1 // Protocol Buffers - Google's data interchange format 2 // Copyright 2008 Google Inc. All rights reserved. 3 // http://code.google.com/p/protobuf/ 4 // 5 // Redistribution and use in source and binary forms, with or without 6 // modification, are permitted provided that the following conditions are 7 // met: 8 // 9 // * Redistributions of source code must retain the above copyright 10 // notice, this list of conditions and the following disclaimer. 11 // * Redistributions in binary form must reproduce the above 12 // copyright notice, this list of conditions and the following disclaimer 13 // in the documentation and/or other materials provided with the 14 // distribution. 15 // * Neither the name of Google Inc. nor the names of its 16 // contributors may be used to endorse or promote products derived from 17 // this software without specific prior written permission. 18 // 19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 20 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 21 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 22 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 23 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 24 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 25 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 26 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 27 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 28 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 29 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 30 31 // Author: kenton (at) google.com (Kenton Varda) and others 32 // 33 // Contains basic types and utilities used by the rest of the library. 34 35 #ifndef GOOGLE_PROTOBUF_COMMON_H__ 36 #define GOOGLE_PROTOBUF_COMMON_H__ 37 38 #include <assert.h> 39 #include <stdlib.h> 40 #include <cstddef> 41 #include <string> 42 #include <string.h> 43 #if defined(__osf__) 44 // Tru64 lacks stdint.h, but has inttypes.h which defines a superset of 45 // what stdint.h would define. 46 #include <inttypes.h> 47 #elif !defined(_MSC_VER) 48 #include <stdint.h> 49 #endif 50 51 namespace std {} 52 53 namespace google { 54 namespace protobuf { 55 56 using namespace std; // Don't do this at home, kids. 57 58 #undef GOOGLE_DISALLOW_EVIL_CONSTRUCTORS 59 #define GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(TypeName) \ 60 TypeName(const TypeName&); \ 61 void operator=(const TypeName&) 62 63 #if defined(_MSC_VER) && defined(PROTOBUF_USE_DLLS) 64 #ifdef LIBPROTOBUF_EXPORTS 65 #define LIBPROTOBUF_EXPORT __declspec(dllexport) 66 #else 67 #define LIBPROTOBUF_EXPORT __declspec(dllimport) 68 #endif 69 #ifdef LIBPROTOC_EXPORTS 70 #define LIBPROTOC_EXPORT __declspec(dllexport) 71 #else 72 #define LIBPROTOC_EXPORT __declspec(dllimport) 73 #endif 74 #else 75 #define LIBPROTOBUF_EXPORT 76 #define LIBPROTOC_EXPORT 77 #endif 78 79 namespace internal { 80 81 // Some of these constants are macros rather than const ints so that they can 82 // be used in #if directives. 83 84 // The current version, represented as a single integer to make comparison 85 // easier: major * 10^6 + minor * 10^3 + micro 86 #define GOOGLE_PROTOBUF_VERSION 2003000 87 88 // The minimum library version which works with the current version of the 89 // headers. 90 #define GOOGLE_PROTOBUF_MIN_LIBRARY_VERSION 2003000 91 92 // The minimum header version which works with the current version of 93 // the library. This constant should only be used by protoc's C++ code 94 // generator. 95 static const int kMinHeaderVersionForLibrary = 2003000; 96 97 // The minimum protoc version which works with the current version of the 98 // headers. 99 #define GOOGLE_PROTOBUF_MIN_PROTOC_VERSION 2003000 100 101 // The minimum header version which works with the current version of 102 // protoc. This constant should only be used in VerifyVersion(). 103 static const int kMinHeaderVersionForProtoc = 2003000; 104 105 // Verifies that the headers and libraries are compatible. Use the macro 106 // below to call this. 107 void LIBPROTOBUF_EXPORT VerifyVersion(int headerVersion, int minLibraryVersion, 108 const char* filename); 109 110 // Converts a numeric version number to a string. 111 string LIBPROTOBUF_EXPORT VersionString(int version); 112 113 } // namespace internal 114 115 // Place this macro in your main() function (or somewhere before you attempt 116 // to use the protobuf library) to verify that the version you link against 117 // matches the headers you compiled against. If a version mismatch is 118 // detected, the process will abort. 119 #define GOOGLE_PROTOBUF_VERIFY_VERSION \ 120 ::google::protobuf::internal::VerifyVersion( \ 121 GOOGLE_PROTOBUF_VERSION, GOOGLE_PROTOBUF_MIN_LIBRARY_VERSION, \ 122 __FILE__) 123 124 // =================================================================== 125 // from google3/base/port.h 126 127 typedef unsigned int uint; 128 129 #ifdef _MSC_VER 130 typedef __int8 int8; 131 typedef __int16 int16; 132 typedef __int32 int32; 133 typedef __int64 int64; 134 135 typedef unsigned __int8 uint8; 136 typedef unsigned __int16 uint16; 137 typedef unsigned __int32 uint32; 138 typedef unsigned __int64 uint64; 139 #else 140 typedef int8_t int8; 141 typedef int16_t int16; 142 typedef int32_t int32; 143 typedef int64_t int64; 144 145 typedef uint8_t uint8; 146 typedef uint16_t uint16; 147 typedef uint32_t uint32; 148 typedef uint64_t uint64; 149 #endif 150 151 // long long macros to be used because gcc and vc++ use different suffixes, 152 // and different size specifiers in format strings 153 #undef GOOGLE_LONGLONG 154 #undef GOOGLE_ULONGLONG 155 #undef GOOGLE_LL_FORMAT 156 157 #ifdef _MSC_VER 158 #define GOOGLE_LONGLONG(x) x##I64 159 #define GOOGLE_ULONGLONG(x) x##UI64 160 #define GOOGLE_LL_FORMAT "I64" // As in printf("%I64d", ...) 161 #else 162 #define GOOGLE_LONGLONG(x) x##LL 163 #define GOOGLE_ULONGLONG(x) x##ULL 164 #define GOOGLE_LL_FORMAT "ll" // As in "%lld". Note that "q" is poor form also. 165 #endif 166 167 static const int32 kint32max = 0x7FFFFFFF; 168 static const int32 kint32min = -kint32max - 1; 169 static const int64 kint64max = GOOGLE_LONGLONG(0x7FFFFFFFFFFFFFFF); 170 static const int64 kint64min = -kint64max - 1; 171 static const uint32 kuint32max = 0xFFFFFFFFu; 172 static const uint64 kuint64max = GOOGLE_ULONGLONG(0xFFFFFFFFFFFFFFFF); 173 174 // ------------------------------------------------------------------- 175 // Annotations: Some parts of the code have been annotated in ways that might 176 // be useful to some compilers or tools, but are not supported universally. 177 // You can #define these annotations yourself if the default implementation 178 // is not right for you. 179 180 #ifndef GOOGLE_ATTRIBUTE_ALWAYS_INLINE 181 #if defined(__GNUC__) && (__GNUC__ > 3 ||(__GNUC__ == 3 && __GNUC_MINOR__ >= 1)) 182 // For functions we want to force inline. 183 // Introduced in gcc 3.1. 184 #define GOOGLE_ATTRIBUTE_ALWAYS_INLINE __attribute__ ((always_inline)) 185 #else 186 // Other compilers will have to figure it out for themselves. 187 #define GOOGLE_ATTRIBUTE_ALWAYS_INLINE 188 #endif 189 #endif 190 191 #ifndef GOOGLE_ATTRIBUTE_DEPRECATED 192 #ifdef __GNUC__ 193 // If the method/variable/type is used anywhere, produce a warning. 194 #define GOOGLE_ATTRIBUTE_DEPRECATED __attribute__((deprecated)) 195 #else 196 #define GOOGLE_ATTRIBUTE_DEPRECATED 197 #endif 198 #endif 199 200 #ifndef GOOGLE_PREDICT_TRUE 201 #ifdef __GNUC__ 202 // Provided at least since GCC 3.0. 203 #define GOOGLE_PREDICT_TRUE(x) (__builtin_expect(!!(x), 1)) 204 #else 205 #define GOOGLE_PREDICT_TRUE 206 #endif 207 #endif 208 209 // Delimits a block of code which may write to memory which is simultaneously 210 // written by other threads, but which has been determined to be thread-safe 211 // (e.g. because it is an idempotent write). 212 #ifndef GOOGLE_SAFE_CONCURRENT_WRITES_BEGIN 213 #define GOOGLE_SAFE_CONCURRENT_WRITES_BEGIN() 214 #endif 215 #ifndef GOOGLE_SAFE_CONCURRENT_WRITES_END 216 #define GOOGLE_SAFE_CONCURRENT_WRITES_END() 217 #endif 218 219 // =================================================================== 220 // from google3/base/basictypes.h 221 222 // The GOOGLE_ARRAYSIZE(arr) macro returns the # of elements in an array arr. 223 // The expression is a compile-time constant, and therefore can be 224 // used in defining new arrays, for example. 225 // 226 // GOOGLE_ARRAYSIZE catches a few type errors. If you see a compiler error 227 // 228 // "warning: division by zero in ..." 229 // 230 // when using GOOGLE_ARRAYSIZE, you are (wrongfully) giving it a pointer. 231 // You should only use GOOGLE_ARRAYSIZE on statically allocated arrays. 232 // 233 // The following comments are on the implementation details, and can 234 // be ignored by the users. 235 // 236 // ARRAYSIZE(arr) works by inspecting sizeof(arr) (the # of bytes in 237 // the array) and sizeof(*(arr)) (the # of bytes in one array 238 // element). If the former is divisible by the latter, perhaps arr is 239 // indeed an array, in which case the division result is the # of 240 // elements in the array. Otherwise, arr cannot possibly be an array, 241 // and we generate a compiler error to prevent the code from 242 // compiling. 243 // 244 // Since the size of bool is implementation-defined, we need to cast 245 // !(sizeof(a) & sizeof(*(a))) to size_t in order to ensure the final 246 // result has type size_t. 247 // 248 // This macro is not perfect as it wrongfully accepts certain 249 // pointers, namely where the pointer size is divisible by the pointee 250 // size. Since all our code has to go through a 32-bit compiler, 251 // where a pointer is 4 bytes, this means all pointers to a type whose 252 // size is 3 or greater than 4 will be (righteously) rejected. 253 // 254 // Kudos to Jorg Brown for this simple and elegant implementation. 255 256 #undef GOOGLE_ARRAYSIZE 257 #define GOOGLE_ARRAYSIZE(a) \ 258 ((sizeof(a) / sizeof(*(a))) / \ 259 static_cast<size_t>(!(sizeof(a) % sizeof(*(a))))) 260 261 namespace internal { 262 263 // Use implicit_cast as a safe version of static_cast or const_cast 264 // for upcasting in the type hierarchy (i.e. casting a pointer to Foo 265 // to a pointer to SuperclassOfFoo or casting a pointer to Foo to 266 // a const pointer to Foo). 267 // When you use implicit_cast, the compiler checks that the cast is safe. 268 // Such explicit implicit_casts are necessary in surprisingly many 269 // situations where C++ demands an exact type match instead of an 270 // argument type convertable to a target type. 271 // 272 // The From type can be inferred, so the preferred syntax for using 273 // implicit_cast is the same as for static_cast etc.: 274 // 275 // implicit_cast<ToType>(expr) 276 // 277 // implicit_cast would have been part of the C++ standard library, 278 // but the proposal was submitted too late. It will probably make 279 // its way into the language in the future. 280 template<typename To, typename From> 281 inline To implicit_cast(From const &f) { 282 return f; 283 } 284 285 // When you upcast (that is, cast a pointer from type Foo to type 286 // SuperclassOfFoo), it's fine to use implicit_cast<>, since upcasts 287 // always succeed. When you downcast (that is, cast a pointer from 288 // type Foo to type SubclassOfFoo), static_cast<> isn't safe, because 289 // how do you know the pointer is really of type SubclassOfFoo? It 290 // could be a bare Foo, or of type DifferentSubclassOfFoo. Thus, 291 // when you downcast, you should use this macro. In debug mode, we 292 // use dynamic_cast<> to double-check the downcast is legal (we die 293 // if it's not). In normal mode, we do the efficient static_cast<> 294 // instead. Thus, it's important to test in debug mode to make sure 295 // the cast is legal! 296 // This is the only place in the code we should use dynamic_cast<>. 297 // In particular, you SHOULDN'T be using dynamic_cast<> in order to 298 // do RTTI (eg code like this: 299 // if (dynamic_cast<Subclass1>(foo)) HandleASubclass1Object(foo); 300 // if (dynamic_cast<Subclass2>(foo)) HandleASubclass2Object(foo); 301 // You should design the code some other way not to need this. 302 303 template<typename To, typename From> // use like this: down_cast<T*>(foo); 304 inline To down_cast(From* f) { // so we only accept pointers 305 // Ensures that To is a sub-type of From *. This test is here only 306 // for compile-time type checking, and has no overhead in an 307 // optimized build at run-time, as it will be optimized away 308 // completely. 309 if (false) { 310 implicit_cast<From*, To>(0); 311 } 312 313 #if !defined(NDEBUG) && !defined(GOOGLE_PROTOBUF_NO_RTTI) 314 assert(f == NULL || dynamic_cast<To>(f) != NULL); // RTTI: debug mode only! 315 #endif 316 return static_cast<To>(f); 317 } 318 319 } // namespace internal 320 321 // We made these internal so that they would show up as such in the docs, 322 // but we don't want to stick "internal::" in front of them everywhere. 323 using internal::implicit_cast; 324 using internal::down_cast; 325 326 // The COMPILE_ASSERT macro can be used to verify that a compile time 327 // expression is true. For example, you could use it to verify the 328 // size of a static array: 329 // 330 // COMPILE_ASSERT(ARRAYSIZE(content_type_names) == CONTENT_NUM_TYPES, 331 // content_type_names_incorrect_size); 332 // 333 // or to make sure a struct is smaller than a certain size: 334 // 335 // COMPILE_ASSERT(sizeof(foo) < 128, foo_too_large); 336 // 337 // The second argument to the macro is the name of the variable. If 338 // the expression is false, most compilers will issue a warning/error 339 // containing the name of the variable. 340 341 namespace internal { 342 343 template <bool> 344 struct CompileAssert { 345 }; 346 347 } // namespace internal 348 349 #undef GOOGLE_COMPILE_ASSERT 350 #define GOOGLE_COMPILE_ASSERT(expr, msg) \ 351 typedef ::google::protobuf::internal::CompileAssert<(bool(expr))> \ 352 msg[bool(expr) ? 1 : -1] 353 354 // Implementation details of COMPILE_ASSERT: 355 // 356 // - COMPILE_ASSERT works by defining an array type that has -1 357 // elements (and thus is invalid) when the expression is false. 358 // 359 // - The simpler definition 360 // 361 // #define COMPILE_ASSERT(expr, msg) typedef char msg[(expr) ? 1 : -1] 362 // 363 // does not work, as gcc supports variable-length arrays whose sizes 364 // are determined at run-time (this is gcc's extension and not part 365 // of the C++ standard). As a result, gcc fails to reject the 366 // following code with the simple definition: 367 // 368 // int foo; 369 // COMPILE_ASSERT(foo, msg); // not supposed to compile as foo is 370 // // not a compile-time constant. 371 // 372 // - By using the type CompileAssert<(bool(expr))>, we ensures that 373 // expr is a compile-time constant. (Template arguments must be 374 // determined at compile-time.) 375 // 376 // - The outter parentheses in CompileAssert<(bool(expr))> are necessary 377 // to work around a bug in gcc 3.4.4 and 4.0.1. If we had written 378 // 379 // CompileAssert<bool(expr)> 380 // 381 // instead, these compilers will refuse to compile 382 // 383 // COMPILE_ASSERT(5 > 0, some_message); 384 // 385 // (They seem to think the ">" in "5 > 0" marks the end of the 386 // template argument list.) 387 // 388 // - The array size is (bool(expr) ? 1 : -1), instead of simply 389 // 390 // ((expr) ? 1 : -1). 391 // 392 // This is to avoid running into a bug in MS VC 7.1, which 393 // causes ((0.0) ? 1 : -1) to incorrectly evaluate to 1. 394 395 // =================================================================== 396 // from google3/base/scoped_ptr.h 397 398 namespace internal { 399 400 // This is an implementation designed to match the anticipated future TR2 401 // implementation of the scoped_ptr class, and its closely-related brethren, 402 // scoped_array, scoped_ptr_malloc, and make_scoped_ptr. 403 404 template <class C> class scoped_ptr; 405 template <class C> class scoped_array; 406 407 // A scoped_ptr<T> is like a T*, except that the destructor of scoped_ptr<T> 408 // automatically deletes the pointer it holds (if any). 409 // That is, scoped_ptr<T> owns the T object that it points to. 410 // Like a T*, a scoped_ptr<T> may hold either NULL or a pointer to a T object. 411 // 412 // The size of a scoped_ptr is small: 413 // sizeof(scoped_ptr<C>) == sizeof(C*) 414 template <class C> 415 class scoped_ptr { 416 public: 417 418 // The element type 419 typedef C element_type; 420 421 // Constructor. Defaults to intializing with NULL. 422 // There is no way to create an uninitialized scoped_ptr. 423 // The input parameter must be allocated with new. 424 explicit scoped_ptr(C* p = NULL) : ptr_(p) { } 425 426 // Destructor. If there is a C object, delete it. 427 // We don't need to test ptr_ == NULL because C++ does that for us. 428 ~scoped_ptr() { 429 enum { type_must_be_complete = sizeof(C) }; 430 delete ptr_; 431 } 432 433 // Reset. Deletes the current owned object, if any. 434 // Then takes ownership of a new object, if given. 435 // this->reset(this->get()) works. 436 void reset(C* p = NULL) { 437 if (p != ptr_) { 438 enum { type_must_be_complete = sizeof(C) }; 439 delete ptr_; 440 ptr_ = p; 441 } 442 } 443 444 // Accessors to get the owned object. 445 // operator* and operator-> will assert() if there is no current object. 446 C& operator*() const { 447 assert(ptr_ != NULL); 448 return *ptr_; 449 } 450 C* operator->() const { 451 assert(ptr_ != NULL); 452 return ptr_; 453 } 454 C* get() const { return ptr_; } 455 456 // Comparison operators. 457 // These return whether two scoped_ptr refer to the same object, not just to 458 // two different but equal objects. 459 bool operator==(C* p) const { return ptr_ == p; } 460 bool operator!=(C* p) const { return ptr_ != p; } 461 462 // Swap two scoped pointers. 463 void swap(scoped_ptr& p2) { 464 C* tmp = ptr_; 465 ptr_ = p2.ptr_; 466 p2.ptr_ = tmp; 467 } 468 469 // Release a pointer. 470 // The return value is the current pointer held by this object. 471 // If this object holds a NULL pointer, the return value is NULL. 472 // After this operation, this object will hold a NULL pointer, 473 // and will not own the object any more. 474 C* release() { 475 C* retVal = ptr_; 476 ptr_ = NULL; 477 return retVal; 478 } 479 480 private: 481 C* ptr_; 482 483 // Forbid comparison of scoped_ptr types. If C2 != C, it totally doesn't 484 // make sense, and if C2 == C, it still doesn't make sense because you should 485 // never have the same object owned by two different scoped_ptrs. 486 template <class C2> bool operator==(scoped_ptr<C2> const& p2) const; 487 template <class C2> bool operator!=(scoped_ptr<C2> const& p2) const; 488 489 // Disallow evil constructors 490 scoped_ptr(const scoped_ptr&); 491 void operator=(const scoped_ptr&); 492 }; 493 494 // scoped_array<C> is like scoped_ptr<C>, except that the caller must allocate 495 // with new [] and the destructor deletes objects with delete []. 496 // 497 // As with scoped_ptr<C>, a scoped_array<C> either points to an object 498 // or is NULL. A scoped_array<C> owns the object that it points to. 499 // 500 // Size: sizeof(scoped_array<C>) == sizeof(C*) 501 template <class C> 502 class scoped_array { 503 public: 504 505 // The element type 506 typedef C element_type; 507 508 // Constructor. Defaults to intializing with NULL. 509 // There is no way to create an uninitialized scoped_array. 510 // The input parameter must be allocated with new []. 511 explicit scoped_array(C* p = NULL) : array_(p) { } 512 513 // Destructor. If there is a C object, delete it. 514 // We don't need to test ptr_ == NULL because C++ does that for us. 515 ~scoped_array() { 516 enum { type_must_be_complete = sizeof(C) }; 517 delete[] array_; 518 } 519 520 // Reset. Deletes the current owned object, if any. 521 // Then takes ownership of a new object, if given. 522 // this->reset(this->get()) works. 523 void reset(C* p = NULL) { 524 if (p != array_) { 525 enum { type_must_be_complete = sizeof(C) }; 526 delete[] array_; 527 array_ = p; 528 } 529 } 530 531 // Get one element of the current object. 532 // Will assert() if there is no current object, or index i is negative. 533 C& operator[](std::ptrdiff_t i) const { 534 assert(i >= 0); 535 assert(array_ != NULL); 536 return array_[i]; 537 } 538 539 // Get a pointer to the zeroth element of the current object. 540 // If there is no current object, return NULL. 541 C* get() const { 542 return array_; 543 } 544 545 // Comparison operators. 546 // These return whether two scoped_array refer to the same object, not just to 547 // two different but equal objects. 548 bool operator==(C* p) const { return array_ == p; } 549 bool operator!=(C* p) const { return array_ != p; } 550 551 // Swap two scoped arrays. 552 void swap(scoped_array& p2) { 553 C* tmp = array_; 554 array_ = p2.array_; 555 p2.array_ = tmp; 556 } 557 558 // Release an array. 559 // The return value is the current pointer held by this object. 560 // If this object holds a NULL pointer, the return value is NULL. 561 // After this operation, this object will hold a NULL pointer, 562 // and will not own the object any more. 563 C* release() { 564 C* retVal = array_; 565 array_ = NULL; 566 return retVal; 567 } 568 569 private: 570 C* array_; 571 572 // Forbid comparison of different scoped_array types. 573 template <class C2> bool operator==(scoped_array<C2> const& p2) const; 574 template <class C2> bool operator!=(scoped_array<C2> const& p2) const; 575 576 // Disallow evil constructors 577 scoped_array(const scoped_array&); 578 void operator=(const scoped_array&); 579 }; 580 581 } // namespace internal 582 583 // We made these internal so that they would show up as such in the docs, 584 // but we don't want to stick "internal::" in front of them everywhere. 585 using internal::scoped_ptr; 586 using internal::scoped_array; 587 588 // =================================================================== 589 // emulates google3/base/logging.h 590 591 enum LogLevel { 592 LOGLEVEL_INFO, // Informational. This is never actually used by 593 // libprotobuf. 594 LOGLEVEL_WARNING, // Warns about issues that, although not technically a 595 // problem now, could cause problems in the future. For 596 // example, a // warning will be printed when parsing a 597 // message that is near the message size limit. 598 LOGLEVEL_ERROR, // An error occurred which should never happen during 599 // normal use. 600 LOGLEVEL_FATAL, // An error occurred from which the library cannot 601 // recover. This usually indicates a programming error 602 // in the code which calls the library, especially when 603 // compiled in debug mode. 604 605 #ifdef NDEBUG 606 LOGLEVEL_DFATAL = LOGLEVEL_ERROR 607 #else 608 LOGLEVEL_DFATAL = LOGLEVEL_FATAL 609 #endif 610 }; 611 612 namespace internal { 613 614 class LogFinisher; 615 616 class LIBPROTOBUF_EXPORT LogMessage { 617 public: 618 LogMessage(LogLevel level, const char* filename, int line); 619 ~LogMessage(); 620 621 LogMessage& operator<<(const string& value); 622 LogMessage& operator<<(const char* value); 623 LogMessage& operator<<(char value); 624 LogMessage& operator<<(int value); 625 LogMessage& operator<<(uint value); 626 LogMessage& operator<<(long value); 627 LogMessage& operator<<(unsigned long value); 628 LogMessage& operator<<(double value); 629 630 private: 631 friend class LogFinisher; 632 void Finish(); 633 634 LogLevel level_; 635 const char* filename_; 636 int line_; 637 string message_; 638 }; 639 640 // Used to make the entire "LOG(BLAH) << etc." expression have a void return 641 // type and print a newline after each message. 642 class LIBPROTOBUF_EXPORT LogFinisher { 643 public: 644 void operator=(LogMessage& other); 645 }; 646 647 } // namespace internal 648 649 // Undef everything in case we're being mixed with some other Google library 650 // which already defined them itself. Presumably all Google libraries will 651 // support the same syntax for these so it should not be a big deal if they 652 // end up using our definitions instead. 653 #undef GOOGLE_LOG 654 #undef GOOGLE_LOG_IF 655 656 #undef GOOGLE_CHECK 657 #undef GOOGLE_CHECK_EQ 658 #undef GOOGLE_CHECK_NE 659 #undef GOOGLE_CHECK_LT 660 #undef GOOGLE_CHECK_LE 661 #undef GOOGLE_CHECK_GT 662 #undef GOOGLE_CHECK_GE 663 664 #undef GOOGLE_DLOG 665 #undef GOOGLE_DCHECK 666 #undef GOOGLE_DCHECK_EQ 667 #undef GOOGLE_DCHECK_NE 668 #undef GOOGLE_DCHECK_LT 669 #undef GOOGLE_DCHECK_LE 670 #undef GOOGLE_DCHECK_GT 671 #undef GOOGLE_DCHECK_GE 672 673 #define GOOGLE_LOG(LEVEL) \ 674 ::google::protobuf::internal::LogFinisher() = \ 675 ::google::protobuf::internal::LogMessage( \ 676 ::google::protobuf::LOGLEVEL_##LEVEL, __FILE__, __LINE__) 677 #define GOOGLE_LOG_IF(LEVEL, CONDITION) \ 678 !(CONDITION) ? (void)0 : GOOGLE_LOG(LEVEL) 679 680 #define GOOGLE_CHECK(EXPRESSION) \ 681 GOOGLE_LOG_IF(FATAL, !(EXPRESSION)) << "CHECK failed: " #EXPRESSION ": " 682 #define GOOGLE_CHECK_EQ(A, B) GOOGLE_CHECK((A) == (B)) 683 #define GOOGLE_CHECK_NE(A, B) GOOGLE_CHECK((A) != (B)) 684 #define GOOGLE_CHECK_LT(A, B) GOOGLE_CHECK((A) < (B)) 685 #define GOOGLE_CHECK_LE(A, B) GOOGLE_CHECK((A) <= (B)) 686 #define GOOGLE_CHECK_GT(A, B) GOOGLE_CHECK((A) > (B)) 687 #define GOOGLE_CHECK_GE(A, B) GOOGLE_CHECK((A) >= (B)) 688 689 #ifdef NDEBUG 690 691 #define GOOGLE_DLOG GOOGLE_LOG_IF(INFO, false) 692 693 #define GOOGLE_DCHECK(EXPRESSION) while(false) GOOGLE_CHECK(EXPRESSION) 694 #define GOOGLE_DCHECK_EQ(A, B) GOOGLE_DCHECK((A) == (B)) 695 #define GOOGLE_DCHECK_NE(A, B) GOOGLE_DCHECK((A) != (B)) 696 #define GOOGLE_DCHECK_LT(A, B) GOOGLE_DCHECK((A) < (B)) 697 #define GOOGLE_DCHECK_LE(A, B) GOOGLE_DCHECK((A) <= (B)) 698 #define GOOGLE_DCHECK_GT(A, B) GOOGLE_DCHECK((A) > (B)) 699 #define GOOGLE_DCHECK_GE(A, B) GOOGLE_DCHECK((A) >= (B)) 700 701 #else // NDEBUG 702 703 #define GOOGLE_DLOG GOOGLE_LOG 704 705 #define GOOGLE_DCHECK GOOGLE_CHECK 706 #define GOOGLE_DCHECK_EQ GOOGLE_CHECK_EQ 707 #define GOOGLE_DCHECK_NE GOOGLE_CHECK_NE 708 #define GOOGLE_DCHECK_LT GOOGLE_CHECK_LT 709 #define GOOGLE_DCHECK_LE GOOGLE_CHECK_LE 710 #define GOOGLE_DCHECK_GT GOOGLE_CHECK_GT 711 #define GOOGLE_DCHECK_GE GOOGLE_CHECK_GE 712 713 #endif // !NDEBUG 714 715 typedef void LogHandler(LogLevel level, const char* filename, int line, 716 const string& message); 717 718 // The protobuf library sometimes writes warning and error messages to 719 // stderr. These messages are primarily useful for developers, but may 720 // also help end users figure out a problem. If you would prefer that 721 // these messages be sent somewhere other than stderr, call SetLogHandler() 722 // to set your own handler. This returns the old handler. Set the handler 723 // to NULL to ignore log messages (but see also LogSilencer, below). 724 // 725 // Obviously, SetLogHandler is not thread-safe. You should only call it 726 // at initialization time, and probably not from library code. If you 727 // simply want to suppress log messages temporarily (e.g. because you 728 // have some code that tends to trigger them frequently and you know 729 // the warnings are not important to you), use the LogSilencer class 730 // below. 731 LIBPROTOBUF_EXPORT LogHandler* SetLogHandler(LogHandler* new_func); 732 733 // Create a LogSilencer if you want to temporarily suppress all log 734 // messages. As long as any LogSilencer objects exist, non-fatal 735 // log messages will be discarded (the current LogHandler will *not* 736 // be called). Constructing a LogSilencer is thread-safe. You may 737 // accidentally suppress log messages occurring in another thread, but 738 // since messages are generally for debugging purposes only, this isn't 739 // a big deal. If you want to intercept log messages, use SetLogHandler(). 740 class LIBPROTOBUF_EXPORT LogSilencer { 741 public: 742 LogSilencer(); 743 ~LogSilencer(); 744 }; 745 746 // =================================================================== 747 // emulates google3/base/callback.h 748 749 // Abstract interface for a callback. When calling an RPC, you must provide 750 // a Closure to call when the procedure completes. See the Service interface 751 // in service.h. 752 // 753 // To automatically construct a Closure which calls a particular function or 754 // method with a particular set of parameters, use the NewCallback() function. 755 // Example: 756 // void FooDone(const FooResponse* response) { 757 // ... 758 // } 759 // 760 // void CallFoo() { 761 // ... 762 // // When done, call FooDone() and pass it a pointer to the response. 763 // Closure* callback = NewCallback(&FooDone, response); 764 // // Make the call. 765 // service->Foo(controller, request, response, callback); 766 // } 767 // 768 // Example that calls a method: 769 // class Handler { 770 // public: 771 // ... 772 // 773 // void FooDone(const FooResponse* response) { 774 // ... 775 // } 776 // 777 // void CallFoo() { 778 // ... 779 // // When done, call FooDone() and pass it a pointer to the response. 780 // Closure* callback = NewCallback(this, &Handler::FooDone, response); 781 // // Make the call. 782 // service->Foo(controller, request, response, callback); 783 // } 784 // }; 785 // 786 // Currently NewCallback() supports binding zero, one, or two arguments. 787 // 788 // Callbacks created with NewCallback() automatically delete themselves when 789 // executed. They should be used when a callback is to be called exactly 790 // once (usually the case with RPC callbacks). If a callback may be called 791 // a different number of times (including zero), create it with 792 // NewPermanentCallback() instead. You are then responsible for deleting the 793 // callback (using the "delete" keyword as normal). 794 // 795 // Note that NewCallback() is a bit touchy regarding argument types. Generally, 796 // the values you provide for the parameter bindings must exactly match the 797 // types accepted by the callback function. For example: 798 // void Foo(string s); 799 // NewCallback(&Foo, "foo"); // WON'T WORK: const char* != string 800 // NewCallback(&Foo, string("foo")); // WORKS 801 // Also note that the arguments cannot be references: 802 // void Foo(const string& s); 803 // string my_str; 804 // NewCallback(&Foo, my_str); // WON'T WORK: Can't use referecnes. 805 // However, correctly-typed pointers will work just fine. 806 class LIBPROTOBUF_EXPORT Closure { 807 public: 808 Closure() {} 809 virtual ~Closure(); 810 811 virtual void Run() = 0; 812 813 private: 814 GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(Closure); 815 }; 816 817 namespace internal { 818 819 class LIBPROTOBUF_EXPORT FunctionClosure0 : public Closure { 820 public: 821 typedef void (*FunctionType)(); 822 823 FunctionClosure0(FunctionType function, bool self_deleting) 824 : function_(function), self_deleting_(self_deleting) {} 825 ~FunctionClosure0(); 826 827 void Run() { 828 function_(); 829 if (self_deleting_) delete this; 830 } 831 832 private: 833 FunctionType function_; 834 bool self_deleting_; 835 }; 836 837 template <typename Class> 838 class MethodClosure0 : public Closure { 839 public: 840 typedef void (Class::*MethodType)(); 841 842 MethodClosure0(Class* object, MethodType method, bool self_deleting) 843 : object_(object), method_(method), self_deleting_(self_deleting) {} 844 ~MethodClosure0() {} 845 846 void Run() { 847 (object_->*method_)(); 848 if (self_deleting_) delete this; 849 } 850 851 private: 852 Class* object_; 853 MethodType method_; 854 bool self_deleting_; 855 }; 856 857 template <typename Arg1> 858 class FunctionClosure1 : public Closure { 859 public: 860 typedef void (*FunctionType)(Arg1 arg1); 861 862 FunctionClosure1(FunctionType function, bool self_deleting, 863 Arg1 arg1) 864 : function_(function), self_deleting_(self_deleting), 865 arg1_(arg1) {} 866 ~FunctionClosure1() {} 867 868 void Run() { 869 function_(arg1_); 870 if (self_deleting_) delete this; 871 } 872 873 private: 874 FunctionType function_; 875 bool self_deleting_; 876 Arg1 arg1_; 877 }; 878 879 template <typename Class, typename Arg1> 880 class MethodClosure1 : public Closure { 881 public: 882 typedef void (Class::*MethodType)(Arg1 arg1); 883 884 MethodClosure1(Class* object, MethodType method, bool self_deleting, 885 Arg1 arg1) 886 : object_(object), method_(method), self_deleting_(self_deleting), 887 arg1_(arg1) {} 888 ~MethodClosure1() {} 889 890 void Run() { 891 (object_->*method_)(arg1_); 892 if (self_deleting_) delete this; 893 } 894 895 private: 896 Class* object_; 897 MethodType method_; 898 bool self_deleting_; 899 Arg1 arg1_; 900 }; 901 902 template <typename Arg1, typename Arg2> 903 class FunctionClosure2 : public Closure { 904 public: 905 typedef void (*FunctionType)(Arg1 arg1, Arg2 arg2); 906 907 FunctionClosure2(FunctionType function, bool self_deleting, 908 Arg1 arg1, Arg2 arg2) 909 : function_(function), self_deleting_(self_deleting), 910 arg1_(arg1), arg2_(arg2) {} 911 ~FunctionClosure2() {} 912 913 void Run() { 914 function_(arg1_, arg2_); 915 if (self_deleting_) delete this; 916 } 917 918 private: 919 FunctionType function_; 920 bool self_deleting_; 921 Arg1 arg1_; 922 Arg2 arg2_; 923 }; 924 925 template <typename Class, typename Arg1, typename Arg2> 926 class MethodClosure2 : public Closure { 927 public: 928 typedef void (Class::*MethodType)(Arg1 arg1, Arg2 arg2); 929 930 MethodClosure2(Class* object, MethodType method, bool self_deleting, 931 Arg1 arg1, Arg2 arg2) 932 : object_(object), method_(method), self_deleting_(self_deleting), 933 arg1_(arg1), arg2_(arg2) {} 934 ~MethodClosure2() {} 935 936 void Run() { 937 (object_->*method_)(arg1_, arg2_); 938 if (self_deleting_) delete this; 939 } 940 941 private: 942 Class* object_; 943 MethodType method_; 944 bool self_deleting_; 945 Arg1 arg1_; 946 Arg2 arg2_; 947 }; 948 949 } // namespace internal 950 951 // See Closure. 952 inline Closure* NewCallback(void (*function)()) { 953 return new internal::FunctionClosure0(function, true); 954 } 955 956 // See Closure. 957 inline Closure* NewPermanentCallback(void (*function)()) { 958 return new internal::FunctionClosure0(function, false); 959 } 960 961 // See Closure. 962 template <typename Class> 963 inline Closure* NewCallback(Class* object, void (Class::*method)()) { 964 return new internal::MethodClosure0<Class>(object, method, true); 965 } 966 967 // See Closure. 968 template <typename Class> 969 inline Closure* NewPermanentCallback(Class* object, void (Class::*method)()) { 970 return new internal::MethodClosure0<Class>(object, method, false); 971 } 972 973 // See Closure. 974 template <typename Arg1> 975 inline Closure* NewCallback(void (*function)(Arg1), 976 Arg1 arg1) { 977 return new internal::FunctionClosure1<Arg1>(function, true, arg1); 978 } 979 980 // See Closure. 981 template <typename Arg1> 982 inline Closure* NewPermanentCallback(void (*function)(Arg1), 983 Arg1 arg1) { 984 return new internal::FunctionClosure1<Arg1>(function, false, arg1); 985 } 986 987 // See Closure. 988 template <typename Class, typename Arg1> 989 inline Closure* NewCallback(Class* object, void (Class::*method)(Arg1), 990 Arg1 arg1) { 991 return new internal::MethodClosure1<Class, Arg1>(object, method, true, arg1); 992 } 993 994 // See Closure. 995 template <typename Class, typename Arg1> 996 inline Closure* NewPermanentCallback(Class* object, void (Class::*method)(Arg1), 997 Arg1 arg1) { 998 return new internal::MethodClosure1<Class, Arg1>(object, method, false, arg1); 999 } 1000 1001 // See Closure. 1002 template <typename Arg1, typename Arg2> 1003 inline Closure* NewCallback(void (*function)(Arg1, Arg2), 1004 Arg1 arg1, Arg2 arg2) { 1005 return new internal::FunctionClosure2<Arg1, Arg2>( 1006 function, true, arg1, arg2); 1007 } 1008 1009 // See Closure. 1010 template <typename Arg1, typename Arg2> 1011 inline Closure* NewPermanentCallback(void (*function)(Arg1, Arg2), 1012 Arg1 arg1, Arg2 arg2) { 1013 return new internal::FunctionClosure2<Arg1, Arg2>( 1014 function, false, arg1, arg2); 1015 } 1016 1017 // See Closure. 1018 template <typename Class, typename Arg1, typename Arg2> 1019 inline Closure* NewCallback(Class* object, void (Class::*method)(Arg1, Arg2), 1020 Arg1 arg1, Arg2 arg2) { 1021 return new internal::MethodClosure2<Class, Arg1, Arg2>( 1022 object, method, true, arg1, arg2); 1023 } 1024 1025 // See Closure. 1026 template <typename Class, typename Arg1, typename Arg2> 1027 inline Closure* NewPermanentCallback( 1028 Class* object, void (Class::*method)(Arg1, Arg2), 1029 Arg1 arg1, Arg2 arg2) { 1030 return new internal::MethodClosure2<Class, Arg1, Arg2>( 1031 object, method, false, arg1, arg2); 1032 } 1033 1034 // A function which does nothing. Useful for creating no-op callbacks, e.g.: 1035 // Closure* nothing = NewCallback(&DoNothing); 1036 void LIBPROTOBUF_EXPORT DoNothing(); 1037 1038 // =================================================================== 1039 // emulates google3/base/mutex.h 1040 1041 namespace internal { 1042 1043 // A Mutex is a non-reentrant (aka non-recursive) mutex. At most one thread T 1044 // may hold a mutex at a given time. If T attempts to Lock() the same Mutex 1045 // while holding it, T will deadlock. 1046 class LIBPROTOBUF_EXPORT Mutex { 1047 public: 1048 // Create a Mutex that is not held by anybody. 1049 Mutex(); 1050 1051 // Destructor 1052 ~Mutex(); 1053 1054 // Block if necessary until this Mutex is free, then acquire it exclusively. 1055 void Lock(); 1056 1057 // Release this Mutex. Caller must hold it exclusively. 1058 void Unlock(); 1059 1060 // Crash if this Mutex is not held exclusively by this thread. 1061 // May fail to crash when it should; will never crash when it should not. 1062 void AssertHeld(); 1063 1064 private: 1065 struct Internal; 1066 Internal* mInternal; 1067 1068 GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(Mutex); 1069 }; 1070 1071 // MutexLock(mu) acquires mu when constructed and releases it when destroyed. 1072 class LIBPROTOBUF_EXPORT MutexLock { 1073 public: 1074 explicit MutexLock(Mutex *mu) : mu_(mu) { this->mu_->Lock(); } 1075 ~MutexLock() { this->mu_->Unlock(); } 1076 private: 1077 Mutex *const mu_; 1078 GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(MutexLock); 1079 }; 1080 1081 // TODO(kenton): Implement these? Hard to implement portably. 1082 typedef MutexLock ReaderMutexLock; 1083 typedef MutexLock WriterMutexLock; 1084 1085 // MutexLockMaybe is like MutexLock, but is a no-op when mu is NULL. 1086 class LIBPROTOBUF_EXPORT MutexLockMaybe { 1087 public: 1088 explicit MutexLockMaybe(Mutex *mu) : 1089 mu_(mu) { if (this->mu_ != NULL) { this->mu_->Lock(); } } 1090 ~MutexLockMaybe() { if (this->mu_ != NULL) { this->mu_->Unlock(); } } 1091 private: 1092 Mutex *const mu_; 1093 GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(MutexLockMaybe); 1094 }; 1095 1096 } // namespace internal 1097 1098 // We made these internal so that they would show up as such in the docs, 1099 // but we don't want to stick "internal::" in front of them everywhere. 1100 using internal::Mutex; 1101 using internal::MutexLock; 1102 using internal::ReaderMutexLock; 1103 using internal::WriterMutexLock; 1104 using internal::MutexLockMaybe; 1105 1106 // =================================================================== 1107 // from google3/base/type_traits.h 1108 1109 namespace internal { 1110 1111 // Specified by TR1 [4.7.4] Pointer modifications. 1112 template<typename T> struct remove_pointer { typedef T type; }; 1113 template<typename T> struct remove_pointer<T*> { typedef T type; }; 1114 template<typename T> struct remove_pointer<T* const> { typedef T type; }; 1115 template<typename T> struct remove_pointer<T* volatile> { typedef T type; }; 1116 template<typename T> struct remove_pointer<T* const volatile> { 1117 typedef T type; }; 1118 1119 // =================================================================== 1120 1121 // Checks if the buffer contains structurally-valid UTF-8. Implemented in 1122 // structurally_valid.cc. 1123 LIBPROTOBUF_EXPORT bool IsStructurallyValidUTF8(const char* buf, int len); 1124 1125 } // namespace internal 1126 1127 // =================================================================== 1128 // Shutdown support. 1129 1130 // Shut down the entire protocol buffers library, deleting all static-duration 1131 // objects allocated by the library or by generated .pb.cc files. 1132 // 1133 // There are two reasons you might want to call this: 1134 // * You use a draconian definition of "memory leak" in which you expect 1135 // every single malloc() to have a corresponding free(), even for objects 1136 // which live until program exit. 1137 // * You are writing a dynamically-loaded library which needs to clean up 1138 // after itself when the library is unloaded. 1139 // 1140 // It is safe to call this multiple times. However, it is not safe to use 1141 // any other part of the protocol buffers library after 1142 // ShutdownProtobufLibrary() has been called. 1143 LIBPROTOBUF_EXPORT void ShutdownProtobufLibrary(); 1144 1145 namespace internal { 1146 1147 // Register a function to be called when ShutdownProtocolBuffers() is called. 1148 LIBPROTOBUF_EXPORT void OnShutdown(void (*func)()); 1149 1150 } // namespace internal 1151 1152 } // namespace protobuf 1153 } // namespace google 1154 1155 #endif // GOOGLE_PROTOBUF_COMMON_H__ 1156