Home | History | Annotate | Download | only in dfg
      1 /*
      2  * Copyright (C) 2011 Apple Inc. All rights reserved.
      3  *
      4  * Redistribution and use in source and binary forms, with or without
      5  * modification, are permitted provided that the following conditions
      6  * are met:
      7  * 1. Redistributions of source code must retain the above copyright
      8  *    notice, this list of conditions and the following disclaimer.
      9  * 2. Redistributions in binary form must reproduce the above copyright
     10  *    notice, this list of conditions and the following disclaimer in the
     11  *    documentation and/or other materials provided with the distribution.
     12  *
     13  * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
     14  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     15  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     16  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL APPLE INC. OR
     17  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
     18  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     19  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
     20  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
     21  * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     22  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     23  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     24  */
     25 
     26 #ifndef DFGJITCompiler_h
     27 #define DFGJITCompiler_h
     28 
     29 #if ENABLE(DFG_JIT)
     30 
     31 #include <assembler/MacroAssembler.h>
     32 #include <bytecode/CodeBlock.h>
     33 #include <dfg/DFGGraph.h>
     34 #include <jit/JITCode.h>
     35 
     36 namespace JSC {
     37 
     38 class AbstractSamplingCounter;
     39 class CodeBlock;
     40 class JSGlobalData;
     41 
     42 namespace DFG {
     43 
     44 class JITCodeGenerator;
     45 class NonSpeculativeJIT;
     46 class SpeculativeJIT;
     47 class SpeculationRecovery;
     48 
     49 struct EntryLocation;
     50 struct SpeculationCheck;
     51 
     52 // Abstracted sequential numbering of available machine registers (as opposed to MacroAssembler::RegisterID,
     53 // which are non-sequential, and not abstracted from the register numbering used by the underlying processor).
     54 enum GPRReg { gpr0, gpr1, gpr2, gpr3, gpr4, gpr5, numberOfGPRs, InvalidGPRReg = 0xFFFFFFFF };
     55 enum FPRReg { fpr0, fpr1, fpr2, fpr3, fpr4, fpr5, numberOfFPRs, InvalidFPRReg = 0xFFFFFFFF };
     56 
     57 // GPRReg/FPRReg are enum types to provide type checking at compile time, use these method to iterate.
     58 inline GPRReg next(GPRReg& reg)
     59 {
     60     ASSERT(reg < numberOfGPRs);
     61     return reg = static_cast<GPRReg>(reg + 1);
     62 }
     63 inline FPRReg next(FPRReg& reg)
     64 {
     65     ASSERT(reg < numberOfFPRs);
     66     return reg = static_cast<FPRReg>(reg + 1);
     67 }
     68 
     69 // === CallRecord ===
     70 //
     71 // A record of a call out from JIT code to a helper function.
     72 // Every CallRecord contains a reference to the call instruction & the function
     73 // that it needs to be linked to. Calls that might throw an exception also record
     74 // the Jump taken on exception (unset if not present), and ExceptionInfo (presently
     75 // an unsigned, bytecode index) used to recover handler/source info.
     76 struct CallRecord {
     77     // Constructor for a call with no exception handler.
     78     CallRecord(MacroAssembler::Call call, FunctionPtr function)
     79         : m_call(call)
     80         , m_function(function)
     81     {
     82     }
     83 
     84     // Constructor for a call with an exception handler.
     85     CallRecord(MacroAssembler::Call call, FunctionPtr function, MacroAssembler::Jump exceptionCheck, ExceptionInfo exceptionInfo)
     86         : m_call(call)
     87         , m_function(function)
     88         , m_exceptionCheck(exceptionCheck)
     89         , m_exceptionInfo(exceptionInfo)
     90     {
     91     }
     92 
     93     MacroAssembler::Call m_call;
     94     FunctionPtr m_function;
     95     MacroAssembler::Jump m_exceptionCheck;
     96     ExceptionInfo m_exceptionInfo;
     97 };
     98 
     99 // === JITCompiler ===
    100 //
    101 // DFG::JITCompiler is responsible for generating JIT code from the dataflow graph.
    102 // It does so by delegating to the speculative & non-speculative JITs, which
    103 // generate to a MacroAssembler (which the JITCompiler owns through an inheritance
    104 // relationship). The JITCompiler holds references to information required during
    105 // compilation, and also records information used in linking (e.g. a list of all
    106 // call to be linked).
    107 class JITCompiler : public MacroAssembler {
    108 public:
    109     JITCompiler(JSGlobalData* globalData, Graph& dfg, CodeBlock* codeBlock)
    110         : m_globalData(globalData)
    111         , m_graph(dfg)
    112         , m_codeBlock(codeBlock)
    113     {
    114     }
    115 
    116     void compileFunction(JITCode& entry, MacroAssemblerCodePtr& entryWithArityCheck);
    117 
    118     // Accessors for properties.
    119     Graph& graph() { return m_graph; }
    120     CodeBlock* codeBlock() { return m_codeBlock; }
    121     JSGlobalData* globalData() { return m_globalData; }
    122 
    123 #if CPU(X86_64)
    124     // These registers match the old JIT.
    125     static const RegisterID timeoutCheckRegister = X86Registers::r12;
    126     static const RegisterID callFrameRegister = X86Registers::r13;
    127     static const RegisterID tagTypeNumberRegister = X86Registers::r14;
    128     static const RegisterID tagMaskRegister = X86Registers::r15;
    129 
    130     // Temporary registers (these correspond to the temporary GPRReg/FPRReg
    131     // registers i.e. regT0 and grp0 refer to the same thing, grp0 being
    132     // the abstracted, sequential name, and regT0 being the machine register
    133     // number in the instruction set, as provided by the MacroAssembler).
    134     static const RegisterID regT0 = X86Registers::eax;
    135     static const RegisterID regT1 = X86Registers::edx;
    136     static const RegisterID regT2 = X86Registers::ecx;
    137     static const RegisterID regT3 = X86Registers::ebx;
    138     static const RegisterID regT4 = X86Registers::edi;
    139     static const RegisterID regT5 = X86Registers::esi;
    140     static const FPRegisterID fpRegT0 = X86Registers::xmm0;
    141     static const FPRegisterID fpRegT1 = X86Registers::xmm1;
    142     static const FPRegisterID fpRegT2 = X86Registers::xmm2;
    143     static const FPRegisterID fpRegT3 = X86Registers::xmm3;
    144     static const FPRegisterID fpRegT4 = X86Registers::xmm4;
    145     static const FPRegisterID fpRegT5 = X86Registers::xmm5;
    146 
    147     // These constants provide both RegisterID & GPRReg style names for the
    148     // general purpose argument & return value register.
    149     static const GPRReg argumentGPR0 = gpr4;
    150     static const GPRReg argumentGPR1 = gpr5;
    151     static const GPRReg argumentGPR2 = gpr1;
    152     static const GPRReg argumentGPR3 = gpr2;
    153     static const RegisterID argumentRegister0 = regT4;
    154     static const RegisterID argumentRegister1 = regT5;
    155     static const RegisterID argumentRegister2 = regT1;
    156     static const RegisterID argumentRegister3 = regT2;
    157     static const GPRReg returnValueGPR = gpr0;
    158     static const RegisterID returnValueRegister = regT0;
    159     static const RegisterID returnValueRegister2 = regT1;
    160 
    161     // These constants provide both FPRegisterID & FPRReg style names for the
    162     // floating point argument & return value register.
    163     static const FPRReg argumentFPR0 = fpr0;
    164     static const FPRReg argumentFPR1 = fpr1;
    165     static const FPRReg argumentFPR2 = fpr2;
    166     static const FPRReg argumentFPR3 = fpr3;
    167     static const FPRegisterID fpArgumentRegister0 = fpRegT0;
    168     static const FPRegisterID fpArgumentRegister1 = fpRegT1;
    169     static const FPRegisterID fpArgumentRegister2 = fpRegT2;
    170     static const FPRegisterID fpArgumentRegister3 = fpRegT3;
    171     static const FPRReg returnValueFPR = fpr0;
    172     static const FPRegisterID fpReturnValueRegister = fpRegT0;
    173 
    174 
    175     void preserveReturnAddressAfterCall(RegisterID reg)
    176     {
    177         pop(reg);
    178     }
    179 
    180     void restoreReturnAddressBeforeReturn(RegisterID reg)
    181     {
    182         push(reg);
    183     }
    184 
    185     void restoreReturnAddressBeforeReturn(Address address)
    186     {
    187         push(address);
    188     }
    189 
    190     void emitGetFromCallFrameHeaderPtr(RegisterFile::CallFrameHeaderEntry entry, RegisterID to)
    191     {
    192         loadPtr(Address(callFrameRegister, entry * sizeof(Register)), to);
    193     }
    194     void emitPutToCallFrameHeader(RegisterID from, RegisterFile::CallFrameHeaderEntry entry)
    195     {
    196         storePtr(from, Address(callFrameRegister, entry * sizeof(Register)));
    197     }
    198 
    199     void emitPutImmediateToCallFrameHeader(void* value, RegisterFile::CallFrameHeaderEntry entry)
    200     {
    201         storePtr(TrustedImmPtr(value), Address(callFrameRegister, entry * sizeof(Register)));
    202     }
    203 #endif
    204 
    205     Address addressForArgument(int32_t argument)
    206     {
    207         return Address(callFrameRegister, (argument - (m_codeBlock->m_numParameters + RegisterFile::CallFrameHeaderSize)) * sizeof(Register));
    208     }
    209 
    210     static Address addressForGlobalVar(RegisterID global, int32_t varNumber)
    211     {
    212         return Address(global, varNumber * sizeof(Register));
    213     }
    214 
    215     static Address addressFor(VirtualRegister virtualRegister)
    216     {
    217         return Address(callFrameRegister, virtualRegister * sizeof(Register));
    218     }
    219 
    220     // These methods provide mapping from sequential register numbering (GPRReg/FPRReg)
    221     // to machine register numbering (RegisterID/FPRegisterID).
    222     static RegisterID gprToRegisterID(GPRReg reg)
    223     {
    224         ASSERT(reg < numberOfGPRs);
    225         static const RegisterID idForRegister[numberOfGPRs] = { regT0, regT1, regT2, regT3, regT4, regT5 };
    226         return idForRegister[reg];
    227     }
    228     static FPRegisterID fprToRegisterID(FPRReg reg)
    229     {
    230         ASSERT(reg < numberOfFPRs);
    231         static const FPRegisterID idForRegister[numberOfFPRs] = { fpRegT0, fpRegT1, fpRegT2, fpRegT3, fpRegT4, fpRegT5 };
    232         return idForRegister[reg];
    233     }
    234 
    235     // Add a call out from JIT code, without an exception check.
    236     void appendCall(const FunctionPtr& function)
    237     {
    238         m_calls.append(CallRecord(call(), function));
    239         // FIXME: should be able to JIT_ASSERT here that globalData->exception is null on return back to JIT code.
    240     }
    241 
    242     // Add a call out from JIT code, with an exception check.
    243     void appendCallWithExceptionCheck(const FunctionPtr& function, unsigned exceptionInfo)
    244     {
    245         Call functionCall = call();
    246         Jump exceptionCheck = branchTestPtr(NonZero, AbsoluteAddress(&globalData()->exception));
    247         m_calls.append(CallRecord(functionCall, function, exceptionCheck, exceptionInfo));
    248     }
    249 
    250     // Helper methods to check nodes for constants.
    251     bool isConstant(NodeIndex nodeIndex)
    252     {
    253         return graph()[nodeIndex].isConstant();
    254     }
    255     bool isInt32Constant(NodeIndex nodeIndex)
    256     {
    257         return graph()[nodeIndex].op == Int32Constant;
    258     }
    259     bool isDoubleConstant(NodeIndex nodeIndex)
    260     {
    261         return graph()[nodeIndex].op == DoubleConstant;
    262     }
    263     bool isJSConstant(NodeIndex nodeIndex)
    264     {
    265         return graph()[nodeIndex].op == JSConstant;
    266     }
    267 
    268     // Helper methods get constant values from nodes.
    269     int32_t valueOfInt32Constant(NodeIndex nodeIndex)
    270     {
    271         ASSERT(isInt32Constant(nodeIndex));
    272         return graph()[nodeIndex].int32Constant();
    273     }
    274     double valueOfDoubleConstant(NodeIndex nodeIndex)
    275     {
    276         ASSERT(isDoubleConstant(nodeIndex));
    277         return graph()[nodeIndex].numericConstant();
    278     }
    279     JSValue valueOfJSConstant(NodeIndex nodeIndex)
    280     {
    281         ASSERT(isJSConstant(nodeIndex));
    282         unsigned constantIndex = graph()[nodeIndex].constantNumber();
    283         return codeBlock()->constantRegister(FirstConstantRegisterIndex + constantIndex).get();
    284     }
    285 
    286     // These methods JIT generate dynamic, debug-only checks - akin to ASSERTs.
    287 #if DFG_JIT_ASSERT
    288     void jitAssertIsInt32(GPRReg);
    289     void jitAssertIsJSInt32(GPRReg);
    290     void jitAssertIsJSNumber(GPRReg);
    291     void jitAssertIsJSDouble(GPRReg);
    292 #else
    293     void jitAssertIsInt32(GPRReg) {}
    294     void jitAssertIsJSInt32(GPRReg) {}
    295     void jitAssertIsJSNumber(GPRReg) {}
    296     void jitAssertIsJSDouble(GPRReg) {}
    297 #endif
    298 
    299 #if ENABLE(SAMPLING_COUNTERS)
    300     // Debug profiling tool.
    301     void emitCount(AbstractSamplingCounter&, uint32_t increment = 1);
    302 #endif
    303 
    304 private:
    305     // These methods used in linking the speculative & non-speculative paths together.
    306     void fillNumericToDouble(NodeIndex, FPRReg, GPRReg temporary);
    307     void fillInt32ToInteger(NodeIndex, GPRReg);
    308     void fillToJS(NodeIndex, GPRReg);
    309     void jumpFromSpeculativeToNonSpeculative(const SpeculationCheck&, const EntryLocation&, SpeculationRecovery*);
    310     void linkSpeculationChecks(SpeculativeJIT&, NonSpeculativeJIT&);
    311 
    312     // The globalData, used to access constants such as the vPtrs.
    313     JSGlobalData* m_globalData;
    314 
    315     // The dataflow graph currently being generated.
    316     Graph& m_graph;
    317 
    318     // The codeBlock currently being generated, used to access information such as constant values, immediates.
    319     CodeBlock* m_codeBlock;
    320 
    321     // Vector of calls out from JIT code, including exception handler information.
    322     Vector<CallRecord> m_calls;
    323 };
    324 
    325 } } // namespace JSC::DFG
    326 
    327 #endif
    328 #endif
    329 
    330