Home | History | Annotate | Download | only in src
      1 // Copyright 2011 the V8 project authors. All rights reserved.
      2 // Redistribution and use in source and binary forms, with or without
      3 // modification, are permitted provided that the following conditions are
      4 // met:
      5 //
      6 //     * Redistributions of source code must retain the above copyright
      7 //       notice, this list of conditions and the following disclaimer.
      8 //     * Redistributions in binary form must reproduce the above
      9 //       copyright notice, this list of conditions and the following
     10 //       disclaimer in the documentation and/or other materials provided
     11 //       with the distribution.
     12 //     * Neither the name of Google Inc. nor the names of its
     13 //       contributors may be used to endorse or promote products derived
     14 //       from this software without specific prior written permission.
     15 //
     16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     27 
     28 #include "v8.h"
     29 
     30 #include "factory.h"
     31 #include "hydrogen.h"
     32 
     33 #if V8_TARGET_ARCH_IA32
     34 #include "ia32/lithium-ia32.h"
     35 #elif V8_TARGET_ARCH_X64
     36 #include "x64/lithium-x64.h"
     37 #elif V8_TARGET_ARCH_ARM
     38 #include "arm/lithium-arm.h"
     39 #elif V8_TARGET_ARCH_MIPS
     40 #include "mips/lithium-mips.h"
     41 #else
     42 #error Unsupported target architecture.
     43 #endif
     44 
     45 namespace v8 {
     46 namespace internal {
     47 
     48 #define DEFINE_COMPILE(type)                                         \
     49   LInstruction* H##type::CompileToLithium(LChunkBuilder* builder) {  \
     50     return builder->Do##type(this);                                  \
     51   }
     52 HYDROGEN_CONCRETE_INSTRUCTION_LIST(DEFINE_COMPILE)
     53 #undef DEFINE_COMPILE
     54 
     55 
     56 const char* Representation::Mnemonic() const {
     57   switch (kind_) {
     58     case kNone: return "v";
     59     case kTagged: return "t";
     60     case kDouble: return "d";
     61     case kInteger32: return "i";
     62     case kExternal: return "x";
     63     case kNumRepresentations:
     64       UNREACHABLE();
     65       return NULL;
     66   }
     67   UNREACHABLE();
     68   return NULL;
     69 }
     70 
     71 
     72 static int32_t ConvertAndSetOverflow(int64_t result, bool* overflow) {
     73   if (result > kMaxInt) {
     74     *overflow = true;
     75     return kMaxInt;
     76   }
     77   if (result < kMinInt) {
     78     *overflow = true;
     79     return kMinInt;
     80   }
     81   return static_cast<int32_t>(result);
     82 }
     83 
     84 
     85 static int32_t AddWithoutOverflow(int32_t a, int32_t b, bool* overflow) {
     86   int64_t result = static_cast<int64_t>(a) + static_cast<int64_t>(b);
     87   return ConvertAndSetOverflow(result, overflow);
     88 }
     89 
     90 
     91 static int32_t SubWithoutOverflow(int32_t a, int32_t b, bool* overflow) {
     92   int64_t result = static_cast<int64_t>(a) - static_cast<int64_t>(b);
     93   return ConvertAndSetOverflow(result, overflow);
     94 }
     95 
     96 
     97 static int32_t MulWithoutOverflow(int32_t a, int32_t b, bool* overflow) {
     98   int64_t result = static_cast<int64_t>(a) * static_cast<int64_t>(b);
     99   return ConvertAndSetOverflow(result, overflow);
    100 }
    101 
    102 
    103 int32_t Range::Mask() const {
    104   if (lower_ == upper_) return lower_;
    105   if (lower_ >= 0) {
    106     int32_t res = 1;
    107     while (res < upper_) {
    108       res = (res << 1) | 1;
    109     }
    110     return res;
    111   }
    112   return 0xffffffff;
    113 }
    114 
    115 
    116 void Range::AddConstant(int32_t value) {
    117   if (value == 0) return;
    118   bool may_overflow = false;  // Overflow is ignored here.
    119   lower_ = AddWithoutOverflow(lower_, value, &may_overflow);
    120   upper_ = AddWithoutOverflow(upper_, value, &may_overflow);
    121   Verify();
    122 }
    123 
    124 
    125 void Range::Intersect(Range* other) {
    126   upper_ = Min(upper_, other->upper_);
    127   lower_ = Max(lower_, other->lower_);
    128   bool b = CanBeMinusZero() && other->CanBeMinusZero();
    129   set_can_be_minus_zero(b);
    130 }
    131 
    132 
    133 void Range::Union(Range* other) {
    134   upper_ = Max(upper_, other->upper_);
    135   lower_ = Min(lower_, other->lower_);
    136   bool b = CanBeMinusZero() || other->CanBeMinusZero();
    137   set_can_be_minus_zero(b);
    138 }
    139 
    140 
    141 void Range::Sar(int32_t value) {
    142   int32_t bits = value & 0x1F;
    143   lower_ = lower_ >> bits;
    144   upper_ = upper_ >> bits;
    145   set_can_be_minus_zero(false);
    146 }
    147 
    148 
    149 void Range::Shl(int32_t value) {
    150   int32_t bits = value & 0x1F;
    151   int old_lower = lower_;
    152   int old_upper = upper_;
    153   lower_ = lower_ << bits;
    154   upper_ = upper_ << bits;
    155   if (old_lower != lower_ >> bits || old_upper != upper_ >> bits) {
    156     upper_ = kMaxInt;
    157     lower_ = kMinInt;
    158   }
    159   set_can_be_minus_zero(false);
    160 }
    161 
    162 
    163 bool Range::AddAndCheckOverflow(Range* other) {
    164   bool may_overflow = false;
    165   lower_ = AddWithoutOverflow(lower_, other->lower(), &may_overflow);
    166   upper_ = AddWithoutOverflow(upper_, other->upper(), &may_overflow);
    167   KeepOrder();
    168   Verify();
    169   return may_overflow;
    170 }
    171 
    172 
    173 bool Range::SubAndCheckOverflow(Range* other) {
    174   bool may_overflow = false;
    175   lower_ = SubWithoutOverflow(lower_, other->upper(), &may_overflow);
    176   upper_ = SubWithoutOverflow(upper_, other->lower(), &may_overflow);
    177   KeepOrder();
    178   Verify();
    179   return may_overflow;
    180 }
    181 
    182 
    183 void Range::KeepOrder() {
    184   if (lower_ > upper_) {
    185     int32_t tmp = lower_;
    186     lower_ = upper_;
    187     upper_ = tmp;
    188   }
    189 }
    190 
    191 
    192 void Range::Verify() const {
    193   ASSERT(lower_ <= upper_);
    194 }
    195 
    196 
    197 bool Range::MulAndCheckOverflow(Range* other) {
    198   bool may_overflow = false;
    199   int v1 = MulWithoutOverflow(lower_, other->lower(), &may_overflow);
    200   int v2 = MulWithoutOverflow(lower_, other->upper(), &may_overflow);
    201   int v3 = MulWithoutOverflow(upper_, other->lower(), &may_overflow);
    202   int v4 = MulWithoutOverflow(upper_, other->upper(), &may_overflow);
    203   lower_ = Min(Min(v1, v2), Min(v3, v4));
    204   upper_ = Max(Max(v1, v2), Max(v3, v4));
    205   Verify();
    206   return may_overflow;
    207 }
    208 
    209 
    210 const char* HType::ToString() {
    211   switch (type_) {
    212     case kTagged: return "tagged";
    213     case kTaggedPrimitive: return "primitive";
    214     case kTaggedNumber: return "number";
    215     case kSmi: return "smi";
    216     case kHeapNumber: return "heap-number";
    217     case kString: return "string";
    218     case kBoolean: return "boolean";
    219     case kNonPrimitive: return "non-primitive";
    220     case kJSArray: return "array";
    221     case kJSObject: return "object";
    222     case kUninitialized: return "uninitialized";
    223   }
    224   UNREACHABLE();
    225   return "Unreachable code";
    226 }
    227 
    228 
    229 const char* HType::ToShortString() {
    230   switch (type_) {
    231     case kTagged: return "t";
    232     case kTaggedPrimitive: return "p";
    233     case kTaggedNumber: return "n";
    234     case kSmi: return "m";
    235     case kHeapNumber: return "h";
    236     case kString: return "s";
    237     case kBoolean: return "b";
    238     case kNonPrimitive: return "r";
    239     case kJSArray: return "a";
    240     case kJSObject: return "o";
    241     case kUninitialized: return "z";
    242   }
    243   UNREACHABLE();
    244   return "Unreachable code";
    245 }
    246 
    247 
    248 HType HType::TypeFromValue(Handle<Object> value) {
    249   HType result = HType::Tagged();
    250   if (value->IsSmi()) {
    251     result = HType::Smi();
    252   } else if (value->IsHeapNumber()) {
    253     result = HType::HeapNumber();
    254   } else if (value->IsString()) {
    255     result = HType::String();
    256   } else if (value->IsBoolean()) {
    257     result = HType::Boolean();
    258   } else if (value->IsJSObject()) {
    259     result = HType::JSObject();
    260   } else if (value->IsJSArray()) {
    261     result = HType::JSArray();
    262   }
    263   return result;
    264 }
    265 
    266 
    267 int HValue::LookupOperandIndex(int occurrence_index, HValue* op) {
    268   for (int i = 0; i < OperandCount(); ++i) {
    269     if (OperandAt(i) == op) {
    270       if (occurrence_index == 0) return i;
    271       --occurrence_index;
    272     }
    273   }
    274   return -1;
    275 }
    276 
    277 
    278 bool HValue::IsDefinedAfter(HBasicBlock* other) const {
    279   return block()->block_id() > other->block_id();
    280 }
    281 
    282 
    283 bool HValue::UsesMultipleTimes(HValue* op) {
    284   bool seen = false;
    285   for (int i = 0; i < OperandCount(); ++i) {
    286     if (OperandAt(i) == op) {
    287       if (seen) return true;
    288       seen = true;
    289     }
    290   }
    291   return false;
    292 }
    293 
    294 
    295 bool HValue::Equals(HValue* other) {
    296   if (other->opcode() != opcode()) return false;
    297   if (!other->representation().Equals(representation())) return false;
    298   if (!other->type_.Equals(type_)) return false;
    299   if (other->flags() != flags()) return false;
    300   if (OperandCount() != other->OperandCount()) return false;
    301   for (int i = 0; i < OperandCount(); ++i) {
    302     if (OperandAt(i)->id() != other->OperandAt(i)->id()) return false;
    303   }
    304   bool result = DataEquals(other);
    305   ASSERT(!result || Hashcode() == other->Hashcode());
    306   return result;
    307 }
    308 
    309 
    310 intptr_t HValue::Hashcode() {
    311   intptr_t result = opcode();
    312   int count = OperandCount();
    313   for (int i = 0; i < count; ++i) {
    314     result = result * 19 + OperandAt(i)->id() + (result >> 7);
    315   }
    316   return result;
    317 }
    318 
    319 
    320 void HValue::SetOperandAt(int index, HValue* value) {
    321   ASSERT(value == NULL || !value->representation().IsNone());
    322   RegisterUse(index, value);
    323   InternalSetOperandAt(index, value);
    324 }
    325 
    326 
    327 void HValue::ReplaceAndDelete(HValue* other) {
    328   if (other != NULL) ReplaceValue(other);
    329   Delete();
    330 }
    331 
    332 
    333 void HValue::ReplaceValue(HValue* other) {
    334   for (int i = 0; i < uses_.length(); ++i) {
    335     HValue* use = uses_[i];
    336     ASSERT(!use->block()->IsStartBlock());
    337     InternalReplaceAtUse(use, other);
    338     other->uses_.Add(use);
    339   }
    340   uses_.Rewind(0);
    341 }
    342 
    343 
    344 void HValue::ClearOperands() {
    345   for (int i = 0; i < OperandCount(); ++i) {
    346     SetOperandAt(i, NULL);
    347   }
    348 }
    349 
    350 
    351 void HValue::Delete() {
    352   ASSERT(HasNoUses());
    353   ClearOperands();
    354   DeleteFromGraph();
    355 }
    356 
    357 
    358 void HValue::ReplaceAtUse(HValue* use, HValue* other) {
    359   for (int i = 0; i < use->OperandCount(); ++i) {
    360     if (use->OperandAt(i) == this) {
    361       use->SetOperandAt(i, other);
    362     }
    363   }
    364 }
    365 
    366 
    367 void HValue::ReplaceFirstAtUse(HValue* use, HValue* other, Representation r) {
    368   for (int i = 0; i < use->OperandCount(); ++i) {
    369     if (use->RequiredInputRepresentation(i).Equals(r) &&
    370         use->OperandAt(i) == this) {
    371       use->SetOperandAt(i, other);
    372       return;
    373     }
    374   }
    375 }
    376 
    377 
    378 void HValue::InternalReplaceAtUse(HValue* use, HValue* other) {
    379   for (int i = 0; i < use->OperandCount(); ++i) {
    380     if (use->OperandAt(i) == this) {
    381       // Call internal method that does not update use lists. The caller is
    382       // responsible for doing so.
    383       use->InternalSetOperandAt(i, other);
    384     }
    385   }
    386 }
    387 
    388 
    389 void HValue::SetBlock(HBasicBlock* block) {
    390   ASSERT(block_ == NULL || block == NULL);
    391   block_ = block;
    392   if (id_ == kNoNumber && block != NULL) {
    393     id_ = block->graph()->GetNextValueID(this);
    394   }
    395 }
    396 
    397 
    398 void HValue::PrintTypeTo(HType type, StringStream* stream) {
    399   stream->Add(type.ToShortString());
    400 }
    401 
    402 
    403 void HValue::PrintNameTo(StringStream* stream) {
    404   stream->Add("%s%d", representation_.Mnemonic(), id());
    405 }
    406 
    407 
    408 bool HValue::UpdateInferredType() {
    409   HType type = CalculateInferredType();
    410   bool result = (!type.Equals(type_));
    411   type_ = type;
    412   return result;
    413 }
    414 
    415 
    416 void HValue::RegisterUse(int index, HValue* new_value) {
    417   HValue* old_value = OperandAt(index);
    418   if (old_value == new_value) return;
    419   if (old_value != NULL) old_value->uses_.RemoveElement(this);
    420   if (new_value != NULL) {
    421     new_value->uses_.Add(this);
    422   }
    423 }
    424 
    425 
    426 void HValue::AddNewRange(Range* r) {
    427   if (!HasRange()) ComputeInitialRange();
    428   if (!HasRange()) range_ = new Range();
    429   ASSERT(HasRange());
    430   r->StackUpon(range_);
    431   range_ = r;
    432 }
    433 
    434 
    435 void HValue::RemoveLastAddedRange() {
    436   ASSERT(HasRange());
    437   ASSERT(range_->next() != NULL);
    438   range_ = range_->next();
    439 }
    440 
    441 
    442 void HValue::ComputeInitialRange() {
    443   ASSERT(!HasRange());
    444   range_ = InferRange();
    445   ASSERT(HasRange());
    446 }
    447 
    448 
    449 void HInstruction::PrintTo(StringStream* stream) {
    450   stream->Add("%s", Mnemonic());
    451   if (HasSideEffects()) stream->Add("*");
    452   stream->Add(" ");
    453   PrintDataTo(stream);
    454 
    455   if (range() != NULL &&
    456       !range()->IsMostGeneric() &&
    457       !range()->CanBeMinusZero()) {
    458     stream->Add(" range[%d,%d,m0=%d]",
    459                 range()->lower(),
    460                 range()->upper(),
    461                 static_cast<int>(range()->CanBeMinusZero()));
    462   }
    463 
    464   int changes_flags = (flags() & HValue::ChangesFlagsMask());
    465   if (changes_flags != 0) {
    466     stream->Add(" changes[0x%x]", changes_flags);
    467   }
    468 
    469   if (representation().IsTagged() && !type().Equals(HType::Tagged())) {
    470     stream->Add(" type[%s]", type().ToString());
    471   }
    472 }
    473 
    474 
    475 void HInstruction::Unlink() {
    476   ASSERT(IsLinked());
    477   ASSERT(!IsControlInstruction());  // Must never move control instructions.
    478   ASSERT(!IsBlockEntry());  // Doesn't make sense to delete these.
    479   ASSERT(previous_ != NULL);
    480   previous_->next_ = next_;
    481   if (next_ == NULL) {
    482     ASSERT(block()->last() == this);
    483     block()->set_last(previous_);
    484   } else {
    485     next_->previous_ = previous_;
    486   }
    487   clear_block();
    488 }
    489 
    490 
    491 void HInstruction::InsertBefore(HInstruction* next) {
    492   ASSERT(!IsLinked());
    493   ASSERT(!next->IsBlockEntry());
    494   ASSERT(!IsControlInstruction());
    495   ASSERT(!next->block()->IsStartBlock());
    496   ASSERT(next->previous_ != NULL);
    497   HInstruction* prev = next->previous();
    498   prev->next_ = this;
    499   next->previous_ = this;
    500   next_ = next;
    501   previous_ = prev;
    502   SetBlock(next->block());
    503 }
    504 
    505 
    506 void HInstruction::InsertAfter(HInstruction* previous) {
    507   ASSERT(!IsLinked());
    508   ASSERT(!previous->IsControlInstruction());
    509   ASSERT(!IsControlInstruction() || previous->next_ == NULL);
    510   HBasicBlock* block = previous->block();
    511   // Never insert anything except constants into the start block after finishing
    512   // it.
    513   if (block->IsStartBlock() && block->IsFinished() && !IsConstant()) {
    514     ASSERT(block->end()->SecondSuccessor() == NULL);
    515     InsertAfter(block->end()->FirstSuccessor()->first());
    516     return;
    517   }
    518 
    519   // If we're inserting after an instruction with side-effects that is
    520   // followed by a simulate instruction, we need to insert after the
    521   // simulate instruction instead.
    522   HInstruction* next = previous->next_;
    523   if (previous->HasSideEffects() && next != NULL) {
    524     ASSERT(next->IsSimulate());
    525     previous = next;
    526     next = previous->next_;
    527   }
    528 
    529   previous_ = previous;
    530   next_ = next;
    531   SetBlock(block);
    532   previous->next_ = this;
    533   if (next != NULL) next->previous_ = this;
    534 }
    535 
    536 
    537 #ifdef DEBUG
    538 void HInstruction::Verify() {
    539   // Verify that input operands are defined before use.
    540   HBasicBlock* cur_block = block();
    541   for (int i = 0; i < OperandCount(); ++i) {
    542     HValue* other_operand = OperandAt(i);
    543     HBasicBlock* other_block = other_operand->block();
    544     if (cur_block == other_block) {
    545       if (!other_operand->IsPhi()) {
    546         HInstruction* cur = cur_block->first();
    547         while (cur != NULL) {
    548           ASSERT(cur != this);  // We should reach other_operand before!
    549           if (cur == other_operand) break;
    550           cur = cur->next();
    551         }
    552         // Must reach other operand in the same block!
    553         ASSERT(cur == other_operand);
    554       }
    555     } else {
    556       ASSERT(other_block->Dominates(cur_block));
    557     }
    558   }
    559 
    560   // Verify that instructions that may have side-effects are followed
    561   // by a simulate instruction.
    562   if (HasSideEffects() && !IsOsrEntry()) {
    563     ASSERT(next()->IsSimulate());
    564   }
    565 
    566   // Verify that instructions that can be eliminated by GVN have overridden
    567   // HValue::DataEquals.  The default implementation is UNREACHABLE.  We
    568   // don't actually care whether DataEquals returns true or false here.
    569   if (CheckFlag(kUseGVN)) DataEquals(this);
    570 }
    571 #endif
    572 
    573 
    574 void HUnaryCall::PrintDataTo(StringStream* stream) {
    575   value()->PrintNameTo(stream);
    576   stream->Add(" ");
    577   stream->Add("#%d", argument_count());
    578 }
    579 
    580 
    581 void HBinaryCall::PrintDataTo(StringStream* stream) {
    582   first()->PrintNameTo(stream);
    583   stream->Add(" ");
    584   second()->PrintNameTo(stream);
    585   stream->Add(" ");
    586   stream->Add("#%d", argument_count());
    587 }
    588 
    589 
    590 void HCallConstantFunction::PrintDataTo(StringStream* stream) {
    591   if (IsApplyFunction()) {
    592     stream->Add("optimized apply ");
    593   } else {
    594     stream->Add("%o ", function()->shared()->DebugName());
    595   }
    596   stream->Add("#%d", argument_count());
    597 }
    598 
    599 
    600 void HCallNamed::PrintDataTo(StringStream* stream) {
    601   stream->Add("%o ", *name());
    602   HUnaryCall::PrintDataTo(stream);
    603 }
    604 
    605 
    606 void HCallGlobal::PrintDataTo(StringStream* stream) {
    607   stream->Add("%o ", *name());
    608   HUnaryCall::PrintDataTo(stream);
    609 }
    610 
    611 
    612 void HCallKnownGlobal::PrintDataTo(StringStream* stream) {
    613   stream->Add("o ", target()->shared()->DebugName());
    614   stream->Add("#%d", argument_count());
    615 }
    616 
    617 
    618 void HCallRuntime::PrintDataTo(StringStream* stream) {
    619   stream->Add("%o ", *name());
    620   stream->Add("#%d", argument_count());
    621 }
    622 
    623 
    624 void HClassOfTest::PrintDataTo(StringStream* stream) {
    625   stream->Add("class_of_test(");
    626   value()->PrintNameTo(stream);
    627   stream->Add(", \"%o\")", *class_name());
    628 }
    629 
    630 
    631 void HAccessArgumentsAt::PrintDataTo(StringStream* stream) {
    632   arguments()->PrintNameTo(stream);
    633   stream->Add("[");
    634   index()->PrintNameTo(stream);
    635   stream->Add("], length ");
    636   length()->PrintNameTo(stream);
    637 }
    638 
    639 
    640 void HControlInstruction::PrintDataTo(StringStream* stream) {
    641   if (FirstSuccessor() != NULL) {
    642     int first_id = FirstSuccessor()->block_id();
    643     if (SecondSuccessor() == NULL) {
    644       stream->Add(" B%d", first_id);
    645     } else {
    646       int second_id = SecondSuccessor()->block_id();
    647       stream->Add(" goto (B%d, B%d)", first_id, second_id);
    648     }
    649   }
    650 }
    651 
    652 
    653 void HUnaryControlInstruction::PrintDataTo(StringStream* stream) {
    654   value()->PrintNameTo(stream);
    655   HControlInstruction::PrintDataTo(stream);
    656 }
    657 
    658 
    659 void HCompareMap::PrintDataTo(StringStream* stream) {
    660   value()->PrintNameTo(stream);
    661   stream->Add(" (%p)", *map());
    662   HControlInstruction::PrintDataTo(stream);
    663 }
    664 
    665 
    666 const char* HUnaryMathOperation::OpName() const {
    667   switch (op()) {
    668     case kMathFloor: return "floor";
    669     case kMathRound: return "round";
    670     case kMathCeil: return "ceil";
    671     case kMathAbs: return "abs";
    672     case kMathLog: return "log";
    673     case kMathSin: return "sin";
    674     case kMathCos: return "cos";
    675     case kMathTan: return "tan";
    676     case kMathASin: return "asin";
    677     case kMathACos: return "acos";
    678     case kMathATan: return "atan";
    679     case kMathExp: return "exp";
    680     case kMathSqrt: return "sqrt";
    681     default: break;
    682   }
    683   return "(unknown operation)";
    684 }
    685 
    686 
    687 void HUnaryMathOperation::PrintDataTo(StringStream* stream) {
    688   const char* name = OpName();
    689   stream->Add("%s ", name);
    690   value()->PrintNameTo(stream);
    691 }
    692 
    693 
    694 void HUnaryOperation::PrintDataTo(StringStream* stream) {
    695   value()->PrintNameTo(stream);
    696 }
    697 
    698 
    699 void HHasInstanceType::PrintDataTo(StringStream* stream) {
    700   value()->PrintNameTo(stream);
    701   switch (from_) {
    702     case FIRST_JS_OBJECT_TYPE:
    703       if (to_ == LAST_TYPE) stream->Add(" spec_object");
    704       break;
    705     case JS_REGEXP_TYPE:
    706       if (to_ == JS_REGEXP_TYPE) stream->Add(" reg_exp");
    707       break;
    708     case JS_ARRAY_TYPE:
    709       if (to_ == JS_ARRAY_TYPE) stream->Add(" array");
    710       break;
    711     case JS_FUNCTION_TYPE:
    712       if (to_ == JS_FUNCTION_TYPE) stream->Add(" function");
    713       break;
    714     default:
    715       break;
    716   }
    717 }
    718 
    719 
    720 void HTypeofIs::PrintDataTo(StringStream* stream) {
    721   value()->PrintNameTo(stream);
    722   stream->Add(" == ");
    723   stream->Add(type_literal_->ToAsciiVector());
    724 }
    725 
    726 
    727 void HChange::PrintDataTo(StringStream* stream) {
    728   HUnaryOperation::PrintDataTo(stream);
    729   stream->Add(" %s to %s", from_.Mnemonic(), to().Mnemonic());
    730 
    731   if (CanTruncateToInt32()) stream->Add(" truncating-int32");
    732   if (CheckFlag(kBailoutOnMinusZero)) stream->Add(" -0?");
    733 }
    734 
    735 
    736 HCheckInstanceType* HCheckInstanceType::NewIsJSObjectOrJSFunction(
    737     HValue* value)  {
    738   STATIC_ASSERT((LAST_JS_OBJECT_TYPE + 1) == JS_FUNCTION_TYPE);
    739   return new HCheckInstanceType(value, FIRST_JS_OBJECT_TYPE, JS_FUNCTION_TYPE);
    740 }
    741 
    742 
    743 void HCheckMap::PrintDataTo(StringStream* stream) {
    744   value()->PrintNameTo(stream);
    745   stream->Add(" %p", *map());
    746 }
    747 
    748 
    749 void HCheckFunction::PrintDataTo(StringStream* stream) {
    750   value()->PrintNameTo(stream);
    751   stream->Add(" %p", *target());
    752 }
    753 
    754 
    755 void HCallStub::PrintDataTo(StringStream* stream) {
    756   stream->Add("%s ",
    757               CodeStub::MajorName(major_key_, false));
    758   HUnaryCall::PrintDataTo(stream);
    759 }
    760 
    761 
    762 void HInstanceOf::PrintDataTo(StringStream* stream) {
    763   left()->PrintNameTo(stream);
    764   stream->Add(" ");
    765   right()->PrintNameTo(stream);
    766   stream->Add(" ");
    767   context()->PrintNameTo(stream);
    768 }
    769 
    770 
    771 Range* HValue::InferRange() {
    772   if (representation().IsTagged()) {
    773     // Tagged values are always in int32 range when converted to integer,
    774     // but they can contain -0.
    775     Range* result = new Range();
    776     result->set_can_be_minus_zero(true);
    777     return result;
    778   } else if (representation().IsNone()) {
    779     return NULL;
    780   } else {
    781     // Untagged integer32 cannot be -0 and we don't compute ranges for
    782     // untagged doubles.
    783     return new Range();
    784   }
    785 }
    786 
    787 
    788 Range* HConstant::InferRange() {
    789   if (has_int32_value_) {
    790     Range* result = new Range(int32_value_, int32_value_);
    791     result->set_can_be_minus_zero(false);
    792     return result;
    793   }
    794   return HValue::InferRange();
    795 }
    796 
    797 
    798 Range* HPhi::InferRange() {
    799   if (representation().IsInteger32()) {
    800     if (block()->IsLoopHeader()) {
    801       Range* range = new Range(kMinInt, kMaxInt);
    802       return range;
    803     } else {
    804       Range* range = OperandAt(0)->range()->Copy();
    805       for (int i = 1; i < OperandCount(); ++i) {
    806         range->Union(OperandAt(i)->range());
    807       }
    808       return range;
    809     }
    810   } else {
    811     return HValue::InferRange();
    812   }
    813 }
    814 
    815 
    816 Range* HAdd::InferRange() {
    817   if (representation().IsInteger32()) {
    818     Range* a = left()->range();
    819     Range* b = right()->range();
    820     Range* res = a->Copy();
    821     if (!res->AddAndCheckOverflow(b)) {
    822       ClearFlag(kCanOverflow);
    823     }
    824     bool m0 = a->CanBeMinusZero() && b->CanBeMinusZero();
    825     res->set_can_be_minus_zero(m0);
    826     return res;
    827   } else {
    828     return HValue::InferRange();
    829   }
    830 }
    831 
    832 
    833 Range* HSub::InferRange() {
    834   if (representation().IsInteger32()) {
    835     Range* a = left()->range();
    836     Range* b = right()->range();
    837     Range* res = a->Copy();
    838     if (!res->SubAndCheckOverflow(b)) {
    839       ClearFlag(kCanOverflow);
    840     }
    841     res->set_can_be_minus_zero(a->CanBeMinusZero() && b->CanBeZero());
    842     return res;
    843   } else {
    844     return HValue::InferRange();
    845   }
    846 }
    847 
    848 
    849 Range* HMul::InferRange() {
    850   if (representation().IsInteger32()) {
    851     Range* a = left()->range();
    852     Range* b = right()->range();
    853     Range* res = a->Copy();
    854     if (!res->MulAndCheckOverflow(b)) {
    855       ClearFlag(kCanOverflow);
    856     }
    857     bool m0 = (a->CanBeZero() && b->CanBeNegative()) ||
    858         (a->CanBeNegative() && b->CanBeZero());
    859     res->set_can_be_minus_zero(m0);
    860     return res;
    861   } else {
    862     return HValue::InferRange();
    863   }
    864 }
    865 
    866 
    867 Range* HDiv::InferRange() {
    868   if (representation().IsInteger32()) {
    869     Range* result = new Range();
    870     if (left()->range()->CanBeMinusZero()) {
    871       result->set_can_be_minus_zero(true);
    872     }
    873 
    874     if (left()->range()->CanBeZero() && right()->range()->CanBeNegative()) {
    875       result->set_can_be_minus_zero(true);
    876     }
    877 
    878     if (right()->range()->Includes(-1) && left()->range()->Includes(kMinInt)) {
    879       SetFlag(HValue::kCanOverflow);
    880     }
    881 
    882     if (!right()->range()->CanBeZero()) {
    883       ClearFlag(HValue::kCanBeDivByZero);
    884     }
    885     return result;
    886   } else {
    887     return HValue::InferRange();
    888   }
    889 }
    890 
    891 
    892 Range* HMod::InferRange() {
    893   if (representation().IsInteger32()) {
    894     Range* a = left()->range();
    895     Range* result = new Range();
    896     if (a->CanBeMinusZero() || a->CanBeNegative()) {
    897       result->set_can_be_minus_zero(true);
    898     }
    899     if (!right()->range()->CanBeZero()) {
    900       ClearFlag(HValue::kCanBeDivByZero);
    901     }
    902     return result;
    903   } else {
    904     return HValue::InferRange();
    905   }
    906 }
    907 
    908 
    909 void HPhi::PrintTo(StringStream* stream) {
    910   stream->Add("[");
    911   for (int i = 0; i < OperandCount(); ++i) {
    912     HValue* value = OperandAt(i);
    913     stream->Add(" ");
    914     value->PrintNameTo(stream);
    915     stream->Add(" ");
    916   }
    917   stream->Add(" uses%d_%di_%dd_%dt]",
    918               uses()->length(),
    919               int32_non_phi_uses() + int32_indirect_uses(),
    920               double_non_phi_uses() + double_indirect_uses(),
    921               tagged_non_phi_uses() + tagged_indirect_uses());
    922 }
    923 
    924 
    925 void HPhi::AddInput(HValue* value) {
    926   inputs_.Add(NULL);
    927   SetOperandAt(OperandCount() - 1, value);
    928   // Mark phis that may have 'arguments' directly or indirectly as an operand.
    929   if (!CheckFlag(kIsArguments) && value->CheckFlag(kIsArguments)) {
    930     SetFlag(kIsArguments);
    931   }
    932 }
    933 
    934 
    935 bool HPhi::HasRealUses() {
    936   for (int i = 0; i < uses()->length(); i++) {
    937     if (!uses()->at(i)->IsPhi()) return true;
    938   }
    939   return false;
    940 }
    941 
    942 
    943 HValue* HPhi::GetRedundantReplacement() {
    944   HValue* candidate = NULL;
    945   int count = OperandCount();
    946   int position = 0;
    947   while (position < count && candidate == NULL) {
    948     HValue* current = OperandAt(position++);
    949     if (current != this) candidate = current;
    950   }
    951   while (position < count) {
    952     HValue* current = OperandAt(position++);
    953     if (current != this && current != candidate) return NULL;
    954   }
    955   ASSERT(candidate != this);
    956   return candidate;
    957 }
    958 
    959 
    960 void HPhi::DeleteFromGraph() {
    961   ASSERT(block() != NULL);
    962   block()->RemovePhi(this);
    963   ASSERT(block() == NULL);
    964 }
    965 
    966 
    967 void HPhi::InitRealUses(int phi_id) {
    968   // Initialize real uses.
    969   phi_id_ = phi_id;
    970   for (int j = 0; j < uses()->length(); j++) {
    971     HValue* use = uses()->at(j);
    972     if (!use->IsPhi()) {
    973       int index = use->LookupOperandIndex(0, this);
    974       Representation req_rep = use->RequiredInputRepresentation(index);
    975       non_phi_uses_[req_rep.kind()]++;
    976     }
    977   }
    978 }
    979 
    980 
    981 void HPhi::AddNonPhiUsesFrom(HPhi* other) {
    982   for (int i = 0; i < Representation::kNumRepresentations; i++) {
    983     indirect_uses_[i] += other->non_phi_uses_[i];
    984   }
    985 }
    986 
    987 
    988 void HPhi::AddIndirectUsesTo(int* dest) {
    989   for (int i = 0; i < Representation::kNumRepresentations; i++) {
    990     dest[i] += indirect_uses_[i];
    991   }
    992 }
    993 
    994 
    995 void HSimulate::PrintDataTo(StringStream* stream) {
    996   stream->Add("id=%d ", ast_id());
    997   if (pop_count_ > 0) stream->Add("pop %d", pop_count_);
    998   if (values_.length() > 0) {
    999     if (pop_count_ > 0) stream->Add(" /");
   1000     for (int i = 0; i < values_.length(); ++i) {
   1001       if (!HasAssignedIndexAt(i)) {
   1002         stream->Add(" push ");
   1003       } else {
   1004         stream->Add(" var[%d] = ", GetAssignedIndexAt(i));
   1005       }
   1006       values_[i]->PrintNameTo(stream);
   1007     }
   1008   }
   1009 }
   1010 
   1011 
   1012 void HEnterInlined::PrintDataTo(StringStream* stream) {
   1013   SmartPointer<char> name = function()->debug_name()->ToCString();
   1014   stream->Add("%s, id=%d", *name, function()->id());
   1015 }
   1016 
   1017 
   1018 HConstant::HConstant(Handle<Object> handle, Representation r)
   1019     : handle_(handle),
   1020       constant_type_(HType::TypeFromValue(handle)),
   1021       has_int32_value_(false),
   1022       int32_value_(0),
   1023       has_double_value_(false),
   1024       double_value_(0)  {
   1025   set_representation(r);
   1026   SetFlag(kUseGVN);
   1027   if (handle_->IsNumber()) {
   1028     double n = handle_->Number();
   1029     double roundtrip_value = static_cast<double>(static_cast<int32_t>(n));
   1030     has_int32_value_ = BitCast<int64_t>(roundtrip_value) == BitCast<int64_t>(n);
   1031     if (has_int32_value_) int32_value_ = static_cast<int32_t>(n);
   1032     double_value_ = n;
   1033     has_double_value_ = true;
   1034   }
   1035 }
   1036 
   1037 
   1038 HConstant* HConstant::CopyToRepresentation(Representation r) const {
   1039   if (r.IsInteger32() && !has_int32_value_) return NULL;
   1040   if (r.IsDouble() && !has_double_value_) return NULL;
   1041   return new HConstant(handle_, r);
   1042 }
   1043 
   1044 
   1045 HConstant* HConstant::CopyToTruncatedInt32() const {
   1046   if (!has_double_value_) return NULL;
   1047   int32_t truncated = NumberToInt32(*handle_);
   1048   return new HConstant(FACTORY->NewNumberFromInt(truncated),
   1049                        Representation::Integer32());
   1050 }
   1051 
   1052 
   1053 bool HConstant::ToBoolean() const {
   1054   // Converts the constant's boolean value according to
   1055   // ECMAScript section 9.2 ToBoolean conversion.
   1056   if (HasInteger32Value()) return Integer32Value() != 0;
   1057   if (HasDoubleValue()) {
   1058     double v = DoubleValue();
   1059     return v != 0 && !isnan(v);
   1060   }
   1061   if (handle()->IsTrue()) return true;
   1062   if (handle()->IsFalse()) return false;
   1063   if (handle()->IsUndefined()) return false;
   1064   if (handle()->IsNull()) return false;
   1065   if (handle()->IsString() &&
   1066       String::cast(*handle())->length() == 0) return false;
   1067   return true;
   1068 }
   1069 
   1070 void HConstant::PrintDataTo(StringStream* stream) {
   1071   handle()->ShortPrint(stream);
   1072 }
   1073 
   1074 
   1075 bool HArrayLiteral::IsCopyOnWrite() const {
   1076   return constant_elements()->map() == HEAP->fixed_cow_array_map();
   1077 }
   1078 
   1079 
   1080 void HBinaryOperation::PrintDataTo(StringStream* stream) {
   1081   left()->PrintNameTo(stream);
   1082   stream->Add(" ");
   1083   right()->PrintNameTo(stream);
   1084   if (CheckFlag(kCanOverflow)) stream->Add(" !");
   1085   if (CheckFlag(kBailoutOnMinusZero)) stream->Add(" -0?");
   1086 }
   1087 
   1088 
   1089 Range* HBitAnd::InferRange() {
   1090   int32_t left_mask = (left()->range() != NULL)
   1091       ? left()->range()->Mask()
   1092       : 0xffffffff;
   1093   int32_t right_mask = (right()->range() != NULL)
   1094       ? right()->range()->Mask()
   1095       : 0xffffffff;
   1096   int32_t result_mask = left_mask & right_mask;
   1097   return (result_mask >= 0)
   1098       ? new Range(0, result_mask)
   1099       : HValue::InferRange();
   1100 }
   1101 
   1102 
   1103 Range* HBitOr::InferRange() {
   1104   int32_t left_mask = (left()->range() != NULL)
   1105       ? left()->range()->Mask()
   1106       : 0xffffffff;
   1107   int32_t right_mask = (right()->range() != NULL)
   1108       ? right()->range()->Mask()
   1109       : 0xffffffff;
   1110   int32_t result_mask = left_mask | right_mask;
   1111   return (result_mask >= 0)
   1112       ? new Range(0, result_mask)
   1113       : HValue::InferRange();
   1114 }
   1115 
   1116 
   1117 Range* HSar::InferRange() {
   1118   if (right()->IsConstant()) {
   1119     HConstant* c = HConstant::cast(right());
   1120     if (c->HasInteger32Value()) {
   1121       Range* result = (left()->range() != NULL)
   1122           ? left()->range()->Copy()
   1123           : new Range();
   1124       result->Sar(c->Integer32Value());
   1125       return result;
   1126     }
   1127   }
   1128   return HValue::InferRange();
   1129 }
   1130 
   1131 
   1132 Range* HShl::InferRange() {
   1133   if (right()->IsConstant()) {
   1134     HConstant* c = HConstant::cast(right());
   1135     if (c->HasInteger32Value()) {
   1136       Range* result = (left()->range() != NULL)
   1137           ? left()->range()->Copy()
   1138           : new Range();
   1139       result->Shl(c->Integer32Value());
   1140       return result;
   1141     }
   1142   }
   1143   return HValue::InferRange();
   1144 }
   1145 
   1146 
   1147 
   1148 void HCompare::PrintDataTo(StringStream* stream) {
   1149   stream->Add(Token::Name(token()));
   1150   stream->Add(" ");
   1151   HBinaryOperation::PrintDataTo(stream);
   1152 }
   1153 
   1154 
   1155 void HCompare::SetInputRepresentation(Representation r) {
   1156   input_representation_ = r;
   1157   if (r.IsTagged()) {
   1158     SetAllSideEffects();
   1159     ClearFlag(kUseGVN);
   1160   } else if (r.IsDouble()) {
   1161     SetFlag(kDeoptimizeOnUndefined);
   1162     ClearAllSideEffects();
   1163     SetFlag(kUseGVN);
   1164   } else {
   1165     ClearAllSideEffects();
   1166     SetFlag(kUseGVN);
   1167   }
   1168 }
   1169 
   1170 
   1171 void HParameter::PrintDataTo(StringStream* stream) {
   1172   stream->Add("%u", index());
   1173 }
   1174 
   1175 
   1176 void HLoadNamedField::PrintDataTo(StringStream* stream) {
   1177   object()->PrintNameTo(stream);
   1178   stream->Add(" @%d%s", offset(), is_in_object() ? "[in-object]" : "");
   1179 }
   1180 
   1181 
   1182 HLoadNamedFieldPolymorphic::HLoadNamedFieldPolymorphic(HValue* object,
   1183                                                        ZoneMapList* types,
   1184                                                        Handle<String> name)
   1185     : HUnaryOperation(object),
   1186       types_(Min(types->length(), kMaxLoadPolymorphism)),
   1187       name_(name),
   1188       need_generic_(false) {
   1189   set_representation(Representation::Tagged());
   1190   SetFlag(kDependsOnMaps);
   1191   for (int i = 0;
   1192        i < types->length() && types_.length() < kMaxLoadPolymorphism;
   1193        ++i) {
   1194     Handle<Map> map = types->at(i);
   1195     LookupResult lookup;
   1196     map->LookupInDescriptors(NULL, *name, &lookup);
   1197     if (lookup.IsProperty() && lookup.type() == FIELD) {
   1198       types_.Add(types->at(i));
   1199       int index = lookup.GetLocalFieldIndexFromMap(*map);
   1200       if (index < 0) {
   1201         SetFlag(kDependsOnInobjectFields);
   1202       } else {
   1203         SetFlag(kDependsOnBackingStoreFields);
   1204       }
   1205     }
   1206   }
   1207 
   1208   if (types_.length() == types->length() && FLAG_deoptimize_uncommon_cases) {
   1209     SetFlag(kUseGVN);
   1210   } else {
   1211     SetAllSideEffects();
   1212     need_generic_ = true;
   1213   }
   1214 }
   1215 
   1216 
   1217 bool HLoadNamedFieldPolymorphic::DataEquals(HValue* value) {
   1218   HLoadNamedFieldPolymorphic* other = HLoadNamedFieldPolymorphic::cast(value);
   1219   if (types_.length() != other->types()->length()) return false;
   1220   if (!name_.is_identical_to(other->name())) return false;
   1221   if (need_generic_ != other->need_generic_) return false;
   1222   for (int i = 0; i < types_.length(); i++) {
   1223     bool found = false;
   1224     for (int j = 0; j < types_.length(); j++) {
   1225       if (types_.at(j).is_identical_to(other->types()->at(i))) {
   1226         found = true;
   1227         break;
   1228       }
   1229     }
   1230     if (!found) return false;
   1231   }
   1232   return true;
   1233 }
   1234 
   1235 
   1236 void HLoadKeyedFastElement::PrintDataTo(StringStream* stream) {
   1237   object()->PrintNameTo(stream);
   1238   stream->Add("[");
   1239   key()->PrintNameTo(stream);
   1240   stream->Add("]");
   1241 }
   1242 
   1243 
   1244 void HLoadKeyedGeneric::PrintDataTo(StringStream* stream) {
   1245   object()->PrintNameTo(stream);
   1246   stream->Add("[");
   1247   key()->PrintNameTo(stream);
   1248   stream->Add("]");
   1249 }
   1250 
   1251 
   1252 void HLoadKeyedSpecializedArrayElement::PrintDataTo(
   1253     StringStream* stream) {
   1254   external_pointer()->PrintNameTo(stream);
   1255   stream->Add(".");
   1256   switch (array_type()) {
   1257     case kExternalByteArray:
   1258       stream->Add("byte");
   1259       break;
   1260     case kExternalUnsignedByteArray:
   1261       stream->Add("u_byte");
   1262       break;
   1263     case kExternalShortArray:
   1264       stream->Add("short");
   1265       break;
   1266     case kExternalUnsignedShortArray:
   1267       stream->Add("u_short");
   1268       break;
   1269     case kExternalIntArray:
   1270       stream->Add("int");
   1271       break;
   1272     case kExternalUnsignedIntArray:
   1273       stream->Add("u_int");
   1274       break;
   1275     case kExternalFloatArray:
   1276       stream->Add("float");
   1277       break;
   1278     case kExternalPixelArray:
   1279       stream->Add("pixel");
   1280       break;
   1281   }
   1282   stream->Add("[");
   1283   key()->PrintNameTo(stream);
   1284   stream->Add("]");
   1285 }
   1286 
   1287 
   1288 void HStoreNamedGeneric::PrintDataTo(StringStream* stream) {
   1289   object()->PrintNameTo(stream);
   1290   stream->Add(".");
   1291   ASSERT(name()->IsString());
   1292   stream->Add(*String::cast(*name())->ToCString());
   1293   stream->Add(" = ");
   1294   value()->PrintNameTo(stream);
   1295 }
   1296 
   1297 
   1298 void HStoreNamedField::PrintDataTo(StringStream* stream) {
   1299   object()->PrintNameTo(stream);
   1300   stream->Add(".");
   1301   ASSERT(name()->IsString());
   1302   stream->Add(*String::cast(*name())->ToCString());
   1303   stream->Add(" = ");
   1304   value()->PrintNameTo(stream);
   1305   if (!transition().is_null()) {
   1306     stream->Add(" (transition map %p)", *transition());
   1307   }
   1308 }
   1309 
   1310 
   1311 void HStoreKeyedFastElement::PrintDataTo(StringStream* stream) {
   1312   object()->PrintNameTo(stream);
   1313   stream->Add("[");
   1314   key()->PrintNameTo(stream);
   1315   stream->Add("] = ");
   1316   value()->PrintNameTo(stream);
   1317 }
   1318 
   1319 
   1320 void HStoreKeyedGeneric::PrintDataTo(StringStream* stream) {
   1321   object()->PrintNameTo(stream);
   1322   stream->Add("[");
   1323   key()->PrintNameTo(stream);
   1324   stream->Add("] = ");
   1325   value()->PrintNameTo(stream);
   1326 }
   1327 
   1328 
   1329 void HStoreKeyedSpecializedArrayElement::PrintDataTo(
   1330     StringStream* stream) {
   1331   external_pointer()->PrintNameTo(stream);
   1332   stream->Add(".");
   1333   switch (array_type()) {
   1334     case kExternalByteArray:
   1335       stream->Add("byte");
   1336       break;
   1337     case kExternalUnsignedByteArray:
   1338       stream->Add("u_byte");
   1339       break;
   1340     case kExternalShortArray:
   1341       stream->Add("short");
   1342       break;
   1343     case kExternalUnsignedShortArray:
   1344       stream->Add("u_short");
   1345       break;
   1346     case kExternalIntArray:
   1347       stream->Add("int");
   1348       break;
   1349     case kExternalUnsignedIntArray:
   1350       stream->Add("u_int");
   1351       break;
   1352     case kExternalFloatArray:
   1353       stream->Add("float");
   1354       break;
   1355     case kExternalPixelArray:
   1356       stream->Add("pixel");
   1357       break;
   1358   }
   1359   stream->Add("[");
   1360   key()->PrintNameTo(stream);
   1361   stream->Add("] = ");
   1362   value()->PrintNameTo(stream);
   1363 }
   1364 
   1365 
   1366 void HLoadGlobalCell::PrintDataTo(StringStream* stream) {
   1367   stream->Add("[%p]", *cell());
   1368   if (check_hole_value()) stream->Add(" (deleteable/read-only)");
   1369 }
   1370 
   1371 
   1372 void HLoadGlobalGeneric::PrintDataTo(StringStream* stream) {
   1373   stream->Add("%o ", *name());
   1374 }
   1375 
   1376 
   1377 void HStoreGlobalCell::PrintDataTo(StringStream* stream) {
   1378   stream->Add("[%p] = ", *cell());
   1379   value()->PrintNameTo(stream);
   1380 }
   1381 
   1382 
   1383 void HStoreGlobalGeneric::PrintDataTo(StringStream* stream) {
   1384   stream->Add("%o = ", *name());
   1385   value()->PrintNameTo(stream);
   1386 }
   1387 
   1388 
   1389 void HLoadContextSlot::PrintDataTo(StringStream* stream) {
   1390   value()->PrintNameTo(stream);
   1391   stream->Add("[%d]", slot_index());
   1392 }
   1393 
   1394 
   1395 void HStoreContextSlot::PrintDataTo(StringStream* stream) {
   1396   context()->PrintNameTo(stream);
   1397   stream->Add("[%d] = ", slot_index());
   1398   value()->PrintNameTo(stream);
   1399 }
   1400 
   1401 
   1402 // Implementation of type inference and type conversions. Calculates
   1403 // the inferred type of this instruction based on the input operands.
   1404 
   1405 HType HValue::CalculateInferredType() {
   1406   return type_;
   1407 }
   1408 
   1409 
   1410 HType HCheckMap::CalculateInferredType() {
   1411   return value()->type();
   1412 }
   1413 
   1414 
   1415 HType HCheckFunction::CalculateInferredType() {
   1416   return value()->type();
   1417 }
   1418 
   1419 
   1420 HType HCheckNonSmi::CalculateInferredType() {
   1421   // TODO(kasperl): Is there any way to signal that this isn't a smi?
   1422   return HType::Tagged();
   1423 }
   1424 
   1425 
   1426 HType HCheckSmi::CalculateInferredType() {
   1427   return HType::Smi();
   1428 }
   1429 
   1430 
   1431 HType HPhi::CalculateInferredType() {
   1432   HType result = HType::Uninitialized();
   1433   for (int i = 0; i < OperandCount(); ++i) {
   1434     HType current = OperandAt(i)->type();
   1435     result = result.Combine(current);
   1436   }
   1437   return result;
   1438 }
   1439 
   1440 
   1441 HType HConstant::CalculateInferredType() {
   1442   return constant_type_;
   1443 }
   1444 
   1445 
   1446 HType HCompare::CalculateInferredType() {
   1447   return HType::Boolean();
   1448 }
   1449 
   1450 
   1451 HType HCompareJSObjectEq::CalculateInferredType() {
   1452   return HType::Boolean();
   1453 }
   1454 
   1455 
   1456 HType HUnaryPredicate::CalculateInferredType() {
   1457   return HType::Boolean();
   1458 }
   1459 
   1460 
   1461 HType HBitwiseBinaryOperation::CalculateInferredType() {
   1462   return HType::TaggedNumber();
   1463 }
   1464 
   1465 
   1466 HType HArithmeticBinaryOperation::CalculateInferredType() {
   1467   return HType::TaggedNumber();
   1468 }
   1469 
   1470 
   1471 HType HAdd::CalculateInferredType() {
   1472   return HType::Tagged();
   1473 }
   1474 
   1475 
   1476 HType HBitAnd::CalculateInferredType() {
   1477   return HType::TaggedNumber();
   1478 }
   1479 
   1480 
   1481 HType HBitXor::CalculateInferredType() {
   1482   return HType::TaggedNumber();
   1483 }
   1484 
   1485 
   1486 HType HBitOr::CalculateInferredType() {
   1487   return HType::TaggedNumber();
   1488 }
   1489 
   1490 
   1491 HType HBitNot::CalculateInferredType() {
   1492   return HType::TaggedNumber();
   1493 }
   1494 
   1495 
   1496 HType HUnaryMathOperation::CalculateInferredType() {
   1497   return HType::TaggedNumber();
   1498 }
   1499 
   1500 
   1501 HType HShl::CalculateInferredType() {
   1502   return HType::TaggedNumber();
   1503 }
   1504 
   1505 
   1506 HType HShr::CalculateInferredType() {
   1507   return HType::TaggedNumber();
   1508 }
   1509 
   1510 
   1511 HType HSar::CalculateInferredType() {
   1512   return HType::TaggedNumber();
   1513 }
   1514 
   1515 
   1516 HValue* HUnaryMathOperation::EnsureAndPropagateNotMinusZero(
   1517     BitVector* visited) {
   1518   visited->Add(id());
   1519   if (representation().IsInteger32() &&
   1520       !value()->representation().IsInteger32()) {
   1521     if (value()->range() == NULL || value()->range()->CanBeMinusZero()) {
   1522       SetFlag(kBailoutOnMinusZero);
   1523     }
   1524   }
   1525   if (RequiredInputRepresentation(0).IsInteger32() &&
   1526       representation().IsInteger32()) {
   1527     return value();
   1528   }
   1529   return NULL;
   1530 }
   1531 
   1532 
   1533 
   1534 HValue* HChange::EnsureAndPropagateNotMinusZero(BitVector* visited) {
   1535   visited->Add(id());
   1536   if (from().IsInteger32()) return NULL;
   1537   if (CanTruncateToInt32()) return NULL;
   1538   if (value()->range() == NULL || value()->range()->CanBeMinusZero()) {
   1539     SetFlag(kBailoutOnMinusZero);
   1540   }
   1541   ASSERT(!from().IsInteger32() || !to().IsInteger32());
   1542   return NULL;
   1543 }
   1544 
   1545 
   1546 HValue* HMod::EnsureAndPropagateNotMinusZero(BitVector* visited) {
   1547   visited->Add(id());
   1548   if (range() == NULL || range()->CanBeMinusZero()) {
   1549     SetFlag(kBailoutOnMinusZero);
   1550     return left();
   1551   }
   1552   return NULL;
   1553 }
   1554 
   1555 
   1556 HValue* HDiv::EnsureAndPropagateNotMinusZero(BitVector* visited) {
   1557   visited->Add(id());
   1558   if (range() == NULL || range()->CanBeMinusZero()) {
   1559     SetFlag(kBailoutOnMinusZero);
   1560   }
   1561   return NULL;
   1562 }
   1563 
   1564 
   1565 HValue* HMul::EnsureAndPropagateNotMinusZero(BitVector* visited) {
   1566   visited->Add(id());
   1567   if (range() == NULL || range()->CanBeMinusZero()) {
   1568     SetFlag(kBailoutOnMinusZero);
   1569   }
   1570   return NULL;
   1571 }
   1572 
   1573 
   1574 HValue* HSub::EnsureAndPropagateNotMinusZero(BitVector* visited) {
   1575   visited->Add(id());
   1576   // Propagate to the left argument. If the left argument cannot be -0, then
   1577   // the result of the add operation cannot be either.
   1578   if (range() == NULL || range()->CanBeMinusZero()) {
   1579     return left();
   1580   }
   1581   return NULL;
   1582 }
   1583 
   1584 
   1585 HValue* HAdd::EnsureAndPropagateNotMinusZero(BitVector* visited) {
   1586   visited->Add(id());
   1587   // Propagate to the left argument. If the left argument cannot be -0, then
   1588   // the result of the sub operation cannot be either.
   1589   if (range() == NULL || range()->CanBeMinusZero()) {
   1590     return left();
   1591   }
   1592   return NULL;
   1593 }
   1594 
   1595 
   1596 // Node-specific verification code is only included in debug mode.
   1597 #ifdef DEBUG
   1598 
   1599 void HPhi::Verify() {
   1600   ASSERT(OperandCount() == block()->predecessors()->length());
   1601   for (int i = 0; i < OperandCount(); ++i) {
   1602     HValue* value = OperandAt(i);
   1603     HBasicBlock* defining_block = value->block();
   1604     HBasicBlock* predecessor_block = block()->predecessors()->at(i);
   1605     ASSERT(defining_block == predecessor_block ||
   1606            defining_block->Dominates(predecessor_block));
   1607   }
   1608 }
   1609 
   1610 
   1611 void HSimulate::Verify() {
   1612   HInstruction::Verify();
   1613   ASSERT(HasAstId());
   1614 }
   1615 
   1616 
   1617 void HBoundsCheck::Verify() {
   1618   HInstruction::Verify();
   1619 }
   1620 
   1621 
   1622 void HCheckSmi::Verify() {
   1623   HInstruction::Verify();
   1624   ASSERT(HasNoUses());
   1625 }
   1626 
   1627 
   1628 void HCheckNonSmi::Verify() {
   1629   HInstruction::Verify();
   1630   ASSERT(HasNoUses());
   1631 }
   1632 
   1633 
   1634 void HCheckInstanceType::Verify() {
   1635   HInstruction::Verify();
   1636   ASSERT(HasNoUses());
   1637 }
   1638 
   1639 
   1640 void HCheckMap::Verify() {
   1641   HInstruction::Verify();
   1642   ASSERT(HasNoUses());
   1643 }
   1644 
   1645 
   1646 void HCheckFunction::Verify() {
   1647   HInstruction::Verify();
   1648   ASSERT(HasNoUses());
   1649 }
   1650 
   1651 
   1652 void HCheckPrototypeMaps::Verify() {
   1653   HInstruction::Verify();
   1654   ASSERT(HasNoUses());
   1655 }
   1656 
   1657 #endif
   1658 
   1659 } }  // namespace v8::internal
   1660