set(0, *pattern);
    104   elements->set(1, *error_text);
    105   Handle<JSArray> array = factory->NewJSArrayWithElements(elements);
    106   Handle<Object> regexp_err = factory->NewSyntaxError(message, array);
    107   isolate->Throw(*regexp_err);
    108 }
    109 
    110 
    111 // Generic RegExp methods. Dispatches to implementation specific methods.
    112 
    113 
    114 Handle<Object> RegExpImpl::Compile(Handle<JSRegExp> re,
    115                                    Handle<String> pattern,
    116                                    Handle<String> flag_str) {
    117   Isolate* isolate = re->GetIsolate();
    118   JSRegExp::Flags flags = RegExpFlagsFromString(flag_str);
    119   CompilationCache* compilation_cache = isolate->compilation_cache();
    120   Handle<FixedArray> cached = compilation_cache->LookupRegExp(pattern, flags);
    121   bool in_cache = !cached.is_null();
    122   LOG(isolate, RegExpCompileEvent(re, in_cache));
    123 
    124   Handle<Object> result;
    125   if (in_cache) {
    126     re->set_data(*cached);
    127     return re;
    128   }
    129   pattern = FlattenGetString(pattern);
    130   CompilationZoneScope zone_scope(DELETE_ON_EXIT);
    131   PostponeInterruptsScope postpone(isolate);
    132   RegExpCompileData parse_result;
    133   FlatStringReader reader(isolate, pattern);
    134   if (!RegExpParser::ParseRegExp(&reader, flags.is_multiline(),
    135                                  &parse_result)) {
    136     // Throw an exception if we fail to parse the pattern.
    137     ThrowRegExpException(re,
    138                          pattern,
    139                          parse_result.error,
    140                          "malformed_regexp");
    141     return Handle<Object>::null();
    142   }
    143 
    144   if (parse_result.simple && !flags.is_ignore_case()) {
    145     // Parse-tree is a single atom that is equal to the pattern.
    146     AtomCompile(re, pattern, flags, pattern);
    147   } else if (parse_result.tree->IsAtom() &&
    148       !flags.is_ignore_case() &&
    149       parse_result.capture_count == 0) {
    150     RegExpAtom* atom = parse_result.tree->AsAtom();
    151     Vector<const uc16> atom_pattern = atom->data();
    152     Handle<String> atom_string =
    153         isolate->factory()->NewStringFromTwoByte(atom_pattern);
    154     AtomCompile(re, pattern, flags, atom_string);
    155   } else {
    156     IrregexpInitialize(re, pattern, flags, parse_result.capture_count);
    157   }
    158   ASSERT(re->data()->IsFixedArray());
    159   // Compilation succeeded so the data is set on the regexp
    160   // and we can store it in the cache.
    161   Handle<FixedArray> data(FixedArray::cast(re->data()));
    162   compilation_cache->PutRegExp(pattern, flags, data);
    163 
    164   return re;
    165 }
    166 
    167 
    168 Handle<Object> RegExpImpl::Exec(Handle<JSRegExp> regexp,
    169                                 Handle<String> subject,
    170                                 int index,
    171                                 Handle<JSArray> last_match_info) {
    172   switch (regexp->TypeTag()) {
    173     case JSRegExp::ATOM:
    174       return AtomExec(regexp, subject, index, last_match_info);
    175     case JSRegExp::IRREGEXP: {
    176       Handle<Object> result =
    177           IrregexpExec(regexp, subject, index, last_match_info);
    178       ASSERT(!result.is_null() || Isolate::Current()->has_pending_exception());
    179       return result;
    180     }
    181     default:
    182       UNREACHABLE();
    183       return Handle<Object>::null();
    184   }
    185 }
    186 
    187 
    188 // RegExp Atom implementation: Simple string search using indexOf.
    189 
    190 
    191 void RegExpImpl::AtomCompile(Handle<JSRegExp> re,
    192                              Handle<String> pattern,
    193                              JSRegExp::Flags flags,
    194                              Handle<String> match_pattern) {
    195   re->GetIsolate()->factory()->SetRegExpAtomData(re,
    196                                                  JSRegExp::ATOM,
    197                                                  pattern,
    198                                                  flags,
    199                                                  match_pattern);
    200 }
    201 
    202 
    203 static void SetAtomLastCapture(FixedArray* array,
    204                                String* subject,
    205                                int from,
    206                                int to) {
    207   NoHandleAllocation no_handles;
    208   RegExpImpl::SetLastCaptureCount(array, 2);
    209   RegExpImpl::SetLastSubject(array, subject);
    210   RegExpImpl::SetLastInput(array, subject);
    211   RegExpImpl::SetCapture(array, 0, from);
    212   RegExpImpl::SetCapture(array, 1, to);
    213 }
    214 
    215   /* template <typename SubjectChar>, typename PatternChar>
    216 static int ReStringMatch(Vector<const SubjectChar> sub_vector,
    217                          Vector<const PatternChar> pat_vector,
    218                          int start_index) {
    219 
    220   int pattern_length = pat_vector.length();
    221   if (pattern_length == 0) return start_index;
    222 
    223   int subject_length = sub_vector.length();
    224   if (start_index + pattern_length > subject_length) return -1;
    225   return SearchString(sub_vector, pat_vector, start_index);
    226 }
    227   */
    228 Handle<Object> RegExpImpl::AtomExec(Handle<JSRegExp> re,
    229                                     Handle<String> subject,
    230                                     int index,
    231                                     Handle<JSArray> last_match_info) {
    232   Isolate* isolate = re->GetIsolate();
    233 
    234   ASSERT(0 <= index);
    235   ASSERT(index <= subject->length());
    236 
    237   if (!subject->IsFlat()) FlattenString(subject);
    238   AssertNoAllocation no_heap_allocation;  // ensure vectors stay valid
    239   // Extract flattened substrings of cons strings before determining asciiness.
    240   String* seq_sub = *subject;
    241   if (seq_sub->IsConsString()) seq_sub = ConsString::cast(seq_sub)->first();
    242 
    243   String* needle = String::cast(re->DataAt(JSRegExp::kAtomPatternIndex));
    244   int needle_len = needle->length();
    245 
    246   if (needle_len != 0) {
    247     if (index + needle_len > subject->length())
    248         return isolate->factory()->null_value();
    249 
    250     // dispatch on type of strings
    251     index = (needle->IsAsciiRepresentation()
    252              ? (seq_sub->IsAsciiRepresentation()
    253                 ? SearchString(isolate,
    254                                seq_sub->ToAsciiVector(),
    255                                needle->ToAsciiVector(),
    256                                index)
    257                 : SearchString(isolate,
    258                                seq_sub->ToUC16Vector(),
    259                                needle->ToAsciiVector(),
    260                                index))
    261              : (seq_sub->IsAsciiRepresentation()
    262                 ? SearchString(isolate,
    263                                seq_sub->ToAsciiVector(),
    264                                needle->ToUC16Vector(),
    265                                index)
    266                 : SearchString(isolate,
    267                                seq_sub->ToUC16Vector(),
    268                                needle->ToUC16Vector(),
    269                                index)));
    270     if (index == -1) return FACTORY->null_value();
    271   }
    272   ASSERT(last_match_info->HasFastElements());
    273 
    274   {
    275     NoHandleAllocation no_handles;
    276     FixedArray* array = FixedArray::cast(last_match_info->elements());
    277     SetAtomLastCapture(array, *subject, index, index + needle_len);
    278   }
    279   return last_match_info;
    280 }
    281 
    282 
    283 // Irregexp implementation.
    284 
    285 // Ensures that the regexp object contains a compiled version of the
    286 // source for either ASCII or non-ASCII strings.
    287 // If the compiled version doesn't already exist, it is compiled
    288 // from the source pattern.
    289 // If compilation fails, an exception is thrown and this function
    290 // returns false.
    291 bool RegExpImpl::EnsureCompiledIrregexp(Handle<JSRegExp> re, bool is_ascii) {
    292   Object* compiled_code = re->DataAt(JSRegExp::code_index(is_ascii));
    293 #ifdef V8_INTERPRETED_REGEXP
    294   if (compiled_code->IsByteArray()) return true;
    295 #else  // V8_INTERPRETED_REGEXP (RegExp native code)
    296   if (compiled_code->IsCode()) return true;
    297 #endif
    298   return CompileIrregexp(re, is_ascii);
    299 }
    300 
    301 
    302 bool RegExpImpl::CompileIrregexp(Handle<JSRegExp> re, bool is_ascii) {
    303   // Compile the RegExp.
    304   Isolate* isolate = re->GetIsolate();
    305   CompilationZoneScope zone_scope(DELETE_ON_EXIT);
    306   PostponeInterruptsScope postpone(isolate);
    307   Object* entry = re->DataAt(JSRegExp::code_index(is_ascii));
    308   if (entry->IsJSObject()) {
    309     // If it's a JSObject, a previous compilation failed and threw this object.
    310     // Re-throw the object without trying again.
    311     isolate->Throw(entry);
    312     return false;
    313   }
    314   ASSERT(entry->IsTheHole());
    315 
    316   JSRegExp::Flags flags = re->GetFlags();
    317 
    318   Handle<String> pattern(re->Pattern());
    319   if (!pattern->IsFlat()) {
    320     FlattenString(pattern);
    321   }
    322 
    323   RegExpCompileData compile_data;
    324   FlatStringReader reader(isolate, pattern);
    325   if (!RegExpParser::ParseRegExp(&reader, flags.is_multiline(),
    326                                  &compile_data)) {
    327     // Throw an exception if we fail to parse the pattern.
    328     // THIS SHOULD NOT HAPPEN. We already pre-parsed it successfully once.
    329     ThrowRegExpException(re,
    330                          pattern,
    331                          compile_data.error,
    332                          "malformed_regexp");
    333     return false;
    334   }
    335   RegExpEngine::CompilationResult result =
    336       RegExpEngine::Compile(&compile_data,
    337                             flags.is_ignore_case(),
    338                             flags.is_multiline(),
    339                             pattern,
    340                             is_ascii);
    341   if (result.error_message != NULL) {
    342     // Unable to compile regexp.
    343     Factory* factory = isolate->factory();
    344     Handle<FixedArray> elements = factory->NewFixedArray(2);
    345     elements->set(0, *pattern);
    346     Handle<String> error_message =
    347         factory->NewStringFromUtf8(CStrVector(result.error_message));
    348     elements->set(1, *error_message);
    349     Handle<JSArray> array = factory->NewJSArrayWithElements(elements);
    350     Handle<Object> regexp_err =
    351         factory->NewSyntaxError("malformed_regexp", array);
    352     isolate->Throw(*regexp_err);
    353     re->SetDataAt(JSRegExp::code_index(is_ascii), *regexp_err);
    354     return false;
    355   }
    356 
    357   Handle<FixedArray> data = Handle<FixedArray>(FixedArray::cast(re->data()));
    358   data->set(JSRegExp::code_index(is_ascii), result.code);
    359   int register_max = IrregexpMaxRegisterCount(*data);
    360   if (result.num_registers > register_max) {
    361     SetIrregexpMaxRegisterCount(*data, result.num_registers);
    362   }
    363 
    364   return true;
    365 }
    366 
    367 
    368 int RegExpImpl::IrregexpMaxRegisterCount(FixedArray* re) {
    369   return Smi::cast(
    370       re->get(JSRegExp::kIrregexpMaxRegisterCountIndex))->value();
    371 }
    372 
    373 
    374 void RegExpImpl::SetIrregexpMaxRegisterCount(FixedArray* re, int value) {
    375   re->set(JSRegExp::kIrregexpMaxRegisterCountIndex, Smi::FromInt(value));
    376 }
    377 
    378 
    379 int RegExpImpl::IrregexpNumberOfCaptures(FixedArray* re) {
    380   return Smi::cast(re->get(JSRegExp::kIrregexpCaptureCountIndex))->value();
    381 }
    382 
    383 
    384 int RegExpImpl::IrregexpNumberOfRegisters(FixedArray* re) {
    385   return Smi::cast(re->get(JSRegExp::kIrregexpMaxRegisterCountIndex))->value();
    386 }
    387 
    388 
    389 ByteArray* RegExpImpl::IrregexpByteCode(FixedArray* re, bool is_ascii) {
    390   return ByteArray::cast(re->get(JSRegExp::code_index(is_ascii)));
    391 }
    392 
    393 
    394 Code* RegExpImpl::IrregexpNativeCode(FixedArray* re, bool is_ascii) {
    395   return Code::cast(re->get(JSRegExp::code_index(is_ascii)));
    396 }
    397 
    398 
    399 void RegExpImpl::IrregexpInitialize(Handle<JSRegExp> re,
    400                                     Handle<String> pattern,
    401                                     JSRegExp::Flags flags,
    402                                     int capture_count) {
    403   // Initialize compiled code entries to null.
    404   re->GetIsolate()->factory()->SetRegExpIrregexpData(re,
    405                                                      JSRegExp::IRREGEXP,
    406                                                      pattern,
    407                                                      flags,
    408                                                      capture_count);
    409 }
    410 
    411 
    412 int RegExpImpl::IrregexpPrepare(Handle<JSRegExp> regexp,
    413                                 Handle<String> subject) {
    414   if (!subject->IsFlat()) {
    415     FlattenString(subject);
    416   }
    417   // Check the asciiness of the underlying storage.
    418   bool is_ascii;
    419   {
    420     AssertNoAllocation no_gc;
    421     String* sequential_string = *subject;
    422     if (subject->IsConsString()) {
    423       sequential_string = ConsString::cast(*subject)->first();
    424     }
    425     is_ascii = sequential_string->IsAsciiRepresentation();
    426   }
    427   if (!EnsureCompiledIrregexp(regexp, is_ascii)) {
    428     return -1;
    429   }
    430 #ifdef V8_INTERPRETED_REGEXP
    431   // Byte-code regexp needs space allocated for all its registers.
    432   return IrregexpNumberOfRegisters(FixedArray::cast(regexp->data()));
    433 #else  // V8_INTERPRETED_REGEXP
    434   // Native regexp only needs room to output captures. Registers are handled
    435   // internally.
    436   return (IrregexpNumberOfCaptures(FixedArray::cast(regexp->data())) + 1) * 2;
    437 #endif  // V8_INTERPRETED_REGEXP
    438 }
    439 
    440 
    441 RegExpImpl::IrregexpResult RegExpImpl::IrregexpExecOnce(
    442     Handle<JSRegExp> regexp,
    443     Handle<String> subject,
    444     int index,
    445     Vector<int> output) {
    446   Isolate* isolate = regexp->GetIsolate();
    447 
    448   Handle<FixedArray> irregexp(FixedArray::cast(regexp->data()), isolate);
    449 
    450   ASSERT(index >= 0);
    451   ASSERT(index <= subject->length());
    452   ASSERT(subject->IsFlat());
    453 
    454   // A flat ASCII string might have a two-byte first part.
    455   if (subject->IsConsString()) {
    456     subject = Handle<String>(ConsString::cast(*subject)->first(), isolate);
    457   }
    458 
    459 #ifndef V8_INTERPRETED_REGEXP
    460   ASSERT(output.length() >= (IrregexpNumberOfCaptures(*irregexp) + 1) * 2);
    461   do {
    462     bool is_ascii = subject->IsAsciiRepresentation();
    463     Handle<Code> code(IrregexpNativeCode(*irregexp, is_ascii), isolate);
    464     NativeRegExpMacroAssembler::Result res =
    465         NativeRegExpMacroAssembler::Match(code,
    466                                           subject,
    467                                           output.start(),
    468                                           output.length(),
    469                                           index,
    470                                           isolate);
    471     if (res != NativeRegExpMacroAssembler::RETRY) {
    472       ASSERT(res != NativeRegExpMacroAssembler::EXCEPTION ||
    473              isolate->has_pending_exception());
    474       STATIC_ASSERT(
    475           static_cast<int>(NativeRegExpMacroAssembler::SUCCESS) == RE_SUCCESS);
    476       STATIC_ASSERT(
    477           static_cast<int>(NativeRegExpMacroAssembler::FAILURE) == RE_FAILURE);
    478       STATIC_ASSERT(static_cast<int>(NativeRegExpMacroAssembler::EXCEPTION)
    479                     == RE_EXCEPTION);
    480       return static_cast<IrregexpResult>(res);
    481     }
    482     // If result is RETRY, the string has changed representation, and we
    483     // must restart from scratch.
    484     // In this case, it means we must make sure we are prepared to handle
    485     // the, potentially, different subject (the string can switch between
    486     // being internal and external, and even between being ASCII and UC16,
    487     // but the characters are always the same).
    488     IrregexpPrepare(regexp, subject);
    489   } while (true);
    490   UNREACHABLE();
    491   return RE_EXCEPTION;
    492 #else  // V8_INTERPRETED_REGEXP
    493 
    494   ASSERT(output.length() >= IrregexpNumberOfRegisters(*irregexp));
    495   bool is_ascii = subject->IsAsciiRepresentation();
    496   // We must have done EnsureCompiledIrregexp, so we can get the number of
    497   // registers.
    498   int* register_vector = output.start();
    499   int number_of_capture_registers =
    500       (IrregexpNumberOfCaptures(*irregexp) + 1) * 2;
    501   for (int i = number_of_capture_registers - 1; i >= 0; i--) {
    502     register_vector[i] = -1;
    503   }
    504   Handle<ByteArray> byte_codes(IrregexpByteCode(*irregexp, is_ascii), isolate);
    505 
    506   if (IrregexpInterpreter::Match(isolate,
    507                                  byte_codes,
    508                                  subject,
    509                                  register_vector,
    510                                  index)) {
    511     return RE_SUCCESS;
    512   }
    513   return RE_FAILURE;
    514 #endif  // V8_INTERPRETED_REGEXP
    515 }
    516 
    517 
    518 Handle<Object> RegExpImpl::IrregexpExec(Handle<JSRegExp> jsregexp,
    519                                         Handle<String> subject,
    520                                         int previous_index,
    521                                         Handle<JSArray> last_match_info) {
    522   ASSERT_EQ(jsregexp->TypeTag(), JSRegExp::IRREGEXP);
    523 
    524   // Prepare space for the return values.
    525 #ifdef V8_INTERPRETED_REGEXP
    526 #ifdef DEBUG
    527   if (FLAG_trace_regexp_bytecodes) {
    528     String* pattern = jsregexp->Pattern();
    529     PrintF("\n\nRegexp match:   /%s/\n\n", *(pattern->ToCString()));
    530     PrintF("\n\nSubject string: '%s'\n\n", *(subject->ToCString()));
    531   }
    532 #endif
    533 #endif
    534   int required_registers = RegExpImpl::IrregexpPrepare(jsregexp, subject);
    535   if (required_registers < 0) {
    536     // Compiling failed with an exception.
    537     ASSERT(Isolate::Current()->has_pending_exception());
    538     return Handle<Object>::null();
    539   }
    540 
    541   OffsetsVector registers(required_registers);
    542 
    543   IrregexpResult res = RegExpImpl::IrregexpExecOnce(
    544       jsregexp, subject, previous_index, Vector<int>(registers.vector(),
    545                                                      registers.length()));
    546   if (res == RE_SUCCESS) {
    547     int capture_register_count =
    548         (IrregexpNumberOfCaptures(FixedArray::cast(jsregexp->data())) + 1) * 2;
    549     last_match_info->EnsureSize(capture_register_count + kLastMatchOverhead);
    550     AssertNoAllocation no_gc;
    551     int* register_vector = registers.vector();
    552     FixedArray* array = FixedArray::cast(last_match_info->elements());
    553     for (int i = 0; i < capture_register_count; i += 2) {
    554       SetCapture(array, i, register_vector[i]);
    555       SetCapture(array, i + 1, register_vector[i + 1]);
    556     }
    557     SetLastCaptureCount(array, capture_register_count);
    558     SetLastSubject(array, *subject);
    559     SetLastInput(array, *subject);
    560     return last_match_info;
    561   }
    562   if (res == RE_EXCEPTION) {
    563     ASSERT(Isolate::Current()->has_pending_exception());
    564     return Handle<Object>::null();
    565   }
    566   ASSERT(res == RE_FAILURE);
    567   return Isolate::Current()->factory()->null_value();
    568 }
    569 
    570 
    571 // -------------------------------------------------------------------
    572 // Implementation of the Irregexp regular expression engine.
    573 //
    574 // The Irregexp regular expression engine is intended to be a complete
    575 // implementation of ECMAScript regular expressions.  It generates either
    576 // bytecodes or native code.
    577 
    578 //   The Irregexp regexp engine is structured in three steps.
    579 //   1) The parser generates an abstract syntax tree.  See ast.cc.
    580 //   2) From the AST a node network is created.  The nodes are all
    581 //      subclasses of RegExpNode.  The nodes represent states when
    582 //      executing a regular expression.  Several optimizations are
    583 //      performed on the node network.
    584 //   3) From the nodes we generate either byte codes or native code
    585 //      that can actually execute the regular expression (perform
    586 //      the search).  The code generation step is described in more
    587 //      detail below.
    588 
    589 // Code generation.
    590 //
    591 //   The nodes are divided into four main categories.
    592 //   * Choice nodes
    593 //        These represent places where the regular expression can
    594 //        match in more than one way.  For example on entry to an
    595 //        alternation (foo|bar) or a repetition (*, +, ? or {}).
    596 //   * Action nodes
    597 //        These represent places where some action should be
    598 //        performed.  Examples include recording the current position
    599 //        in the input string to a register (in order to implement
    600 //        captures) or other actions on register for example in order
    601 //        to implement the counters needed for {} repetitions.
    602 //   * Matching nodes
    603 //        These attempt to match some element part of the input string.
    604 //        Examples of elements include character classes, plain strings
    605 //        or back references.
    606 //   * End nodes
    607 //        These are used to implement the actions required on finding
    608 //        a successful match or failing to find a match.
    609 //
    610 //   The code generated (whether as byte codes or native code) maintains
    611 //   some state as it runs.  This consists of the following elements:
    612 //
    613 //   * The capture registers.  Used for string captures.
    614 //   * Other registers.  Used for counters etc.
    615 //   * The current position.
    616 //   * The stack of backtracking information.  Used when a matching node
    617 //     fails to find a match and needs to try an alternative.
    618 //
    619 // Conceptual regular expression execution model:
    620 //
    621 //   There is a simple conceptual model of regular expression execution
    622 //   which will be presented first.  The actual code generated is a more
    623 //   efficient simulation of the simple conceptual model:
    624 //
    625 //   * Choice nodes are implemented as follows:
    626 //     For each choice except the last {
    627 //       push current position
    628 //       push backtrack code location
    629 //       <generate code to test for choice>
    630 //       backtrack code location:
    631 //       pop current position
    632 //     }
    633 //     <generate code to test for last choice>
    634 //
    635 //   * Actions nodes are generated as follows
    636 //     <push affected registers on backtrack stack>
    637 //     <generate code to perform action>
    638 //     push backtrack code location
    639 //     <generate code to test for following nodes>
    640 //     backtrack code location:
    641 //     <pop affected registers to restore their state>
    642 //     <pop backtrack location from stack and go to it>
    643 //
    644 //   * Matching nodes are generated as follows:
    645 //     if input string matches at current position
    646 //       update current position
    647 //       <generate code to test for following nodes>
    648 //     else
    649 //       <pop backtrack location from stack and go to it>
    650 //
    651 //   Thus it can be seen that the current position is saved and restored
    652 //   by the choice nodes, whereas the registers are saved and restored by
    653 //   by the action nodes that manipulate them.
    654 //
    655 //   The other interesting aspect of this model is that nodes are generated
    656 //   at the point where they are needed by a recursive call to Emit().  If
    657 //   the node has already been code generated then the Emit() call will
    658 //   generate a jump to the previously generated code instead.  In order to
    659 //   limit recursion it is possible for the Emit() function to put the node
    660 //   on a work list for later generation and instead generate a jump.  The
    661 //   destination of the jump is resolved later when the code is generated.
    662 //
    663 // Actual regular expression code generation.
    664 //
    665 //   Code generation is actually more complicated than the above.  In order
    666 //   to improve the efficiency of the generated code some optimizations are
    667 //   performed
    668 //
    669 //   * Choice nodes have 1-character lookahead.
    670 //     A choice node looks at the following character and eliminates some of
    671 //     the choices immediately based on that character.  This is not yet
    672 //     implemented.
    673 //   * Simple greedy loops store reduced backtracking information.
    674 //     A quantifier like /.*foo/m will greedily match the whole input.  It will
    675 //     then need to backtrack to a point where it can match "foo".  The naive
    676 //     implementation of this would push each character position onto the
    677 //     backtracking stack, then pop them off one by one.  This would use space
    678 //     proportional to the length of the input string.  However since the "."
    679 //     can only match in one way and always has a constant length (in this case
    680 //     of 1) it suffices to store the current position on the top of the stack
    681 //     once.  Matching now becomes merely incrementing the current position and
    682 //     backtracking becomes decrementing the current position and checking the
    683 //     result against the stored current position.  This is faster and saves
    684 //     space.
    685 //   * The current state is virtualized.
    686 //     This is used to defer expensive operations until it is clear that they
    687 //     are needed and to generate code for a node more than once, allowing
    688 //     specialized an efficient versions of the code to be created. This is
    689 //     explained in the section below.
    690 //
    691 // Execution state virtualization.
    692 //
    693 //   Instead of emitting code, nodes that manipulate the state can record their
    694 //   manipulation in an object called the Trace.  The Trace object can record a
    695 //   current position offset, an optional backtrack code location on the top of
    696 //   the virtualized backtrack stack and some register changes.  When a node is
    697 //   to be emitted it can flush the Trace or update it.  Flushing the Trace
    698 //   will emit code to bring the actual state into line with the virtual state.
    699 //   Avoiding flushing the state can postpone some work (eg updates of capture
    700 //   registers).  Postponing work can save time when executing the regular
    701 //   expression since it may be found that the work never has to be done as a
    702 //   failure to match can occur.  In addition it is much faster to jump to a
    703 //   known backtrack code location than it is to pop an unknown backtrack
    704 //   location from the stack and jump there.
    705 //
    706 //   The virtual state found in the Trace affects code generation.  For example
    707 //   the virtual state contains the difference between the actual current
    708 //   position and the virtual current position, and matching code needs to use
    709 //   this offset to attempt a match in the correct location of the input
    710 //   string.  Therefore code generated for a non-trivial trace is specialized
    711 //   to that trace.  The code generator therefore has the ability to generate
    712 //   code for each node several times.  In order to limit the size of the
    713 //   generated code there is an arbitrary limit on how many specialized sets of
    714 //   code may be generated for a given node.  If the limit is reached, the
    715 //   trace is flushed and a generic version of the code for a node is emitted.
    716 //   This is subsequently used for that node.  The code emitted for non-generic
    717 //   trace is not recorded in the node and so it cannot currently be reused in
    718 //   the event that code generation is requested for an identical trace.
    719 
    720 
    721 void RegExpTree::AppendToText(RegExpText* text) {
    722   UNREACHABLE();
    723 }
    724 
    725 
    726 void RegExpAtom::AppendToText(RegExpText* text) {
    727   text->AddElement(TextElement::Atom(this));
    728 }
    729 
    730 
    731 void RegExpCharacterClass::AppendToText(RegExpText* text) {
    732   text->AddElement(TextElement::CharClass(this));
    733 }
    734 
    735 
    736 void RegExpText::AppendToText(RegExpText* text) {
    737   for (int i = 0; i < elements()->length(); i++)
    738     text->AddElement(elements()->at(i));
    739 }
    740 
    741 
    742 TextElement TextElement::Atom(RegExpAtom* atom) {
    743   TextElement result = TextElement(ATOM);
    744   result.data.u_atom = atom;
    745   return result;
    746 }
    747 
    748 
    749 TextElement TextElement::CharClass(
    750       RegExpCharacterClass* char_class) {
    751   TextElement result = TextElement(CHAR_CLASS);
    752   result.data.u_char_class = char_class;
    753   return result;
    754 }
    755 
    756 
    757 int TextElement::length() {
    758   if (type == ATOM) {
    759     return data.u_atom->length();
    760   } else {
    761     ASSERT(type == CHAR_CLASS);
    762     return 1;
    763   }
    764 }
    765 
    766 
    767 DispatchTable* ChoiceNode::GetTable(bool ignore_case) {
    768   if (table_ == NULL) {
    769     table_ = new DispatchTable();
    770     DispatchTableConstructor cons(table_, ignore_case);
    771     cons.BuildTable(this);
    772   }
    773   return table_;
    774 }
    775 
    776 
    777 class RegExpCompiler {
    778  public:
    779   RegExpCompiler(int capture_count, bool ignore_case, bool is_ascii);
    780 
    781   int AllocateRegister() {
    782     if (next_register_ >= RegExpMacroAssembler::kMaxRegister) {
    783       reg_exp_too_big_ = true;
    784       return next_register_;
    785     }
    786     return next_register_++;
    787   }
    788 
    789   RegExpEngine::CompilationResult Assemble(RegExpMacroAssembler* assembler,
    790                                            RegExpNode* start,
    791                                            int capture_count,
    792                                            Handle<String> pattern);
    793 
    794   inline void AddWork(RegExpNode* node) { work_list_->Add(node); }
    795 
    796   static const int kImplementationOffset = 0;
    797   static const int kNumberOfRegistersOffset = 0;
    798   static const int kCodeOffset = 1;
    799 
    800   RegExpMacroAssembler* macro_assembler() { return macro_assembler_; }
    801   EndNode* accept() { return accept_; }
    802 
    803   static const int kMaxRecursion = 100;
    804   inline int recursion_depth() { return recursion_depth_; }
    805   inline void IncrementRecursionDepth() { recursion_depth_++; }
    806   inline void DecrementRecursionDepth() { recursion_depth_--; }
    807 
    808   void SetRegExpTooBig() { reg_exp_too_big_ = true; }
    809 
    810   inline bool ignore_case() { return ignore_case_; }
    811   inline bool ascii() { return ascii_; }
    812 
    813   static const int kNoRegister = -1;
    814  private:
    815   EndNode* accept_;
    816   int next_register_;
    817   List<RegExpNode*>* work_list_;
    818   int recursion_depth_;
    819   RegExpMacroAssembler* macro_assembler_;
    820   bool ignore_case_;
    821   bool ascii_;
    822   bool reg_exp_too_big_;
    823 };
    824 
    825 
    826 class RecursionCheck {
    827  public:
    828   explicit RecursionCheck(RegExpCompiler* compiler) : compiler_(compiler) {
    829     compiler->IncrementRecursionDepth();
    830   }
    831   ~RecursionCheck() { compiler_->DecrementRecursionDepth(); }
    832  private:
    833   RegExpCompiler* compiler_;
    834 };
    835 
    836 
    837 static RegExpEngine::CompilationResult IrregexpRegExpTooBig() {
    838   return RegExpEngine::CompilationResult("RegExp too big");
    839 }
    840 
    841 
    842 // Attempts to compile the regexp using an Irregexp code generator.  Returns
    843 // a fixed array or a null handle depending on whether it succeeded.
    844 RegExpCompiler::RegExpCompiler(int capture_count, bool ignore_case, bool ascii)
    845     : next_register_(2 * (capture_count + 1)),
    846       work_list_(NULL),
    847       recursion_depth_(0),
    848       ignore_case_(ignore_case),
    849       ascii_(ascii),
    850       reg_exp_too_big_(false) {
    851   accept_ = new EndNode(EndNode::ACCEPT);
    852   ASSERT(next_register_ - 1 <= RegExpMacroAssembler::kMaxRegister);
    853 }
    854 
    855 
    856 RegExpEngine::CompilationResult RegExpCompiler::Assemble(
    857     RegExpMacroAssembler* macro_assembler,
    858     RegExpNode* start,
    859     int capture_count,
    860     Handle<String> pattern) {
    861   Heap* heap = pattern->GetHeap();
    862 
    863   bool use_slow_safe_regexp_compiler = false;
    864   if (heap->total_regexp_code_generated() >
    865           RegExpImpl::kRegWxpCompiledLimit &&
    866       heap->isolate()->memory_allocator()->SizeExecutable() >
    867           RegExpImpl::kRegExpExecutableMemoryLimit) {
    868     use_slow_safe_regexp_compiler = true;
    869   }
    870 
    871   macro_assembler->set_slow_safe(use_slow_safe_regexp_compiler);
    872 
    873 #ifdef DEBUG
    874   if (FLAG_trace_regexp_assembler)
    875     macro_assembler_ = new RegExpMacroAssemblerTracer(macro_assembler);
    876   else
    877 #endif
    878     macro_assembler_ = macro_assembler;
    879 
    880   List <RegExpNode*> work_list(0);
    881   work_list_ = &work_list;
    882   Label fail;
    883   macro_assembler_->PushBacktrack(&fail);
    884   Trace new_trace;
    885   start->Emit(this, &new_trace);
    886   macro_assembler_->Bind(&fail);
    887   macro_assembler_->Fail();
    888   while (!work_list.is_empty()) {
    889     work_list.RemoveLast()->Emit(this, &new_trace);
    890   }
    891   if (reg_exp_too_big_) return IrregexpRegExpTooBig();
    892 
    893   Handle<HeapObject> code = macro_assembler_->GetCode(pattern);
    894   heap->IncreaseTotalRegexpCodeGenerated(code->Size());
    895   work_list_ = NULL;
    896 #ifdef DEBUG
    897   if (FLAG_print_code) {
    898     Handle<Code>::cast(code)->Disassemble(*pattern->ToCString());
    899   }
    900   if (FLAG_trace_regexp_assembler) {
    901     delete macro_assembler_;
    902   }
    903 #endif
    904   return RegExpEngine::CompilationResult(*code, next_register_);
    905 }
    906 
    907 
    908 bool Trace::DeferredAction::Mentions(int that) {
    909   if (type() == ActionNode::CLEAR_CAPTURES) {
    910     Interval range = static_cast<DeferredClearCaptures*>(this)->range();
    911     return range.Contains(that);
    912   } else {
    913     return reg() == that;
    914   }
    915 }
    916 
    917 
    918 bool Trace::mentions_reg(int reg) {
    919   for (DeferredAction* action = actions_;
    920        action != NULL;
    921        action = action->next()) {
    922     if (action->Mentions(reg))
    923       return true;
    924   }
    925   return false;
    926 }
    927 
    928 
    929 bool Trace::GetStoredPosition(int reg, int* cp_offset) {
    930   ASSERT_EQ(0, *cp_offset);
    931   for (DeferredAction* action = actions_;
    932        action != NULL;
    933        action = action->next()) {
    934     if (action->Mentions(reg)) {
    935       if (action->type() == ActionNode::STORE_POSITION) {
    936         *cp_offset = static_cast<DeferredCapture*>(action)->cp_offset();
    937         return true;
    938       } else {
    939         return false;
    940       }
    941     }
    942   }
    943   return false;
    944 }
    945 
    946 
    947 int Trace::FindAffectedRegisters(OutSet* affected_registers) {
    948   int max_register = RegExpCompiler::kNoRegister;
    949   for (DeferredAction* action = actions_;
    950        action != NULL;
    951        action = action->next()) {
    952     if (action->type() == ActionNode::CLEAR_CAPTURES) {
    953       Interval range = static_cast<DeferredClearCaptures*>(action)->range();
    954       for (int i = range.from(); i <= range.to(); i++)
    955         affected_registers->Set(i);
    956       if (range.to() > max_register) max_register = range.to();
    957     } else {
    958       affected_registers->Set(action->reg());
    959       if (action->reg() > max_register) max_register = action->reg();
    960     }
    961   }
    962   return max_register;
    963 }
    964 
    965 
    966 void Trace::RestoreAffectedRegisters(RegExpMacroAssembler* assembler,
    967                                      int max_register,
    968                                      OutSet& registers_to_pop,
    969                                      OutSet& registers_to_clear) {
    970   for (int reg = max_register; reg >= 0; reg--) {
    971     if (registers_to_pop.Get(reg)) assembler->PopRegister(reg);
    972     else if (registers_to_clear.Get(reg)) {
    973       int clear_to = reg;
    974       while (reg > 0 && registers_to_clear.Get(reg - 1)) {
    975         reg--;
    976       }
    977       assembler->ClearRegisters(reg, clear_to);
    978     }
    979   }
    980 }
    981 
    982 
    983 void Trace::PerformDeferredActions(RegExpMacroAssembler* assembler,
    984                                    int max_register,
    985                                    OutSet& affected_registers,
    986                                    OutSet* registers_to_pop,
    987                                    OutSet* registers_to_clear) {
    988   // The "+1" is to avoid a push_limit of zero if stack_limit_slack() is 1.
    989   const int push_limit = (assembler->stack_limit_slack() + 1) / 2;
    990 
    991   // Count pushes performed to force a stack limit check occasionally.
    992   int pushes = 0;
    993 
    994   for (int reg = 0; reg <= max_register; reg++) {
    995     if (!affected_registers.Get(reg)) {
    996       continue;
    997     }
    998 
    999     // The chronologically first deferred action in the trace
   1000     // is used to infer the action needed to restore a register
   1001     // to its previous state (or not, if it's safe to ignore it).
   1002     enum DeferredActionUndoType { IGNORE, RESTORE, CLEAR };
   1003     DeferredActionUndoType undo_action = IGNORE;
   1004 
   1005     int value = 0;
   1006     bool absolute = false;
   1007     bool clear = false;
   1008     int store_position = -1;
   1009     // This is a little tricky because we are scanning the actions in reverse
   1010     // historical order (newest first).
   1011     for (DeferredAction* action = actions_;
   1012          action != NULL;
   1013          action = action->next()) {
   1014       if (action->Mentions(reg)) {
   1015         switch (action->type()) {
   1016           case ActionNode::SET_REGISTER: {
   1017             Trace::DeferredSetRegister* psr =
   1018                 static_cast<Trace::DeferredSetRegister*>(action);
   1019             if (!absolute) {
   1020               value += psr->value();
   1021               absolute = true;
   1022             }
   1023             // SET_REGISTER is currently only used for newly introduced loop
   1024             // counters. They can have a significant previous value if they
   1025             // occour in a loop. TODO(lrn): Propagate this information, so
   1026             // we can set undo_action to IGNORE if we know there is no value to
   1027             // restore.
   1028             undo_action = RESTORE;
   1029             ASSERT_EQ(store_position, -1);
   1030             ASSERT(!clear);
   1031             break;
   1032           }
   1033           case ActionNode::INCREMENT_REGISTER:
   1034             if (!absolute) {
   1035               value++;
   1036             }
   1037             ASSERT_EQ(store_position, -1);
   1038             ASSERT(!clear);
   1039             undo_action = RESTORE;
   1040             break;
   1041           case ActionNode::STORE_POSITION: {
   1042             Trace::DeferredCapture* pc =
   1043                 static_cast<Trace::DeferredCapture*>(action);
   1044             if (!clear && store_position == -1) {
   1045               store_position = pc->cp_offset();
   1046             }
   1047 
   1048             // For captures we know that stores and clears alternate.
   1049             // Other register, are never cleared, and if the occur
   1050             // inside a loop, they might be assigned more than once.
   1051             if (reg <= 1) {
   1052               // Registers zero and one, aka "capture zero", is
   1053               // always set correctly if we succeed. There is no
   1054               // need to undo a setting on backtrack, because we
   1055               // will set it again or fail.
   1056               undo_action = IGNORE;
   1057             } else {
   1058               undo_action = pc->is_capture() ? CLEAR : RESTORE;
   1059             }
   1060             ASSERT(!absolute);
   1061             ASSERT_EQ(value, 0);
   1062             break;
   1063           }
   1064           case ActionNode::CLEAR_CAPTURES: {
   1065             // Since we're scanning in reverse order, if we've already
   1066             // set the position we have to ignore historically earlier
   1067             // clearing operations.
   1068             if (store_position == -1) {
   1069               clear = true;
   1070             }
   1071             undo_action = RESTORE;
   1072             ASSERT(!absolute);
   1073             ASSERT_EQ(value, 0);
   1074             break;
   1075           }
   1076           default:
   1077             UNREACHABLE();
   1078             break;
   1079         }
   1080       }
   1081     }
   1082     // Prepare for the undo-action (e.g., push if it's going to be popped).
   1083     if (undo_action == RESTORE) {
   1084       pushes++;
   1085       RegExpMacroAssembler::StackCheckFlag stack_check =
   1086           RegExpMacroAssembler::kNoStackLimitCheck;
   1087       if (pushes == push_limit) {
   1088         stack_check = RegExpMacroAssembler::kCheckStackLimit;
   1089         pushes = 0;
   1090       }
   1091 
   1092       assembler->PushRegister(reg, stack_check);
   1093       registers_to_pop->Set(reg);
   1094     } else if (undo_action == CLEAR) {
   1095       registers_to_clear->Set(reg);
   1096     }
   1097     // Perform the chronologically last action (or accumulated increment)
   1098     // for the register.
   1099     if (store_position != -1) {
   1100       assembler->WriteCurrentPositionToRegister(reg, store_position);
   1101     } else if (clear) {
   1102       assembler->ClearRegisters(reg, reg);
   1103     } else if (absolute) {
   1104       assembler->SetRegister(reg, value);
   1105     } else if (value != 0) {
   1106       assembler->AdvanceRegister(reg, value);
   1107     }
   1108   }
   1109 }
   1110 
   1111 
   1112 // This is called as we come into a loop choice node and some other tricky
   1113 // nodes.  It normalizes the state of the code generator to ensure we can
   1114 // generate generic code.
   1115 void Trace::Flush(RegExpCompiler* compiler, RegExpNode* successor) {
   1116   RegExpMacroAssembler* assembler = compiler->macro_assembler();
   1117 
   1118   ASSERT(!is_trivial());
   1119 
   1120   if (actions_ == NULL && backtrack() == NULL) {
   1121     // Here we just have some deferred cp advances to fix and we are back to
   1122     // a normal situation.  We may also have to forget some information gained
   1123     // through a quick check that was already performed.
   1124     if (cp_offset_ != 0) assembler->AdvanceCurrentPosition(cp_offset_);
   1125     // Create a new trivial state and generate the node with that.
   1126     Trace new_state;
   1127     successor->Emit(compiler, &new_state);
   1128     return;
   1129   }
   1130 
   1131   // Generate deferred actions here along with code to undo them again.
   1132   OutSet affected_registers;
   1133 
   1134   if (backtrack() != NULL) {
   1135     // Here we have a concrete backtrack location.  These are set up by choice
   1136     // nodes and so they indicate that we have a deferred save of the current
   1137     // position which we may need to emit here.
   1138     assembler->PushCurrentPosition();
   1139   }
   1140 
   1141   int max_register = FindAffectedRegisters(&affected_registers);
   1142   OutSet registers_to_pop;
   1143   OutSet registers_to_clear;
   1144   PerformDeferredActions(assembler,
   1145                          max_register,
   1146                          affected_registers,
   1147                          &registers_to_pop,
   1148                          &registers_to_clear);
   1149   if (cp_offset_ != 0) {
   1150     assembler->AdvanceCurrentPosition(cp_offset_);
   1151   }
   1152 
   1153   // Create a new trivial state and generate the node with that.
   1154   Label undo;
   1155   assembler->PushBacktrack(&undo);
   1156   Trace new_state;
   1157   successor->Emit(compiler, &new_state);
   1158 
   1159   // On backtrack we need to restore state.
   1160   assembler->Bind(&undo);
   1161   RestoreAffectedRegisters(assembler,
   1162                            max_register,
   1163                            registers_to_pop,
   1164                            registers_to_clear);
   1165   if (backtrack() == NULL) {
   1166     assembler->Backtrack();
   1167   } else {
   1168     assembler->PopCurrentPosition();
   1169     assembler->GoTo(backtrack());
   1170   }
   1171 }
   1172 
   1173 
   1174 void NegativeSubmatchSuccess::Emit(RegExpCompiler* compiler, Trace* trace) {
   1175   RegExpMacroAssembler* assembler = compiler->macro_assembler();
   1176 
   1177   // Omit flushing the trace. We discard the entire stack frame anyway.
   1178 
   1179   if (!label()->is_bound()) {
   1180     // We are completely independent of the trace, since we ignore it,
   1181     // so this code can be used as the generic version.
   1182     assembler->Bind(label());
   1183   }
   1184 
   1185   // Throw away everything on the backtrack stack since the start
   1186   // of the negative submatch and restore the character position.
   1187   assembler->ReadCurrentPositionFromRegister(current_position_register_);
   1188   assembler->ReadStackPointerFromRegister(stack_pointer_register_);
   1189   if (clear_capture_count_ > 0) {
   1190     // Clear any captures that might have been performed during the success
   1191     // of the body of the negative look-ahead.
   1192     int clear_capture_end = clear_capture_start_ + clear_capture_count_ - 1;
   1193     assembler->ClearRegisters(clear_capture_start_, clear_capture_end);
   1194   }
   1195   // Now that we have unwound the stack we find at the top of the stack the
   1196   // backtrack that the BeginSubmatch node got.
   1197   assembler->Backtrack();
   1198 }
   1199 
   1200 
   1201 void EndNode::Emit(RegExpCompiler* compiler, Trace* trace) {
   1202   if (!trace->is_trivial()) {
   1203     trace->Flush(compiler, this);
   1204     return;
   1205   }
   1206   RegExpMacroAssembler* assembler = compiler->macro_assembler();
   1207   if (!label()->is_bound()) {
   1208     assembler->Bind(label());
   1209   }
   1210   switch (action_) {
   1211     case ACCEPT:
   1212       assembler->Succeed();
   1213       return;
   1214     case BACKTRACK:
   1215       assembler->GoTo(trace->backtrack());
   1216       return;
   1217     case NEGATIVE_SUBMATCH_SUCCESS:
   1218       // This case is handled in a different virtual method.
   1219       UNREACHABLE();
   1220   }
   1221   UNIMPLEMENTED();
   1222 }
   1223 
   1224 
   1225 void GuardedAlternative::AddGuard(Guard* guard) {
   1226   if (guards_ == NULL)
   1227     guards_ = new ZoneList<Guard*>(1);
   1228   guards_->Add(guard);
   1229 }
   1230 
   1231 
   1232 ActionNode* ActionNode::SetRegister(int reg,
   1233                                     int val,
   1234                                     RegExpNode* on_success) {
   1235   ActionNode* result = new ActionNode(SET_REGISTER, on_success);
   1236   result->data_.u_store_register.reg = reg;
   1237   result->data_.u_store_register.value = val;
   1238   return result;
   1239 }
   1240 
   1241 
   1242 ActionNode* ActionNode::IncrementRegister(int reg, RegExpNode* on_success) {
   1243   ActionNode* result = new ActionNode(INCREMENT_REGISTER, on_success);
   1244   result->data_.u_increment_register.reg = reg;
   1245   return result;
   1246 }
   1247 
   1248 
   1249 ActionNode* ActionNode::StorePosition(int reg,
   1250                                       bool is_capture,
   1251                                       RegExpNode* on_success) {
   1252   ActionNode* result = new ActionNode(STORE_POSITION, on_success);
   1253   result->data_.u_position_register.reg = reg;
   1254   result->data_.u_position_register.is_capture = is_capture;
   1255   return result;
   1256 }
   1257 
   1258 
   1259 ActionNode* ActionNode::ClearCaptures(Interval range,
   1260                                       RegExpNode* on_success) {
   1261   ActionNode* result = new ActionNode(CLEAR_CAPTURES, on_success);
   1262   result->data_.u_clear_captures.range_from = range.from();
   1263   result->data_.u_clear_captures.range_to = range.to();
   1264   return result;
   1265 }
   1266 
   1267 
   1268 ActionNode* ActionNode::BeginSubmatch(int stack_reg,
   1269                                       int position_reg,
   1270                                       RegExpNode* on_success) {
   1271   ActionNode* result = new ActionNode(BEGIN_SUBMATCH, on_success);
   1272   result->data_.u_submatch.stack_pointer_register = stack_reg;
   1273   result->data_.u_submatch.current_position_register = position_reg;
   1274   return result;
   1275 }
   1276 
   1277 
   1278 ActionNode* ActionNode::PositiveSubmatchSuccess(int stack_reg,
   1279                                                 int position_reg,
   1280                                                 int clear_register_count,
   1281                                                 int clear_register_from,
   1282                                                 RegExpNode* on_success) {
   1283   ActionNode* result = new ActionNode(POSITIVE_SUBMATCH_SUCCESS, on_success);
   1284   result->data_.u_submatch.stack_pointer_register = stack_reg;
   1285   result->data_.u_submatch.current_position_register = position_reg;
   1286   result->data_.u_submatch.clear_register_count = clear_register_count;
   1287   result->data_.u_submatch.clear_register_from = clear_register_from;
   1288   return result;
   1289 }
   1290 
   1291 
   1292 ActionNode* ActionNode::EmptyMatchCheck(int start_register,
   1293                                         int repetition_register,
   1294                                         int repetition_limit,
   1295                                         RegExpNode* on_success) {
   1296   ActionNode* result = new ActionNode(EMPTY_MATCH_CHECK, on_success);
   1297   result->data_.u_empty_match_check.start_register = start_register;
   1298   result->data_.u_empty_match_check.repetition_register = repetition_register;
   1299   result->data_.u_empty_match_check.repetition_limit = repetition_limit;
   1300   return result;
   1301 }
   1302 
   1303 
   1304 #define DEFINE_ACCEPT(Type)                                          \
   1305   void Type##Node::Accept(NodeVisitor* visitor) {                    \
   1306     visitor->Visit##Type(this);                                      \
   1307   }
   1308 FOR_EACH_NODE_TYPE(DEFINE_ACCEPT)
   1309 #undef DEFINE_ACCEPT
   1310 
   1311 
   1312 void LoopChoiceNode::Accept(NodeVisitor* visitor) {
   1313   visitor->VisitLoopChoice(this);
   1314 }
   1315 
   1316 
   1317 // -------------------------------------------------------------------
   1318 // Emit code.
   1319 
   1320 
   1321 void ChoiceNode::GenerateGuard(RegExpMacroAssembler* macro_assembler,
   1322                                Guard* guard,
   1323                                Trace* trace) {
   1324   switch (guard->op()) {
   1325     case Guard::LT:
   1326       ASSERT(!trace->mentions_reg(guard->reg()));
   1327       macro_assembler->IfRegisterGE(guard->reg(),
   1328                                     guard->value(),
   1329                                     trace->backtrack());
   1330       break;
   1331     case Guard::GEQ:
   1332       ASSERT(!trace->mentions_reg(guard->reg()));
   1333       macro_assembler->IfRegisterLT(guard->reg(),
   1334                                     guard->value(),
   1335                                     trace->backtrack());
   1336       break;
   1337   }
   1338 }
   1339 
   1340 
   1341 // Returns the number of characters in the equivalence class, omitting those
   1342 // that cannot occur in the source string because it is ASCII.
   1343 static int GetCaseIndependentLetters(Isolate* isolate,
   1344                                      uc16 character,
   1345                                      bool ascii_subject,
   1346                                      unibrow::uchar* letters) {
   1347   int length =
   1348       isolate->jsregexp_uncanonicalize()->get(character, '\0', letters);
   1349   // Unibrow returns 0 or 1 for characters where case independence is
   1350   // trivial.
   1351   if (length == 0) {
   1352     letters[0] = character;
   1353     length = 1;
   1354   }
   1355   if (!ascii_subject || character <= String::kMaxAsciiCharCode) {
   1356     return length;
   1357   }
   1358   // The standard requires that non-ASCII characters cannot have ASCII
   1359   // character codes in their equivalence class.
   1360   return 0;
   1361 }
   1362 
   1363 
   1364 static inline bool EmitSimpleCharacter(Isolate* isolate,
   1365                                        RegExpCompiler* compiler,
   1366                                        uc16 c,
   1367                                        Label* on_failure,
   1368                                        int cp_offset,
   1369                                        bool check,
   1370                                        bool preloaded) {
   1371   RegExpMacroAssembler* assembler = compiler->macro_assembler();
   1372   bool bound_checked = false;
   1373   if (!preloaded) {
   1374     assembler->LoadCurrentCharacter(
   1375         cp_offset,
   1376         on_failure,
   1377         check);
   1378     bound_checked = true;
   1379   }
   1380   assembler->CheckNotCharacter(c, on_failure);
   1381   return bound_checked;
   1382 }
   1383 
   1384 
   1385 // Only emits non-letters (things that don't have case).  Only used for case
   1386 // independent matches.
   1387 static inline bool EmitAtomNonLetter(Isolate* isolate,
   1388                                      RegExpCompiler* compiler,
   1389                                      uc16 c,
   1390                                      Label* on_failure,
   1391                                      int cp_offset,
   1392                                      bool check,
   1393                                      bool preloaded) {
   1394   RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
   1395   bool ascii = compiler->ascii();
   1396   unibrow::uchar chars[unibrow::Ecma262UnCanonicalize::kMaxWidth];
   1397   int length = GetCaseIndependentLetters(isolate, c, ascii, chars);
   1398   if (length < 1) {
   1399     // This can't match.  Must be an ASCII subject and a non-ASCII character.
   1400     // We do not need to do anything since the ASCII pass already handled this.
   1401     return false;  // Bounds not checked.
   1402   }
   1403   bool checked = false;
   1404   // We handle the length > 1 case in a later pass.
   1405   if (length == 1) {
   1406     if (ascii && c > String::kMaxAsciiCharCodeU) {
   1407       // Can't match - see above.
   1408       return false;  // Bounds not checked.
   1409     }
   1410     if (!preloaded) {
   1411       macro_assembler->LoadCurrentCharacter(cp_offset, on_failure, check);
   1412       checked = check;
   1413     }
   1414     macro_assembler->CheckNotCharacter(c, on_failure);
   1415   }
   1416   return checked;
   1417 }
   1418 
   1419 
   1420 static bool ShortCutEmitCharacterPair(RegExpMacroAssembler* macro_assembler,
   1421                                       bool ascii,
   1422                                       uc16 c1,
   1423                                       uc16 c2,
   1424                                       Label* on_failure) {
   1425   uc16 char_mask;
   1426   if (ascii) {
   1427     char_mask = String::kMaxAsciiCharCode;
   1428   } else {
   1429     char_mask = String::kMaxUC16CharCode;
   1430   }
   1431   uc16 exor = c1 ^ c2;
   1432   // Check whether exor has only one bit set.
   1433   if (((exor - 1) & exor) == 0) {
   1434     // If c1 and c2 differ only by one bit.
   1435     // Ecma262UnCanonicalize always gives the highest number last.
   1436     ASSERT(c2 > c1);
   1437     uc16 mask = char_mask ^ exor;
   1438     macro_assembler->CheckNotCharacterAfterAnd(c1, mask, on_failure);
   1439     return true;
   1440   }
   1441   ASSERT(c2 > c1);
   1442   uc16 diff = c2 - c1;
   1443   if (((diff - 1) & diff) == 0 && c1 >= diff) {
   1444     // If the characters differ by 2^n but don't differ by one bit then
   1445     // subtract the difference from the found character, then do the or
   1446     // trick.  We avoid the theoretical case where negative numbers are
   1447     // involved in order to simplify code generation.
   1448     uc16 mask = char_mask ^ diff;
   1449     macro_assembler->CheckNotCharacterAfterMinusAnd(c1 - diff,
   1450                                                     diff,
   1451                                                     mask,
   1452                                                     on_failure);
   1453     return true;
   1454   }
   1455   return false;
   1456 }
   1457 
   1458 
   1459 typedef bool EmitCharacterFunction(Isolate* isolate,
   1460                                    RegExpCompiler* compiler,
   1461                                    uc16 c,
   1462                                    Label* on_failure,
   1463                                    int cp_offset,
   1464                                    bool check,
   1465                                    bool preloaded);
   1466 
   1467 // Only emits letters (things that have case).  Only used for case independent
   1468 // matches.
   1469 static inline bool EmitAtomLetter(Isolate* isolate,
   1470                                   RegExpCompiler* compiler,
   1471                                   uc16 c,
   1472                                   Label* on_failure,
   1473                                   int cp_offset,
   1474                                   bool check,
   1475                                   bool preloaded) {
   1476   RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
   1477   bool ascii = compiler->ascii();
   1478   unibrow::uchar chars[unibrow::Ecma262UnCanonicalize::kMaxWidth];
   1479   int length = GetCaseIndependentLetters(isolate, c, ascii, chars);
   1480   if (length <= 1) return false;
   1481   // We may not need to check against the end of the input string
   1482   // if this character lies before a character that matched.
   1483   if (!preloaded) {
   1484     macro_assembler->LoadCurrentCharacter(cp_offset, on_failure, check);
   1485   }
   1486   Label ok;
   1487   ASSERT(unibrow::Ecma262UnCanonicalize::kMaxWidth == 4);
   1488   switch (length) {
   1489     case 2: {
   1490       if (ShortCutEmitCharacterPair(macro_assembler,
   1491                                     ascii,
   1492                                     chars[0],
   1493                                     chars[1],
   1494                                     on_failure)) {
   1495       } else {
   1496         macro_assembler->CheckCharacter(chars[0], &ok);
   1497         macro_assembler->CheckNotCharacter(chars[1], on_failure);
   1498         macro_assembler->Bind(&ok);
   1499       }
   1500       break;
   1501     }
   1502     case 4:
   1503       macro_assembler->CheckCharacter(chars[3], &ok);
   1504       // Fall through!
   1505     case 3:
   1506       macro_assembler->CheckCharacter(chars[0], &ok);
   1507       macro_assembler->CheckCharacter(chars[1], &ok);
   1508       macro_assembler->CheckNotCharacter(chars[2], on_failure);
   1509       macro_assembler->Bind(&ok);
   1510       break;
   1511     default:
   1512       UNREACHABLE();
   1513       break;
   1514   }
   1515   return true;
   1516 }
   1517 
   1518 
   1519 static void EmitCharClass(RegExpMacroAssembler* macro_assembler,
   1520                           RegExpCharacterClass* cc,
   1521                           bool ascii,
   1522                           Label* on_failure,
   1523                           int cp_offset,
   1524                           bool check_offset,
   1525                           bool preloaded) {
   1526   ZoneList<CharacterRange>* ranges = cc->ranges();
   1527   int max_char;
   1528   if (ascii) {
   1529     max_char = String::kMaxAsciiCharCode;
   1530   } else {
   1531     max_char = String::kMaxUC16CharCode;
   1532   }
   1533 
   1534   Label success;
   1535 
   1536   Label* char_is_in_class =
   1537       cc->is_negated() ? on_failure : &success;
   1538 
   1539   int range_count = ranges->length();
   1540 
   1541   int last_valid_range = range_count - 1;
   1542   while (last_valid_range >= 0) {
   1543     CharacterRange& range = ranges->at(last_valid_range);
   1544     if (range.from() <= max_char) {
   1545       break;
   1546     }
   1547     last_valid_range--;
   1548   }
   1549 
   1550   if (last_valid_range < 0) {
   1551     if (!cc->is_negated()) {
   1552       // TODO(plesner): We can remove this when the node level does our
   1553       // ASCII optimizations for us.
   1554       macro_assembler->GoTo(on_failure);
   1555     }
   1556     if (check_offset) {
   1557       macro_assembler->CheckPosition(cp_offset, on_failure);
   1558     }
   1559     return;
   1560   }
   1561 
   1562   if (last_valid_range == 0 &&
   1563       !cc->is_negated() &&
   1564       ranges->at(0).IsEverything(max_char)) {
   1565     // This is a common case hit by non-anchored expressions.
   1566     if (check_offset) {
   1567       macro_assembler->CheckPosition(cp_offset, on_failure);
   1568     }
   1569     return;
   1570   }
   1571 
   1572   if (!preloaded) {
   1573     macro_assembler->LoadCurrentCharacter(cp_offset, on_failure, check_offset);
   1574   }
   1575 
   1576   if (cc->is_standard() &&
   1577         macro_assembler->CheckSpecialCharacterClass(cc->standard_type(),
   1578                                                     on_failure)) {
   1579       return;
   1580   }
   1581 
   1582   for (int i = 0; i < last_valid_range; i++) {
   1583     CharacterRange& range = ranges->at(i);
   1584     Label next_range;
   1585     uc16 from = range.from();
   1586     uc16 to = range.to();
   1587     if (from > max_char) {
   1588       continue;
   1589     }
   1590     if (to > max_char) to = max_char;
   1591     if (to == from) {
   1592       macro_assembler->CheckCharacter(to, char_is_in_class);
   1593     } else {
   1594       if (from != 0) {
   1595         macro_assembler->CheckCharacterLT(from, &next_range);
   1596       }
   1597       if (to != max_char) {
   1598         macro_assembler->CheckCharacterLT(to + 1, char_is_in_class);
   1599       } else {
   1600         macro_assembler->GoTo(char_is_in_class);
   1601       }
   1602     }
   1603     macro_assembler->Bind(&next_range);
   1604   }
   1605 
   1606   CharacterRange& range = ranges->at(last_valid_range);
   1607   uc16 from = range.from();
   1608   uc16 to = range.to();
   1609 
   1610   if (to > max_char) to = max_char;
   1611   ASSERT(to >= from);
   1612 
   1613   if (to == from) {
   1614     if (cc->is_negated()) {
   1615       macro_assembler->CheckCharacter(to, on_failure);
   1616     } else {
   1617       macro_assembler->CheckNotCharacter(to, on_failure);
   1618     }
   1619   } else {
   1620     if (from != 0) {
   1621       if (cc->is_negated()) {
   1622         macro_assembler->CheckCharacterLT(from, &success);
   1623       } else {
   1624         macro_assembler->CheckCharacterLT(from, on_failure);
   1625       }
   1626     }
   1627     if (to != String::kMaxUC16CharCode) {
   1628       if (cc->is_negated()) {
   1629         macro_assembler->CheckCharacterLT(to + 1, on_failure);
   1630       } else {
   1631         macro_assembler->CheckCharacterGT(to, on_failure);
   1632       }
   1633     } else {
   1634       if (cc->is_negated()) {
   1635         macro_assembler->GoTo(on_failure);
   1636       }
   1637     }
   1638   }
   1639   macro_assembler->Bind(&success);
   1640 }
   1641 
   1642 
   1643 RegExpNode::~RegExpNode() {
   1644 }
   1645 
   1646 
   1647 RegExpNode::LimitResult RegExpNode::LimitVersions(RegExpCompiler* compiler,
   1648                                                   Trace* trace) {
   1649   // If we are generating a greedy loop then don't stop and don't reuse code.
   1650   if (trace->stop_node() != NULL) {
   1651     return CONTINUE;
   1652   }
   1653 
   1654   RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
   1655   if (trace->is_trivial()) {
   1656     if (label_.is_bound()) {
   1657       // We are being asked to generate a generic version, but that's already
   1658       // been done so just go to it.
   1659       macro_assembler->GoTo(&label_);
   1660       return DONE;
   1661     }
   1662     if (compiler->recursion_depth() >= RegExpCompiler::kMaxRecursion) {
   1663       // To avoid too deep recursion we push the node to the work queue and just
   1664       // generate a goto here.
   1665       compiler->AddWork(this);
   1666       macro_assembler->GoTo(&label_);
   1667       return DONE;
   1668     }
   1669     // Generate generic version of the node and bind the label for later use.
   1670     macro_assembler->Bind(&label_);
   1671     return CONTINUE;
   1672   }
   1673 
   1674   // We are being asked to make a non-generic version.  Keep track of how many
   1675   // non-generic versions we generate so as not to overdo it.
   1676   trace_count_++;
   1677   if (FLAG_regexp_optimization &&
   1678       trace_count_ < kMaxCopiesCodeGenerated &&
   1679       compiler->recursion_depth() <= RegExpCompiler::kMaxRecursion) {
   1680     return CONTINUE;
   1681   }
   1682 
   1683   // If we get here code has been generated for this node too many times or
   1684   // recursion is too deep.  Time to switch to a generic version.  The code for
   1685   // generic versions above can handle deep recursion properly.
   1686   trace->Flush(compiler, this);
   1687   return DONE;
   1688 }
   1689 
   1690 
   1691 int ActionNode::EatsAtLeast(int still_to_find,
   1692                             int recursion_depth,
   1693                             bool not_at_start) {
   1694   if (recursion_depth > RegExpCompiler::kMaxRecursion) return 0;
   1695   if (type_ == POSITIVE_SUBMATCH_SUCCESS) return 0;  // Rewinds input!
   1696   return on_success()->EatsAtLeast(still_to_find,
   1697                                    recursion_depth + 1,
   1698                                    not_at_start);
   1699 }
   1700 
   1701 
   1702 int AssertionNode::EatsAtLeast(int still_to_find,
   1703                                int recursion_depth,
   1704                                bool not_at_start) {
   1705   if (recursion_depth > RegExpCompiler::kMaxRecursion) return 0;
   1706   // If we know we are not at the start and we are asked "how many characters
   1707   // will you match if you succeed?" then we can answer anything since false
   1708   // implies false.  So lets just return the max answer (still_to_find) since
   1709   // that won't prevent us from preloading a lot of characters for the other
   1710   // branches in the node graph.
   1711   if (type() == AT_START && not_at_start) return still_to_find;
   1712   return on_success()->EatsAtLeast(still_to_find,
   1713                                    recursion_depth + 1,
   1714                                    not_at_start);
   1715 }
   1716 
   1717 
   1718 int BackReferenceNode::EatsAtLeast(int still_to_find,
   1719                                    int recursion_depth,
   1720                                    bool not_at_start) {
   1721   if (recursion_depth > RegExpCompiler::kMaxRecursion) return 0;
   1722   return on_success()->EatsAtLeast(still_to_find,
   1723                                    recursion_depth + 1,
   1724                                    not_at_start);
   1725 }
   1726 
   1727 
   1728 int TextNode::EatsAtLeast(int still_to_find,
   1729                           int recursion_depth,
   1730                           bool not_at_start) {
   1731   int answer = Length();
   1732   if (answer >= still_to_find) return answer;
   1733   if (recursion_depth > RegExpCompiler::kMaxRecursion) return answer;
   1734   // We are not at start after this node so we set the last argument to 'true'.
   1735   return answer + on_success()->EatsAtLeast(still_to_find - answer,
   1736                                             recursion_depth + 1,
   1737                                             true);
   1738 }
   1739 
   1740 
   1741 int NegativeLookaheadChoiceNode::EatsAtLeast(int still_to_find,
   1742                                              int recursion_depth,
   1743                                              bool not_at_start) {
   1744   if (recursion_depth > RegExpCompiler::kMaxRecursion) return 0;
   1745   // Alternative 0 is the negative lookahead, alternative 1 is what comes
   1746   // afterwards.
   1747   RegExpNode* node = alternatives_->at(1).node();
   1748   return node->EatsAtLeast(still_to_find, recursion_depth + 1, not_at_start);
   1749 }
   1750 
   1751 
   1752 void NegativeLookaheadChoiceNode::GetQuickCheckDetails(
   1753     QuickCheckDetails* details,
   1754     RegExpCompiler* compiler,
   1755     int filled_in,
   1756     bool not_at_start) {
   1757   // Alternative 0 is the negative lookahead, alternative 1 is what comes
   1758   // afterwards.
   1759   RegExpNode* node = alternatives_->at(1).node();
   1760   return node->GetQuickCheckDetails(details, compiler, filled_in, not_at_start);
   1761 }
   1762 
   1763 
   1764 int ChoiceNode::EatsAtLeastHelper(int still_to_find,
   1765                                   int recursion_depth,
   1766                                   RegExpNode* ignore_this_node,
   1767                                   bool not_at_start) {
   1768   if (recursion_depth > RegExpCompiler::kMaxRecursion) return 0;
   1769   int min = 100;
   1770   int choice_count = alternatives_->length();
   1771   for (int i = 0; i < choice_count; i++) {
   1772     RegExpNode* node = alternatives_->at(i).node();
   1773     if (node == ignore_this_node) continue;
   1774     int node_eats_at_least = node->EatsAtLeast(still_to_find,
   1775                                                recursion_depth + 1,
   1776                                                not_at_start);
   1777     if (node_eats_at_least < min) min = node_eats_at_least;
   1778   }
   1779   return min;
   1780 }
   1781 
   1782 
   1783 int LoopChoiceNode::EatsAtLeast(int still_to_find,
   1784                                 int recursion_depth,
   1785                                 bool not_at_start) {
   1786   return EatsAtLeastHelper(still_to_find,
   1787                            recursion_depth,
   1788                            loop_node_,
   1789                            not_at_start);
   1790 }
   1791 
   1792 
   1793 int ChoiceNode::EatsAtLeast(int still_to_find,
   1794                             int recursion_depth,
   1795                             bool not_at_start) {
   1796   return EatsAtLeastHelper(still_to_find,
   1797                            recursion_depth,
   1798                            NULL,
   1799                            not_at_start);
   1800 }
   1801 
   1802 
   1803 // Takes the left-most 1-bit and smears it out, setting all bits to its right.
   1804 static inline uint32_t SmearBitsRight(uint32_t v) {
   1805   v |= v >> 1;
   1806   v |= v >> 2;
   1807   v |= v >> 4;
   1808   v |= v >> 8;
   1809   v |= v >> 16;
   1810   return v;
   1811 }
   1812 
   1813 
   1814 bool QuickCheckDetails::Rationalize(bool asc) {
   1815   bool found_useful_op = false;
   1816   uint32_t char_mask;
   1817   if (asc) {
   1818     char_mask = String::kMaxAsciiCharCode;
   1819   } else {
   1820     char_mask = String::kMaxUC16CharCode;
   1821   }
   1822   mask_ = 0;
   1823   value_ = 0;
   1824   int char_shift = 0;
   1825   for (int i = 0; i < characters_; i++) {
   1826     Position* pos = &positions_[i];
   1827     if ((pos->mask & String::kMaxAsciiCharCode) != 0) {
   1828       found_useful_op = true;
   1829     }
   1830     mask_ |= (pos->mask & char_mask) << char_shift;
   1831     value_ |= (pos->value & char_mask) << char_shift;
   1832     char_shift += asc ? 8 : 16;
   1833   }
   1834   return found_useful_op;
   1835 }
   1836 
   1837 
   1838 bool RegExpNode::EmitQuickCheck(RegExpCompiler* compiler,
   1839                                 Trace* trace,
   1840                                 bool preload_has_checked_bounds,
   1841                                 Label* on_possible_success,
   1842                                 QuickCheckDetails* details,
   1843                                 bool fall_through_on_failure) {
   1844   if (details->characters() == 0) return false;
   1845   GetQuickCheckDetails(details, compiler, 0, trace->at_start() == Trace::FALSE);
   1846   if (details->cannot_match()) return false;
   1847   if (!details->Rationalize(compiler->ascii())) return false;
   1848   ASSERT(details->characters() == 1 ||
   1849          compiler->macro_assembler()->CanReadUnaligned());
   1850   uint32_t mask = details->mask();
   1851   uint32_t value = details->value();
   1852 
   1853   RegExpMacroAssembler* assembler = compiler->macro_assembler();
   1854 
   1855   if (trace->characters_preloaded() != details->characters()) {
   1856     assembler->LoadCurrentCharacter(trace->cp_offset(),
   1857                                     trace->backtrack(),
   1858                                     !preload_has_checked_bounds,
   1859                                     details->characters());
   1860   }
   1861 
   1862 
   1863   bool need_mask = true;
   1864 
   1865   if (details->characters() == 1) {
   1866     // If number of characters preloaded is 1 then we used a byte or 16 bit
   1867     // load so the value is already masked down.
   1868     uint32_t char_mask;
   1869     if (compiler->ascii()) {
   1870       char_mask = String::kMaxAsciiCharCode;
   1871     } else {
   1872       char_mask = String::kMaxUC16CharCode;
   1873     }
   1874     if ((mask & char_mask) == char_mask) need_mask = false;
   1875     mask &= char_mask;
   1876   } else {
   1877     // For 2-character preloads in ASCII mode or 1-character preloads in
   1878     // TWO_BYTE mode we also use a 16 bit load with zero extend.
   1879     if (details->characters() == 2 && compiler->ascii()) {
   1880       if ((mask & 0x7f7f) == 0x7f7f) need_mask = false;
   1881     } else if (details->characters() == 1 && !compiler->ascii()) {
   1882       if ((mask & 0xffff) == 0xffff) need_mask = false;
   1883     } else {
   1884       if (mask == 0xffffffff) need_mask = false;
   1885     }
   1886   }
   1887 
   1888   if (fall_through_on_failure) {
   1889     if (need_mask) {
   1890       assembler->CheckCharacterAfterAnd(value, mask, on_possible_success);
   1891     } else {
   1892       assembler->CheckCharacter(value, on_possible_success);
   1893     }
   1894   } else {
   1895     if (need_mask) {
   1896       assembler->CheckNotCharacterAfterAnd(value, mask, trace->backtrack());
   1897     } else {
   1898       assembler->CheckNotCharacter(value, trace->backtrack());
   1899     }
   1900   }
   1901   return true;
   1902 }
   1903 
   1904 
   1905 // Here is the meat of GetQuickCheckDetails (see also the comment on the
   1906 // super-class in the .h file).
   1907 //
   1908 // We iterate along the text object, building up for each character a
   1909 // mask and value that can be used to test for a quick failure to match.
   1910 // The masks and values for the positions will be combined into a single
   1911 // machine word for the current character width in order to be used in
   1912 // generating a quick check.
   1913 void TextNode::GetQuickCheckDetails(QuickCheckDetails* details,
   1914                                     RegExpCompiler* compiler,
   1915                                     int characters_filled_in,
   1916                                     bool not_at_start) {
   1917   Isolate* isolate = Isolate::Current();
   1918   ASSERT(characters_filled_in < details->characters());
   1919   int characters = details->characters();
   1920   int char_mask;
   1921   int char_shift;
   1922   if (compiler->ascii()) {
   1923     char_mask = String::kMaxAsciiCharCode;
   1924     char_shift = 8;
   1925   } else {
   1926     char_mask = String::kMaxUC16CharCode;
   1927     char_shift = 16;
   1928   }
   1929   for (int k = 0; k < elms_->length(); k++) {
   1930     TextElement elm = elms_->at(k);
   1931     if (elm.type == TextElement::ATOM) {
   1932       Vector<const uc16> quarks = elm.data.u_atom->data();
   1933       for (int i = 0; i < characters && i < quarks.length(); i++) {
   1934         QuickCheckDetails::Position* pos =
   1935             details->positions(characters_filled_in);
   1936         uc16 c = quarks[i];
   1937         if (c > char_mask) {
   1938           // If we expect a non-ASCII character from an ASCII string,
   1939           // there is no way we can match. Not even case independent
   1940           // matching can turn an ASCII character into non-ASCII or
   1941           // vice versa.
   1942           details->set_cannot_match();
   1943           pos->determines_perfectly = false;
   1944           return;
   1945         }
   1946         if (compiler->ignore_case()) {
   1947           unibrow::uchar chars[unibrow::Ecma262UnCanonicalize::kMaxWidth];
   1948           int length = GetCaseIndependentLetters(isolate, c, compiler->ascii(),
   1949                                                  chars);
   1950           ASSERT(length != 0);  // Can only happen if c > char_mask (see above).
   1951           if (length == 1) {
   1952             // This letter has no case equivalents, so it's nice and simple
   1953             // and the mask-compare will determine definitely whether we have
   1954             // a match at this character position.
   1955             pos->mask = char_mask;
   1956             pos->value = c;
   1957             pos->determines_perfectly = true;
   1958           } else {
   1959             uint32_t common_bits = char_mask;
   1960             uint32_t bits = chars[0];
   1961             for (int j = 1; j < length; j++) {
   1962               uint32_t differing_bits = ((chars[j] & common_bits) ^ bits);
   1963               common_bits ^= differing_bits;
   1964               bits &= common_bits;
   1965             }
   1966             // If length is 2 and common bits has only one zero in it then
   1967             // our mask and compare instruction will determine definitely
   1968             // whether we have a match at this character position.  Otherwise
   1969             // it can only be an approximate check.
   1970             uint32_t one_zero = (common_bits | ~char_mask);
   1971             if (length == 2 && ((~one_zero) & ((~one_zero) - 1)) == 0) {
   1972               pos->determines_perfectly = true;
   1973             }
   1974             pos->mask = common_bits;
   1975             pos->value = bits;
   1976           }
   1977         } else {
   1978           // Don't ignore case.  Nice simple case where the mask-compare will
   1979           // determine definitely whether we have a match at this character
   1980           // position.
   1981           pos->mask = char_mask;
   1982           pos->value = c;
   1983           pos->determines_perfectly = true;
   1984         }
   1985         characters_filled_in++;
   1986         ASSERT(characters_filled_in <= details->characters());
   1987         if (characters_filled_in == details->characters()) {
   1988           return;
   1989         }
   1990       }
   1991     } else {
   1992       QuickCheckDetails::Position* pos =
   1993           details->positions(characters_filled_in);
   1994       RegExpCharacterClass* tree = elm.data.u_char_class;
   1995       ZoneList<CharacterRange>* ranges = tree->ranges();
   1996       if (tree->is_negated()) {
   1997         // A quick check uses multi-character mask and compare.  There is no
   1998         // useful way to incorporate a negative char class into this scheme
   1999         // so we just conservatively create a mask and value that will always
   2000         // succeed.
   2001         pos->mask = 0;
   2002         pos->value = 0;
   2003       } else {
   2004         int first_range = 0;
   2005         while (ranges->at(first_range).from() > char_mask) {
   2006           first_range++;
   2007           if (first_range == ranges->length()) {
   2008             details->set_cannot_match();
   2009             pos->determines_perfectly = false;
   2010             return;
   2011           }
   2012         }
   2013         CharacterRange range = ranges->at(first_range);
   2014         uc16 from = range.from();
   2015         uc16 to = range.to();
   2016         if (to > char_mask) {
   2017           to = char_mask;
   2018         }
   2019         uint32_t differing_bits = (from ^ to);
   2020         // A mask and compare is only perfect if the differing bits form a
   2021         // number like 00011111 with one single block of trailing 1s.
   2022         if ((differing_bits & (differing_bits + 1)) == 0 &&
   2023              from + differing_bits == to) {
   2024           pos->determines_perfectly = true;
   2025         }
   2026         uint32_t common_bits = ~SmearBitsRight(differing_bits);
   2027         uint32_t bits = (from & common_bits);
   2028         for (int i = first_range + 1; i < ranges->length(); i++) {
   2029           CharacterRange range = ranges->at(i);
   2030           uc16 from = range.from();
   2031           uc16 to = range.to();
   2032           if (from > char_mask) continue;
   2033           if (to > char_mask) to = char_mask;
   2034           // Here we are combining more ranges into the mask and compare
   2035           // value.  With each new range the mask becomes more sparse and
   2036           // so the chances of a false positive rise.  A character class
   2037           // with multiple ranges is assumed never to be equivalent to a
   2038           // mask and compare operation.
   2039           pos->determines_perfectly = false;
   2040           uint32_t new_common_bits = (from ^ to);
   2041           new_common_bits = ~SmearBitsRight(new_common_bits);
   2042           common_bits &= new_common_bits;
   2043           bits &= new_common_bits;
   2044           uint32_t differing_bits = (from & common_bits) ^ bits;
   2045           common_bits ^= differing_bits;
   2046           bits &= common_bits;
   2047         }
   2048         pos->mask = common_bits;
   2049         pos->value = bits;
   2050       }
   2051       characters_filled_in++;
   2052       ASSERT(characters_filled_in <= details->characters());
   2053       if (characters_filled_in == details->characters()) {
   2054         return;
   2055       }
   2056     }
   2057   }
   2058   ASSERT(characters_filled_in != details->characters());
   2059   on_success()-> GetQuickCheckDetails(details,
   2060                                       compiler,
   2061                                       characters_filled_in,
   2062                                       true);
   2063 }
   2064 
   2065 
   2066 void QuickCheckDetails::Clear() {
   2067   for (int i = 0; i < characters_; i++) {
   2068     positions_[i].mask = 0;
   2069     positions_[i].value = 0;
   2070     positions_[i].determines_perfectly = false;
   2071   }
   2072   characters_ = 0;
   2073 }
   2074 
   2075 
   2076 void QuickCheckDetails::Advance(int by, bool ascii) {
   2077   ASSERT(by >= 0);
   2078   if (by >= characters_) {
   2079     Clear();
   2080     return;
   2081   }
   2082   for (int i = 0; i < characters_ - by; i++) {
   2083     positions_[i] = positions_[by + i];
   2084   }
   2085   for (int i = characters_ - by; i < characters_; i++) {
   2086     positions_[i].mask = 0;
   2087     positions_[i].value = 0;
   2088     positions_[i].determines_perfectly = false;
   2089   }
   2090   characters_ -= by;
   2091   // We could change mask_ and value_ here but we would never advance unless
   2092   // they had already been used in a check and they won't be used again because
   2093   // it would gain us nothing.  So there's no point.
   2094 }
   2095 
   2096 
   2097 void QuickCheckDetails::Merge(QuickCheckDetails* other, int from_index) {
   2098   ASSERT(characters_ == other->characters_);
   2099   if (other->cannot_match_) {
   2100     return;
   2101   }
   2102   if (cannot_match_) {
   2103     *this = *other;
   2104     return;
   2105   }
   2106   for (int i = from_index; i < characters_; i++) {
   2107     QuickCheckDetails::Position* pos = positions(i);
   2108     QuickCheckDetails::Position* other_pos = other->positions(i);
   2109     if (pos->mask != other_pos->mask ||
   2110         pos->value != other_pos->value ||
   2111         !other_pos->determines_perfectly) {
   2112       // Our mask-compare operation will be approximate unless we have the
   2113       // exact same operation on both sides of the alternation.
   2114       pos->determines_perfectly = false;
   2115     }
   2116     pos->mask &= other_pos->mask;
   2117     pos->value &= pos->mask;
   2118     other_pos->value &= pos->mask;
   2119     uc16 differing_bits = (pos->value ^ other_pos->value);
   2120     pos->mask &= ~differing_bits;
   2121     pos->value &= pos->mask;
   2122   }
   2123 }
   2124 
   2125 
   2126 class VisitMarker {
   2127  public:
   2128   explicit VisitMarker(NodeInfo* info) : info_(info) {
   2129     ASSERT(!info->visited);
   2130     info->visited = true;
   2131   }
   2132   ~VisitMarker() {
   2133     info_->visited = false;
   2134   }
   2135  private:
   2136   NodeInfo* info_;
   2137 };
   2138 
   2139 
   2140 void LoopChoiceNode::GetQuickCheckDetails(QuickCheckDetails* details,
   2141                                           RegExpCompiler* compiler,
   2142                                           int characters_filled_in,
   2143                                           bool not_at_start) {
   2144   if (body_can_be_zero_length_ || info()->visited) return;
   2145   VisitMarker marker(info());
   2146   return ChoiceNode::GetQuickCheckDetails(details,
   2147                                           compiler,
   2148                                           characters_filled_in,
   2149                                           not_at_start);
   2150 }
   2151 
   2152 
   2153 void ChoiceNode::GetQuickCheckDetails(QuickCheckDetails* details,
   2154                                       RegExpCompiler* compiler,
   2155                                       int characters_filled_in,
   2156                                       bool not_at_start) {
   2157   not_at_start = (not_at_start || not_at_start_);
   2158   int choice_count = alternatives_->length();
   2159   ASSERT(choice_count > 0);
   2160   alternatives_->at(0).node()->GetQuickCheckDetails(details,
   2161                                                     compiler,
   2162                                                     characters_filled_in,
   2163                                                     not_at_start);
   2164   for (int i = 1; i < choice_count; i++) {
   2165     QuickCheckDetails new_details(details->characters());
   2166     RegExpNode* node = alternatives_->at(i).node();
   2167     node->GetQuickCheckDetails(&new_details, compiler,
   2168                                characters_filled_in,
   2169                                not_at_start);
   2170     // Here we merge the quick match details of the two branches.
   2171     details->Merge(&new_details, characters_filled_in);
   2172   }
   2173 }
   2174 
   2175 
   2176 // Check for [0-9A-Z_a-z].
   2177 static void EmitWordCheck(RegExpMacroAssembler* assembler,
   2178                           Label* word,
   2179                           Label* non_word,
   2180                           bool fall_through_on_word) {
   2181   if (assembler->CheckSpecialCharacterClass(
   2182           fall_through_on_word ? 'w' : 'W',
   2183           fall_through_on_word ? non_word : word)) {
   2184     // Optimized implementation available.
   2185     return;
   2186   }
   2187   assembler->CheckCharacterGT('z', non_word);
   2188   assembler->CheckCharacterLT('0', non_word);
   2189   assembler->CheckCharacterGT('a' - 1, word);
   2190   assembler->CheckCharacterLT('9' + 1, word);
   2191   assembler->CheckCharacterLT('A', non_word);
   2192   assembler->CheckCharacterLT('Z' + 1, word);
   2193   if (fall_through_on_word) {
   2194     assembler->CheckNotCharacter('_', non_word);
   2195   } else {
   2196     assembler->CheckCharacter('_', word);
   2197   }
   2198 }
   2199 
   2200 
   2201 // Emit the code to check for a ^ in multiline mode (1-character lookbehind
   2202 // that matches newline or the start of input).
   2203 static void EmitHat(RegExpCompiler* compiler,
   2204                     RegExpNode* on_success,
   2205                     Trace* trace) {
   2206   RegExpMacroAssembler* assembler = compiler->macro_assembler();
   2207   // We will be loading the previous character into the current character
   2208   // register.
   2209   Trace new_trace(*trace);
   2210   new_trace.InvalidateCurrentCharacter();
   2211 
   2212   Label ok;
   2213   if (new_trace.cp_offset() == 0) {
   2214     // The start of input counts as a newline in this context, so skip to
   2215     // ok if we are at the start.
   2216     assembler->CheckAtStart(&ok);
   2217   }
   2218   // We already checked that we are not at the start of input so it must be
   2219   // OK to load the previous character.
   2220   assembler->LoadCurrentCharacter(new_trace.cp_offset() -1,
   2221                                   new_trace.backtrack(),
   2222                                   false);
   2223   if (!assembler->CheckSpecialCharacterClass('n',
   2224                                              new_trace.backtrack())) {
   2225     // Newline means \n, \r, 0x2028 or 0x2029.
   2226     if (!compiler->ascii()) {
   2227       assembler->CheckCharacterAfterAnd(0x2028, 0xfffe, &ok);
   2228     }
   2229     assembler->CheckCharacter('\n', &ok);
   2230     assembler->CheckNotCharacter('\r', new_trace.backtrack());
   2231   }
   2232   assembler->Bind(&ok);
   2233   on_success->Emit(compiler, &new_trace);
   2234 }
   2235 
   2236 
   2237 // Emit the code to handle \b and \B (word-boundary or non-word-boundary)
   2238 // when we know whether the next character must be a word character or not.
   2239 static void EmitHalfBoundaryCheck(AssertionNode::AssertionNodeType type,
   2240                                   RegExpCompiler* compiler,
   2241                                   RegExpNode* on_success,
   2242                                   Trace* trace) {
   2243   RegExpMacroAssembler* assembler = compiler->macro_assembler();
   2244   Label done;
   2245 
   2246   Trace new_trace(*trace);
   2247 
   2248   bool expect_word_character = (type == AssertionNode::AFTER_WORD_CHARACTER);
   2249   Label* on_word = expect_word_character ? &done : new_trace.backtrack();
   2250   Label* on_non_word = expect_word_character ? new_trace.backtrack() : &done;
   2251 
   2252   // Check whether previous character was a word character.
   2253   switch (trace->at_start()) {
   2254     case Trace::TRUE:
   2255       if (expect_word_character) {
   2256         assembler->GoTo(on_non_word);
   2257       }
   2258       break;
   2259     case Trace::UNKNOWN:
   2260       ASSERT_EQ(0, trace->cp_offset());
   2261       assembler->CheckAtStart(on_non_word);
   2262       // Fall through.
   2263     case Trace::FALSE:
   2264       int prev_char_offset = trace->cp_offset() - 1;
   2265       assembler->LoadCurrentCharacter(prev_char_offset, NULL, false, 1);
   2266       EmitWordCheck(assembler, on_word, on_non_word, expect_word_character);
   2267       // We may or may not have loaded the previous character.
   2268       new_trace.InvalidateCurrentCharacter();
   2269   }
   2270 
   2271   assembler->Bind(&done);
   2272 
   2273   on_success->Emit(compiler, &new_trace);
   2274 }
   2275 
   2276 
   2277 // Emit the code to handle \b and \B (word-boundary or non-word-boundary).
   2278 static void EmitBoundaryCheck(AssertionNode::AssertionNodeType type,
   2279                               RegExpCompiler* compiler,
   2280                               RegExpNode* on_success,
   2281                               Trace* trace) {
   2282   RegExpMacroAssembler* assembler = compiler->macro_assembler();
   2283   Label before_non_word;
   2284   Label before_word;
   2285   if (trace->characters_preloaded() != 1) {
   2286     assembler->LoadCurrentCharacter(trace->cp_offset(), &before_non_word);
   2287   }
   2288   // Fall through on non-word.
   2289   EmitWordCheck(assembler, &before_word, &before_non_word, false);
   2290 
   2291   // We will be loading the previous character into the current character
   2292   // register.
   2293   Trace new_trace(*trace);
   2294   new_trace.InvalidateCurrentCharacter();
   2295 
   2296   Label ok;
   2297   Label* boundary;
   2298   Label* not_boundary;
   2299   if (type == AssertionNode::AT_BOUNDARY) {
   2300     boundary = &ok;
   2301     not_boundary = new_trace.backtrack();
   2302   } else {
   2303     not_boundary = &ok;
   2304     boundary = new_trace.backtrack();
   2305   }
   2306 
   2307   // Next character is not a word character.
   2308   assembler->Bind(&before_non_word);
   2309   if (new_trace.cp_offset() == 0) {
   2310     // The start of input counts as a non-word character, so the question is
   2311     // decided if we are at the start.
   2312     assembler->CheckAtStart(not_boundary);
   2313   }
   2314   // We already checked that we are not at the start of input so it must be
   2315   // OK to load the previous character.
   2316   assembler->LoadCurrentCharacter(new_trace.cp_offset() - 1,
   2317                                   &ok,  // Unused dummy label in this call.
   2318                                   false);
   2319   // Fall through on non-word.
   2320   EmitWordCheck(assembler, boundary, not_boundary, false);
   2321   assembler->GoTo(not_boundary);
   2322 
   2323   // Next character is a word character.
   2324   assembler->Bind(&before_word);
   2325   if (new_trace.cp_offset() == 0) {
   2326     // The start of input counts as a non-word character, so the question is
   2327     // decided if we are at the start.
   2328     assembler->CheckAtStart(boundary);
   2329   }
   2330   // We already checked that we are not at the start of input so it must be
   2331   // OK to load the previous character.
   2332   assembler->LoadCurrentCharacter(new_trace.cp_offset() - 1,
   2333                                   &ok,  // Unused dummy label in this call.
   2334                                   false);
   2335   bool fall_through_on_word = (type == AssertionNode::AT_NON_BOUNDARY);
   2336   EmitWordCheck(assembler, not_boundary, boundary, fall_through_on_word);
   2337 
   2338   assembler->Bind(&ok);
   2339 
   2340   on_success->Emit(compiler, &new_trace);
   2341 }
   2342 
   2343 
   2344 void AssertionNode::GetQuickCheckDetails(QuickCheckDetails* details,
   2345                                          RegExpCompiler* compiler,
   2346                                          int filled_in,
   2347                                          bool not_at_start) {
   2348   if (type_ == AT_START && not_at_start) {
   2349     details->set_cannot_match();
   2350     return;
   2351   }
   2352   return on_success()->GetQuickCheckDetails(details,
   2353                                             compiler,
   2354                                             filled_in,
   2355                                             not_at_start);
   2356 }
   2357 
   2358 
   2359 void AssertionNode::Emit(RegExpCompiler* compiler, Trace* trace) {
   2360   RegExpMacroAssembler* assembler = compiler->macro_assembler();
   2361   switch (type_) {
   2362     case AT_END: {
   2363       Label ok;
   2364       assembler->CheckPosition(trace->cp_offset(), &ok);
   2365       assembler->GoTo(trace->backtrack());
   2366       assembler->Bind(&ok);
   2367       break;
   2368     }
   2369     case AT_START: {
   2370       if (trace->at_start() == Trace::FALSE) {
   2371         assembler->GoTo(trace->backtrack());
   2372         return;
   2373       }
   2374       if (trace->at_start() == Trace::UNKNOWN) {
   2375         assembler->CheckNotAtStart(trace->backtrack());
   2376         Trace at_start_trace = *trace;
   2377         at_start_trace.set_at_start(true);
   2378         on_success()->Emit(compiler, &at_start_trace);
   2379         return;
   2380       }
   2381     }
   2382     break;
   2383     case AFTER_NEWLINE:
   2384       EmitHat(compiler, on_success(), trace);
   2385       return;
   2386     case AT_BOUNDARY:
   2387     case AT_NON_BOUNDARY: {
   2388       EmitBoundaryCheck(type_, compiler, on_success(), trace);
   2389       return;
   2390     }
   2391     case AFTER_WORD_CHARACTER:
   2392     case AFTER_NONWORD_CHARACTER: {
   2393       EmitHalfBoundaryCheck(type_, compiler, on_success(), trace);
   2394     }
   2395   }
   2396   on_success()->Emit(compiler, trace);
   2397 }
   2398 
   2399 
   2400 static bool DeterminedAlready(QuickCheckDetails* quick_check, int offset) {
   2401   if (quick_check == NULL) return false;
   2402   if (offset >= quick_check->characters()) return false;
   2403   return quick_check->positions(offset)->determines_perfectly;
   2404 }
   2405 
   2406 
   2407 static void UpdateBoundsCheck(int index, int* checked_up_to) {
   2408   if (index > *checked_up_to) {
   2409     *checked_up_to = index;
   2410   }
   2411 }
   2412 
   2413 
   2414 // We call this repeatedly to generate code for each pass over the text node.
   2415 // The passes are in increasing order of difficulty because we hope one
   2416 // of the first passes will fail in which case we are saved the work of the
   2417 // later passes.  for example for the case independent regexp /%[asdfghjkl]a/
   2418 // we will check the '%' in the first pass, the case independent 'a' in the
   2419 // second pass and the character class in the last pass.
   2420 //
   2421 // The passes are done from right to left, so for example to test for /bar/
   2422 // we will first test for an 'r' with offset 2, then an 'a' with offset 1
   2423 // and then a 'b' with offset 0.  This means we can avoid the end-of-input
   2424 // bounds check most of the time.  In the example we only need to check for
   2425 // end-of-input when loading the putative 'r'.
   2426 //
   2427 // A slight complication involves the fact that the first character may already
   2428 // be fetched into a register by the previous node.  In this case we want to
   2429 // do the test for that character first.  We do this in separate passes.  The
   2430 // 'preloaded' argument indicates that we are doing such a 'pass'.  If such a
   2431 // pass has been performed then subsequent passes will have true in
   2432 // first_element_checked to indicate that that character does not need to be
   2433 // checked again.
   2434 //
   2435 // In addition to all this we are passed a Trace, which can
   2436 // contain an AlternativeGeneration object.  In this AlternativeGeneration
   2437 // object we can see details of any quick check that was already passed in
   2438 // order to get to the code we are now generating.  The quick check can involve
   2439 // loading characters, which means we do not need to recheck the bounds
   2440 // up to the limit the quick check already checked.  In addition the quick
   2441 // check can have involved a mask and compare operation which may simplify
   2442 // or obviate the need for further checks at some character positions.
   2443 void TextNode::TextEmitPass(RegExpCompiler* compiler,
   2444                             TextEmitPassType pass,
   2445                             bool preloaded,
   2446                             Trace* trace,
   2447                             bool first_element_checked,
   2448                             int* checked_up_to) {
   2449   Isolate* isolate = Isolate::Current();
   2450   RegExpMacroAssembler* assembler = compiler->macro_assembler();
   2451   bool ascii = compiler->ascii();
   2452   Label* backtrack = trace->backtrack();
   2453   QuickCheckDetails* quick_check = trace->quick_check_performed();
   2454   int element_count = elms_->length();
   2455   for (int i = preloaded ? 0 : element_count - 1; i >= 0; i--) {
   2456     TextElement elm = elms_->at(i);
   2457     int cp_offset = trace->cp_offset() + elm.cp_offset;
   2458     if (elm.type == TextElement::ATOM) {
   2459       Vector<const uc16> quarks = elm.data.u_atom->data();
   2460       for (int j = preloaded ? 0 : quarks.length() - 1; j >= 0; j--) {
   2461         if (first_element_checked && i == 0 && j == 0) continue;
   2462         if (DeterminedAlready(quick_check, elm.cp_offset + j)) continue;
   2463         EmitCharacterFunction* emit_function = NULL;
   2464         switch (pass) {
   2465           case NON_ASCII_MATCH:
   2466             ASSERT(ascii);
   2467             if (quarks[j] > String::kMaxAsciiCharCode) {
   2468               assembler->GoTo(backtrack);
   2469               return;
   2470             }
   2471             break;
   2472           case NON_LETTER_CHARACTER_MATCH:
   2473             emit_function = &EmitAtomNonLetter;
   2474             break;
   2475           case SIMPLE_CHARACTER_MATCH:
   2476             emit_function = &EmitSimpleCharacter;
   2477             break;
   2478           case CASE_CHARACTER_MATCH:
   2479             emit_function = &EmitAtomLetter;
   2480             break;
   2481           default:
   2482             break;
   2483         }
   2484         if (emit_function != NULL) {
   2485           bool bound_checked = emit_function(isolate,
   2486                                              compiler,
   2487                                              quarks[j],
   2488                                              backtrack,
   2489                                              cp_offset + j,
   2490                                              *checked_up_to < cp_offset + j,
   2491                                              preloaded);
   2492           if (bound_checked) UpdateBoundsCheck(cp_offset + j, checked_up_to);
   2493         }
   2494       }
   2495     } else {
   2496       ASSERT_EQ(elm.type, TextElement::CHAR_CLASS);
   2497       if (pass == CHARACTER_CLASS_MATCH) {
   2498         if (first_element_checked && i == 0) continue;
   2499         if (DeterminedAlready(quick_check, elm.cp_offset)) continue;
   2500         RegExpCharacterClass* cc = elm.data.u_char_class;
   2501         EmitCharClass(assembler,
   2502                       cc,
   2503                       ascii,
   2504                       backtrack,
   2505                       cp_offset,
   2506                       *checked_up_to < cp_offset,
   2507                       preloaded);
   2508         UpdateBoundsCheck(cp_offset, checked_up_to);
   2509       }
   2510     }
   2511   }
   2512 }
   2513 
   2514 
   2515 int TextNode::Length() {
   2516   TextElement elm = elms_->last();
   2517   ASSERT(elm.cp_offset >= 0);
   2518   if (elm.type == TextElement::ATOM) {
   2519     return elm.cp_offset + elm.data.u_atom->data().length();
   2520   } else {
   2521     return elm.cp_offset + 1;
   2522   }
   2523 }
   2524 
   2525 
   2526 bool TextNode::SkipPass(int int_pass, bool ignore_case) {
   2527   TextEmitPassType pass = static_cast<TextEmitPassType>(int_pass);
   2528   if (ignore_case) {
   2529     return pass == SIMPLE_CHARACTER_MATCH;
   2530   } else {
   2531     return pass == NON_LETTER_CHARACTER_MATCH || pass == CASE_CHARACTER_MATCH;
   2532   }
   2533 }
   2534 
   2535 
   2536 // This generates the code to match a text node.  A text node can contain
   2537 // straight character sequences (possibly to be matched in a case-independent
   2538 // way) and character classes.  For efficiency we do not do this in a single
   2539 // pass from left to right.  Instead we pass over the text node several times,
   2540 // emitting code for some character positions every time.  See the comment on
   2541 // TextEmitPass for details.
   2542 void TextNode::Emit(RegExpCompiler* compiler, Trace* trace) {
   2543   LimitResult limit_result = LimitVersions(compiler, trace);
   2544   if (limit_result == DONE) return;
   2545   ASSERT(limit_result == CONTINUE);
   2546 
   2547   if (trace->cp_offset() + Length() > RegExpMacroAssembler::kMaxCPOffset) {
   2548     compiler->SetRegExpTooBig();
   2549     return;
   2550   }
   2551 
   2552   if (compiler->ascii()) {
   2553     int dummy = 0;
   2554     TextEmitPass(compiler, NON_ASCII_MATCH, false, trace, false, &dummy);
   2555   }
   2556 
   2557   bool first_elt_done = false;
   2558   int bound_checked_to = trace->cp_offset() - 1;
   2559   bound_checked_to += trace->bound_checked_up_to();
   2560 
   2561   // If a character is preloaded into the current character register then
   2562   // check that now.
   2563   if (trace->characters_preloaded() == 1) {
   2564     for (int pass = kFirstRealPass; pass <= kLastPass; pass++) {
   2565       if (!SkipPass(pass, compiler->ignore_case())) {
   2566         TextEmitPass(compiler,
   2567                      static_cast<TextEmitPassType>(pass),
   2568                      true,
   2569                      trace,
   2570                      false,
   2571                      &bound_checked_to);
   2572       }
   2573     }
   2574     first_elt_done = true;
   2575   }
   2576 
   2577   for (int pass = kFirstRealPass; pass <= kLastPass; pass++) {
   2578     if (!SkipPass(pass, compiler->ignore_case())) {
   2579       TextEmitPass(compiler,
   2580                    static_cast<TextEmitPassType>(pass),
   2581                    false,
   2582                    trace,
   2583                    first_elt_done,
   2584                    &bound_checked_to);
   2585     }
   2586   }
   2587 
   2588   Trace successor_trace(*trace);
   2589   successor_trace.set_at_start(false);
   2590   successor_trace.AdvanceCurrentPositionInTrace(Length(), compiler);
   2591   RecursionCheck rc(compiler);
   2592   on_success()->Emit(compiler, &successor_trace);
   2593 }
   2594 
   2595 
   2596 void Trace::InvalidateCurrentCharacter() {
   2597   characters_preloaded_ = 0;
   2598 }
   2599 
   2600 
   2601 void Trace::AdvanceCurrentPositionInTrace(int by, RegExpCompiler* compiler) {
   2602   ASSERT(by > 0);
   2603   // We don't have an instruction for shifting the current character register
   2604   // down or for using a shifted value for anything so lets just forget that
   2605   // we preloaded any characters into it.
   2606   characters_preloaded_ = 0;
   2607   // Adjust the offsets of the quick check performed information.  This
   2608   // information is used to find out what we already determined about the
   2609   // characters by means of mask and compare.
   2610   quick_check_performed_.Advance(by, compiler->ascii());
   2611   cp_offset_ += by;
   2612   if (cp_offset_ > RegExpMacroAssembler::kMaxCPOffset) {
   2613     compiler->SetRegExpTooBig();
   2614     cp_offset_ = 0;
   2615   }
   2616   bound_checked_up_to_ = Max(0, bound_checked_up_to_ - by);
   2617 }
   2618 
   2619 
   2620 void TextNode::MakeCaseIndependent(bool is_ascii) {
   2621   int element_count = elms_->length();
   2622   for (int i = 0; i < element_count; i++) {
   2623     TextElement elm = elms_->at(i);
   2624     if (elm.type == TextElement::CHAR_CLASS) {
   2625       RegExpCharacterClass* cc = elm.data.u_char_class;
   2626       // None of the standard character classses is different in the case
   2627       // independent case and it slows us down if we don't know that.
   2628       if (cc->is_standard()) continue;
   2629       ZoneList<CharacterRange>* ranges = cc->ranges();
   2630       int range_count = ranges->length();
   2631       for (int j = 0; j < range_count; j++) {
   2632         ranges->at(j).AddCaseEquivalents(ranges, is_ascii);
   2633       }
   2634     }
   2635   }
   2636 }
   2637 
   2638 
   2639 int TextNode::GreedyLoopTextLength() {
   2640   TextElement elm = elms_->at(elms_->length() - 1);
   2641   if (elm.type == TextElement::CHAR_CLASS) {
   2642     return elm.cp_offset + 1;
   2643   } else {
   2644     return elm.cp_offset + elm.data.u_atom->data().length();
   2645   }
   2646 }
   2647 
   2648 
   2649 // Finds the fixed match length of a sequence of nodes that goes from
   2650 // this alternative and back to this choice node.  If there are variable
   2651 // length nodes or other complications in the way then return a sentinel
   2652 // value indicating that a greedy loop cannot be constructed.
   2653 int ChoiceNode::GreedyLoopTextLength(GuardedAlternative* alternative) {
   2654   int length = 0;
   2655   RegExpNode* node = alternative->node();
   2656   // Later we will generate code for all these text nodes using recursion
   2657   // so we have to limit the max number.
   2658   int recursion_depth = 0;
   2659   while (node != this) {
   2660     if (recursion_depth++ > RegExpCompiler::kMaxRecursion) {
   2661       return kNodeIsTooComplexForGreedyLoops;
   2662     }
   2663     int node_length = node->GreedyLoopTextLength();
   2664     if (node_length == kNodeIsTooComplexForGreedyLoops) {
   2665       return kNodeIsTooComplexForGreedyLoops;
   2666     }
   2667     length += node_length;
   2668     SeqRegExpNode* seq_node = static_cast<SeqRegExpNode*>(node);
   2669     node = seq_node->on_success();
   2670   }
   2671   return length;
   2672 }
   2673 
   2674 
   2675 void LoopChoiceNode::AddLoopAlternative(GuardedAlternative alt) {
   2676   ASSERT_EQ(loop_node_, NULL);
   2677   AddAlternative(alt);
   2678   loop_node_ = alt.node();
   2679 }
   2680 
   2681 
   2682 void LoopChoiceNode::AddContinueAlternative(GuardedAlternative alt) {
   2683   ASSERT_EQ(continue_node_, NULL);
   2684   AddAlternative(alt);
   2685   continue_node_ = alt.node();
   2686 }
   2687 
   2688 
   2689 void LoopChoiceNode::Emit(RegExpCompiler* compiler, Trace* trace) {
   2690   RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
   2691   if (trace->stop_node() == this) {
   2692     int text_length = GreedyLoopTextLength(&(alternatives_->at(0)));
   2693     ASSERT(text_length != kNodeIsTooComplexForGreedyLoops);
   2694     // Update the counter-based backtracking info on the stack.  This is an
   2695     // optimization for greedy loops (see below).
   2696     ASSERT(trace->cp_offset() == text_length);
   2697     macro_assembler->AdvanceCurrentPosition(text_length);
   2698     macro_assembler->GoTo(trace->loop_label());
   2699     return;
   2700   }
   2701   ASSERT(trace->stop_node() == NULL);
   2702   if (!trace->is_trivial()) {
   2703     trace->Flush(compiler, this);
   2704     return;
   2705   }
   2706   ChoiceNode::Emit(compiler, trace);
   2707 }
   2708 
   2709 
   2710 int ChoiceNode::CalculatePreloadCharacters(RegExpCompiler* compiler,
   2711                                            bool not_at_start) {
   2712   int preload_characters = EatsAtLeast(4, 0, not_at_start);
   2713   if (compiler->macro_assembler()->CanReadUnaligned()) {
   2714     bool ascii = compiler->ascii();
   2715     if (ascii) {
   2716       if (preload_characters > 4) preload_characters = 4;
   2717       // We can't preload 3 characters because there is no machine instruction
   2718       // to do that.  We can't just load 4 because we could be reading
   2719       // beyond the end of the string, which could cause a memory fault.
   2720       if (preload_characters == 3) preload_characters = 2;
   2721     } else {
   2722       if (preload_characters > 2) preload_characters = 2;
   2723     }
   2724   } else {
   2725     if (preload_characters > 1) preload_characters = 1;
   2726   }
   2727   return preload_characters;
   2728 }
   2729 
   2730 
   2731 // This class is used when generating the alternatives in a choice node.  It
   2732 // records the way the alternative is being code generated.
   2733 class AlternativeGeneration: public Malloced {
   2734  public:
   2735   AlternativeGeneration()
   2736       : possible_success(),
   2737         expects_preload(false),
   2738         after(),
   2739         quick_check_details() { }
   2740   Label possible_success;
   2741   bool expects_preload;
   2742   Label after;
   2743   QuickCheckDetails quick_check_details;
   2744 };
   2745 
   2746 
   2747 // Creates a list of AlternativeGenerations.  If the list has a reasonable
   2748 // size then it is on the stack, otherwise the excess is on the heap.
   2749 class AlternativeGenerationList {
   2750  public:
   2751   explicit AlternativeGenerationList(int count)
   2752       : alt_gens_(count) {
   2753     for (int i = 0; i < count && i < kAFew; i++) {
   2754       alt_gens_.Add(a_few_alt_gens_ + i);
   2755     }
   2756     for (int i = kAFew; i < count; i++) {
   2757       alt_gens_.Add(new AlternativeGeneration());
   2758     }
   2759   }
   2760   ~AlternativeGenerationList() {
   2761     for (int i = kAFew; i < alt_gens_.length(); i++) {
   2762       delete alt_gens_[i];
   2763       alt_gens_[i] = NULL;
   2764     }
   2765   }
   2766 
   2767   AlternativeGeneration* at(int i) {
   2768     return alt_gens_[i];
   2769   }
   2770  private:
   2771   static const int kAFew = 10;
   2772   ZoneList<AlternativeGeneration*> alt_gens_;
   2773   AlternativeGeneration a_few_alt_gens_[kAFew];
   2774 };
   2775 
   2776 
   2777 /* Code generation for choice nodes.
   2778  *
   2779  * We generate quick checks that do a mask and compare to eliminate a
   2780  * choice.  If the quick check succeeds then it jumps to the continuation to
   2781  * do slow checks and check subsequent nodes.  If it fails (the common case)
   2782  * it falls through to the next choice.
   2783  *
   2784  * Here is the desired flow graph.  Nodes directly below each other imply
   2785  * fallthrough.  Alternatives 1 and 2 have quick checks.  Alternative
   2786  * 3 doesn't have a quick check so we have to call the slow check.
   2787  * Nodes are marked Qn for quick checks and Sn for slow checks.  The entire
   2788  * regexp continuation is generated directly after the Sn node, up to the
   2789  * next GoTo if we decide to reuse some already generated code.  Some
   2790  * nodes expect preload_characters to be preloaded into the current
   2791  * character register.  R nodes do this preloading.  Vertices are marked
   2792  * F for failures and S for success (possible success in the case of quick
   2793  * nodes).  L, V, < and > are used as arrow heads.
   2794  *
   2795  * ----------> R
   2796  *             |
   2797  *             V
   2798  *            Q1 -----> S1
   2799  *             |   S   /
   2800  *            F|      /
   2801  *             |    F/
   2802  *             |    /
   2803  *             |   R
   2804  *             |  /
   2805  *             V L
   2806  *            Q2 -----> S2
   2807  *             |   S   /
   2808  *            F|      /
   2809  *             |    F/
   2810  *             |    /
   2811  *             |   R
   2812  *             |  /
   2813  *             V L
   2814  *            S3
   2815  *             |
   2816  *            F|
   2817  *             |
   2818  *             R
   2819  *             |
   2820  * backtrack   V
   2821  * <----------Q4
   2822  *   \    F    |
   2823  *    \        |S
   2824  *     \   F   V
   2825  *      \-----S4
   2826  *
   2827  * For greedy loops we reverse our expectation and expect to match rather
   2828  * than fail. Therefore we want the loop code to look like this (U is the
   2829  * unwind code that steps back in the greedy loop).  The following alternatives
   2830  * look the same as above.
   2831  *              _____
   2832  *             /     \
   2833  *             V     |
   2834  * ----------> S1    |
   2835  *            /|     |
   2836  *           / |S    |
   2837  *         F/  \_____/
   2838  *         /
   2839  *        |<-----------
   2840  *        |            \
   2841  *        V             \
   2842  *        Q2 ---> S2     \
   2843  *        |  S   /       |
   2844  *       F|     /        |
   2845  *        |   F/         |
   2846  *        |   /          |
   2847  *        |  R           |
   2848  *        | /            |
   2849  *   F    VL             |
   2850  * <------U              |
   2851  * back   |S             |
   2852  *        \______________/
   2853  */
   2854 
   2855 
   2856 void ChoiceNode::Emit(RegExpCompiler* compiler, Trace* trace) {
   2857   RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
   2858   int choice_count = alternatives_->length();
   2859 #ifdef DEBUG
   2860   for (int i = 0; i < choice_count - 1; i++) {
   2861     GuardedAlternative alternative = alternatives_->at(i);
   2862     ZoneList<Guard*>* guards = alternative.guards();
   2863     int guard_count = (guards == NULL) ? 0 : guards->length();
   2864     for (int j = 0; j < guard_count; j++) {
   2865       ASSERT(!trace->mentions_reg(guards->at(j)->reg()));
   2866     }
   2867   }
   2868 #endif
   2869 
   2870   LimitResult limit_result = LimitVersions(compiler, trace);
   2871   if (limit_result == DONE) return;
   2872   ASSERT(limit_result == CONTINUE);
   2873 
   2874   int new_flush_budget = trace->flush_budget() / choice_count;
   2875   if (trace->flush_budget() == 0 && trace->actions() != NULL) {
   2876     trace->Flush(compiler, this);
   2877     return;
   2878   }
   2879 
   2880   RecursionCheck rc(compiler);
   2881 
   2882   Trace* current_trace = trace;
   2883 
   2884   int text_length = GreedyLoopTextLength(&(alternatives_->at(0)));
   2885   bool greedy_loop = false;
   2886   Label greedy_loop_label;
   2887   Trace counter_backtrack_trace;
   2888   counter_backtrack_trace.set_backtrack(&greedy_loop_label);
   2889   if (not_at_start()) counter_backtrack_trace.set_at_start(false);
   2890 
   2891   if (choice_count > 1 && text_length != kNodeIsTooComplexForGreedyLoops) {
   2892     // Here we have special handling for greedy loops containing only text nodes
   2893     // and other simple nodes.  These are handled by pushing the current
   2894     // position on the stack and then incrementing the current position each
   2895     // time around the switch.  On backtrack we decrement the current position
   2896     // and check it against the pushed value.  This avoids pushing backtrack
   2897     // information for each iteration of the loop, which could take up a lot of
   2898     // space.
   2899     greedy_loop = true;
   2900     ASSERT(trace->stop_node() == NULL);
   2901     macro_assembler->PushCurrentPosition();
   2902     current_trace = &counter_backtrack_trace;
   2903     Label greedy_match_failed;
   2904     Trace greedy_match_trace;
   2905     if (not_at_start()) greedy_match_trace.set_at_start(false);
   2906     greedy_match_trace.set_backtrack(&greedy_match_failed);
   2907     Label loop_label;
   2908     macro_assembler->Bind(&loop_label);
   2909     greedy_match_trace.set_stop_node(this);
   2910     greedy_match_trace.set_loop_label(&loop_label);
   2911     alternatives_->at(0).node()->Emit(compiler, &greedy_match_trace);
   2912     macro_assembler->Bind(&greedy_match_failed);
   2913   }
   2914 
   2915   Label second_choice;  // For use in greedy matches.
   2916   macro_assembler->Bind(&second_choice);
   2917 
   2918   int first_normal_choice = greedy_loop ? 1 : 0;
   2919 
   2920   int preload_characters =
   2921       CalculatePreloadCharacters(compiler,
   2922                                  current_trace->at_start() == Trace::FALSE);
   2923   bool preload_is_current =
   2924       (current_trace->characters_preloaded() == preload_characters);
   2925   bool preload_has_checked_bounds = preload_is_current;
   2926 
   2927   AlternativeGenerationList alt_gens(choice_count);
   2928 
   2929   // For now we just call all choices one after the other.  The idea ultimately
   2930   // is to use the Dispatch table to try only the relevant ones.
   2931   for (int i = first_normal_choice; i < choice_count; i++) {
   2932     GuardedAlternative alternative = alternatives_->at(i);
   2933     AlternativeGeneration* alt_gen = alt_gens.at(i);
   2934     alt_gen->quick_check_details.set_characters(preload_characters);
   2935     ZoneList<Guard*>* guards = alternative.guards();
   2936     int guard_count = (guards == NULL) ? 0 : guards->length();
   2937     Trace new_trace(*current_trace);
   2938     new_trace.set_characters_preloaded(preload_is_current ?
   2939                                          preload_characters :
   2940                                          0);
   2941     if (preload_has_checked_bounds) {
   2942       new_trace.set_bound_checked_up_to(preload_characters);
   2943     }
   2944     new_trace.quick_check_performed()->Clear();
   2945     if (not_at_start_) new_trace.set_at_start(Trace::FALSE);
   2946     alt_gen->expects_preload = preload_is_current;
   2947     bool generate_full_check_inline = false;
   2948     if (FLAG_regexp_optimization &&
   2949         try_to_emit_quick_check_for_alternative(i) &&
   2950         alternative.node()->EmitQuickCheck(compiler,
   2951                                            &new_trace,
   2952                                            preload_has_checked_bounds,
   2953                                            &alt_gen->possible_success,
   2954                                            &alt_gen->quick_check_details,
   2955                                            i < choice_count - 1)) {
   2956       // Quick check was generated for this choice.
   2957       preload_is_current = true;
   2958       preload_has_checked_bounds = true;
   2959       // On the last choice in the ChoiceNode we generated the quick
   2960       // check to fall through on possible success.  So now we need to
   2961       // generate the full check inline.
   2962       if (i == choice_count - 1) {
   2963         macro_assembler->Bind(&alt_gen->possible_success);
   2964         new_trace.set_quick_check_performed(&alt_gen->quick_check_details);
   2965         new_trace.set_characters_preloaded(preload_characters);
   2966         new_trace.set_bound_checked_up_to(preload_characters);
   2967         generate_full_check_inline = true;
   2968       }
   2969     } else if (alt_gen->quick_check_details.cannot_match()) {
   2970       if (i == choice_count - 1 && !greedy_loop) {
   2971         macro_assembler->GoTo(trace->backtrack());
   2972       }
   2973       continue;
   2974     } else {
   2975       // No quick check was generated.  Put the full code here.
   2976       // If this is not the first choice then there could be slow checks from
   2977       // previous cases that go here when they fail.  There's no reason to
   2978       // insist that they preload characters since the slow check we are about
   2979       // to generate probably can't use it.
   2980       if (i != first_normal_choice) {
   2981         alt_gen->expects_preload = false;
   2982         new_trace.InvalidateCurrentCharacter();
   2983       }
   2984       if (i < choice_count - 1) {
   2985         new_trace.set_backtrack(&alt_gen->after);
   2986       }
   2987       generate_full_check_inline = true;
   2988     }
   2989     if (generate_full_check_inline) {
   2990       if (new_trace.actions() != NULL) {
   2991         new_trace.set_flush_budget(new_flush_budget);
   2992       }
   2993       for (int j = 0; j < guard_count; j++) {
   2994         GenerateGuard(macro_assembler, guards->at(j), &new_trace);
   2995       }
   2996       alternative.node()->Emit(compiler, &new_trace);
   2997       preload_is_current = false;
   2998     }
   2999     macro_assembler->Bind(&alt_gen->after);
   3000   }
   3001   if (greedy_loop) {
   3002     macro_assembler->Bind(&greedy_loop_label);
   3003     // If we have unwound to the bottom then backtrack.
   3004     macro_assembler->CheckGreedyLoop(trace->backtrack());
   3005     // Otherwise try the second priority at an earlier position.
   3006     macro_assembler->AdvanceCurrentPosition(-text_length);
   3007     macro_assembler->GoTo(&second_choice);
   3008   }
   3009 
   3010   // At this point we need to generate slow checks for the alternatives where
   3011   // the quick check was inlined.  We can recognize these because the associated
   3012   // label was bound.
   3013   for (int i = first_normal_choice; i < choice_count - 1; i++) {
   3014     AlternativeGeneration* alt_gen = alt_gens.at(i);
   3015     Trace new_trace(*current_trace);
   3016     // If there are actions to be flushed we have to limit how many times
   3017     // they are flushed.  Take the budget of the parent trace and distribute
   3018     // it fairly amongst the children.
   3019     if (new_trace.actions() != NULL) {
   3020       new_trace.set_flush_budget(new_flush_budget);
   3021     }
   3022     EmitOutOfLineContinuation(compiler,
   3023                               &new_trace,
   3024                               alternatives_->at(i),
   3025                               alt_gen,
   3026                               preload_characters,
   3027                               alt_gens.at(i + 1)->expects_preload);
   3028   }
   3029 }
   3030 
   3031 
   3032 void ChoiceNode::EmitOutOfLineContinuation(RegExpCompiler* compiler,
   3033                                            Trace* trace,
   3034                                            GuardedAlternative alternative,
   3035                                            AlternativeGeneration* alt_gen,
   3036                                            int preload_characters,
   3037                                            bool next_expects_preload) {
   3038   if (!alt_gen->possible_success.is_linked()) return;
   3039 
   3040   RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
   3041   macro_assembler->Bind(&alt_gen->possible_success);
   3042   Trace out_of_line_trace(*trace);
   3043   out_of_line_trace.set_characters_preloaded(preload_characters);
   3044   out_of_line_trace.set_quick_check_performed(&alt_gen->quick_check_details);
   3045   if (not_at_start_) out_of_line_trace.set_at_start(Trace::FALSE);
   3046   ZoneList<Guard*>* guards = alternative.guards();
   3047   int guard_count = (guards == NULL) ? 0 : guards->length();
   3048   if (next_expects_preload) {
   3049     Label reload_current_char;
   3050     out_of_line_trace.set_backtrack(&reload_current_char);
   3051     for (int j = 0; j < guard_count; j++) {
   3052       GenerateGuard(macro_assembler, guards->at(j), &out_of_line_trace);
   3053     }
   3054     alternative.node()->Emit(compiler, &out_of_line_trace);
   3055     macro_assembler->Bind(&reload_current_char);
   3056     // Reload the current character, since the next quick check expects that.
   3057     // We don't need to check bounds here because we only get into this
   3058     // code through a quick check which already did the checked load.
   3059     macro_assembler->LoadCurrentCharacter(trace->cp_offset(),
   3060                                           NULL,
   3061                                           false,
   3062                                           preload_characters);
   3063     macro_assembler->GoTo(&(alt_gen->after));
   3064   } else {
   3065     out_of_line_trace.set_backtrack(&(alt_gen->after));
   3066     for (int j = 0; j < guard_count; j++) {
   3067       GenerateGuard(macro_assembler, guards->at(j), &out_of_line_trace);
   3068     }
   3069     alternative.node()->Emit(compiler, &out_of_line_trace);
   3070   }
   3071 }
   3072 
   3073 
   3074 void ActionNode::Emit(RegExpCompiler* compiler, Trace* trace) {
   3075   RegExpMacroAssembler* assembler = compiler->macro_assembler();
   3076   LimitResult limit_result = LimitVersions(compiler, trace);
   3077   if (limit_result == DONE) return;
   3078   ASSERT(limit_result == CONTINUE);
   3079 
   3080   RecursionCheck rc(compiler);
   3081 
   3082   switch (type_) {
   3083     case STORE_POSITION: {
   3084       Trace::DeferredCapture
   3085           new_capture(data_.u_position_register.reg,
   3086                       data_.u_position_register.is_capture,
   3087                       trace);
   3088       Trace new_trace = *trace;
   3089       new_trace.add_action(&new_capture);
   3090       on_success()->Emit(compiler, &new_trace);
   3091       break;
   3092     }
   3093     case INCREMENT_REGISTER: {
   3094       Trace::DeferredIncrementRegister
   3095           new_increment(data_.u_increment_register.reg);
   3096       Trace new_trace = *trace;
   3097       new_trace.add_action(&new_increment);
   3098       on_success()->Emit(compiler, &new_trace);
   3099       break;
   3100     }
   3101     case SET_REGISTER: {
   3102       Trace::DeferredSetRegister
   3103           new_set(data_.u_store_register.reg, data_.u_store_register.value);
   3104       Trace new_trace = *trace;
   3105       new_trace.add_action(&new_set);
   3106       on_success()->Emit(compiler, &new_trace);
   3107       break;
   3108     }
   3109     case CLEAR_CAPTURES: {
   3110       Trace::DeferredClearCaptures
   3111         new_capture(Interval(data_.u_clear_captures.range_from,
   3112                              data_.u_clear_captures.range_to));
   3113       Trace new_trace = *trace;
   3114       new_trace.add_action(&new_capture);
   3115       on_success()->Emit(compiler, &new_trace);
   3116       break;
   3117     }
   3118     case BEGIN_SUBMATCH:
   3119       if (!trace->is_trivial()) {
   3120         trace->Flush(compiler, this);
   3121       } else {
   3122         assembler->WriteCurrentPositionToRegister(
   3123             data_.u_submatch.current_position_register, 0);
   3124         assembler->WriteStackPointerToRegister(
   3125             data_.u_submatch.stack_pointer_register);
   3126         on_success()->Emit(compiler, trace);
   3127       }
   3128       break;
   3129     case EMPTY_MATCH_CHECK: {
   3130       int start_pos_reg = data_.u_empty_match_check.start_register;
   3131       int stored_pos = 0;
   3132       int rep_reg = data_.u_empty_match_check.repetition_register;
   3133       bool has_minimum = (rep_reg != RegExpCompiler::kNoRegister);
   3134       bool know_dist = trace->GetStoredPosition(start_pos_reg, &stored_pos);
   3135       if (know_dist && !has_minimum && stored_pos == trace->cp_offset()) {
   3136         // If we know we haven't advanced and there is no minimum we
   3137         // can just backtrack immediately.
   3138         assembler->GoTo(trace->backtrack());
   3139       } else if (know_dist && stored_pos < trace->cp_offset()) {
   3140         // If we know we've advanced we can generate the continuation
   3141         // immediately.
   3142         on_success()->Emit(compiler, trace);
   3143       } else if (!trace->is_trivial()) {
   3144         trace->Flush(compiler, this);
   3145       } else {
   3146         Label skip_empty_check;
   3147         // If we have a minimum number of repetitions we check the current
   3148         // number first and skip the empty check if it's not enough.
   3149         if (has_minimum) {
   3150           int limit = data_.u_empty_match_check.repetition_limit;
   3151           assembler->IfRegisterLT(rep_reg, limit, &skip_empty_check);
   3152         }
   3153         // If the match is empty we bail out, otherwise we fall through
   3154         // to the on-success continuation.
   3155         assembler->IfRegisterEqPos(data_.u_empty_match_check.start_register,
   3156                                    trace->backtrack());
   3157         assembler->Bind(&skip_empty_check);
   3158         on_success()->Emit(compiler, trace);
   3159       }
   3160       break;
   3161     }
   3162     case POSITIVE_SUBMATCH_SUCCESS: {
   3163       if (!trace->is_trivial()) {
   3164         trace->Flush(compiler, this);
   3165         return;
   3166       }
   3167       assembler->ReadCurrentPositionFromRegister(
   3168           data_.u_submatch.current_position_register);
   3169       assembler->ReadStackPointerFromRegister(
   3170           data_.u_submatch.stack_pointer_register);
   3171       int clear_register_count = data_.u_submatch.clear_register_count;
   3172       if (clear_register_count == 0) {
   3173         on_success()->Emit(compiler, trace);
   3174         return;
   3175       }
   3176       int clear_registers_from = data_.u_submatch.clear_register_from;
   3177       Label clear_registers_backtrack;
   3178       Trace new_trace = *trace;
   3179       new_trace.set_backtrack(&clear_registers_backtrack);
   3180       on_success()->Emit(compiler, &new_trace);
   3181 
   3182       assembler->Bind(&clear_registers_backtrack);
   3183       int clear_registers_to = clear_registers_from + clear_register_count - 1;
   3184       assembler->ClearRegisters(clear_registers_from, clear_registers_to);
   3185 
   3186       ASSERT(trace->backtrack() == NULL);
   3187       assembler->Backtrack();
   3188       return;
   3189     }
   3190     default:
   3191       UNREACHABLE();
   3192   }
   3193 }
   3194 
   3195 
   3196 void BackReferenceNode::Emit(RegExpCompiler* compiler, Trace* trace) {
   3197   RegExpMacroAssembler* assembler = compiler->macro_assembler();
   3198   if (!trace->is_trivial()) {
   3199     trace->Flush(compiler, this);
   3200     return;
   3201   }
   3202 
   3203   LimitResult limit_result = LimitVersions(compiler, trace);
   3204   if (limit_result == DONE) return;
   3205   ASSERT(limit_result == CONTINUE);
   3206 
   3207   RecursionCheck rc(compiler);
   3208 
   3209   ASSERT_EQ(start_reg_ + 1, end_reg_);
   3210   if (compiler->ignore_case()) {
   3211     assembler->CheckNotBackReferenceIgnoreCase(start_reg_,
   3212                                                trace->backtrack());
   3213   } else {
   3214     assembler->CheckNotBackReference(start_reg_, trace->backtrack());
   3215   }
   3216   on_success()->Emit(compiler, trace);
   3217 }
   3218 
   3219 
   3220 // -------------------------------------------------------------------
   3221 // Dot/dotty output
   3222 
   3223 
   3224 #ifdef DEBUG
   3225 
   3226 
   3227 class DotPrinter: public NodeVisitor {
   3228  public:
   3229   explicit DotPrinter(bool ignore_case)
   3230       : ignore_case_(ignore_case),
   3231         stream_(&alloc_) { }
   3232   void PrintNode(const char* label, RegExpNode* node);
   3233   void Visit(RegExpNode* node);
   3234   void PrintAttributes(RegExpNode* from);
   3235   StringStream* stream() { return &stream_; }
   3236   void PrintOnFailure(RegExpNode* from, RegExpNode* to);
   3237 #define DECLARE_VISIT(Type)                                          \
   3238   virtual void Visit##Type(Type##Node* that);
   3239 FOR_EACH_NODE_TYPE(DECLARE_VISIT)
   3240 #undef DECLARE_VISIT
   3241  private:
   3242   bool ignore_case_;
   3243   HeapStringAllocator alloc_;
   3244   StringStream stream_;
   3245 };
   3246 
   3247 
   3248 void DotPrinter::PrintNode(const char* label, RegExpNode* node) {
   3249   stream()->Add("digraph G {\n  graph [label=\"");
   3250   for (int i = 0; label[i]; i++) {
   3251     switch (label[i]) {
   3252       case '\\':
   3253         stream()->Add("\\\\");
   3254         break;
   3255       case '"':
   3256         stream()->Add("\"");
   3257         break;
   3258       default:
   3259         stream()->Put(label[i]);
   3260         break;
   3261     }
   3262   }
   3263   stream()->Add("\"];\n");
   3264   Visit(node);
   3265   stream()->Add("}\n");
   3266   printf("%s", *(stream()->ToCString()));
   3267 }
   3268 
   3269 
   3270 void DotPrinter::Visit(RegExpNode* node) {
   3271   if (node->info()->visited) return;
   3272   node->info()->visited = true;
   3273   node->Accept(this);
   3274 }
   3275 
   3276 
   3277 void DotPrinter::PrintOnFailure(RegExpNode* from, RegExpNode* on_failure) {
   3278   stream()->Add("  n%p -> n%p [style=dotted];\n", from, on_failure);
   3279   Visit(on_failure);
   3280 }
   3281 
   3282 
   3283 class TableEntryBodyPrinter {
   3284  public:
   3285   TableEntryBodyPrinter(StringStream* stream, ChoiceNode* choice)
   3286       : stream_(stream), choice_(choice) { }
   3287   void Call(uc16 from, DispatchTable::Entry entry) {
   3288     OutSet* out_set = entry.out_set();
   3289     for (unsigned i = 0; i < OutSet::kFirstLimit; i++) {
   3290       if (out_set->Get(i)) {
   3291         stream()->Add("    n%p:s%io%i -> n%p;\n",
   3292                       choice(),
   3293                       from,
   3294                       i,
   3295                       choice()->alternatives()->at(i).node());
   3296       }
   3297     }
   3298   }
   3299  private:
   3300   StringStream* stream() { return stream_; }
   3301   ChoiceNode* choice() { return choice_; }
   3302   StringStream* stream_;
   3303   ChoiceNode* choice_;
   3304 };
   3305 
   3306 
   3307 class TableEntryHeaderPrinter {
   3308  public:
   3309   explicit TableEntryHeaderPrinter(StringStream* stream)
   3310       : first_(true), stream_(stream) { }
   3311   void Call(uc16 from, DispatchTable::Entry entry) {
   3312     if (first_) {
   3313       first_ = false;
   3314     } else {
   3315       stream()->Add("|");
   3316     }
   3317     stream()->Add("{\\%k-\\%k|{", from, entry.to());
   3318     OutSet* out_set = entry.out_set();
   3319     int priority = 0;
   3320     for (unsigned i = 0; i < OutSet::kFirstLimit; i++) {
   3321       if (out_set->Get(i)) {
   3322         if (priority > 0) stream()->Add("|");
   3323         stream()->Add("<s%io%i> %i", from, i, priority);
   3324         priority++;
   3325       }
   3326     }
   3327     stream()->Add("}}");
   3328   }
   3329  private:
   3330   bool first_;
   3331   StringStream* stream() { return stream_; }
   3332   StringStream* stream_;
   3333 };
   3334 
   3335 
   3336 class AttributePrinter {
   3337  public:
   3338   explicit AttributePrinter(DotPrinter* out)
   3339       : out_(out), first_(true) { }
   3340   void PrintSeparator() {
   3341     if (first_) {
   3342       first_ = false;
   3343     } else {
   3344       out_->stream()->Add("|");
   3345     }
   3346   }
   3347   void PrintBit(const char* name, bool value) {
   3348     if (!value) return;
   3349     PrintSeparator();
   3350     out_->stream()->Add("{%s}", name);
   3351   }
   3352   void PrintPositive(const char* name, int value) {
   3353     if (value < 0) return;
   3354     PrintSeparator();
   3355     out_->stream()->Add("{%s|%x}", name, value);
   3356   }
   3357  private:
   3358   DotPrinter* out_;
   3359   bool first_;
   3360 };
   3361 
   3362 
   3363 void DotPrinter::PrintAttributes(RegExpNode* that) {
   3364   stream()->Add("  a%p [shape=Mrecord, color=grey, fontcolor=grey, "
   3365                 "margin=0.1, fontsize=10, label=\"{",
   3366                 that);
   3367   AttributePrinter printer(this);
   3368   NodeInfo* info = that->info();
   3369   printer.PrintBit("NI", info->follows_newline_interest);
   3370   printer.PrintBit("WI", info->follows_word_interest);
   3371   printer.PrintBit("SI", info->follows_start_interest);
   3372   Label* label = that->label();
   3373   if (label->is_bound())
   3374     printer.PrintPositive("@", label->pos());
   3375   stream()->Add("}\"];\n");
   3376   stream()->Add("  a%p -> n%p [style=dashed, color=grey, "
   3377                 "arrowhead=none];\n", that, that);
   3378 }
   3379 
   3380 
   3381 static const bool kPrintDispatchTable = false;
   3382 void DotPrinter::VisitChoice(ChoiceNode* that) {
   3383   if (kPrintDispatchTable) {
   3384     stream()->Add("  n%p [shape=Mrecord, label=\"", that);
   3385     TableEntryHeaderPrinter header_printer(stream());
   3386     that->GetTable(ignore_case_)->ForEach(&header_printer);
   3387     stream()->Add("\"]\n", that);
   3388     PrintAttributes(that);
   3389     TableEntryBodyPrinter body_printer(stream(), that);
   3390     that->GetTable(ignore_case_)->ForEach(&body_printer);
   3391   } else {
   3392     stream()->Add("  n%p [shape=Mrecord, label=\"?\"];\n", that);
   3393     for (int i = 0; i < that->alternatives()->length(); i++) {
   3394       GuardedAlternative alt = that->alternatives()->at(i);
   3395       stream()->Add("  n%p -> n%p;\n", that, alt.node());
   3396     }
   3397   }
   3398   for (int i = 0; i < that->alternatives()->length(); i++) {
   3399     GuardedAlternative alt = that->alternatives()->at(i);
   3400     alt.node()->Accept(this);
   3401   }
   3402 }
   3403 
   3404 
   3405 void DotPrinter::VisitText(TextNode* that) {
   3406   stream()->Add("  n%p [label=\"", that);
   3407   for (int i = 0; i < that->elements()->length(); i++) {
   3408     if (i > 0) stream()->Add(" ");
   3409     TextElement elm = that->elements()->at(i);
   3410     switch (elm.type) {
   3411       case TextElement::ATOM: {
   3412         stream()->Add("'%w'", elm.data.u_atom->data());
   3413         break;
   3414       }
   3415       case TextElement::CHAR_CLASS: {
   3416         RegExpCharacterClass* node = elm.data.u_char_class;
   3417         stream()->Add("[");
   3418         if (node->is_negated())
   3419           stream()->Add("^");
   3420         for (int j = 0; j < node->ranges()->length(); j++) {
   3421           CharacterRange range = node->ranges()->at(j);
   3422           stream()->Add("%k-%k", range.from(), range.to());
   3423         }
   3424         stream()->Add("]");
   3425         break;
   3426       }
   3427       default:
   3428         UNREACHABLE();
   3429     }
   3430   }
   3431   stream()->Add("\", shape=box, peripheries=2];\n");
   3432   PrintAttributes(that);
   3433   stream()->Add("  n%p -> n%p;\n", that, that->on_success());
   3434   Visit(that->on_success());
   3435 }
   3436 
   3437 
   3438 void DotPrinter::VisitBackReference(BackReferenceNode* that) {
   3439   stream()->Add("  n%p [label=\"$%i..$%i\", shape=doubleoctagon];\n",
   3440                 that,
   3441                 that->start_register(),
   3442                 that->end_register());
   3443   PrintAttributes(that);
   3444   stream()->Add("  n%p -> n%p;\n", that, that->on_success());
   3445   Visit(that->on_success());
   3446 }
   3447 
   3448 
   3449 void DotPrinter::VisitEnd(EndNode* that) {
   3450   stream()->Add("  n%p [style=bold, shape=point];\n", that);
   3451   PrintAttributes(that);
   3452 }
   3453 
   3454 
   3455 void DotPrinter::VisitAssertion(AssertionNode* that) {
   3456   stream()->Add("  n%p [", that);
   3457   switch (that->type()) {
   3458     case AssertionNode::AT_END:
   3459       stream()->Add("label=\"$\", shape=septagon");
   3460       break;
   3461     case AssertionNode::AT_START:
   3462       stream()->Add("label=\"^\", shape=septagon");
   3463       break;
   3464     case AssertionNode::AT_BOUNDARY:
   3465       stream()->Add("label=\"\\b\", shape=septagon");
   3466       break;
   3467     case AssertionNode::AT_NON_BOUNDARY:
   3468       stream()->Add("label=\"\\B\", shape=septagon");
   3469       break;
   3470     case AssertionNode::AFTER_NEWLINE:
   3471       stream()->Add("label=\"(?<=\\n)\", shape=septagon");
   3472       break;
   3473     case AssertionNode::AFTER_WORD_CHARACTER:
   3474       stream()->Add("label=\"(?<=\\w)\", shape=septagon");
   3475       break;
   3476     case AssertionNode::AFTER_NONWORD_CHARACTER:
   3477       stream()->Add("label=\"(?<=\\W)\", shape=septagon");
   3478       break;
   3479   }
   3480   stream()->Add("];\n");
   3481   PrintAttributes(that);
   3482   RegExpNode* successor = that->on_success();
   3483   stream()->Add("  n%p -> n%p;\n", that, successor);
   3484   Visit(successor);
   3485 }
   3486 
   3487 
   3488 void DotPrinter::VisitAction(ActionNode* that) {
   3489   stream()->Add("  n%p [", that);
   3490   switch (that->type_) {
   3491     case ActionNode::SET_REGISTER:
   3492       stream()->Add("label=\"$%i:=%i\", shape=octagon",
   3493                     that->data_.u_store_register.reg,
   3494                     that->data_.u_store_register.value);
   3495       break;
   3496     case ActionNode::INCREMENT_REGISTER:
   3497       stream()->Add("label=\"$%i++\", shape=octagon",
   3498                     that->data_.u_increment_register.reg);
   3499       break;
   3500     case ActionNode::STORE_POSITION:
   3501       stream()->Add("label=\"$%i:=$pos\", shape=octagon",
   3502                     that->data_.u_position_register.reg);
   3503       break;
   3504     case ActionNode::BEGIN_SUBMATCH:
   3505       stream()->Add("label=\"$%i:=$pos,begin\", shape=septagon",
   3506                     that->data_.u_submatch.current_position_register);
   3507       break;
   3508     case ActionNode::POSITIVE_SUBMATCH_SUCCESS:
   3509       stream()->Add("label=\"escape\", shape=septagon");
   3510       break;
   3511     case ActionNode::EMPTY_MATCH_CHECK:
   3512       stream()->Add("label=\"$%i=$pos?,$%i<%i?\", shape=septagon",
   3513                     that->data_.u_empty_match_check.start_register,
   3514                     that->data_.u_empty_match_check.repetition_register,
   3515                     that->data_.u_empty_match_check.repetition_limit);
   3516       break;
   3517     case ActionNode::CLEAR_CAPTURES: {
   3518       stream()->Add("label=\"clear $%i to $%i\", shape=septagon",
   3519                     that->data_.u_clear_captures.range_from,
   3520                     that->data_.u_clear_captures.range_to);
   3521       break;
   3522     }
   3523   }
   3524   stream()->Add("];\n");
   3525   PrintAttributes(that);
   3526   RegExpNode* successor = that->on_success();
   3527   stream()->Add("  n%p -> n%p;\n", that, successor);
   3528   Visit(successor);
   3529 }
   3530 
   3531 
   3532 class DispatchTableDumper {
   3533  public:
   3534   explicit DispatchTableDumper(StringStream* stream) : stream_(stream) { }
   3535   void Call(uc16 key, DispatchTable::Entry entry);
   3536   StringStream* stream() { return stream_; }
   3537  private:
   3538   StringStream* stream_;
   3539 };
   3540 
   3541 
   3542 void DispatchTableDumper::Call(uc16 key, DispatchTable::Entry entry) {
   3543   stream()->Add("[%k-%k]: {", key, entry.to());
   3544   OutSet* set = entry.out_set();
   3545   bool first = true;
   3546   for (unsigned i = 0; i < OutSet::kFirstLimit; i++) {
   3547     if (set->Get(i)) {
   3548       if (first) {
   3549         first = false;
   3550       } else {
   3551         stream()->Add(", ");
   3552       }
   3553       stream()->Add("%i", i);
   3554     }
   3555   }
   3556   stream()->Add("}\n");
   3557 }
   3558 
   3559 
   3560 void DispatchTable::Dump() {
   3561   HeapStringAllocator alloc;
   3562   StringStream stream(&alloc);
   3563   DispatchTableDumper dumper(&stream);
   3564   tree()->ForEach(&dumper);
   3565   OS::PrintError("%s", *stream.ToCString());
   3566 }
   3567 
   3568 
   3569 void RegExpEngine::DotPrint(const char* label,
   3570                             RegExpNode* node,
   3571                             bool ignore_case) {
   3572   DotPrinter printer(ignore_case);
   3573   printer.PrintNode(label, node);
   3574 }
   3575 
   3576 
   3577 #endif  // DEBUG
   3578 
   3579 
   3580 // -------------------------------------------------------------------
   3581 // Tree to graph conversion
   3582 
   3583 static const int kSpaceRangeCount = 20;
   3584 static const int kSpaceRangeAsciiCount = 4;
   3585 static const uc16 kSpaceRanges[kSpaceRangeCount] = { 0x0009, 0x000D, 0x0020,
   3586     0x0020, 0x00A0, 0x00A0, 0x1680, 0x1680, 0x180E, 0x180E, 0x2000, 0x200A,
   3587     0x2028, 0x2029, 0x202F, 0x202F, 0x205F, 0x205F, 0x3000, 0x3000 };
   3588 
   3589 static const int kWordRangeCount = 8;
   3590 static const uc16 kWordRanges[kWordRangeCount] = { '0', '9', 'A', 'Z', '_',
   3591     '_', 'a', 'z' };
   3592 
   3593 static const int kDigitRangeCount = 2;
   3594 static const uc16 kDigitRanges[kDigitRangeCount] = { '0', '9' };
   3595 
   3596 static const int kLineTerminatorRangeCount = 6;
   3597 static const uc16 kLineTerminatorRanges[kLineTerminatorRangeCount] = { 0x000A,
   3598     0x000A, 0x000D, 0x000D, 0x2028, 0x2029 };
   3599 
   3600 RegExpNode* RegExpAtom::ToNode(RegExpCompiler* compiler,
   3601                                RegExpNode* on_success) {
   3602   ZoneList<TextElement>* elms = new ZoneList<TextElement>(1);
   3603   elms->Add(TextElement::Atom(this));
   3604   return new TextNode(elms, on_success);
   3605 }
   3606 
   3607 
   3608 RegExpNode* RegExpText::ToNode(RegExpCompiler* compiler,
   3609                                RegExpNode* on_success) {
   3610   return new TextNode(elements(), on_success);
   3611 }
   3612 
   3613 static bool CompareInverseRanges(ZoneList<CharacterRange>* ranges,
   3614                                  const uc16* special_class,
   3615                                  int length) {
   3616   ASSERT(ranges->length() != 0);
   3617   ASSERT(length != 0);
   3618   ASSERT(special_class[0] != 0);
   3619   if (ranges->length() != (length >> 1) + 1) {
   3620     return false;
   3621   }
   3622   CharacterRange range = ranges->at(0);
   3623   if (range.from() != 0) {
   3624     return false;
   3625   }
   3626   for (int i = 0; i < length; i += 2) {
   3627     if (special_class[i] != (range.to() + 1)) {
   3628       return false;
   3629     }
   3630     range = ranges->at((i >> 1) + 1);
   3631     if (special_class[i+1] != range.from() - 1) {
   3632       return false;
   3633     }
   3634   }
   3635   if (range.to() != 0xffff) {
   3636     return false;
   3637   }
   3638   return true;
   3639 }
   3640 
   3641 
   3642 static bool CompareRanges(ZoneList<CharacterRange>* ranges,
   3643                           const uc16* special_class,
   3644                           int length) {
   3645   if (ranges->length() * 2 != length) {
   3646     return false;
   3647   }
   3648   for (int i = 0; i < length; i += 2) {
   3649     CharacterRange range = ranges->at(i >> 1);
   3650     if (range.from() != special_class[i] || range.to() != special_class[i+1]) {
   3651       return false;
   3652     }
   3653   }
   3654   return true;
   3655 }
   3656 
   3657 
   3658 bool RegExpCharacterClass::is_standard() {
   3659   // TODO(lrn): Remove need for this function, by not throwing away information
   3660   // along the way.
   3661   if (is_negated_) {
   3662     return false;
   3663   }
   3664   if (set_.is_standard()) {
   3665     return true;
   3666   }
   3667   if (CompareRanges(set_.ranges(), kSpaceRanges, kSpaceRangeCount)) {
   3668     set_.set_standard_set_type('s');
   3669     return true;
   3670   }
   3671   if (CompareInverseRanges(set_.ranges(), kSpaceRanges, kSpaceRangeCount)) {
   3672     set_.set_standard_set_type('S');
   3673     return true;
   3674   }
   3675   if (CompareInverseRanges(set_.ranges(),
   3676                            kLineTerminatorRanges,
   3677                            kLineTerminatorRangeCount)) {
   3678     set_.set_standard_set_type('.');
   3679     return true;
   3680   }
   3681   if (CompareRanges(set_.ranges(),
   3682                     kLineTerminatorRanges,
   3683                     kLineTerminatorRangeCount)) {
   3684     set_.set_standard_set_type('n');
   3685     return true;
   3686   }
   3687   if (CompareRanges(set_.ranges(), kWordRanges, kWordRangeCount)) {
   3688     set_.set_standard_set_type('w');
   3689     return true;
   3690   }
   3691   if (CompareInverseRanges(set_.ranges(), kWordRanges, kWordRangeCount)) {
   3692     set_.set_standard_set_type('W');
   3693     return true;
   3694   }
   3695   return false;
   3696 }
   3697 
   3698 
   3699 RegExpNode* RegExpCharacterClass::ToNode(RegExpCompiler* compiler,
   3700                                          RegExpNode* on_success) {
   3701   return new TextNode(this, on_success);
   3702 }
   3703 
   3704 
   3705 RegExpNode* RegExpDisjunction::ToNode(RegExpCompiler* compiler,
   3706                                       RegExpNode* on_success) {
   3707   ZoneList<RegExpTree*>* alternatives = this->alternatives();
   3708   int length = alternatives->length();
   3709   ChoiceNode* result = new ChoiceNode(length);
   3710   for (int i = 0; i < length; i++) {
   3711     GuardedAlternative alternative(alternatives->at(i)->ToNode(compiler,
   3712                                                                on_success));
   3713     result->AddAlternative(alternative);
   3714   }
   3715   return result;
   3716 }
   3717 
   3718 
   3719 RegExpNode* RegExpQuantifier::ToNode(RegExpCompiler* compiler,
   3720                                      RegExpNode* on_success) {
   3721   return ToNode(min(),
   3722                 max(),
   3723                 is_greedy(),
   3724                 body(),
   3725                 compiler,
   3726                 on_success);
   3727 }
   3728 
   3729 
   3730 RegExpNode* RegExpQuantifier::ToNode(int min,
   3731                                      int max,
   3732                                      bool is_greedy,
   3733                                      RegExpTree* body,
   3734                                      RegExpCompiler* compiler,
   3735                                      RegExpNode* on_success,
   3736                                      bool not_at_start) {
   3737   // x{f, t} becomes this:
   3738   //
   3739   //             (r++)<-.
   3740   //               |     `
   3741   //               |     (x)
   3742   //               v     ^
   3743   //      (r=0)-->(?)---/ [if r < t]
   3744   //               |
   3745   //   [if r >= f] \----> ...
   3746   //
   3747 
   3748   // 15.10.2.5 RepeatMatcher algorithm.
   3749   // The parser has already eliminated the case where max is 0.  In the case
   3750   // where max_match is zero the parser has removed the quantifier if min was
   3751   // > 0 and removed the atom if min was 0.  See AddQuantifierToAtom.
   3752 
   3753   // If we know that we cannot match zero length then things are a little
   3754   // simpler since we don't need to make the special zero length match check
   3755   // from step 2.1.  If the min and max are small we can unroll a little in
   3756   // this case.
   3757   static const int kMaxUnrolledMinMatches = 3;  // Unroll (foo)+ and (foo){3,}
   3758   static const int kMaxUnrolledMaxMatches = 3;  // Unroll (foo)? and (foo){x,3}
   3759   if (max == 0) return on_success;  // This can happen due to recursion.
   3760   bool body_can_be_empty = (body->min_match() == 0);
   3761   int body_start_reg = RegExpCompiler::kNoRegister;
   3762   Interval capture_registers = body->CaptureRegisters();
   3763   bool needs_capture_clearing = !capture_registers.is_empty();
   3764   if (body_can_be_empty) {
   3765     body_start_reg = compiler->AllocateRegister();
   3766   } else if (FLAG_regexp_optimization && !needs_capture_clearing) {
   3767     // Only unroll if there are no captures and the body can't be
   3768     // empty.
   3769     if (min > 0 && min <= kMaxUnrolledMinMatches) {
   3770       int new_max = (max == kInfinity) ? max : max - min;
   3771       // Recurse once to get the loop or optional matches after the fixed ones.
   3772       RegExpNode* answer = ToNode(
   3773           0, new_max, is_greedy, body, compiler, on_success, true);
   3774       // Unroll the forced matches from 0 to min.  This can cause chains of
   3775       // TextNodes (which the parser does not generate).  These should be
   3776       // combined if it turns out they hinder good code generation.
   3777       for (int i = 0; i < min; i++) {
   3778         answer = body->ToNode(compiler, answer);
   3779       }
   3780       return answer;
   3781     }
   3782     if (max <= kMaxUnrolledMaxMatches) {
   3783       ASSERT(min == 0);
   3784       // Unroll the optional matches up to max.
   3785       RegExpNode* answer = on_success;
   3786       for (int i = 0; i < max; i++) {
   3787         ChoiceNode* alternation = new ChoiceNode(2);
   3788         if (is_greedy) {
   3789           alternation->AddAlternative(GuardedAlternative(body->ToNode(compiler,
   3790                                                                       answer)));
   3791           alternation->AddAlternative(GuardedAlternative(on_success));
   3792         } else {
   3793           alternation->AddAlternative(GuardedAlternative(on_success));
   3794           alternation->AddAlternative(GuardedAlternative(body->ToNode(compiler,
   3795                                                                       answer)));
   3796         }
   3797         answer = alternation;
   3798         if (not_at_start) alternation->set_not_at_start();
   3799       }
   3800       return answer;
   3801     }
   3802   }
   3803   bool has_min = min > 0;
   3804   bool has_max = max < RegExpTree::kInfinity;
   3805   bool needs_counter = has_min || has_max;
   3806   int reg_ctr = needs_counter
   3807       ? compiler->AllocateRegister()
   3808       : RegExpCompiler::kNoRegister;
   3809   LoopChoiceNode* center = new LoopChoiceNode(body->min_match() == 0);
   3810   if (not_at_start) center->set_not_at_start();
   3811   RegExpNode* loop_return = needs_counter
   3812       ? static_cast<RegExpNode*>(ActionNode::IncrementRegister(reg_ctr, center))
   3813       : static_cast<RegExpNode*>(center);
   3814   if (body_can_be_empty) {
   3815     // If the body can be empty we need to check if it was and then
   3816     // backtrack.
   3817     loop_return = ActionNode::EmptyMatchCheck(body_start_reg,
   3818                                               reg_ctr,
   3819                                               min,
   3820                                               loop_return);
   3821   }
   3822   RegExpNode* body_node = body->ToNode(compiler, loop_return);
   3823   if (body_can_be_empty) {
   3824     // If the body can be empty we need to store the start position
   3825     // so we can bail out if it was empty.
   3826     body_node = ActionNode::StorePosition(body_start_reg, false, body_node);
   3827   }
   3828   if (needs_capture_clearing) {
   3829     // Before entering the body of this loop we need to clear captures.
   3830     body_node = ActionNode::ClearCaptures(capture_registers, body_node);
   3831   }
   3832   GuardedAlternative body_alt(body_node);
   3833   if (has_max) {
   3834     Guard* body_guard = new Guard(reg_ctr, Guard::LT, max);
   3835     body_alt.AddGuard(body_guard);
   3836   }
   3837   GuardedAlternative rest_alt(on_success);
   3838   if (has_min) {
   3839     Guard* rest_guard = new Guard(reg_ctr, Guard::GEQ, min);
   3840     rest_alt.AddGuard(rest_guard);
   3841   }
   3842   if (is_greedy) {
   3843     center->AddLoopAlternative(body_alt);
   3844     center->AddContinueAlternative(rest_alt);
   3845   } else {
   3846     center->AddContinueAlternative(rest_alt);
   3847     center->AddLoopAlternative(body_alt);
   3848   }
   3849   if (needs_counter) {
   3850     return ActionNode::SetRegister(reg_ctr, 0, center);
   3851   } else {
   3852     return center;
   3853   }
   3854 }
   3855 
   3856 
   3857 RegExpNode* RegExpAssertion::ToNode(RegExpCompiler* compiler,
   3858                                     RegExpNode* on_success) {
   3859   NodeInfo info;
   3860   switch (type()) {
   3861     case START_OF_LINE:
   3862       return AssertionNode::AfterNewline(on_success);
   3863     case START_OF_INPUT:
   3864       return AssertionNode::AtStart(on_success);
   3865     case BOUNDARY:
   3866       return AssertionNode::AtBoundary(on_success);
   3867     case NON_BOUNDARY:
   3868       return AssertionNode::AtNonBoundary(on_success);
   3869     case END_OF_INPUT:
   3870       return AssertionNode::AtEnd(on_success);
   3871     case END_OF_LINE: {
   3872       // Compile $ in multiline regexps as an alternation with a positive
   3873       // lookahead in one side and an end-of-input on the other side.
   3874       // We need two registers for the lookahead.
   3875       int stack_pointer_register = compiler->AllocateRegister();
   3876       int position_register = compiler->AllocateRegister();
   3877       // The ChoiceNode to distinguish between a newline and end-of-input.
   3878       ChoiceNode* result = new ChoiceNode(2);
   3879       // Create a newline atom.
   3880       ZoneList<CharacterRange>* newline_ranges =
   3881           new ZoneList<CharacterRange>(3);
   3882       CharacterRange::AddClassEscape('n', newline_ranges);
   3883       RegExpCharacterClass* newline_atom = new RegExpCharacterClass('n');
   3884       TextNode* newline_matcher = new TextNode(
   3885          newline_atom,
   3886          ActionNode::PositiveSubmatchSuccess(stack_pointer_register,
   3887                                              position_register,
   3888                                              0,  // No captures inside.
   3889                                              -1,  // Ignored if no captures.
   3890                                              on_success));
   3891       // Create an end-of-input matcher.
   3892       RegExpNode* end_of_line = ActionNode::BeginSubmatch(
   3893           stack_pointer_register,
   3894           position_register,
   3895           newline_matcher);
   3896       // Add the two alternatives to the ChoiceNode.
   3897       GuardedAlternative eol_alternative(end_of_line);
   3898       result->AddAlternative(eol_alternative);
   3899       GuardedAlternative end_alternative(AssertionNode::AtEnd(on_success));
   3900       result->AddAlternative(end_alternative);
   3901       return result;
   3902     }
   3903     default:
   3904       UNREACHABLE();
   3905   }
   3906   return on_success;
   3907 }
   3908 
   3909 
   3910 RegExpNode* RegExpBackReference::ToNode(RegExpCompiler* compiler,
   3911                                         RegExpNode* on_success) {
   3912   return new BackReferenceNode(RegExpCapture::StartRegister(index()),
   3913                                RegExpCapture::EndRegister(index()),
   3914                                on_success);
   3915 }
   3916 
   3917 
   3918 RegExpNode* RegExpEmpty::ToNode(RegExpCompiler* compiler,
   3919                                 RegExpNode* on_success) {
   3920   return on_success;
   3921 }
   3922 
   3923 
   3924 RegExpNode* RegExpLookahead::ToNode(RegExpCompiler* compiler,
   3925                                     RegExpNode* on_success) {
   3926   int stack_pointer_register = compiler->AllocateRegister();
   3927   int position_register = compiler->AllocateRegister();
   3928 
   3929   const int registers_per_capture = 2;
   3930   const int register_of_first_capture = 2;
   3931   int register_count = capture_count_ * registers_per_capture;
   3932   int register_start =
   3933     register_of_first_capture + capture_from_ * registers_per_capture;
   3934 
   3935   RegExpNode* success;
   3936   if (is_positive()) {
   3937     RegExpNode* node = ActionNode::BeginSubmatch(
   3938         stack_pointer_register,
   3939         position_register,
   3940         body()->ToNode(
   3941             compiler,
   3942             ActionNode::PositiveSubmatchSuccess(stack_pointer_register,
   3943                                                 position_register,
   3944                                                 register_count,
   3945                                                 register_start,
   3946                                                 on_success)));
   3947     return node;
   3948   } else {
   3949     // We use a ChoiceNode for a negative lookahead because it has most of
   3950     // the characteristics we need.  It has the body of the lookahead as its
   3951     // first alternative and the expression after the lookahead of the second
   3952     // alternative.  If the first alternative succeeds then the
   3953     // NegativeSubmatchSuccess will unwind the stack including everything the
   3954     // choice node set up and backtrack.  If the first alternative fails then
   3955     // the second alternative is tried, which is exactly the desired result
   3956     // for a negative lookahead.  The NegativeLookaheadChoiceNode is a special
   3957     // ChoiceNode that knows to ignore the first exit when calculating quick
   3958     // checks.
   3959     GuardedAlternative body_alt(
   3960         body()->ToNode(
   3961             compiler,
   3962             success = new NegativeSubmatchSuccess(stack_pointer_register,
   3963                                                   position_register,
   3964                                                   register_count,
   3965                                                   register_start)));
   3966     ChoiceNode* choice_node =
   3967         new NegativeLookaheadChoiceNode(body_alt,
   3968                                         GuardedAlternative(on_success));
   3969     return ActionNode::BeginSubmatch(stack_pointer_register,
   3970                                      position_register,
   3971                                      choice_node);
   3972   }
   3973 }
   3974 
   3975 
   3976 RegExpNode* RegExpCapture::ToNode(RegExpCompiler* compiler,
   3977                                   RegExpNode* on_success) {
   3978   return ToNode(body(), index(), compiler, on_success);
   3979 }
   3980 
   3981 
   3982 RegExpNode* RegExpCapture::ToNode(RegExpTree* body,
   3983                                   int index,
   3984                                   RegExpCompiler* compiler,
   3985                                   RegExpNode* on_success) {
   3986   int start_reg = RegExpCapture::StartRegister(index);
   3987   int end_reg = RegExpCapture::EndRegister(index);
   3988   RegExpNode* store_end = ActionNode::StorePosition(end_reg, true, on_success);
   3989   RegExpNode* body_node = body->ToNode(compiler, store_end);
   3990   return ActionNode::StorePosition(start_reg, true, body_node);
   3991 }
   3992 
   3993 
   3994 RegExpNode* RegExpAlternative::ToNode(RegExpCompiler* compiler,
   3995                                       RegExpNode* on_success) {
   3996   ZoneList<RegExpTree*>* children = nodes();
   3997   RegExpNode* current = on_success;
   3998   for (int i = children->length() - 1; i >= 0; i--) {
   3999     current = children->at(i)->ToNode(compiler, current);
   4000   }
   4001   return current;
   4002 }
   4003 
   4004 
   4005 static void AddClass(const uc16* elmv,
   4006                      int elmc,
   4007                      ZoneList<CharacterRange>* ranges) {
   4008   for (int i = 0; i < elmc; i += 2) {
   4009     ASSERT(elmv[i] <= elmv[i + 1]);
   4010     ranges->Add(CharacterRange(elmv[i], elmv[i + 1]));
   4011   }
   4012 }
   4013 
   4014 
   4015 static void AddClassNegated(const uc16 *elmv,
   4016                             int elmc,
   4017                             ZoneList<CharacterRange>* ranges) {
   4018   ASSERT(elmv[0] != 0x0000);
   4019   ASSERT(elmv[elmc-1] != String::kMaxUC16CharCode);
   4020   uc16 last = 0x0000;
   4021   for (int i = 0; i < elmc; i += 2) {
   4022     ASSERT(last <= elmv[i] - 1);
   4023     ASSERT(elmv[i] <= elmv[i + 1]);
   4024     ranges->Add(CharacterRange(last, elmv[i] - 1));
   4025     last = elmv[i + 1] + 1;
   4026   }
   4027   ranges->Add(CharacterRange(last, String::kMaxUC16CharCode));
   4028 }
   4029 
   4030 
   4031 void CharacterRange::AddClassEscape(uc16 type,
   4032                                     ZoneList<CharacterRange>* ranges) {
   4033   switch (type) {
   4034     case 's':
   4035       AddClass(kSpaceRanges, kSpaceRangeCount, ranges);
   4036       break;
   4037     case 'S':
   4038       AddClassNegated(kSpaceRanges, kSpaceRangeCount, ranges);
   4039       break;
   4040     case 'w':
   4041       AddClass(kWordRanges, kWordRangeCount, ranges);
   4042       break;
   4043     case 'W':
   4044       AddClassNegated(kWordRanges, kWordRangeCount, ranges);
   4045       break;
   4046     case 'd':
   4047       AddClass(kDigitRanges, kDigitRangeCount, ranges);
   4048       break;
   4049     case 'D':
   4050       AddClassNegated(kDigitRanges, kDigitRangeCount, ranges);
   4051       break;
   4052     case '.':
   4053       AddClassNegated(kLineTerminatorRanges,
   4054                       kLineTerminatorRangeCount,
   4055                       ranges);
   4056       break;
   4057     // This is not a character range as defined by the spec but a
   4058     // convenient shorthand for a character class that matches any
   4059     // character.
   4060     case '*':
   4061       ranges->Add(CharacterRange::Everything());
   4062       break;
   4063     // This is the set of characters matched by the $ and ^ symbols
   4064     // in multiline mode.
   4065     case 'n':
   4066       AddClass(kLineTerminatorRanges,
   4067                kLineTerminatorRangeCount,
   4068                ranges);
   4069       break;
   4070     default:
   4071       UNREACHABLE();
   4072   }
   4073 }
   4074 
   4075 
   4076 Vector<const uc16> CharacterRange::GetWordBounds() {
   4077   return Vector<const uc16>(kWordRanges, kWordRangeCount);
   4078 }
   4079 
   4080 
   4081 class CharacterRangeSplitter {
   4082  public:
   4083   CharacterRangeSplitter(ZoneList<CharacterRange>** included,
   4084                           ZoneList<CharacterRange>** excluded)
   4085       : included_(included),
   4086         excluded_(excluded) { }
   4087   void Call(uc16 from, DispatchTable::Entry entry);
   4088 
   4089   static const int kInBase = 0;
   4090   static const int kInOverlay = 1;
   4091 
   4092  private:
   4093   ZoneList<CharacterRange>** included_;
   4094   ZoneList<CharacterRange>** excluded_;
   4095 };
   4096 
   4097 
   4098 void CharacterRangeSplitter::Call(uc16 from, DispatchTable::Entry entry) {
   4099   if (!entry.out_set()->Get(kInBase)) return;
   4100   ZoneList<CharacterRange>** target = entry.out_set()->Get(kInOverlay)
   4101     ? included_
   4102     : excluded_;
   4103   if (*target == NULL) *target = new ZoneList<CharacterRange>(2);
   4104   (*target)->Add(CharacterRange(entry.from(), entry.to()));
   4105 }
   4106 
   4107 
   4108 void CharacterRange::Split(ZoneList<CharacterRange>* base,
   4109                            Vector<const uc16> overlay,
   4110                            ZoneList<CharacterRange>** included,
   4111                            ZoneList<CharacterRange>** excluded) {
   4112   ASSERT_EQ(NULL, *included);
   4113   ASSERT_EQ(NULL, *excluded);
   4114   DispatchTable table;
   4115   for (int i = 0; i < base->length(); i++)
   4116     table.AddRange(base->at(i), CharacterRangeSplitter::kInBase);
   4117   for (int i = 0; i < overlay.length(); i += 2) {
   4118     table.AddRange(CharacterRange(overlay[i], overlay[i+1]),
   4119                    CharacterRangeSplitter::kInOverlay);
   4120   }
   4121   CharacterRangeSplitter callback(included, excluded);
   4122   table.ForEach(&callback);
   4123 }
   4124 
   4125 
   4126 static void AddUncanonicals(Isolate* isolate,
   4127                             ZoneList<CharacterRange>* ranges,
   4128                             int bottom,
   4129                             int top);
   4130 
   4131 
   4132 void CharacterRange::AddCaseEquivalents(ZoneList<CharacterRange>* ranges,
   4133                                         bool is_ascii) {
   4134   Isolate* isolate = Isolate::Current();
   4135   uc16 bottom = from();
   4136   uc16 top = to();
   4137   if (is_ascii) {
   4138     if (bottom > String::kMaxAsciiCharCode) return;
   4139     if (top > String::kMaxAsciiCharCode) top = String::kMaxAsciiCharCode;
   4140   }
   4141   unibrow::uchar chars[unibrow::Ecma262UnCanonicalize::kMaxWidth];
   4142   if (top == bottom) {
   4143     // If this is a singleton we just expand the one character.
   4144     int length = isolate->jsregexp_uncanonicalize()->get(bottom, '\0', chars);
   4145     for (int i = 0; i < length; i++) {
   4146       uc32 chr = chars[i];
   4147       if (chr != bottom) {
   4148         ranges->Add(CharacterRange::Singleton(chars[i]));
   4149       }
   4150     }
   4151   } else {
   4152     // If this is a range we expand the characters block by block,
   4153     // expanding contiguous subranges (blocks) one at a time.
   4154     // The approach is as follows.  For a given start character we
   4155     // look up the remainder of the block that contains it (represented
   4156     // by the end point), for instance we find 'z' if the character
   4157     // is 'c'.  A block is characterized by the property
   4158     // that all characters uncanonicalize in the same way, except that
   4159     // each entry in the result is incremented by the distance from the first
   4160     // element.  So a-z is a block because 'a' uncanonicalizes to ['a', 'A'] and
   4161     // the k'th letter uncanonicalizes to ['a' + k, 'A' + k].
   4162     // Once we've found the end point we look up its uncanonicalization
   4163     // and produce a range for each element.  For instance for [c-f]
   4164     // we look up ['z', 'Z'] and produce [c-f] and [C-F].  We then only
   4165     // add a range if it is not already contained in the input, so [c-f]
   4166     // will be skipped but [C-F] will be added.  If this range is not
   4167     // completely contained in a block we do this for all the blocks
   4168     // covered by the range (handling characters that is not in a block
   4169     // as a "singleton block").
   4170     unibrow::uchar range[unibrow::Ecma262UnCanonicalize::kMaxWidth];
   4171     int pos = bottom;
   4172     while (pos < top) {
   4173       int length = isolate->jsregexp_canonrange()->get(pos, '\0', range);
   4174       uc16 block_end;
   4175       if (length == 0) {
   4176         block_end = pos;
   4177       } else {
   4178         ASSERT_EQ(1, length);
   4179         block_end = range[0];
   4180       }
   4181       int end = (block_end > top) ? top : block_end;
   4182       length = isolate->jsregexp_uncanonicalize()->get(block_end, '\0', range);
   4183       for (int i = 0; i < length; i++) {
   4184         uc32 c = range[i];
   4185         uc16 range_from = c - (block_end - pos);
   4186         uc16 range_to = c - (block_end - end);
   4187         if (!(bottom <= range_from && range_to <= top)) {
   4188           ranges->Add(CharacterRange(range_from, range_to));
   4189         }
   4190       }
   4191       pos = end + 1;
   4192     }
   4193   }
   4194 }
   4195 
   4196 
   4197 bool CharacterRange::IsCanonical(ZoneList<CharacterRange>* ranges) {
   4198   ASSERT_NOT_NULL(ranges);
   4199   int n = ranges->length();
   4200   if (n <= 1) return true;
   4201   int max = ranges->at(0).to();
   4202   for (int i = 1; i < n; i++) {
   4203     CharacterRange next_range = ranges->at(i);
   4204     if (next_range.from() <= max + 1) return false;
   4205     max = next_range.to();
   4206   }
   4207   return true;
   4208 }
   4209 
   4210 SetRelation CharacterRange::WordCharacterRelation(
   4211     ZoneList<CharacterRange>* range) {
   4212   ASSERT(IsCanonical(range));
   4213   int i = 0;  // Word character range index.
   4214   int j = 0;  // Argument range index.
   4215   ASSERT_NE(0, kWordRangeCount);
   4216   SetRelation result;
   4217   if (range->length() == 0) {
   4218     result.SetElementsInSecondSet();
   4219     return result;
   4220   }
   4221   CharacterRange argument_range = range->at(0);
   4222   CharacterRange word_range = CharacterRange(kWordRanges[0], kWordRanges[1]);
   4223   while (i < kWordRangeCount && j < range->length()) {
   4224     // Check the two ranges for the five cases:
   4225     // - no overlap.
   4226     // - partial overlap (there are elements in both ranges that isn't
   4227     //   in the other, and there are also elements that are in both).
   4228     // - argument range entirely inside word range.
   4229     // - word range entirely inside argument range.
   4230     // - ranges are completely equal.
   4231 
   4232     // First check for no overlap. The earlier range is not in the other set.
   4233     if (argument_range.from() > word_range.to()) {
   4234       // Ranges are disjoint. The earlier word range contains elements that
   4235       // cannot be in the argument set.
   4236       result.SetElementsInSecondSet();
   4237     } else if (word_range.from() > argument_range.to()) {
   4238       // Ranges are disjoint. The earlier argument range contains elements that
   4239       // cannot be in the word set.
   4240       result.SetElementsInFirstSet();
   4241     } else if (word_range.from() <= argument_range.from() &&
   4242                word_range.to() >= argument_range.from()) {
   4243       result.SetElementsInBothSets();
   4244       // argument range completely inside word range.
   4245       if (word_range.from() < argument_range.from() ||
   4246           word_range.to() > argument_range.from()) {
   4247         result.SetElementsInSecondSet();
   4248       }
   4249     } else if (word_range.from() >= argument_range.from() &&
   4250                word_range.to() <= argument_range.from()) {
   4251       result.SetElementsInBothSets();
   4252       result.SetElementsInFirstSet();
   4253     } else {
   4254       // There is overlap, and neither is a subrange of the other
   4255       result.SetElementsInFirstSet();
   4256       result.SetElementsInSecondSet();
   4257       result.SetElementsInBothSets();
   4258     }
   4259     if (result.NonTrivialIntersection()) {
   4260       // The result is as (im)precise as we can possibly make it.
   4261       return result;
   4262     }
   4263     // Progress the range(s) with minimal to-character.
   4264     uc16 word_to = word_range.to();
   4265     uc16 argument_to = argument_range.to();
   4266     if (argument_to <= word_to) {
   4267       j++;
   4268       if (j < range->length()) {
   4269         argument_range = range->at(j);
   4270       }
   4271     }
   4272     if (word_to <= argument_to) {
   4273       i += 2;
   4274       if (i < kWordRangeCount) {
   4275         word_range = CharacterRange(kWordRanges[i], kWordRanges[i + 1]);
   4276       }
   4277     }
   4278   }
   4279   // Check if anything wasn't compared in the loop.
   4280   if (i < kWordRangeCount) {
   4281     // word range contains something not in argument range.
   4282     result.SetElementsInSecondSet();
   4283   } else if (j < range->length()) {
   4284     // Argument range contains something not in word range.
   4285     result.SetElementsInFirstSet();
   4286   }
   4287 
   4288   return result;
   4289 }
   4290 
   4291 
   4292 static void AddUncanonicals(Isolate* isolate,
   4293                             ZoneList<CharacterRange>* ranges,
   4294                             int bottom,
   4295                             int top) {
   4296   unibrow::uchar chars[unibrow::Ecma262UnCanonicalize::kMaxWidth];
   4297   // Zones with no case mappings.  There is a DEBUG-mode loop to assert that
   4298   // this table is correct.
   4299   // 0x0600 - 0x0fff
   4300   // 0x1100 - 0x1cff
   4301   // 0x2000 - 0x20ff
   4302   // 0x2200 - 0x23ff
   4303   // 0x2500 - 0x2bff
   4304   // 0x2e00 - 0xa5ff
   4305   // 0xa800 - 0xfaff
   4306   // 0xfc00 - 0xfeff
   4307   const int boundary_count = 18;
   4308   int boundaries[] = {
   4309       0x600, 0x1000, 0x1100, 0x1d00, 0x2000, 0x2100, 0x2200, 0x2400, 0x2500,
   4310       0x2c00, 0x2e00, 0xa600, 0xa800, 0xfb00, 0xfc00, 0xff00};
   4311 
   4312   // Special ASCII rule from spec can save us some work here.
   4313   if (bottom == 0x80 && top == 0xffff) return;
   4314 
   4315   if (top <= boundaries[0]) {
   4316     CharacterRange range(bottom, top);
   4317     range.AddCaseEquivalents(ranges, false);
   4318     return;
   4319   }
   4320 
   4321   // Split up very large ranges.  This helps remove ranges where there are no
   4322   // case mappings.
   4323   for (int i = 0; i < boundary_count; i++) {
   4324     if (bottom < boundaries[i] && top >= boundaries[i]) {
   4325       AddUncanonicals(isolate, ranges, bottom, boundaries[i] - 1);
   4326       AddUncanonicals(isolate, ranges, boundaries[i], top);
   4327       return;
   4328     }
   4329   }
   4330 
   4331   // If we are completely in a zone with no case mappings then we are done.
   4332   for (int i = 0; i < boundary_count; i += 2) {
   4333     if (bottom >= boundaries[i] && top < boundaries[i + 1]) {
   4334 #ifdef DEBUG
   4335       for (int j = bottom; j <= top; j++) {
   4336         unsigned current_char = j;
   4337         int length = isolate->jsregexp_uncanonicalize()->get(current_char,
   4338                                                              '\0', chars);
   4339         for (int k = 0; k < length; k++) {
   4340           ASSERT(chars[k] == current_char);
   4341         }
   4342       }
   4343 #endif
   4344       return;
   4345     }
   4346   }
   4347 
   4348   // Step through the range finding equivalent characters.
   4349   ZoneList<unibrow::uchar> *characters = new ZoneList<unibrow::uchar>(100);
   4350   for (int i = bottom; i <= top; i++) {
   4351     int length = isolate->jsregexp_uncanonicalize()->get(i, '\0', chars);
   4352     for (int j = 0; j < length; j++) {
   4353       uc32 chr = chars[j];
   4354       if (chr != i && (chr < bottom || chr > top)) {
   4355         characters->Add(chr);
   4356       }
   4357     }
   4358   }
   4359 
   4360   // Step through the equivalent characters finding simple ranges and
   4361   // adding ranges to the character class.
   4362   if (characters->length() > 0) {
   4363     int new_from = characters->at(0);
   4364     int new_to = new_from;
   4365     for (int i = 1; i < characters->length(); i++) {
   4366       int chr = characters->at(i);
   4367       if (chr == new_to + 1) {
   4368         new_to++;
   4369       } else {
   4370         if (new_to == new_from) {
   4371           ranges->Add(CharacterRange::Singleton(new_from));
   4372         } else {
   4373           ranges->Add(CharacterRange(new_from, new_to));
   4374         }
   4375         new_from = new_to = chr;
   4376       }
   4377     }
   4378     if (new_to == new_from) {
   4379       ranges->Add(CharacterRange::Singleton(new_from));
   4380     } else {
   4381       ranges->Add(CharacterRange(new_from, new_to));
   4382     }
   4383   }
   4384 }
   4385 
   4386 
   4387 ZoneList<CharacterRange>* CharacterSet::ranges() {
   4388   if (ranges_ == NULL) {
   4389     ranges_ = new ZoneList<CharacterRange>(2);
   4390     CharacterRange::AddClassEscape(standard_set_type_, ranges_);
   4391   }
   4392   return ranges_;
   4393 }
   4394 
   4395 
   4396 // Move a number of elements in a zonelist to another position
   4397 // in the same list. Handles overlapping source and target areas.
   4398 static void MoveRanges(ZoneList<CharacterRange>* list,
   4399                        int from,
   4400                        int to,
   4401                        int count) {
   4402   // Ranges are potentially overlapping.
   4403   if (from < to) {
   4404     for (int i = count - 1; i >= 0; i--) {
   4405       list->at(to + i) = list->at(from + i);
   4406     }
   4407   } else {
   4408     for (int i = 0; i < count; i++) {
   4409       list->at(to + i) = list->at(from + i);
   4410     }
   4411   }
   4412 }
   4413 
   4414 
   4415 static int InsertRangeInCanonicalList(ZoneList<CharacterRange>* list,
   4416                                       int count,
   4417                                       CharacterRange insert) {
   4418   // Inserts a range into list[0..count[, which must be sorted
   4419   // by from value and non-overlapping and non-adjacent, using at most
   4420   // list[0..count] for the result. Returns the number of resulting
   4421   // canonicalized ranges. Inserting a range may collapse existing ranges into
   4422   // fewer ranges, so the return value can be anything in the range 1..count+1.
   4423   uc16 from = insert.from();
   4424   uc16 to = insert.to();
   4425   int start_pos = 0;
   4426   int end_pos = count;
   4427   for (int i = count - 1; i >= 0; i--) {
   4428     CharacterRange current = list->at(i);
   4429     if (current.from() > to + 1) {
   4430       end_pos = i;
   4431     } else if (current.to() + 1 < from) {
   4432       start_pos = i + 1;
   4433       break;
   4434     }
   4435   }
   4436 
   4437   // Inserted range overlaps, or is adjacent to, ranges at positions
   4438   // [start_pos..end_pos[. Ranges before start_pos or at or after end_pos are
   4439   // not affected by the insertion.
   4440   // If start_pos == end_pos, the range must be inserted before start_pos.
   4441   // if start_pos < end_pos, the entire range from start_pos to end_pos
   4442   // must be merged with the insert range.
   4443 
   4444   if (start_pos == end_pos) {
   4445     // Insert between existing ranges at position start_pos.
   4446     if (start_pos < count) {
   4447       MoveRanges(list, start_pos, start_pos + 1, count - start_pos);
   4448     }
   4449     list->at(start_pos) = insert;
   4450     return count + 1;
   4451   }
   4452   if (start_pos + 1 == end_pos) {
   4453     // Replace single existing range at position start_pos.
   4454     CharacterRange to_replace = list->at(start_pos);
   4455     int new_from = Min(to_replace.from(), from);
   4456     int new_to = Max(to_replace.to(), to);
   4457     list->at(start_pos) = CharacterRange(new_from, new_to);
   4458     return count;
   4459   }
   4460   // Replace a number of existing ranges from start_pos to end_pos - 1.
   4461   // Move the remaining ranges down.
   4462 
   4463   int new_from = Min(list->at(start_pos).from(), from);
   4464   int new_to = Max(list->at(end_pos - 1).to(), to);
   4465   if (end_pos < count) {
   4466     MoveRanges(list, end_pos, start_pos + 1, count - end_pos);
   4467   }
   4468   list->at(start_pos) = CharacterRange(new_from, new_to);
   4469   return count - (end_pos - start_pos) + 1;
   4470 }
   4471 
   4472 
   4473 void CharacterSet::Canonicalize() {
   4474   // Special/default classes are always considered canonical. The result
   4475   // of calling ranges() will be sorted.
   4476   if (ranges_ == NULL) return;
   4477   CharacterRange::Canonicalize(ranges_);
   4478 }
   4479 
   4480 
   4481 void CharacterRange::Canonicalize(ZoneList<CharacterRange>* character_ranges) {
   4482   if (character_ranges->length() <= 1) return;
   4483   // Check whether ranges are already canonical (increasing, non-overlapping,
   4484   // non-adjacent).
   4485   int n = character_ranges->length();
   4486   int max = character_ranges->at(0).to();
   4487   int i = 1;
   4488   while (i < n) {
   4489     CharacterRange current = character_ranges->at(i);
   4490     if (current.from() <= max + 1) {
   4491       break;
   4492     }
   4493     max = current.to();
   4494     i++;
   4495   }
   4496   // Canonical until the i'th range. If that's all of them, we are done.
   4497   if (i == n) return;
   4498 
   4499   // The ranges at index i and forward are not canonicalized. Make them so by
   4500   // doing the equivalent of insertion sort (inserting each into the previous
   4501   // list, in order).
   4502   // Notice that inserting a range can reduce the number of ranges in the
   4503   // result due to combining of adjacent and overlapping ranges.
   4504   int read = i;  // Range to insert.
   4505   int num_canonical = i;  // Length of canonicalized part of list.
   4506   do {
   4507     num_canonical = InsertRangeInCanonicalList(character_ranges,
   4508                                                num_canonical,
   4509                                                character_ranges->at(read));
   4510     read++;
   4511   } while (read < n);
   4512   character_ranges->Rewind(num_canonical);
   4513 
   4514   ASSERT(CharacterRange::IsCanonical(character_ranges));
   4515 }
   4516 
   4517 
   4518 // Utility function for CharacterRange::Merge. Adds a range at the end of
   4519 // a canonicalized range list, if necessary merging the range with the last
   4520 // range of the list.
   4521 static void AddRangeToSet(ZoneList<CharacterRange>* set, CharacterRange range) {
   4522   if (set == NULL) return;
   4523   ASSERT(set->length() == 0 || set->at(set->length() - 1).to() < range.from());
   4524   int n = set->length();
   4525   if (n > 0) {
   4526     CharacterRange lastRange = set->at(n - 1);
   4527     if (lastRange.to() == range.from() - 1) {
   4528       set->at(n - 1) = CharacterRange(lastRange.from(), range.to());
   4529       return;
   4530     }
   4531   }
   4532   set->Add(range);
   4533 }
   4534 
   4535 
   4536 static void AddRangeToSelectedSet(int selector,
   4537                                   ZoneList<CharacterRange>* first_set,
   4538                                   ZoneList<CharacterRange>* second_set,
   4539                                   ZoneList<CharacterRange>* intersection_set,
   4540                                   CharacterRange range) {
   4541   switch (selector) {
   4542     case kInsideFirst:
   4543       AddRangeToSet(first_set, range);
   4544       break;
   4545     case kInsideSecond:
   4546       AddRangeToSet(second_set, range);
   4547       break;
   4548     case kInsideBoth:
   4549       AddRangeToSet(intersection_set, range);
   4550       break;
   4551   }
   4552 }
   4553 
   4554 
   4555 
   4556 void CharacterRange::Merge(ZoneList<CharacterRange>* first_set,
   4557                            ZoneList<CharacterRange>* second_set,
   4558                            ZoneList<CharacterRange>* first_set_only_out,
   4559                            ZoneList<CharacterRange>* second_set_only_out,
   4560                            ZoneList<CharacterRange>* both_sets_out) {
   4561   // Inputs are canonicalized.
   4562   ASSERT(CharacterRange::IsCanonical(first_set));
   4563   ASSERT(CharacterRange::IsCanonical(second_set));
   4564   // Outputs are empty, if applicable.
   4565   ASSERT(first_set_only_out == NULL || first_set_only_out->length() == 0);
   4566   ASSERT(second_set_only_out == NULL || second_set_only_out->length() == 0);
   4567   ASSERT(both_sets_out == NULL || both_sets_out->length() == 0);
   4568 
   4569   // Merge sets by iterating through the lists in order of lowest "from" value,
   4570   // and putting intervals into one of three sets.
   4571 
   4572   if (first_set->length() == 0) {
   4573     second_set_only_out->AddAll(*second_set);
   4574     return;
   4575   }
   4576   if (second_set->length() == 0) {
   4577     first_set_only_out->AddAll(*first_set);
   4578     return;
   4579   }
   4580   // Indices into input lists.
   4581   int i1 = 0;
   4582   int i2 = 0;
   4583   // Cache length of input lists.
   4584   int n1 = first_set->length();
   4585   int n2 = second_set->length();
   4586   // Current range. May be invalid if state is kInsideNone.
   4587   int from = 0;
   4588   int to = -1;
   4589   // Where current range comes from.
   4590   int state = kInsideNone;
   4591 
   4592   while (i1 < n1 || i2 < n2) {
   4593     CharacterRange next_range;
   4594     int range_source;
   4595     if (i2 == n2 ||
   4596         (i1 < n1 && first_set->at(i1).from() < second_set->at(i2).from())) {
   4597       // Next smallest element is in first set.
   4598       next_range = first_set->at(i1++);
   4599       range_source = kInsideFirst;
   4600     } else {
   4601       // Next smallest element is in second set.
   4602       next_range = second_set->at(i2++);
   4603       range_source = kInsideSecond;
   4604     }
   4605     if (to < next_range.from()) {
   4606       // Ranges disjoint: |current|  |next|
   4607       AddRangeToSelectedSet(state,
   4608                             first_set_only_out,
   4609                             second_set_only_out,
   4610                             both_sets_out,
   4611                             CharacterRange(from, to));
   4612       from = next_range.from();
   4613       to = next_range.to();
   4614       state = range_source;
   4615     } else {
   4616       if (from < next_range.from()) {
   4617         AddRangeToSelectedSet(state,
   4618                               first_set_only_out,
   4619                               second_set_only_out,
   4620                               both_sets_out,
   4621                               CharacterRange(from, next_range.from()-1));
   4622       }
   4623       if (to < next_range.to()) {
   4624         // Ranges overlap:  |current|
   4625         //                       |next|
   4626         AddRangeToSelectedSet(state | range_source,
   4627                               first_set_only_out,
   4628                               second_set_only_out,
   4629                               both_sets_out,
   4630                               CharacterRange(next_range.from(), to));
   4631         from = to + 1;
   4632         to = next_range.to();
   4633         state = range_source;
   4634       } else {
   4635         // Range included:    |current| , possibly ending at same character.
   4636         //                      |next|
   4637         AddRangeToSelectedSet(
   4638             state | range_source,
   4639             first_set_only_out,
   4640             second_set_only_out,
   4641             both_sets_out,
   4642             CharacterRange(next_range.from(), next_range.to()));
   4643         from = next_range.to() + 1;
   4644         // If ranges end at same character, both ranges are consumed completely.
   4645         if (next_range.to() == to) state = kInsideNone;
   4646       }
   4647     }
   4648   }
   4649   AddRangeToSelectedSet(state,
   4650                         first_set_only_out,
   4651                         second_set_only_out,
   4652                         both_sets_out,
   4653                         CharacterRange(from, to));
   4654 }
   4655 
   4656 
   4657 void CharacterRange::Negate(ZoneList<CharacterRange>* ranges,
   4658                             ZoneList<CharacterRange>* negated_ranges) {
   4659   ASSERT(CharacterRange::IsCanonical(ranges));
   4660   ASSERT_EQ(0, negated_ranges->length());
   4661   int range_count = ranges->length();
   4662   uc16 from = 0;
   4663   int i = 0;
   4664   if (range_count > 0 && ranges->at(0).from() == 0) {
   4665     from = ranges->at(0).to();
   4666     i = 1;
   4667   }
   4668   while (i < range_count) {
   4669     CharacterRange range = ranges->at(i);
   4670     negated_ranges->Add(CharacterRange(from + 1, range.from() - 1));
   4671     from = range.to();
   4672     i++;
   4673   }
   4674   if (from < String::kMaxUC16CharCode) {
   4675     negated_ranges->Add(CharacterRange(from + 1, String::kMaxUC16CharCode));
   4676   }
   4677 }
   4678 
   4679 
   4680 
   4681 // -------------------------------------------------------------------
   4682 // Interest propagation
   4683 
   4684 
   4685 RegExpNode* RegExpNode::TryGetSibling(NodeInfo* info) {
   4686   for (int i = 0; i < siblings_.length(); i++) {
   4687     RegExpNode* sibling = siblings_.Get(i);
   4688     if (sibling->info()->Matches(info))
   4689       return sibling;
   4690   }
   4691   return NULL;
   4692 }
   4693 
   4694 
   4695 RegExpNode* RegExpNode::EnsureSibling(NodeInfo* info, bool* cloned) {
   4696   ASSERT_EQ(false, *cloned);
   4697   siblings_.Ensure(this);
   4698   RegExpNode* result = TryGetSibling(info);
   4699   if (result != NULL) return result;
   4700   result = this->Clone();
   4701   NodeInfo* new_info = result->info();
   4702   new_info->ResetCompilationState();
   4703   new_info->AddFromPreceding(info);
   4704   AddSibling(result);
   4705   *cloned = true;
   4706   return result;
   4707 }
   4708 
   4709 
   4710 template <class C>
   4711 static RegExpNode* PropagateToEndpoint(C* node, NodeInfo* info) {
   4712   NodeInfo full_info(*node->info());
   4713   full_info.AddFromPreceding(info);
   4714   bool cloned = false;
   4715   return RegExpNode::EnsureSibling(node, &full_info, &cloned);
   4716 }
   4717 
   4718 
   4719 // -------------------------------------------------------------------
   4720 // Splay tree
   4721 
   4722 
   4723 OutSet* OutSet::Extend(unsigned value) {
   4724   if (Get(value))
   4725     return this;
   4726   if (successors() != NULL) {
   4727     for (int i = 0; i < successors()->length(); i++) {
   4728       OutSet* successor = successors()->at(i);
   4729       if (successor->Get(value))
   4730         return successor;
   4731     }
   4732   } else {
   4733     successors_ = new ZoneList<OutSet*>(2);
   4734   }
   4735   OutSet* result = new OutSet(first_, remaining_);
   4736   result->Set(value);
   4737   successors()->Add(result);
   4738   return result;
   4739 }
   4740 
   4741 
   4742 void OutSet::Set(unsigned value) {
   4743   if (value < kFirstLimit) {
   4744     first_ |= (1 << value);
   4745   } else {
   4746     if (remaining_ == NULL)
   4747       remaining_ = new ZoneList<unsigned>(1);
   4748     if (remaining_->is_empty() || !remaining_->Contains(value))
   4749       remaining_->Add(value);
   4750   }
   4751 }
   4752 
   4753 
   4754 bool OutSet::Get(unsigned value) {
   4755   if (value < kFirstLimit) {
   4756     return (first_ & (1 << value)) != 0;
   4757   } else if (remaining_ == NULL) {
   4758     return false;
   4759   } else {
   4760     return remaining_->Contains(value);
   4761   }
   4762 }
   4763 
   4764 
   4765 const uc16 DispatchTable::Config::kNoKey = unibrow::Utf8::kBadChar;
   4766 const DispatchTable::Entry DispatchTable::Config::kNoValue;
   4767 
   4768 
   4769 void DispatchTable::AddRange(CharacterRange full_range, int value) {
   4770   CharacterRange current = full_range;
   4771   if (tree()->is_empty()) {
   4772     // If this is the first range we just insert into the table.
   4773     ZoneSplayTree<Config>::Locator loc;
   4774     ASSERT_RESULT(tree()->Insert(current.from(), &loc));
   4775     loc.set_value(Entry(current.from(), current.to(), empty()->Extend(value)));
   4776     return;
   4777   }
   4778   // First see if there is a range to the left of this one that
   4779   // overlaps.
   4780   ZoneSplayTree<Config>::Locator loc;
   4781   if (tree()->FindGreatestLessThan(current.from(), &loc)) {
   4782     Entry* entry = &loc.value();
   4783     // If we've found a range that overlaps with this one, and it
   4784     // starts strictly to the left of this one, we have to fix it
   4785     // because the following code only handles ranges that start on
   4786     // or after the start point of the range we're adding.
   4787     if (entry->from() < current.from() && entry->to() >= current.from()) {
   4788       // Snap the overlapping range in half around the start point of
   4789       // the range we're adding.
   4790       CharacterRange left(entry->from(), current.from() - 1);
   4791       CharacterRange right(current.from(), entry->to());
   4792       // The left part of the overlapping range doesn't overlap.
   4793       // Truncate the whole entry to be just the left part.
   4794       entry->set_to(left.to());
   4795       // The right part is the one that overlaps.  We add this part
   4796       // to the map and let the next step deal with merging it with
   4797       // the range we're adding.
   4798       ZoneSplayTree<Config>::Locator loc;
   4799       ASSERT_RESULT(tree()->Insert(right.from(), &loc));
   4800       loc.set_value(Entry(right.from(),
   4801                           right.to(),
   4802                           entry->out_set()));
   4803     }
   4804   }
   4805   while (current.is_valid()) {
   4806     if (tree()->FindLeastGreaterThan(current.from(), &loc) &&
   4807         (loc.value().from() <= current.to()) &&
   4808         (loc.value().to() >= current.from())) {
   4809       Entry* entry = &loc.value();
   4810       // We have overlap.  If there is space between the start point of
   4811       // the range we're adding and where the overlapping range starts
   4812       // then we have to add a range covering just that space.
   4813       if (current.from() < entry->from()) {
   4814         ZoneSplayTree<Config>::Locator ins;
   4815         ASSERT_RESULT(tree()->Insert(current.from(), &ins));
   4816         ins.set_value(Entry(current.from(),
   4817                             entry->from() - 1,
   4818                             empty()->Extend(value)));
   4819         current.set_from(entry->from());
   4820       }
   4821       ASSERT_EQ(current.from(), entry->from());
   4822       // If the overlapping range extends beyond the one we want to add
   4823       // we have to snap the right part off and add it separately.
   4824       if (entry->to() > current.to()) {
   4825         ZoneSplayTree<Config>::Locator ins;
   4826         ASSERT_RESULT(tree()->Insert(current.to() + 1, &ins));
   4827         ins.set_value(Entry(current.to() + 1,
   4828                             entry->to(),
   4829                             entry->out_set()));
   4830         entry->set_to(current.to());
   4831       }
   4832       ASSERT(entry->to() <= current.to());
   4833       // The overlapping range is now completely contained by the range
   4834       // we're adding so we can just update it and move the start point
   4835       // of the range we're adding just past it.
   4836       entry->AddValue(value);
   4837       // Bail out if the last interval ended at 0xFFFF since otherwise
   4838       // adding 1 will wrap around to 0.
   4839       if (entry->to() == String::kMaxUC16CharCode)
   4840         break;
   4841       ASSERT(entry->to() + 1 > current.from());
   4842       current.set_from(entry->to() + 1);
   4843     } else {
   4844       // There is no overlap so we can just add the range
   4845       ZoneSplayTree<Config>::Locator ins;
   4846       ASSERT_RESULT(tree()->Insert(current.from(), &ins));
   4847       ins.set_value(Entry(current.from(),
   4848                           current.to(),
   4849                           empty()->Extend(value)));
   4850       break;
   4851     }
   4852   }
   4853 }
   4854 
   4855 
   4856 OutSet* DispatchTable::Get(uc16 value) {
   4857   ZoneSplayTree<Config>::Locator loc;
   4858   if (!tree()->FindGreatestLessThan(value, &loc))
   4859     return empty();
   4860   Entry* entry = &loc.value();
   4861   if (value <= entry->to())
   4862     return entry->out_set();
   4863   else
   4864     return empty();
   4865 }
   4866 
   4867 
   4868 // -------------------------------------------------------------------
   4869 // Analysis
   4870 
   4871 
   4872 void Analysis::EnsureAnalyzed(RegExpNode* that) {
   4873   StackLimitCheck check(Isolate::Current());
   4874   if (check.HasOverflowed()) {
   4875     fail("Stack overflow");
   4876     return;
   4877   }
   4878   if (that->info()->been_analyzed || that->info()->being_analyzed)
   4879     return;
   4880   that->info()->being_analyzed = true;
   4881   that->Accept(this);
   4882   that->info()->being_analyzed = false;
   4883   that->info()->been_analyzed = true;
   4884 }
   4885 
   4886 
   4887 void Analysis::VisitEnd(EndNode* that) {
   4888   // nothing to do
   4889 }
   4890 
   4891 
   4892 void TextNode::CalculateOffsets() {
   4893   int element_count = elements()->length();
   4894   // Set up the offsets of the elements relative to the start.  This is a fixed
   4895   // quantity since a TextNode can only contain fixed-width things.
   4896   int cp_offset = 0;
   4897   for (int i = 0; i < element_count; i++) {
   4898     TextElement& elm = elements()->at(i);
   4899     elm.cp_offset = cp_offset;
   4900     if (elm.type == TextElement::ATOM) {
   4901       cp_offset += elm.data.u_atom->data().length();
   4902     } else {
   4903       cp_offset++;
   4904       Vector<const uc16> quarks = elm.data.u_atom->data();
   4905     }
   4906   }
   4907 }
   4908 
   4909 
   4910 void Analysis::VisitText(TextNode* that) {
   4911   if (ignore_case_) {
   4912     that->MakeCaseIndependent(is_ascii_);
   4913   }
   4914   EnsureAnalyzed(that->on_success());
   4915   if (!has_failed()) {
   4916     that->CalculateOffsets();
   4917   }
   4918 }
   4919 
   4920 
   4921 void Analysis::VisitAction(ActionNode* that) {
   4922   RegExpNode* target = that->on_success();
   4923   EnsureAnalyzed(target);
   4924   if (!has_failed()) {
   4925     // If the next node is interested in what it follows then this node
   4926     // has to be interested too so it can pass the information on.
   4927     that->info()->AddFromFollowing(target->info());
   4928   }
   4929 }
   4930 
   4931 
   4932 void Analysis::VisitChoice(ChoiceNode* that) {
   4933   NodeInfo* info = that->info();
   4934   for (int i = 0; i < that->alternatives()->length(); i++) {
   4935     RegExpNode* node = that->alternatives()->at(i).node();
   4936     EnsureAnalyzed(node);
   4937     if (has_failed()) return;
   4938     // Anything the following nodes need to know has to be known by
   4939     // this node also, so it can pass it on.
   4940     info->AddFromFollowing(node->info());
   4941   }
   4942 }
   4943 
   4944 
   4945 void Analysis::VisitLoopChoice(LoopChoiceNode* that) {
   4946   NodeInfo* info = that->info();
   4947   for (int i = 0; i < that->alternatives()->length(); i++) {
   4948     RegExpNode* node = that->alternatives()->at(i).node();
   4949     if (node != that->loop_node()) {
   4950       EnsureAnalyzed(node);
   4951       if (has_failed()) return;
   4952       info->AddFromFollowing(node->info());
   4953     }
   4954   }
   4955   // Check the loop last since it may need the value of this node
   4956   // to get a correct result.
   4957   EnsureAnalyzed(that->loop_node());
   4958   if (!has_failed()) {
   4959     info->AddFromFollowing(that->loop_node()->info());
   4960   }
   4961 }
   4962 
   4963 
   4964 void Analysis::VisitBackReference(BackReferenceNode* that) {
   4965   EnsureAnalyzed(that->on_success());
   4966 }
   4967 
   4968 
   4969 void Analysis::VisitAssertion(AssertionNode* that) {
   4970   EnsureAnalyzed(that->on_success());
   4971   AssertionNode::AssertionNodeType type = that->type();
   4972   if (type == AssertionNode::AT_BOUNDARY ||
   4973       type == AssertionNode::AT_NON_BOUNDARY) {
   4974     // Check if the following character is known to be a word character
   4975     // or known to not be a word character.
   4976     ZoneList<CharacterRange>* following_chars = that->FirstCharacterSet();
   4977 
   4978     CharacterRange::Canonicalize(following_chars);
   4979 
   4980     SetRelation word_relation =
   4981         CharacterRange::WordCharacterRelation(following_chars);
   4982     if (word_relation.Disjoint()) {
   4983       // Includes the case where following_chars is empty (e.g., end-of-input).
   4984       // Following character is definitely *not* a word character.
   4985       type = (type == AssertionNode::AT_BOUNDARY) ?
   4986                  AssertionNode::AFTER_WORD_CHARACTER :
   4987                  AssertionNode::AFTER_NONWORD_CHARACTER;
   4988       that->set_type(type);
   4989     } else if (word_relation.ContainedIn()) {
   4990       // Following character is definitely a word character.
   4991       type = (type == AssertionNode::AT_BOUNDARY) ?
   4992                  AssertionNode::AFTER_NONWORD_CHARACTER :
   4993                  AssertionNode::AFTER_WORD_CHARACTER;
   4994       that->set_type(type);
   4995     }
   4996   }
   4997 }
   4998 
   4999 
   5000 ZoneList<CharacterRange>* RegExpNode::FirstCharacterSet() {
   5001   if (first_character_set_ == NULL) {
   5002     if (ComputeFirstCharacterSet(kFirstCharBudget) < 0) {
   5003       // If we can't find an exact solution within the budget, we
   5004       // set the value to the set of every character, i.e., all characters
   5005       // are possible.
   5006       ZoneList<CharacterRange>* all_set = new ZoneList<CharacterRange>(1);
   5007       all_set->Add(CharacterRange::Everything());
   5008       first_character_set_ = all_set;
   5009     }
   5010   }
   5011   return first_character_set_;
   5012 }
   5013 
   5014 
   5015 int RegExpNode::ComputeFirstCharacterSet(int budget) {
   5016   // Default behavior is to not be able to determine the first character.
   5017   return kComputeFirstCharacterSetFail;
   5018 }
   5019 
   5020 
   5021 int LoopChoiceNode::ComputeFirstCharacterSet(int budget) {
   5022   budget--;
   5023   if (budget >= 0) {
   5024     // Find loop min-iteration. It's the value of the guarded choice node
   5025     // with a GEQ guard, if any.
   5026     int min_repetition = 0;
   5027 
   5028     for (int i = 0; i <= 1; i++) {
   5029       GuardedAlternative alternative = alternatives()->at(i);
   5030       ZoneList<Guard*>* guards = alternative.guards();
   5031       if (guards != NULL && guards->length() > 0) {
   5032         Guard* guard = guards->at(0);
   5033         if (guard->op() == Guard::GEQ) {
   5034           min_repetition = guard->value();
   5035           break;
   5036         }
   5037       }
   5038     }
   5039 
   5040     budget = loop_node()->ComputeFirstCharacterSet(budget);
   5041     if (budget >= 0) {
   5042       ZoneList<CharacterRange>* character_set =
   5043           loop_node()->first_character_set();
   5044       if (body_can_be_zero_length() || min_repetition == 0) {
   5045         budget = continue_node()->ComputeFirstCharacterSet(budget);
   5046         if (budget < 0) return budget;
   5047         ZoneList<CharacterRange>* body_set =
   5048             continue_node()->first_character_set();
   5049         ZoneList<CharacterRange>* union_set =
   5050           new ZoneList<CharacterRange>(Max(character_set->length(),
   5051                                            body_set->length()));
   5052         CharacterRange::Merge(character_set,
   5053                               body_set,
   5054                               union_set,
   5055                               union_set,
   5056                               union_set);
   5057         character_set = union_set;
   5058       }
   5059       set_first_character_set(character_set);
   5060     }
   5061   }
   5062   return budget;
   5063 }
   5064 
   5065 
   5066 int NegativeLookaheadChoiceNode::ComputeFirstCharacterSet(int budget) {
   5067   budget--;
   5068   if (budget >= 0) {
   5069     GuardedAlternative successor = this->alternatives()->at(1);
   5070     RegExpNode* successor_node = successor.node();
   5071     budget = successor_node->ComputeFirstCharacterSet(budget);
   5072     if (budget >= 0) {
   5073       set_first_character_set(successor_node->first_character_set());
   5074     }
   5075   }
   5076   return budget;
   5077 }
   5078 
   5079 
   5080 // The first character set of an EndNode is unknowable. Just use the
   5081 // default implementation that fails and returns all characters as possible.
   5082 
   5083 
   5084 int AssertionNode::ComputeFirstCharacterSet(int budget) {
   5085   budget -= 1;
   5086   if (budget >= 0) {
   5087     switch (type_) {
   5088       case AT_END: {
   5089         set_first_character_set(new ZoneList<CharacterRange>(0));
   5090         break;
   5091       }
   5092       case AT_START:
   5093       case AT_BOUNDARY:
   5094       case AT_NON_BOUNDARY:
   5095       case AFTER_NEWLINE:
   5096       case AFTER_NONWORD_CHARACTER:
   5097       case AFTER_WORD_CHARACTER: {
   5098         ASSERT_NOT_NULL(on_success());
   5099         budget = on_success()->ComputeFirstCharacterSet(budget);
   5100         if (budget >= 0) {
   5101           set_first_character_set(on_success()->first_character_set());
   5102         }
   5103         break;
   5104       }
   5105     }
   5106   }
   5107   return budget;
   5108 }
   5109 
   5110 
   5111 int ActionNode::ComputeFirstCharacterSet(int budget) {
   5112   if (type_ == POSITIVE_SUBMATCH_SUCCESS) return kComputeFirstCharacterSetFail;
   5113   budget--;
   5114   if (budget >= 0) {
   5115     ASSERT_NOT_NULL(on_success());
   5116     budget = on_success()->ComputeFirstCharacterSet(budget);
   5117     if (budget >= 0) {
   5118       set_first_character_set(on_success()->first_character_set());
   5119     }
   5120   }
   5121   return budget;
   5122 }
   5123 
   5124 
   5125 int BackReferenceNode::ComputeFirstCharacterSet(int budget) {
   5126   // We don't know anything about the first character of a backreference
   5127   // at this point.
   5128   // The potential first characters are the first characters of the capture,
   5129   // and the first characters of the on_success node, depending on whether the
   5130   // capture can be empty and whether it is known to be participating or known
   5131   // not to be.
   5132   return kComputeFirstCharacterSetFail;
   5133 }
   5134 
   5135 
   5136 int TextNode::ComputeFirstCharacterSet(int budget) {
   5137   budget--;
   5138   if (budget >= 0) {
   5139     ASSERT_NE(0, elements()->length());
   5140     TextElement text = elements()->at(0);
   5141     if (text.type == TextElement::ATOM) {
   5142       RegExpAtom* atom = text.data.u_atom;
   5143       ASSERT_NE(0, atom->length());
   5144       uc16 first_char = atom->data()[0];
   5145       ZoneList<CharacterRange>* range = new ZoneList<CharacterRange>(1);
   5146       range->Add(CharacterRange(first_char, first_char));
   5147       set_first_character_set(range);
   5148     } else {
   5149       ASSERT(text.type == TextElement::CHAR_CLASS);
   5150       RegExpCharacterClass* char_class = text.data.u_char_class;
   5151       ZoneList<CharacterRange>* ranges = char_class->ranges();
   5152       // TODO(lrn): Canonicalize ranges when they are created
   5153       // instead of waiting until now.
   5154       CharacterRange::Canonicalize(ranges);
   5155       if (char_class->is_negated()) {
   5156         int length = ranges->length();
   5157         int new_length = length + 1;
   5158         if (length > 0) {
   5159           if (ranges->at(0).from() == 0) new_length--;
   5160           if (ranges->at(length - 1).to() == String::kMaxUC16CharCode) {
   5161             new_length--;
   5162           }
   5163         }
   5164         ZoneList<CharacterRange>* negated_ranges =
   5165             new ZoneList<CharacterRange>(new_length);
   5166         CharacterRange::Negate(ranges, negated_ranges);
   5167         set_first_character_set(negated_ranges);
   5168       } else {
   5169         set_first_character_set(ranges);
   5170       }
   5171     }
   5172   }
   5173   return budget;
   5174 }
   5175 
   5176 
   5177 
   5178 // -------------------------------------------------------------------
   5179 // Dispatch table construction
   5180 
   5181 
   5182 void DispatchTableConstructor::VisitEnd(EndNode* that) {
   5183   AddRange(CharacterRange::Everything());
   5184 }
   5185 
   5186 
   5187 void DispatchTableConstructor::BuildTable(ChoiceNode* node) {
   5188   node->set_being_calculated(true);
   5189   ZoneList<GuardedAlternative>* alternatives = node->alternatives();
   5190   for (int i = 0; i < alternatives->length(); i++) {
   5191     set_choice_index(i);
   5192     alternatives->at(i).node()->Accept(this);
   5193   }
   5194   node->set_being_calculated(false);
   5195 }
   5196 
   5197 
   5198 class AddDispatchRange {
   5199  public:
   5200   explicit AddDispatchRange(DispatchTableConstructor* constructor)
   5201     : constructor_(constructor) { }
   5202   void Call(uc32 from, DispatchTable::Entry entry);
   5203  private:
   5204   DispatchTableConstructor* constructor_;
   5205 };
   5206 
   5207 
   5208 void AddDispatchRange::Call(uc32 from, DispatchTable::Entry entry) {
   5209   CharacterRange range(from, entry.to());
   5210   constructor_->AddRange(range);
   5211 }
   5212 
   5213 
   5214 void DispatchTableConstructor::VisitChoice(ChoiceNode* node) {
   5215   if (node->being_calculated())
   5216     return;
   5217   DispatchTable* table = node->GetTable(ignore_case_);
   5218   AddDispatchRange adder(this);
   5219   table->ForEach(&adder);
   5220 }
   5221 
   5222 
   5223 void DispatchTableConstructor::VisitBackReference(BackReferenceNode* that) {
   5224   // TODO(160): Find the node that we refer back to and propagate its start
   5225   // set back to here.  For now we just accept anything.
   5226   AddRange(CharacterRange::Everything());
   5227 }
   5228 
   5229 
   5230 void DispatchTableConstructor::VisitAssertion(AssertionNode* that) {
   5231   RegExpNode* target = that->on_success();
   5232   target->Accept(this);
   5233 }
   5234 
   5235 
   5236 static int CompareRangeByFrom(const CharacterRange* a,
   5237                               const CharacterRange* b) {
   5238   return Compare<uc16>(a->from(), b->from());
   5239 }
   5240 
   5241 
   5242 void DispatchTableConstructor::AddInverse(ZoneList<CharacterRange>* ranges) {
   5243   ranges->Sort(CompareRangeByFrom);
   5244   uc16 last = 0;
   5245   for (int i = 0; i < ranges->length(); i++) {
   5246     CharacterRange range = ranges->at(i);
   5247     if (last < range.from())
   5248       AddRange(CharacterRange(last, range.from() - 1));
   5249     if (range.to() >= last) {
   5250       if (range.to() == String::kMaxUC16CharCode) {
   5251         return;
   5252       } else {
   5253         last = range.to() + 1;
   5254       }
   5255     }
   5256   }
   5257   AddRange(CharacterRange(last, String::kMaxUC16CharCode));
   5258 }
   5259 
   5260 
   5261 void DispatchTableConstructor::VisitText(TextNode* that) {
   5262   TextElement elm = that->elements()->at(0);
   5263   switch (elm.type) {
   5264     case TextElement::ATOM: {
   5265       uc16 c = elm.data.u_atom->data()[0];
   5266       AddRange(CharacterRange(c, c));
   5267       break;
   5268     }
   5269     case TextElement::CHAR_CLASS: {
   5270       RegExpCharacterClass* tree = elm.data.u_char_class;
   5271       ZoneList<CharacterRange>* ranges = tree->ranges();
   5272       if (tree->is_negated()) {
   5273         AddInverse(ranges);
   5274       } else {
   5275         for (int i = 0; i < ranges->length(); i++)
   5276           AddRange(ranges->at(i));
   5277       }
   5278       break;
   5279     }
   5280     default: {
   5281       UNIMPLEMENTED();
   5282     }
   5283   }
   5284 }
   5285 
   5286 
   5287 void DispatchTableConstructor::VisitAction(ActionNode* that) {
   5288   RegExpNode* target = that->on_success();
   5289   target->Accept(this);
   5290 }
   5291 
   5292 
   5293 RegExpEngine::CompilationResult RegExpEngine::Compile(RegExpCompileData* data,
   5294                                                       bool ignore_case,
   5295                                                       bool is_multiline,
   5296                                                       Handle<String> pattern,
   5297                                                       bool is_ascii) {
   5298   if ((data->capture_count + 1) * 2 - 1 > RegExpMacroAssembler::kMaxRegister) {
   5299     return IrregexpRegExpTooBig();
   5300   }
   5301   RegExpCompiler compiler(data->capture_count, ignore_case, is_ascii);
   5302   // Wrap the body of the regexp in capture #0.
   5303   RegExpNode* captured_body = RegExpCapture::ToNode(data->tree,
   5304                                                     0,
   5305                                                     &compiler,
   5306                                                     compiler.accept());
   5307   RegExpNode* node = captured_body;
   5308   bool is_end_anchored = data->tree->IsAnchoredAtEnd();
   5309   bool is_start_anchored = data->tree->IsAnchoredAtStart();
   5310   int max_length = data->tree->max_match();
   5311   if (!is_start_anchored) {
   5312     // Add a .*? at the beginning, outside the body capture, unless
   5313     // this expression is anchored at the beginning.
   5314     RegExpNode* loop_node =
   5315         RegExpQuantifier::ToNode(0,
   5316                                  RegExpTree::kInfinity,
   5317                                  false,
   5318                                  new RegExpCharacterClass('*'),
   5319                                  &compiler,
   5320                                  captured_body,
   5321                                  data->contains_anchor);
   5322 
   5323     if (data->contains_anchor) {
   5324       // Unroll loop once, to take care of the case that might start
   5325       // at the start of input.
   5326       ChoiceNode* first_step_node = new ChoiceNode(2);
   5327       first_step_node->AddAlternative(GuardedAlternative(captured_body));
   5328       first_step_node->AddAlternative(GuardedAlternative(
   5329           new TextNode(new RegExpCharacterClass('*'), loop_node)));
   5330       node = first_step_node;
   5331     } else {
   5332       node = loop_node;
   5333     }
   5334   }
   5335   data->node = node;
   5336   Analysis analysis(ignore_case, is_ascii);
   5337   analysis.EnsureAnalyzed(node);
   5338   if (analysis.has_failed()) {
   5339     const char* error_message = analysis.error_message();
   5340     return CompilationResult(error_message);
   5341   }
   5342 
   5343   NodeInfo info = *node->info();
   5344 
   5345   // Create the correct assembler for the architecture.
   5346 #ifndef V8_INTERPRETED_REGEXP
   5347   // Native regexp implementation.
   5348 
   5349   NativeRegExpMacroAssembler::Mode mode =
   5350       is_ascii ? NativeRegExpMacroAssembler::ASCII
   5351                : NativeRegExpMacroAssembler::UC16;
   5352 
   5353 #if V8_TARGET_ARCH_IA32
   5354   RegExpMacroAssemblerIA32 macro_assembler(mode, (data->capture_count + 1) * 2);
   5355 #elif V8_TARGET_ARCH_X64
   5356   RegExpMacroAssemblerX64 macro_assembler(mode, (data->capture_count + 1) * 2);
   5357 #elif V8_TARGET_ARCH_ARM
   5358   RegExpMacroAssemblerARM macro_assembler(mode, (data->capture_count + 1) * 2);
   5359 #elif V8_TARGET_ARCH_MIPS
   5360   RegExpMacroAssemblerMIPS macro_assembler(mode, (data->capture_count + 1) * 2);
   5361 #endif
   5362 
   5363 #else  // V8_INTERPRETED_REGEXP
   5364   // Interpreted regexp implementation.
   5365   EmbeddedVector<byte, 1024> codes;
   5366   RegExpMacroAssemblerIrregexp macro_assembler(codes);
   5367 #endif  // V8_INTERPRETED_REGEXP
   5368 
   5369   // Inserted here, instead of in Assembler, because it depends on information
   5370   // in the AST that isn't replicated in the Node structure.
   5371   static const int kMaxBacksearchLimit = 1024;
   5372   if (is_end_anchored &&
   5373       !is_start_anchored &&
   5374       max_length < kMaxBacksearchLimit) {
   5375     macro_assembler.SetCurrentPositionFromEnd(max_length);
   5376   }
   5377 
   5378   return compiler.Assemble(&macro_assembler,
   5379                            node,
   5380                            data->capture_count,
   5381                            pattern);
   5382 }
   5383 
   5384 
   5385 }}  // namespace v8::internal
   5386