Home | History | Annotate | Download | only in stubs
      1 // Protocol Buffers - Google's data interchange format
      2 // Copyright 2008 Google Inc.  All rights reserved.
      3 // http://code.google.com/p/protobuf/
      4 //
      5 // Redistribution and use in source and binary forms, with or without
      6 // modification, are permitted provided that the following conditions are
      7 // met:
      8 //
      9 //     * Redistributions of source code must retain the above copyright
     10 // notice, this list of conditions and the following disclaimer.
     11 //     * Redistributions in binary form must reproduce the above
     12 // copyright notice, this list of conditions and the following disclaimer
     13 // in the documentation and/or other materials provided with the
     14 // distribution.
     15 //     * Neither the name of Google Inc. nor the names of its
     16 // contributors may be used to endorse or promote products derived from
     17 // this software without specific prior written permission.
     18 //
     19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     20 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     21 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     22 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     23 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     24 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     25 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     26 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     27 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     28 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     29 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     30 
     31 // Author: kenton (at) google.com (Kenton Varda) and others
     32 //
     33 // Contains basic types and utilities used by the rest of the library.
     34 
     35 #ifndef GOOGLE_PROTOBUF_COMMON_H__
     36 #define GOOGLE_PROTOBUF_COMMON_H__
     37 
     38 #include <assert.h>
     39 #include <stdlib.h>
     40 #include <cstddef>
     41 #include <string>
     42 #include <string.h>
     43 #if defined(__osf__)
     44 // Tru64 lacks stdint.h, but has inttypes.h which defines a superset of
     45 // what stdint.h would define.
     46 #include <inttypes.h>
     47 #elif !defined(_MSC_VER)
     48 #include <stdint.h>
     49 #endif
     50 
     51 namespace std {}
     52 
     53 namespace google {
     54 namespace protobuf {
     55 
     56 using namespace std;  // Don't do this at home, kids.
     57 
     58 #undef GOOGLE_DISALLOW_EVIL_CONSTRUCTORS
     59 #define GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(TypeName)    \
     60   TypeName(const TypeName&);                           \
     61   void operator=(const TypeName&)
     62 
     63 #if defined(_MSC_VER) && defined(PROTOBUF_USE_DLLS)
     64   #ifdef LIBPROTOBUF_EXPORTS
     65     #define LIBPROTOBUF_EXPORT __declspec(dllexport)
     66   #else
     67     #define LIBPROTOBUF_EXPORT __declspec(dllimport)
     68   #endif
     69   #ifdef LIBPROTOC_EXPORTS
     70     #define LIBPROTOC_EXPORT   __declspec(dllexport)
     71   #else
     72     #define LIBPROTOC_EXPORT   __declspec(dllimport)
     73   #endif
     74 #else
     75   #define LIBPROTOBUF_EXPORT
     76   #define LIBPROTOC_EXPORT
     77 #endif
     78 
     79 namespace internal {
     80 
     81 // Some of these constants are macros rather than const ints so that they can
     82 // be used in #if directives.
     83 
     84 // The current version, represented as a single integer to make comparison
     85 // easier:  major * 10^6 + minor * 10^3 + micro
     86 #define GOOGLE_PROTOBUF_VERSION 2003000
     87 
     88 // The minimum library version which works with the current version of the
     89 // headers.
     90 #define GOOGLE_PROTOBUF_MIN_LIBRARY_VERSION 2003000
     91 
     92 // The minimum header version which works with the current version of
     93 // the library.  This constant should only be used by protoc's C++ code
     94 // generator.
     95 static const int kMinHeaderVersionForLibrary = 2003000;
     96 
     97 // The minimum protoc version which works with the current version of the
     98 // headers.
     99 #define GOOGLE_PROTOBUF_MIN_PROTOC_VERSION 2003000
    100 
    101 // The minimum header version which works with the current version of
    102 // protoc.  This constant should only be used in VerifyVersion().
    103 static const int kMinHeaderVersionForProtoc = 2003000;
    104 
    105 // Verifies that the headers and libraries are compatible.  Use the macro
    106 // below to call this.
    107 void LIBPROTOBUF_EXPORT VerifyVersion(int headerVersion, int minLibraryVersion,
    108                                       const char* filename);
    109 
    110 // Converts a numeric version number to a string.
    111 string LIBPROTOBUF_EXPORT VersionString(int version);
    112 
    113 }  // namespace internal
    114 
    115 // Place this macro in your main() function (or somewhere before you attempt
    116 // to use the protobuf library) to verify that the version you link against
    117 // matches the headers you compiled against.  If a version mismatch is
    118 // detected, the process will abort.
    119 #define GOOGLE_PROTOBUF_VERIFY_VERSION                                    \
    120   ::google::protobuf::internal::VerifyVersion(                            \
    121     GOOGLE_PROTOBUF_VERSION, GOOGLE_PROTOBUF_MIN_LIBRARY_VERSION,         \
    122     __FILE__)
    123 
    124 // ===================================================================
    125 // from google3/base/port.h
    126 
    127 typedef unsigned int uint;
    128 
    129 #ifdef _MSC_VER
    130 typedef __int8  int8;
    131 typedef __int16 int16;
    132 typedef __int32 int32;
    133 typedef __int64 int64;
    134 
    135 typedef unsigned __int8  uint8;
    136 typedef unsigned __int16 uint16;
    137 typedef unsigned __int32 uint32;
    138 typedef unsigned __int64 uint64;
    139 #else
    140 typedef int8_t  int8;
    141 typedef int16_t int16;
    142 typedef int32_t int32;
    143 typedef int64_t int64;
    144 
    145 typedef uint8_t  uint8;
    146 typedef uint16_t uint16;
    147 typedef uint32_t uint32;
    148 typedef uint64_t uint64;
    149 #endif
    150 
    151 // long long macros to be used because gcc and vc++ use different suffixes,
    152 // and different size specifiers in format strings
    153 #undef GOOGLE_LONGLONG
    154 #undef GOOGLE_ULONGLONG
    155 #undef GOOGLE_LL_FORMAT
    156 
    157 #ifdef _MSC_VER
    158 #define GOOGLE_LONGLONG(x) x##I64
    159 #define GOOGLE_ULONGLONG(x) x##UI64
    160 #define GOOGLE_LL_FORMAT "I64"  // As in printf("%I64d", ...)
    161 #else
    162 #define GOOGLE_LONGLONG(x) x##LL
    163 #define GOOGLE_ULONGLONG(x) x##ULL
    164 #define GOOGLE_LL_FORMAT "ll"  // As in "%lld". Note that "q" is poor form also.
    165 #endif
    166 
    167 static const int32 kint32max = 0x7FFFFFFF;
    168 static const int32 kint32min = -kint32max - 1;
    169 static const int64 kint64max = GOOGLE_LONGLONG(0x7FFFFFFFFFFFFFFF);
    170 static const int64 kint64min = -kint64max - 1;
    171 static const uint32 kuint32max = 0xFFFFFFFFu;
    172 static const uint64 kuint64max = GOOGLE_ULONGLONG(0xFFFFFFFFFFFFFFFF);
    173 
    174 // -------------------------------------------------------------------
    175 // Annotations:  Some parts of the code have been annotated in ways that might
    176 //   be useful to some compilers or tools, but are not supported universally.
    177 //   You can #define these annotations yourself if the default implementation
    178 //   is not right for you.
    179 
    180 #ifndef GOOGLE_ATTRIBUTE_ALWAYS_INLINE
    181 #if defined(__GNUC__) && (__GNUC__ > 3 ||(__GNUC__ == 3 && __GNUC_MINOR__ >= 1))
    182 // For functions we want to force inline.
    183 // Introduced in gcc 3.1.
    184 #define GOOGLE_ATTRIBUTE_ALWAYS_INLINE __attribute__ ((always_inline))
    185 #else
    186 // Other compilers will have to figure it out for themselves.
    187 #define GOOGLE_ATTRIBUTE_ALWAYS_INLINE
    188 #endif
    189 #endif
    190 
    191 #ifndef GOOGLE_ATTRIBUTE_DEPRECATED
    192 #ifdef __GNUC__
    193 // If the method/variable/type is used anywhere, produce a warning.
    194 #define GOOGLE_ATTRIBUTE_DEPRECATED __attribute__((deprecated))
    195 #else
    196 #define GOOGLE_ATTRIBUTE_DEPRECATED
    197 #endif
    198 #endif
    199 
    200 #ifndef GOOGLE_PREDICT_TRUE
    201 #ifdef __GNUC__
    202 // Provided at least since GCC 3.0.
    203 #define GOOGLE_PREDICT_TRUE(x) (__builtin_expect(!!(x), 1))
    204 #else
    205 #define GOOGLE_PREDICT_TRUE
    206 #endif
    207 #endif
    208 
    209 // Delimits a block of code which may write to memory which is simultaneously
    210 // written by other threads, but which has been determined to be thread-safe
    211 // (e.g. because it is an idempotent write).
    212 #ifndef GOOGLE_SAFE_CONCURRENT_WRITES_BEGIN
    213 #define GOOGLE_SAFE_CONCURRENT_WRITES_BEGIN()
    214 #endif
    215 #ifndef GOOGLE_SAFE_CONCURRENT_WRITES_END
    216 #define GOOGLE_SAFE_CONCURRENT_WRITES_END()
    217 #endif
    218 
    219 // ===================================================================
    220 // from google3/base/basictypes.h
    221 
    222 // The GOOGLE_ARRAYSIZE(arr) macro returns the # of elements in an array arr.
    223 // The expression is a compile-time constant, and therefore can be
    224 // used in defining new arrays, for example.
    225 //
    226 // GOOGLE_ARRAYSIZE catches a few type errors.  If you see a compiler error
    227 //
    228 //   "warning: division by zero in ..."
    229 //
    230 // when using GOOGLE_ARRAYSIZE, you are (wrongfully) giving it a pointer.
    231 // You should only use GOOGLE_ARRAYSIZE on statically allocated arrays.
    232 //
    233 // The following comments are on the implementation details, and can
    234 // be ignored by the users.
    235 //
    236 // ARRAYSIZE(arr) works by inspecting sizeof(arr) (the # of bytes in
    237 // the array) and sizeof(*(arr)) (the # of bytes in one array
    238 // element).  If the former is divisible by the latter, perhaps arr is
    239 // indeed an array, in which case the division result is the # of
    240 // elements in the array.  Otherwise, arr cannot possibly be an array,
    241 // and we generate a compiler error to prevent the code from
    242 // compiling.
    243 //
    244 // Since the size of bool is implementation-defined, we need to cast
    245 // !(sizeof(a) & sizeof(*(a))) to size_t in order to ensure the final
    246 // result has type size_t.
    247 //
    248 // This macro is not perfect as it wrongfully accepts certain
    249 // pointers, namely where the pointer size is divisible by the pointee
    250 // size.  Since all our code has to go through a 32-bit compiler,
    251 // where a pointer is 4 bytes, this means all pointers to a type whose
    252 // size is 3 or greater than 4 will be (righteously) rejected.
    253 //
    254 // Kudos to Jorg Brown for this simple and elegant implementation.
    255 
    256 #undef GOOGLE_ARRAYSIZE
    257 #define GOOGLE_ARRAYSIZE(a) \
    258   ((sizeof(a) / sizeof(*(a))) / \
    259    static_cast<size_t>(!(sizeof(a) % sizeof(*(a)))))
    260 
    261 namespace internal {
    262 
    263 // Use implicit_cast as a safe version of static_cast or const_cast
    264 // for upcasting in the type hierarchy (i.e. casting a pointer to Foo
    265 // to a pointer to SuperclassOfFoo or casting a pointer to Foo to
    266 // a const pointer to Foo).
    267 // When you use implicit_cast, the compiler checks that the cast is safe.
    268 // Such explicit implicit_casts are necessary in surprisingly many
    269 // situations where C++ demands an exact type match instead of an
    270 // argument type convertable to a target type.
    271 //
    272 // The From type can be inferred, so the preferred syntax for using
    273 // implicit_cast is the same as for static_cast etc.:
    274 //
    275 //   implicit_cast<ToType>(expr)
    276 //
    277 // implicit_cast would have been part of the C++ standard library,
    278 // but the proposal was submitted too late.  It will probably make
    279 // its way into the language in the future.
    280 template<typename To, typename From>
    281 inline To implicit_cast(From const &f) {
    282   return f;
    283 }
    284 
    285 // When you upcast (that is, cast a pointer from type Foo to type
    286 // SuperclassOfFoo), it's fine to use implicit_cast<>, since upcasts
    287 // always succeed.  When you downcast (that is, cast a pointer from
    288 // type Foo to type SubclassOfFoo), static_cast<> isn't safe, because
    289 // how do you know the pointer is really of type SubclassOfFoo?  It
    290 // could be a bare Foo, or of type DifferentSubclassOfFoo.  Thus,
    291 // when you downcast, you should use this macro.  In debug mode, we
    292 // use dynamic_cast<> to double-check the downcast is legal (we die
    293 // if it's not).  In normal mode, we do the efficient static_cast<>
    294 // instead.  Thus, it's important to test in debug mode to make sure
    295 // the cast is legal!
    296 //    This is the only place in the code we should use dynamic_cast<>.
    297 // In particular, you SHOULDN'T be using dynamic_cast<> in order to
    298 // do RTTI (eg code like this:
    299 //    if (dynamic_cast<Subclass1>(foo)) HandleASubclass1Object(foo);
    300 //    if (dynamic_cast<Subclass2>(foo)) HandleASubclass2Object(foo);
    301 // You should design the code some other way not to need this.
    302 
    303 template<typename To, typename From>     // use like this: down_cast<T*>(foo);
    304 inline To down_cast(From* f) {                   // so we only accept pointers
    305   // Ensures that To is a sub-type of From *.  This test is here only
    306   // for compile-time type checking, and has no overhead in an
    307   // optimized build at run-time, as it will be optimized away
    308   // completely.
    309   if (false) {
    310     implicit_cast<From*, To>(0);
    311   }
    312 
    313 #if !defined(NDEBUG) && !defined(GOOGLE_PROTOBUF_NO_RTTI)
    314   assert(f == NULL || dynamic_cast<To>(f) != NULL);  // RTTI: debug mode only!
    315 #endif
    316   return static_cast<To>(f);
    317 }
    318 
    319 }  // namespace internal
    320 
    321 // We made these internal so that they would show up as such in the docs,
    322 // but we don't want to stick "internal::" in front of them everywhere.
    323 using internal::implicit_cast;
    324 using internal::down_cast;
    325 
    326 // The COMPILE_ASSERT macro can be used to verify that a compile time
    327 // expression is true. For example, you could use it to verify the
    328 // size of a static array:
    329 //
    330 //   COMPILE_ASSERT(ARRAYSIZE(content_type_names) == CONTENT_NUM_TYPES,
    331 //                  content_type_names_incorrect_size);
    332 //
    333 // or to make sure a struct is smaller than a certain size:
    334 //
    335 //   COMPILE_ASSERT(sizeof(foo) < 128, foo_too_large);
    336 //
    337 // The second argument to the macro is the name of the variable. If
    338 // the expression is false, most compilers will issue a warning/error
    339 // containing the name of the variable.
    340 
    341 namespace internal {
    342 
    343 template <bool>
    344 struct CompileAssert {
    345 };
    346 
    347 }  // namespace internal
    348 
    349 #undef GOOGLE_COMPILE_ASSERT
    350 #define GOOGLE_COMPILE_ASSERT(expr, msg) \
    351   typedef ::google::protobuf::internal::CompileAssert<(bool(expr))> \
    352           msg[bool(expr) ? 1 : -1]
    353 
    354 // Implementation details of COMPILE_ASSERT:
    355 //
    356 // - COMPILE_ASSERT works by defining an array type that has -1
    357 //   elements (and thus is invalid) when the expression is false.
    358 //
    359 // - The simpler definition
    360 //
    361 //     #define COMPILE_ASSERT(expr, msg) typedef char msg[(expr) ? 1 : -1]
    362 //
    363 //   does not work, as gcc supports variable-length arrays whose sizes
    364 //   are determined at run-time (this is gcc's extension and not part
    365 //   of the C++ standard).  As a result, gcc fails to reject the
    366 //   following code with the simple definition:
    367 //
    368 //     int foo;
    369 //     COMPILE_ASSERT(foo, msg); // not supposed to compile as foo is
    370 //                               // not a compile-time constant.
    371 //
    372 // - By using the type CompileAssert<(bool(expr))>, we ensures that
    373 //   expr is a compile-time constant.  (Template arguments must be
    374 //   determined at compile-time.)
    375 //
    376 // - The outter parentheses in CompileAssert<(bool(expr))> are necessary
    377 //   to work around a bug in gcc 3.4.4 and 4.0.1.  If we had written
    378 //
    379 //     CompileAssert<bool(expr)>
    380 //
    381 //   instead, these compilers will refuse to compile
    382 //
    383 //     COMPILE_ASSERT(5 > 0, some_message);
    384 //
    385 //   (They seem to think the ">" in "5 > 0" marks the end of the
    386 //   template argument list.)
    387 //
    388 // - The array size is (bool(expr) ? 1 : -1), instead of simply
    389 //
    390 //     ((expr) ? 1 : -1).
    391 //
    392 //   This is to avoid running into a bug in MS VC 7.1, which
    393 //   causes ((0.0) ? 1 : -1) to incorrectly evaluate to 1.
    394 
    395 // ===================================================================
    396 // from google3/base/scoped_ptr.h
    397 
    398 namespace internal {
    399 
    400 //  This is an implementation designed to match the anticipated future TR2
    401 //  implementation of the scoped_ptr class, and its closely-related brethren,
    402 //  scoped_array, scoped_ptr_malloc, and make_scoped_ptr.
    403 
    404 template <class C> class scoped_ptr;
    405 template <class C> class scoped_array;
    406 
    407 // A scoped_ptr<T> is like a T*, except that the destructor of scoped_ptr<T>
    408 // automatically deletes the pointer it holds (if any).
    409 // That is, scoped_ptr<T> owns the T object that it points to.
    410 // Like a T*, a scoped_ptr<T> may hold either NULL or a pointer to a T object.
    411 //
    412 // The size of a scoped_ptr is small:
    413 // sizeof(scoped_ptr<C>) == sizeof(C*)
    414 template <class C>
    415 class scoped_ptr {
    416  public:
    417 
    418   // The element type
    419   typedef C element_type;
    420 
    421   // Constructor.  Defaults to intializing with NULL.
    422   // There is no way to create an uninitialized scoped_ptr.
    423   // The input parameter must be allocated with new.
    424   explicit scoped_ptr(C* p = NULL) : ptr_(p) { }
    425 
    426   // Destructor.  If there is a C object, delete it.
    427   // We don't need to test ptr_ == NULL because C++ does that for us.
    428   ~scoped_ptr() {
    429     enum { type_must_be_complete = sizeof(C) };
    430     delete ptr_;
    431   }
    432 
    433   // Reset.  Deletes the current owned object, if any.
    434   // Then takes ownership of a new object, if given.
    435   // this->reset(this->get()) works.
    436   void reset(C* p = NULL) {
    437     if (p != ptr_) {
    438       enum { type_must_be_complete = sizeof(C) };
    439       delete ptr_;
    440       ptr_ = p;
    441     }
    442   }
    443 
    444   // Accessors to get the owned object.
    445   // operator* and operator-> will assert() if there is no current object.
    446   C& operator*() const {
    447     assert(ptr_ != NULL);
    448     return *ptr_;
    449   }
    450   C* operator->() const  {
    451     assert(ptr_ != NULL);
    452     return ptr_;
    453   }
    454   C* get() const { return ptr_; }
    455 
    456   // Comparison operators.
    457   // These return whether two scoped_ptr refer to the same object, not just to
    458   // two different but equal objects.
    459   bool operator==(C* p) const { return ptr_ == p; }
    460   bool operator!=(C* p) const { return ptr_ != p; }
    461 
    462   // Swap two scoped pointers.
    463   void swap(scoped_ptr& p2) {
    464     C* tmp = ptr_;
    465     ptr_ = p2.ptr_;
    466     p2.ptr_ = tmp;
    467   }
    468 
    469   // Release a pointer.
    470   // The return value is the current pointer held by this object.
    471   // If this object holds a NULL pointer, the return value is NULL.
    472   // After this operation, this object will hold a NULL pointer,
    473   // and will not own the object any more.
    474   C* release() {
    475     C* retVal = ptr_;
    476     ptr_ = NULL;
    477     return retVal;
    478   }
    479 
    480  private:
    481   C* ptr_;
    482 
    483   // Forbid comparison of scoped_ptr types.  If C2 != C, it totally doesn't
    484   // make sense, and if C2 == C, it still doesn't make sense because you should
    485   // never have the same object owned by two different scoped_ptrs.
    486   template <class C2> bool operator==(scoped_ptr<C2> const& p2) const;
    487   template <class C2> bool operator!=(scoped_ptr<C2> const& p2) const;
    488 
    489   // Disallow evil constructors
    490   scoped_ptr(const scoped_ptr&);
    491   void operator=(const scoped_ptr&);
    492 };
    493 
    494 // scoped_array<C> is like scoped_ptr<C>, except that the caller must allocate
    495 // with new [] and the destructor deletes objects with delete [].
    496 //
    497 // As with scoped_ptr<C>, a scoped_array<C> either points to an object
    498 // or is NULL.  A scoped_array<C> owns the object that it points to.
    499 //
    500 // Size: sizeof(scoped_array<C>) == sizeof(C*)
    501 template <class C>
    502 class scoped_array {
    503  public:
    504 
    505   // The element type
    506   typedef C element_type;
    507 
    508   // Constructor.  Defaults to intializing with NULL.
    509   // There is no way to create an uninitialized scoped_array.
    510   // The input parameter must be allocated with new [].
    511   explicit scoped_array(C* p = NULL) : array_(p) { }
    512 
    513   // Destructor.  If there is a C object, delete it.
    514   // We don't need to test ptr_ == NULL because C++ does that for us.
    515   ~scoped_array() {
    516     enum { type_must_be_complete = sizeof(C) };
    517     delete[] array_;
    518   }
    519 
    520   // Reset.  Deletes the current owned object, if any.
    521   // Then takes ownership of a new object, if given.
    522   // this->reset(this->get()) works.
    523   void reset(C* p = NULL) {
    524     if (p != array_) {
    525       enum { type_must_be_complete = sizeof(C) };
    526       delete[] array_;
    527       array_ = p;
    528     }
    529   }
    530 
    531   // Get one element of the current object.
    532   // Will assert() if there is no current object, or index i is negative.
    533   C& operator[](std::ptrdiff_t i) const {
    534     assert(i >= 0);
    535     assert(array_ != NULL);
    536     return array_[i];
    537   }
    538 
    539   // Get a pointer to the zeroth element of the current object.
    540   // If there is no current object, return NULL.
    541   C* get() const {
    542     return array_;
    543   }
    544 
    545   // Comparison operators.
    546   // These return whether two scoped_array refer to the same object, not just to
    547   // two different but equal objects.
    548   bool operator==(C* p) const { return array_ == p; }
    549   bool operator!=(C* p) const { return array_ != p; }
    550 
    551   // Swap two scoped arrays.
    552   void swap(scoped_array& p2) {
    553     C* tmp = array_;
    554     array_ = p2.array_;
    555     p2.array_ = tmp;
    556   }
    557 
    558   // Release an array.
    559   // The return value is the current pointer held by this object.
    560   // If this object holds a NULL pointer, the return value is NULL.
    561   // After this operation, this object will hold a NULL pointer,
    562   // and will not own the object any more.
    563   C* release() {
    564     C* retVal = array_;
    565     array_ = NULL;
    566     return retVal;
    567   }
    568 
    569  private:
    570   C* array_;
    571 
    572   // Forbid comparison of different scoped_array types.
    573   template <class C2> bool operator==(scoped_array<C2> const& p2) const;
    574   template <class C2> bool operator!=(scoped_array<C2> const& p2) const;
    575 
    576   // Disallow evil constructors
    577   scoped_array(const scoped_array&);
    578   void operator=(const scoped_array&);
    579 };
    580 
    581 }  // namespace internal
    582 
    583 // We made these internal so that they would show up as such in the docs,
    584 // but we don't want to stick "internal::" in front of them everywhere.
    585 using internal::scoped_ptr;
    586 using internal::scoped_array;
    587 
    588 // ===================================================================
    589 // emulates google3/base/logging.h
    590 
    591 enum LogLevel {
    592   LOGLEVEL_INFO,     // Informational.  This is never actually used by
    593                      // libprotobuf.
    594   LOGLEVEL_WARNING,  // Warns about issues that, although not technically a
    595                      // problem now, could cause problems in the future.  For
    596                      // example, a // warning will be printed when parsing a
    597                      // message that is near the message size limit.
    598   LOGLEVEL_ERROR,    // An error occurred which should never happen during
    599                      // normal use.
    600   LOGLEVEL_FATAL,    // An error occurred from which the library cannot
    601                      // recover.  This usually indicates a programming error
    602                      // in the code which calls the library, especially when
    603                      // compiled in debug mode.
    604 
    605 #ifdef NDEBUG
    606   LOGLEVEL_DFATAL = LOGLEVEL_ERROR
    607 #else
    608   LOGLEVEL_DFATAL = LOGLEVEL_FATAL
    609 #endif
    610 };
    611 
    612 namespace internal {
    613 
    614 class LogFinisher;
    615 
    616 class LIBPROTOBUF_EXPORT LogMessage {
    617  public:
    618   LogMessage(LogLevel level, const char* filename, int line);
    619   ~LogMessage();
    620 
    621   LogMessage& operator<<(const string& value);
    622   LogMessage& operator<<(const char* value);
    623   LogMessage& operator<<(char value);
    624   LogMessage& operator<<(int value);
    625   LogMessage& operator<<(uint value);
    626   LogMessage& operator<<(long value);
    627   LogMessage& operator<<(unsigned long value);
    628   LogMessage& operator<<(double value);
    629 
    630  private:
    631   friend class LogFinisher;
    632   void Finish();
    633 
    634   LogLevel level_;
    635   const char* filename_;
    636   int line_;
    637   string message_;
    638 };
    639 
    640 // Used to make the entire "LOG(BLAH) << etc." expression have a void return
    641 // type and print a newline after each message.
    642 class LIBPROTOBUF_EXPORT LogFinisher {
    643  public:
    644   void operator=(LogMessage& other);
    645 };
    646 
    647 }  // namespace internal
    648 
    649 // Undef everything in case we're being mixed with some other Google library
    650 // which already defined them itself.  Presumably all Google libraries will
    651 // support the same syntax for these so it should not be a big deal if they
    652 // end up using our definitions instead.
    653 #undef GOOGLE_LOG
    654 #undef GOOGLE_LOG_IF
    655 
    656 #undef GOOGLE_CHECK
    657 #undef GOOGLE_CHECK_EQ
    658 #undef GOOGLE_CHECK_NE
    659 #undef GOOGLE_CHECK_LT
    660 #undef GOOGLE_CHECK_LE
    661 #undef GOOGLE_CHECK_GT
    662 #undef GOOGLE_CHECK_GE
    663 
    664 #undef GOOGLE_DLOG
    665 #undef GOOGLE_DCHECK
    666 #undef GOOGLE_DCHECK_EQ
    667 #undef GOOGLE_DCHECK_NE
    668 #undef GOOGLE_DCHECK_LT
    669 #undef GOOGLE_DCHECK_LE
    670 #undef GOOGLE_DCHECK_GT
    671 #undef GOOGLE_DCHECK_GE
    672 
    673 #define GOOGLE_LOG(LEVEL)                                                 \
    674   ::google::protobuf::internal::LogFinisher() =                           \
    675     ::google::protobuf::internal::LogMessage(                             \
    676       ::google::protobuf::LOGLEVEL_##LEVEL, __FILE__, __LINE__)
    677 #define GOOGLE_LOG_IF(LEVEL, CONDITION) \
    678   !(CONDITION) ? (void)0 : GOOGLE_LOG(LEVEL)
    679 
    680 #define GOOGLE_CHECK(EXPRESSION) \
    681   GOOGLE_LOG_IF(FATAL, !(EXPRESSION)) << "CHECK failed: " #EXPRESSION ": "
    682 #define GOOGLE_CHECK_EQ(A, B) GOOGLE_CHECK((A) == (B))
    683 #define GOOGLE_CHECK_NE(A, B) GOOGLE_CHECK((A) != (B))
    684 #define GOOGLE_CHECK_LT(A, B) GOOGLE_CHECK((A) <  (B))
    685 #define GOOGLE_CHECK_LE(A, B) GOOGLE_CHECK((A) <= (B))
    686 #define GOOGLE_CHECK_GT(A, B) GOOGLE_CHECK((A) >  (B))
    687 #define GOOGLE_CHECK_GE(A, B) GOOGLE_CHECK((A) >= (B))
    688 
    689 #ifdef NDEBUG
    690 
    691 #define GOOGLE_DLOG GOOGLE_LOG_IF(INFO, false)
    692 
    693 #define GOOGLE_DCHECK(EXPRESSION) while(false) GOOGLE_CHECK(EXPRESSION)
    694 #define GOOGLE_DCHECK_EQ(A, B) GOOGLE_DCHECK((A) == (B))
    695 #define GOOGLE_DCHECK_NE(A, B) GOOGLE_DCHECK((A) != (B))
    696 #define GOOGLE_DCHECK_LT(A, B) GOOGLE_DCHECK((A) <  (B))
    697 #define GOOGLE_DCHECK_LE(A, B) GOOGLE_DCHECK((A) <= (B))
    698 #define GOOGLE_DCHECK_GT(A, B) GOOGLE_DCHECK((A) >  (B))
    699 #define GOOGLE_DCHECK_GE(A, B) GOOGLE_DCHECK((A) >= (B))
    700 
    701 #else  // NDEBUG
    702 
    703 #define GOOGLE_DLOG GOOGLE_LOG
    704 
    705 #define GOOGLE_DCHECK    GOOGLE_CHECK
    706 #define GOOGLE_DCHECK_EQ GOOGLE_CHECK_EQ
    707 #define GOOGLE_DCHECK_NE GOOGLE_CHECK_NE
    708 #define GOOGLE_DCHECK_LT GOOGLE_CHECK_LT
    709 #define GOOGLE_DCHECK_LE GOOGLE_CHECK_LE
    710 #define GOOGLE_DCHECK_GT GOOGLE_CHECK_GT
    711 #define GOOGLE_DCHECK_GE GOOGLE_CHECK_GE
    712 
    713 #endif  // !NDEBUG
    714 
    715 typedef void LogHandler(LogLevel level, const char* filename, int line,
    716                         const string& message);
    717 
    718 // The protobuf library sometimes writes warning and error messages to
    719 // stderr.  These messages are primarily useful for developers, but may
    720 // also help end users figure out a problem.  If you would prefer that
    721 // these messages be sent somewhere other than stderr, call SetLogHandler()
    722 // to set your own handler.  This returns the old handler.  Set the handler
    723 // to NULL to ignore log messages (but see also LogSilencer, below).
    724 //
    725 // Obviously, SetLogHandler is not thread-safe.  You should only call it
    726 // at initialization time, and probably not from library code.  If you
    727 // simply want to suppress log messages temporarily (e.g. because you
    728 // have some code that tends to trigger them frequently and you know
    729 // the warnings are not important to you), use the LogSilencer class
    730 // below.
    731 LIBPROTOBUF_EXPORT LogHandler* SetLogHandler(LogHandler* new_func);
    732 
    733 // Create a LogSilencer if you want to temporarily suppress all log
    734 // messages.  As long as any LogSilencer objects exist, non-fatal
    735 // log messages will be discarded (the current LogHandler will *not*
    736 // be called).  Constructing a LogSilencer is thread-safe.  You may
    737 // accidentally suppress log messages occurring in another thread, but
    738 // since messages are generally for debugging purposes only, this isn't
    739 // a big deal.  If you want to intercept log messages, use SetLogHandler().
    740 class LIBPROTOBUF_EXPORT LogSilencer {
    741  public:
    742   LogSilencer();
    743   ~LogSilencer();
    744 };
    745 
    746 // ===================================================================
    747 // emulates google3/base/callback.h
    748 
    749 // Abstract interface for a callback.  When calling an RPC, you must provide
    750 // a Closure to call when the procedure completes.  See the Service interface
    751 // in service.h.
    752 //
    753 // To automatically construct a Closure which calls a particular function or
    754 // method with a particular set of parameters, use the NewCallback() function.
    755 // Example:
    756 //   void FooDone(const FooResponse* response) {
    757 //     ...
    758 //   }
    759 //
    760 //   void CallFoo() {
    761 //     ...
    762 //     // When done, call FooDone() and pass it a pointer to the response.
    763 //     Closure* callback = NewCallback(&FooDone, response);
    764 //     // Make the call.
    765 //     service->Foo(controller, request, response, callback);
    766 //   }
    767 //
    768 // Example that calls a method:
    769 //   class Handler {
    770 //    public:
    771 //     ...
    772 //
    773 //     void FooDone(const FooResponse* response) {
    774 //       ...
    775 //     }
    776 //
    777 //     void CallFoo() {
    778 //       ...
    779 //       // When done, call FooDone() and pass it a pointer to the response.
    780 //       Closure* callback = NewCallback(this, &Handler::FooDone, response);
    781 //       // Make the call.
    782 //       service->Foo(controller, request, response, callback);
    783 //     }
    784 //   };
    785 //
    786 // Currently NewCallback() supports binding zero, one, or two arguments.
    787 //
    788 // Callbacks created with NewCallback() automatically delete themselves when
    789 // executed.  They should be used when a callback is to be called exactly
    790 // once (usually the case with RPC callbacks).  If a callback may be called
    791 // a different number of times (including zero), create it with
    792 // NewPermanentCallback() instead.  You are then responsible for deleting the
    793 // callback (using the "delete" keyword as normal).
    794 //
    795 // Note that NewCallback() is a bit touchy regarding argument types.  Generally,
    796 // the values you provide for the parameter bindings must exactly match the
    797 // types accepted by the callback function.  For example:
    798 //   void Foo(string s);
    799 //   NewCallback(&Foo, "foo");          // WON'T WORK:  const char* != string
    800 //   NewCallback(&Foo, string("foo"));  // WORKS
    801 // Also note that the arguments cannot be references:
    802 //   void Foo(const string& s);
    803 //   string my_str;
    804 //   NewCallback(&Foo, my_str);  // WON'T WORK:  Can't use referecnes.
    805 // However, correctly-typed pointers will work just fine.
    806 class LIBPROTOBUF_EXPORT Closure {
    807  public:
    808   Closure() {}
    809   virtual ~Closure();
    810 
    811   virtual void Run() = 0;
    812 
    813  private:
    814   GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(Closure);
    815 };
    816 
    817 namespace internal {
    818 
    819 class LIBPROTOBUF_EXPORT FunctionClosure0 : public Closure {
    820  public:
    821   typedef void (*FunctionType)();
    822 
    823   FunctionClosure0(FunctionType function, bool self_deleting)
    824     : function_(function), self_deleting_(self_deleting) {}
    825   ~FunctionClosure0();
    826 
    827   void Run() {
    828     function_();
    829     if (self_deleting_) delete this;
    830   }
    831 
    832  private:
    833   FunctionType function_;
    834   bool self_deleting_;
    835 };
    836 
    837 template <typename Class>
    838 class MethodClosure0 : public Closure {
    839  public:
    840   typedef void (Class::*MethodType)();
    841 
    842   MethodClosure0(Class* object, MethodType method, bool self_deleting)
    843     : object_(object), method_(method), self_deleting_(self_deleting) {}
    844   ~MethodClosure0() {}
    845 
    846   void Run() {
    847     (object_->*method_)();
    848     if (self_deleting_) delete this;
    849   }
    850 
    851  private:
    852   Class* object_;
    853   MethodType method_;
    854   bool self_deleting_;
    855 };
    856 
    857 template <typename Arg1>
    858 class FunctionClosure1 : public Closure {
    859  public:
    860   typedef void (*FunctionType)(Arg1 arg1);
    861 
    862   FunctionClosure1(FunctionType function, bool self_deleting,
    863                    Arg1 arg1)
    864     : function_(function), self_deleting_(self_deleting),
    865       arg1_(arg1) {}
    866   ~FunctionClosure1() {}
    867 
    868   void Run() {
    869     function_(arg1_);
    870     if (self_deleting_) delete this;
    871   }
    872 
    873  private:
    874   FunctionType function_;
    875   bool self_deleting_;
    876   Arg1 arg1_;
    877 };
    878 
    879 template <typename Class, typename Arg1>
    880 class MethodClosure1 : public Closure {
    881  public:
    882   typedef void (Class::*MethodType)(Arg1 arg1);
    883 
    884   MethodClosure1(Class* object, MethodType method, bool self_deleting,
    885                  Arg1 arg1)
    886     : object_(object), method_(method), self_deleting_(self_deleting),
    887       arg1_(arg1) {}
    888   ~MethodClosure1() {}
    889 
    890   void Run() {
    891     (object_->*method_)(arg1_);
    892     if (self_deleting_) delete this;
    893   }
    894 
    895  private:
    896   Class* object_;
    897   MethodType method_;
    898   bool self_deleting_;
    899   Arg1 arg1_;
    900 };
    901 
    902 template <typename Arg1, typename Arg2>
    903 class FunctionClosure2 : public Closure {
    904  public:
    905   typedef void (*FunctionType)(Arg1 arg1, Arg2 arg2);
    906 
    907   FunctionClosure2(FunctionType function, bool self_deleting,
    908                    Arg1 arg1, Arg2 arg2)
    909     : function_(function), self_deleting_(self_deleting),
    910       arg1_(arg1), arg2_(arg2) {}
    911   ~FunctionClosure2() {}
    912 
    913   void Run() {
    914     function_(arg1_, arg2_);
    915     if (self_deleting_) delete this;
    916   }
    917 
    918  private:
    919   FunctionType function_;
    920   bool self_deleting_;
    921   Arg1 arg1_;
    922   Arg2 arg2_;
    923 };
    924 
    925 template <typename Class, typename Arg1, typename Arg2>
    926 class MethodClosure2 : public Closure {
    927  public:
    928   typedef void (Class::*MethodType)(Arg1 arg1, Arg2 arg2);
    929 
    930   MethodClosure2(Class* object, MethodType method, bool self_deleting,
    931                  Arg1 arg1, Arg2 arg2)
    932     : object_(object), method_(method), self_deleting_(self_deleting),
    933       arg1_(arg1), arg2_(arg2) {}
    934   ~MethodClosure2() {}
    935 
    936   void Run() {
    937     (object_->*method_)(arg1_, arg2_);
    938     if (self_deleting_) delete this;
    939   }
    940 
    941  private:
    942   Class* object_;
    943   MethodType method_;
    944   bool self_deleting_;
    945   Arg1 arg1_;
    946   Arg2 arg2_;
    947 };
    948 
    949 }  // namespace internal
    950 
    951 // See Closure.
    952 inline Closure* NewCallback(void (*function)()) {
    953   return new internal::FunctionClosure0(function, true);
    954 }
    955 
    956 // See Closure.
    957 inline Closure* NewPermanentCallback(void (*function)()) {
    958   return new internal::FunctionClosure0(function, false);
    959 }
    960 
    961 // See Closure.
    962 template <typename Class>
    963 inline Closure* NewCallback(Class* object, void (Class::*method)()) {
    964   return new internal::MethodClosure0<Class>(object, method, true);
    965 }
    966 
    967 // See Closure.
    968 template <typename Class>
    969 inline Closure* NewPermanentCallback(Class* object, void (Class::*method)()) {
    970   return new internal::MethodClosure0<Class>(object, method, false);
    971 }
    972 
    973 // See Closure.
    974 template <typename Arg1>
    975 inline Closure* NewCallback(void (*function)(Arg1),
    976                             Arg1 arg1) {
    977   return new internal::FunctionClosure1<Arg1>(function, true, arg1);
    978 }
    979 
    980 // See Closure.
    981 template <typename Arg1>
    982 inline Closure* NewPermanentCallback(void (*function)(Arg1),
    983                                      Arg1 arg1) {
    984   return new internal::FunctionClosure1<Arg1>(function, false, arg1);
    985 }
    986 
    987 // See Closure.
    988 template <typename Class, typename Arg1>
    989 inline Closure* NewCallback(Class* object, void (Class::*method)(Arg1),
    990                             Arg1 arg1) {
    991   return new internal::MethodClosure1<Class, Arg1>(object, method, true, arg1);
    992 }
    993 
    994 // See Closure.
    995 template <typename Class, typename Arg1>
    996 inline Closure* NewPermanentCallback(Class* object, void (Class::*method)(Arg1),
    997                                      Arg1 arg1) {
    998   return new internal::MethodClosure1<Class, Arg1>(object, method, false, arg1);
    999 }
   1000 
   1001 // See Closure.
   1002 template <typename Arg1, typename Arg2>
   1003 inline Closure* NewCallback(void (*function)(Arg1, Arg2),
   1004                             Arg1 arg1, Arg2 arg2) {
   1005   return new internal::FunctionClosure2<Arg1, Arg2>(
   1006     function, true, arg1, arg2);
   1007 }
   1008 
   1009 // See Closure.
   1010 template <typename Arg1, typename Arg2>
   1011 inline Closure* NewPermanentCallback(void (*function)(Arg1, Arg2),
   1012                                      Arg1 arg1, Arg2 arg2) {
   1013   return new internal::FunctionClosure2<Arg1, Arg2>(
   1014     function, false, arg1, arg2);
   1015 }
   1016 
   1017 // See Closure.
   1018 template <typename Class, typename Arg1, typename Arg2>
   1019 inline Closure* NewCallback(Class* object, void (Class::*method)(Arg1, Arg2),
   1020                             Arg1 arg1, Arg2 arg2) {
   1021   return new internal::MethodClosure2<Class, Arg1, Arg2>(
   1022     object, method, true, arg1, arg2);
   1023 }
   1024 
   1025 // See Closure.
   1026 template <typename Class, typename Arg1, typename Arg2>
   1027 inline Closure* NewPermanentCallback(
   1028     Class* object, void (Class::*method)(Arg1, Arg2),
   1029     Arg1 arg1, Arg2 arg2) {
   1030   return new internal::MethodClosure2<Class, Arg1, Arg2>(
   1031     object, method, false, arg1, arg2);
   1032 }
   1033 
   1034 // A function which does nothing.  Useful for creating no-op callbacks, e.g.:
   1035 //   Closure* nothing = NewCallback(&DoNothing);
   1036 void LIBPROTOBUF_EXPORT DoNothing();
   1037 
   1038 // ===================================================================
   1039 // emulates google3/base/mutex.h
   1040 
   1041 namespace internal {
   1042 
   1043 // A Mutex is a non-reentrant (aka non-recursive) mutex.  At most one thread T
   1044 // may hold a mutex at a given time.  If T attempts to Lock() the same Mutex
   1045 // while holding it, T will deadlock.
   1046 class LIBPROTOBUF_EXPORT Mutex {
   1047  public:
   1048   // Create a Mutex that is not held by anybody.
   1049   Mutex();
   1050 
   1051   // Destructor
   1052   ~Mutex();
   1053 
   1054   // Block if necessary until this Mutex is free, then acquire it exclusively.
   1055   void Lock();
   1056 
   1057   // Release this Mutex.  Caller must hold it exclusively.
   1058   void Unlock();
   1059 
   1060   // Crash if this Mutex is not held exclusively by this thread.
   1061   // May fail to crash when it should; will never crash when it should not.
   1062   void AssertHeld();
   1063 
   1064  private:
   1065   struct Internal;
   1066   Internal* mInternal;
   1067 
   1068   GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(Mutex);
   1069 };
   1070 
   1071 // MutexLock(mu) acquires mu when constructed and releases it when destroyed.
   1072 class LIBPROTOBUF_EXPORT MutexLock {
   1073  public:
   1074   explicit MutexLock(Mutex *mu) : mu_(mu) { this->mu_->Lock(); }
   1075   ~MutexLock() { this->mu_->Unlock(); }
   1076  private:
   1077   Mutex *const mu_;
   1078   GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(MutexLock);
   1079 };
   1080 
   1081 // TODO(kenton):  Implement these?  Hard to implement portably.
   1082 typedef MutexLock ReaderMutexLock;
   1083 typedef MutexLock WriterMutexLock;
   1084 
   1085 // MutexLockMaybe is like MutexLock, but is a no-op when mu is NULL.
   1086 class LIBPROTOBUF_EXPORT MutexLockMaybe {
   1087  public:
   1088   explicit MutexLockMaybe(Mutex *mu) :
   1089     mu_(mu) { if (this->mu_ != NULL) { this->mu_->Lock(); } }
   1090   ~MutexLockMaybe() { if (this->mu_ != NULL) { this->mu_->Unlock(); } }
   1091  private:
   1092   Mutex *const mu_;
   1093   GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(MutexLockMaybe);
   1094 };
   1095 
   1096 }  // namespace internal
   1097 
   1098 // We made these internal so that they would show up as such in the docs,
   1099 // but we don't want to stick "internal::" in front of them everywhere.
   1100 using internal::Mutex;
   1101 using internal::MutexLock;
   1102 using internal::ReaderMutexLock;
   1103 using internal::WriterMutexLock;
   1104 using internal::MutexLockMaybe;
   1105 
   1106 // ===================================================================
   1107 // from google3/base/type_traits.h
   1108 
   1109 namespace internal {
   1110 
   1111 // Specified by TR1 [4.7.4] Pointer modifications.
   1112 template<typename T> struct remove_pointer { typedef T type; };
   1113 template<typename T> struct remove_pointer<T*> { typedef T type; };
   1114 template<typename T> struct remove_pointer<T* const> { typedef T type; };
   1115 template<typename T> struct remove_pointer<T* volatile> { typedef T type; };
   1116 template<typename T> struct remove_pointer<T* const volatile> {
   1117   typedef T type; };
   1118 
   1119 // ===================================================================
   1120 
   1121 // Checks if the buffer contains structurally-valid UTF-8.  Implemented in
   1122 // structurally_valid.cc.
   1123 LIBPROTOBUF_EXPORT bool IsStructurallyValidUTF8(const char* buf, int len);
   1124 
   1125 }  // namespace internal
   1126 
   1127 // ===================================================================
   1128 // Shutdown support.
   1129 
   1130 // Shut down the entire protocol buffers library, deleting all static-duration
   1131 // objects allocated by the library or by generated .pb.cc files.
   1132 //
   1133 // There are two reasons you might want to call this:
   1134 // * You use a draconian definition of "memory leak" in which you expect
   1135 //   every single malloc() to have a corresponding free(), even for objects
   1136 //   which live until program exit.
   1137 // * You are writing a dynamically-loaded library which needs to clean up
   1138 //   after itself when the library is unloaded.
   1139 //
   1140 // It is safe to call this multiple times.  However, it is not safe to use
   1141 // any other part of the protocol buffers library after
   1142 // ShutdownProtobufLibrary() has been called.
   1143 LIBPROTOBUF_EXPORT void ShutdownProtobufLibrary();
   1144 
   1145 namespace internal {
   1146 
   1147 // Register a function to be called when ShutdownProtocolBuffers() is called.
   1148 LIBPROTOBUF_EXPORT void OnShutdown(void (*func)());
   1149 
   1150 }  // namespace internal
   1151 
   1152 }  // namespace protobuf
   1153 }  // namespace google
   1154 
   1155 #endif  // GOOGLE_PROTOBUF_COMMON_H__
   1156