Home | History | Annotate | Download | only in VMCore
      1 //===-- Verifier.cpp - Implement the Module Verifier -------------*- C++ -*-==//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the function verifier interface, that can be used for some
     11 // sanity checking of input to the system.
     12 //
     13 // Note that this does not provide full `Java style' security and verifications,
     14 // instead it just tries to ensure that code is well-formed.
     15 //
     16 //  * Both of a binary operator's parameters are of the same type
     17 //  * Verify that the indices of mem access instructions match other operands
     18 //  * Verify that arithmetic and other things are only performed on first-class
     19 //    types.  Verify that shifts & logicals only happen on integrals f.e.
     20 //  * All of the constants in a switch statement are of the correct type
     21 //  * The code is in valid SSA form
     22 //  * It should be illegal to put a label into any other type (like a structure)
     23 //    or to return one. [except constant arrays!]
     24 //  * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad
     25 //  * PHI nodes must have an entry for each predecessor, with no extras.
     26 //  * PHI nodes must be the first thing in a basic block, all grouped together
     27 //  * PHI nodes must have at least one entry
     28 //  * All basic blocks should only end with terminator insts, not contain them
     29 //  * The entry node to a function must not have predecessors
     30 //  * All Instructions must be embedded into a basic block
     31 //  * Functions cannot take a void-typed parameter
     32 //  * Verify that a function's argument list agrees with it's declared type.
     33 //  * It is illegal to specify a name for a void value.
     34 //  * It is illegal to have a internal global value with no initializer
     35 //  * It is illegal to have a ret instruction that returns a value that does not
     36 //    agree with the function return value type.
     37 //  * Function call argument types match the function prototype
     38 //  * A landing pad is defined by a landingpad instruction, and can be jumped to
     39 //    only by the unwind edge of an invoke instruction.
     40 //  * A landingpad instruction must be the first non-PHI instruction in the
     41 //    block.
     42 //  * All landingpad instructions must use the same personality function with
     43 //    the same function.
     44 //  * All other things that are tested by asserts spread about the code...
     45 //
     46 //===----------------------------------------------------------------------===//
     47 
     48 #include "llvm/Analysis/Verifier.h"
     49 #include "llvm/CallingConv.h"
     50 #include "llvm/Constants.h"
     51 #include "llvm/DerivedTypes.h"
     52 #include "llvm/InlineAsm.h"
     53 #include "llvm/IntrinsicInst.h"
     54 #include "llvm/Metadata.h"
     55 #include "llvm/Module.h"
     56 #include "llvm/Pass.h"
     57 #include "llvm/PassManager.h"
     58 #include "llvm/Analysis/Dominators.h"
     59 #include "llvm/Assembly/Writer.h"
     60 #include "llvm/CodeGen/ValueTypes.h"
     61 #include "llvm/Support/CallSite.h"
     62 #include "llvm/Support/CFG.h"
     63 #include "llvm/Support/Debug.h"
     64 #include "llvm/Support/InstVisitor.h"
     65 #include "llvm/ADT/SetVector.h"
     66 #include "llvm/ADT/SmallPtrSet.h"
     67 #include "llvm/ADT/SmallVector.h"
     68 #include "llvm/ADT/StringExtras.h"
     69 #include "llvm/ADT/STLExtras.h"
     70 #include "llvm/Support/ErrorHandling.h"
     71 #include "llvm/Support/raw_ostream.h"
     72 #include <algorithm>
     73 #include <cstdarg>
     74 using namespace llvm;
     75 
     76 namespace {  // Anonymous namespace for class
     77   struct PreVerifier : public FunctionPass {
     78     static char ID; // Pass ID, replacement for typeid
     79 
     80     PreVerifier() : FunctionPass(ID) {
     81       initializePreVerifierPass(*PassRegistry::getPassRegistry());
     82     }
     83 
     84     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
     85       AU.setPreservesAll();
     86     }
     87 
     88     // Check that the prerequisites for successful DominatorTree construction
     89     // are satisfied.
     90     bool runOnFunction(Function &F) {
     91       bool Broken = false;
     92 
     93       for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) {
     94         if (I->empty() || !I->back().isTerminator()) {
     95           dbgs() << "Basic Block in function '" << F.getName()
     96                  << "' does not have terminator!\n";
     97           WriteAsOperand(dbgs(), I, true);
     98           dbgs() << "\n";
     99           Broken = true;
    100         }
    101       }
    102 
    103       if (Broken)
    104         report_fatal_error("Broken module, no Basic Block terminator!");
    105 
    106       return false;
    107     }
    108   };
    109 }
    110 
    111 char PreVerifier::ID = 0;
    112 INITIALIZE_PASS(PreVerifier, "preverify", "Preliminary module verification",
    113                 false, false)
    114 static char &PreVerifyID = PreVerifier::ID;
    115 
    116 namespace {
    117   struct Verifier : public FunctionPass, public InstVisitor<Verifier> {
    118     static char ID; // Pass ID, replacement for typeid
    119     bool Broken;          // Is this module found to be broken?
    120     bool RealPass;        // Are we not being run by a PassManager?
    121     VerifierFailureAction action;
    122                           // What to do if verification fails.
    123     Module *Mod;          // Module we are verifying right now
    124     LLVMContext *Context; // Context within which we are verifying
    125     DominatorTree *DT;    // Dominator Tree, caution can be null!
    126 
    127     std::string Messages;
    128     raw_string_ostream MessagesStr;
    129 
    130     /// InstInThisBlock - when verifying a basic block, keep track of all of the
    131     /// instructions we have seen so far.  This allows us to do efficient
    132     /// dominance checks for the case when an instruction has an operand that is
    133     /// an instruction in the same block.
    134     SmallPtrSet<Instruction*, 16> InstsInThisBlock;
    135 
    136     /// MDNodes - keep track of the metadata nodes that have been checked
    137     /// already.
    138     SmallPtrSet<MDNode *, 32> MDNodes;
    139 
    140     /// PersonalityFn - The personality function referenced by the
    141     /// LandingPadInsts. All LandingPadInsts within the same function must use
    142     /// the same personality function.
    143     const Value *PersonalityFn;
    144 
    145     Verifier()
    146       : FunctionPass(ID), Broken(false), RealPass(true),
    147         action(AbortProcessAction), Mod(0), Context(0), DT(0),
    148         MessagesStr(Messages), PersonalityFn(0) {
    149       initializeVerifierPass(*PassRegistry::getPassRegistry());
    150     }
    151     explicit Verifier(VerifierFailureAction ctn)
    152       : FunctionPass(ID), Broken(false), RealPass(true), action(ctn), Mod(0),
    153         Context(0), DT(0), MessagesStr(Messages), PersonalityFn(0) {
    154       initializeVerifierPass(*PassRegistry::getPassRegistry());
    155     }
    156 
    157     bool doInitialization(Module &M) {
    158       Mod = &M;
    159       Context = &M.getContext();
    160 
    161       // If this is a real pass, in a pass manager, we must abort before
    162       // returning back to the pass manager, or else the pass manager may try to
    163       // run other passes on the broken module.
    164       if (RealPass)
    165         return abortIfBroken();
    166       return false;
    167     }
    168 
    169     bool runOnFunction(Function &F) {
    170       // Get dominator information if we are being run by PassManager
    171       if (RealPass) DT = &getAnalysis<DominatorTree>();
    172 
    173       Mod = F.getParent();
    174       if (!Context) Context = &F.getContext();
    175 
    176       visit(F);
    177       InstsInThisBlock.clear();
    178       PersonalityFn = 0;
    179 
    180       // If this is a real pass, in a pass manager, we must abort before
    181       // returning back to the pass manager, or else the pass manager may try to
    182       // run other passes on the broken module.
    183       if (RealPass)
    184         return abortIfBroken();
    185 
    186       return false;
    187     }
    188 
    189     bool doFinalization(Module &M) {
    190       // Scan through, checking all of the external function's linkage now...
    191       for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
    192         visitGlobalValue(*I);
    193 
    194         // Check to make sure function prototypes are okay.
    195         if (I->isDeclaration()) visitFunction(*I);
    196       }
    197 
    198       for (Module::global_iterator I = M.global_begin(), E = M.global_end();
    199            I != E; ++I)
    200         visitGlobalVariable(*I);
    201 
    202       for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end();
    203            I != E; ++I)
    204         visitGlobalAlias(*I);
    205 
    206       for (Module::named_metadata_iterator I = M.named_metadata_begin(),
    207            E = M.named_metadata_end(); I != E; ++I)
    208         visitNamedMDNode(*I);
    209 
    210       // If the module is broken, abort at this time.
    211       return abortIfBroken();
    212     }
    213 
    214     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
    215       AU.setPreservesAll();
    216       AU.addRequiredID(PreVerifyID);
    217       if (RealPass)
    218         AU.addRequired<DominatorTree>();
    219     }
    220 
    221     /// abortIfBroken - If the module is broken and we are supposed to abort on
    222     /// this condition, do so.
    223     ///
    224     bool abortIfBroken() {
    225       if (!Broken) return false;
    226       MessagesStr << "Broken module found, ";
    227       switch (action) {
    228       default: llvm_unreachable("Unknown action");
    229       case AbortProcessAction:
    230         MessagesStr << "compilation aborted!\n";
    231         dbgs() << MessagesStr.str();
    232         // Client should choose different reaction if abort is not desired
    233         abort();
    234       case PrintMessageAction:
    235         MessagesStr << "verification continues.\n";
    236         dbgs() << MessagesStr.str();
    237         return false;
    238       case ReturnStatusAction:
    239         MessagesStr << "compilation terminated.\n";
    240         return true;
    241       }
    242     }
    243 
    244 
    245     // Verification methods...
    246     void visitGlobalValue(GlobalValue &GV);
    247     void visitGlobalVariable(GlobalVariable &GV);
    248     void visitGlobalAlias(GlobalAlias &GA);
    249     void visitNamedMDNode(NamedMDNode &NMD);
    250     void visitMDNode(MDNode &MD, Function *F);
    251     void visitFunction(Function &F);
    252     void visitBasicBlock(BasicBlock &BB);
    253     using InstVisitor<Verifier>::visit;
    254 
    255     void visit(Instruction &I);
    256 
    257     void visitTruncInst(TruncInst &I);
    258     void visitZExtInst(ZExtInst &I);
    259     void visitSExtInst(SExtInst &I);
    260     void visitFPTruncInst(FPTruncInst &I);
    261     void visitFPExtInst(FPExtInst &I);
    262     void visitFPToUIInst(FPToUIInst &I);
    263     void visitFPToSIInst(FPToSIInst &I);
    264     void visitUIToFPInst(UIToFPInst &I);
    265     void visitSIToFPInst(SIToFPInst &I);
    266     void visitIntToPtrInst(IntToPtrInst &I);
    267     void visitPtrToIntInst(PtrToIntInst &I);
    268     void visitBitCastInst(BitCastInst &I);
    269     void visitPHINode(PHINode &PN);
    270     void visitBinaryOperator(BinaryOperator &B);
    271     void visitICmpInst(ICmpInst &IC);
    272     void visitFCmpInst(FCmpInst &FC);
    273     void visitExtractElementInst(ExtractElementInst &EI);
    274     void visitInsertElementInst(InsertElementInst &EI);
    275     void visitShuffleVectorInst(ShuffleVectorInst &EI);
    276     void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); }
    277     void visitCallInst(CallInst &CI);
    278     void visitInvokeInst(InvokeInst &II);
    279     void visitGetElementPtrInst(GetElementPtrInst &GEP);
    280     void visitLoadInst(LoadInst &LI);
    281     void visitStoreInst(StoreInst &SI);
    282     void visitInstruction(Instruction &I);
    283     void visitTerminatorInst(TerminatorInst &I);
    284     void visitBranchInst(BranchInst &BI);
    285     void visitReturnInst(ReturnInst &RI);
    286     void visitSwitchInst(SwitchInst &SI);
    287     void visitIndirectBrInst(IndirectBrInst &BI);
    288     void visitSelectInst(SelectInst &SI);
    289     void visitUserOp1(Instruction &I);
    290     void visitUserOp2(Instruction &I) { visitUserOp1(I); }
    291     void visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI);
    292     void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI);
    293     void visitAtomicRMWInst(AtomicRMWInst &RMWI);
    294     void visitFenceInst(FenceInst &FI);
    295     void visitAllocaInst(AllocaInst &AI);
    296     void visitExtractValueInst(ExtractValueInst &EVI);
    297     void visitInsertValueInst(InsertValueInst &IVI);
    298     void visitLandingPadInst(LandingPadInst &LPI);
    299 
    300     void VerifyCallSite(CallSite CS);
    301     bool PerformTypeCheck(Intrinsic::ID ID, Function *F, Type *Ty,
    302                           int VT, unsigned ArgNo, std::string &Suffix);
    303     void VerifyIntrinsicPrototype(Intrinsic::ID ID, Function *F,
    304                                   unsigned RetNum, unsigned ParamNum, ...);
    305     void VerifyParameterAttrs(Attributes Attrs, Type *Ty,
    306                               bool isReturnValue, const Value *V);
    307     void VerifyFunctionAttrs(FunctionType *FT, const AttrListPtr &Attrs,
    308                              const Value *V);
    309 
    310     void WriteValue(const Value *V) {
    311       if (!V) return;
    312       if (isa<Instruction>(V)) {
    313         MessagesStr << *V << '\n';
    314       } else {
    315         WriteAsOperand(MessagesStr, V, true, Mod);
    316         MessagesStr << '\n';
    317       }
    318     }
    319 
    320     void WriteType(Type *T) {
    321       if (!T) return;
    322       MessagesStr << ' ' << *T;
    323     }
    324 
    325 
    326     // CheckFailed - A check failed, so print out the condition and the message
    327     // that failed.  This provides a nice place to put a breakpoint if you want
    328     // to see why something is not correct.
    329     void CheckFailed(const Twine &Message,
    330                      const Value *V1 = 0, const Value *V2 = 0,
    331                      const Value *V3 = 0, const Value *V4 = 0) {
    332       MessagesStr << Message.str() << "\n";
    333       WriteValue(V1);
    334       WriteValue(V2);
    335       WriteValue(V3);
    336       WriteValue(V4);
    337       Broken = true;
    338     }
    339 
    340     void CheckFailed(const Twine &Message, const Value *V1,
    341                      Type *T2, const Value *V3 = 0) {
    342       MessagesStr << Message.str() << "\n";
    343       WriteValue(V1);
    344       WriteType(T2);
    345       WriteValue(V3);
    346       Broken = true;
    347     }
    348 
    349     void CheckFailed(const Twine &Message, Type *T1,
    350                      Type *T2 = 0, Type *T3 = 0) {
    351       MessagesStr << Message.str() << "\n";
    352       WriteType(T1);
    353       WriteType(T2);
    354       WriteType(T3);
    355       Broken = true;
    356     }
    357   };
    358 } // End anonymous namespace
    359 
    360 char Verifier::ID = 0;
    361 INITIALIZE_PASS_BEGIN(Verifier, "verify", "Module Verifier", false, false)
    362 INITIALIZE_PASS_DEPENDENCY(PreVerifier)
    363 INITIALIZE_PASS_DEPENDENCY(DominatorTree)
    364 INITIALIZE_PASS_END(Verifier, "verify", "Module Verifier", false, false)
    365 
    366 // Assert - We know that cond should be true, if not print an error message.
    367 #define Assert(C, M) \
    368   do { if (!(C)) { CheckFailed(M); return; } } while (0)
    369 #define Assert1(C, M, V1) \
    370   do { if (!(C)) { CheckFailed(M, V1); return; } } while (0)
    371 #define Assert2(C, M, V1, V2) \
    372   do { if (!(C)) { CheckFailed(M, V1, V2); return; } } while (0)
    373 #define Assert3(C, M, V1, V2, V3) \
    374   do { if (!(C)) { CheckFailed(M, V1, V2, V3); return; } } while (0)
    375 #define Assert4(C, M, V1, V2, V3, V4) \
    376   do { if (!(C)) { CheckFailed(M, V1, V2, V3, V4); return; } } while (0)
    377 
    378 void Verifier::visit(Instruction &I) {
    379   for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
    380     Assert1(I.getOperand(i) != 0, "Operand is null", &I);
    381   InstVisitor<Verifier>::visit(I);
    382 }
    383 
    384 
    385 void Verifier::visitGlobalValue(GlobalValue &GV) {
    386   Assert1(!GV.isDeclaration() ||
    387           GV.isMaterializable() ||
    388           GV.hasExternalLinkage() ||
    389           GV.hasDLLImportLinkage() ||
    390           GV.hasExternalWeakLinkage() ||
    391           (isa<GlobalAlias>(GV) &&
    392            (GV.hasLocalLinkage() || GV.hasWeakLinkage())),
    393   "Global is external, but doesn't have external or dllimport or weak linkage!",
    394           &GV);
    395 
    396   Assert1(!GV.hasDLLImportLinkage() || GV.isDeclaration(),
    397           "Global is marked as dllimport, but not external", &GV);
    398 
    399   Assert1(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),
    400           "Only global variables can have appending linkage!", &GV);
    401 
    402   if (GV.hasAppendingLinkage()) {
    403     GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV);
    404     Assert1(GVar && GVar->getType()->getElementType()->isArrayTy(),
    405             "Only global arrays can have appending linkage!", GVar);
    406   }
    407 
    408   Assert1(!GV.hasLinkerPrivateWeakDefAutoLinkage() || GV.hasDefaultVisibility(),
    409           "linker_private_weak_def_auto can only have default visibility!",
    410           &GV);
    411 }
    412 
    413 void Verifier::visitGlobalVariable(GlobalVariable &GV) {
    414   if (GV.hasInitializer()) {
    415     Assert1(GV.getInitializer()->getType() == GV.getType()->getElementType(),
    416             "Global variable initializer type does not match global "
    417             "variable type!", &GV);
    418 
    419     // If the global has common linkage, it must have a zero initializer and
    420     // cannot be constant.
    421     if (GV.hasCommonLinkage()) {
    422       Assert1(GV.getInitializer()->isNullValue(),
    423               "'common' global must have a zero initializer!", &GV);
    424       Assert1(!GV.isConstant(), "'common' global may not be marked constant!",
    425               &GV);
    426     }
    427   } else {
    428     Assert1(GV.hasExternalLinkage() || GV.hasDLLImportLinkage() ||
    429             GV.hasExternalWeakLinkage(),
    430             "invalid linkage type for global declaration", &GV);
    431   }
    432 
    433   if (GV.hasName() && (GV.getName() == "llvm.global_ctors" ||
    434                        GV.getName() == "llvm.global_dtors")) {
    435     Assert1(!GV.hasInitializer() || GV.hasAppendingLinkage(),
    436             "invalid linkage for intrinsic global variable", &GV);
    437     // Don't worry about emitting an error for it not being an array,
    438     // visitGlobalValue will complain on appending non-array.
    439     if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getType())) {
    440       StructType *STy = dyn_cast<StructType>(ATy->getElementType());
    441       PointerType *FuncPtrTy =
    442           FunctionType::get(Type::getVoidTy(*Context), false)->getPointerTo();
    443       Assert1(STy && STy->getNumElements() == 2 &&
    444               STy->getTypeAtIndex(0u)->isIntegerTy(32) &&
    445               STy->getTypeAtIndex(1) == FuncPtrTy,
    446               "wrong type for intrinsic global variable", &GV);
    447     }
    448   }
    449 
    450   visitGlobalValue(GV);
    451 }
    452 
    453 void Verifier::visitGlobalAlias(GlobalAlias &GA) {
    454   Assert1(!GA.getName().empty(),
    455           "Alias name cannot be empty!", &GA);
    456   Assert1(GA.hasExternalLinkage() || GA.hasLocalLinkage() ||
    457           GA.hasWeakLinkage(),
    458           "Alias should have external or external weak linkage!", &GA);
    459   Assert1(GA.getAliasee(),
    460           "Aliasee cannot be NULL!", &GA);
    461   Assert1(GA.getType() == GA.getAliasee()->getType(),
    462           "Alias and aliasee types should match!", &GA);
    463   Assert1(!GA.hasUnnamedAddr(), "Alias cannot have unnamed_addr!", &GA);
    464 
    465   if (!isa<GlobalValue>(GA.getAliasee())) {
    466     const ConstantExpr *CE = dyn_cast<ConstantExpr>(GA.getAliasee());
    467     Assert1(CE &&
    468             (CE->getOpcode() == Instruction::BitCast ||
    469              CE->getOpcode() == Instruction::GetElementPtr) &&
    470             isa<GlobalValue>(CE->getOperand(0)),
    471             "Aliasee should be either GlobalValue or bitcast of GlobalValue",
    472             &GA);
    473   }
    474 
    475   const GlobalValue* Aliasee = GA.resolveAliasedGlobal(/*stopOnWeak*/ false);
    476   Assert1(Aliasee,
    477           "Aliasing chain should end with function or global variable", &GA);
    478 
    479   visitGlobalValue(GA);
    480 }
    481 
    482 void Verifier::visitNamedMDNode(NamedMDNode &NMD) {
    483   for (unsigned i = 0, e = NMD.getNumOperands(); i != e; ++i) {
    484     MDNode *MD = NMD.getOperand(i);
    485     if (!MD)
    486       continue;
    487 
    488     Assert1(!MD->isFunctionLocal(),
    489             "Named metadata operand cannot be function local!", MD);
    490     visitMDNode(*MD, 0);
    491   }
    492 }
    493 
    494 void Verifier::visitMDNode(MDNode &MD, Function *F) {
    495   // Only visit each node once.  Metadata can be mutually recursive, so this
    496   // avoids infinite recursion here, as well as being an optimization.
    497   if (!MDNodes.insert(&MD))
    498     return;
    499 
    500   for (unsigned i = 0, e = MD.getNumOperands(); i != e; ++i) {
    501     Value *Op = MD.getOperand(i);
    502     if (!Op)
    503       continue;
    504     if (isa<Constant>(Op) || isa<MDString>(Op))
    505       continue;
    506     if (MDNode *N = dyn_cast<MDNode>(Op)) {
    507       Assert2(MD.isFunctionLocal() || !N->isFunctionLocal(),
    508               "Global metadata operand cannot be function local!", &MD, N);
    509       visitMDNode(*N, F);
    510       continue;
    511     }
    512     Assert2(MD.isFunctionLocal(), "Invalid operand for global metadata!", &MD, Op);
    513 
    514     // If this was an instruction, bb, or argument, verify that it is in the
    515     // function that we expect.
    516     Function *ActualF = 0;
    517     if (Instruction *I = dyn_cast<Instruction>(Op))
    518       ActualF = I->getParent()->getParent();
    519     else if (BasicBlock *BB = dyn_cast<BasicBlock>(Op))
    520       ActualF = BB->getParent();
    521     else if (Argument *A = dyn_cast<Argument>(Op))
    522       ActualF = A->getParent();
    523     assert(ActualF && "Unimplemented function local metadata case!");
    524 
    525     Assert2(ActualF == F, "function-local metadata used in wrong function",
    526             &MD, Op);
    527   }
    528 }
    529 
    530 // VerifyParameterAttrs - Check the given attributes for an argument or return
    531 // value of the specified type.  The value V is printed in error messages.
    532 void Verifier::VerifyParameterAttrs(Attributes Attrs, Type *Ty,
    533                                     bool isReturnValue, const Value *V) {
    534   if (Attrs == Attribute::None)
    535     return;
    536 
    537   Attributes FnCheckAttr = Attrs & Attribute::FunctionOnly;
    538   Assert1(!FnCheckAttr, "Attribute " + Attribute::getAsString(FnCheckAttr) +
    539           " only applies to the function!", V);
    540 
    541   if (isReturnValue) {
    542     Attributes RetI = Attrs & Attribute::ParameterOnly;
    543     Assert1(!RetI, "Attribute " + Attribute::getAsString(RetI) +
    544             " does not apply to return values!", V);
    545   }
    546 
    547   for (unsigned i = 0;
    548        i < array_lengthof(Attribute::MutuallyIncompatible); ++i) {
    549     Attributes MutI = Attrs & Attribute::MutuallyIncompatible[i];
    550     Assert1(!(MutI & (MutI - 1)), "Attributes " +
    551             Attribute::getAsString(MutI) + " are incompatible!", V);
    552   }
    553 
    554   Attributes TypeI = Attrs & Attribute::typeIncompatible(Ty);
    555   Assert1(!TypeI, "Wrong type for attribute " +
    556           Attribute::getAsString(TypeI), V);
    557 
    558   Attributes ByValI = Attrs & Attribute::ByVal;
    559   if (PointerType *PTy = dyn_cast<PointerType>(Ty)) {
    560     Assert1(!ByValI || PTy->getElementType()->isSized(),
    561             "Attribute " + Attribute::getAsString(ByValI) +
    562             " does not support unsized types!", V);
    563   } else {
    564     Assert1(!ByValI,
    565             "Attribute " + Attribute::getAsString(ByValI) +
    566             " only applies to parameters with pointer type!", V);
    567   }
    568 }
    569 
    570 // VerifyFunctionAttrs - Check parameter attributes against a function type.
    571 // The value V is printed in error messages.
    572 void Verifier::VerifyFunctionAttrs(FunctionType *FT,
    573                                    const AttrListPtr &Attrs,
    574                                    const Value *V) {
    575   if (Attrs.isEmpty())
    576     return;
    577 
    578   bool SawNest = false;
    579 
    580   for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) {
    581     const AttributeWithIndex &Attr = Attrs.getSlot(i);
    582 
    583     Type *Ty;
    584     if (Attr.Index == 0)
    585       Ty = FT->getReturnType();
    586     else if (Attr.Index-1 < FT->getNumParams())
    587       Ty = FT->getParamType(Attr.Index-1);
    588     else
    589       break;  // VarArgs attributes, verified elsewhere.
    590 
    591     VerifyParameterAttrs(Attr.Attrs, Ty, Attr.Index == 0, V);
    592 
    593     if (Attr.Attrs & Attribute::Nest) {
    594       Assert1(!SawNest, "More than one parameter has attribute nest!", V);
    595       SawNest = true;
    596     }
    597 
    598     if (Attr.Attrs & Attribute::StructRet)
    599       Assert1(Attr.Index == 1, "Attribute sret not on first parameter!", V);
    600   }
    601 
    602   Attributes FAttrs = Attrs.getFnAttributes();
    603   Attributes NotFn = FAttrs & (~Attribute::FunctionOnly);
    604   Assert1(!NotFn, "Attribute " + Attribute::getAsString(NotFn) +
    605           " does not apply to the function!", V);
    606 
    607   for (unsigned i = 0;
    608        i < array_lengthof(Attribute::MutuallyIncompatible); ++i) {
    609     Attributes MutI = FAttrs & Attribute::MutuallyIncompatible[i];
    610     Assert1(!(MutI & (MutI - 1)), "Attributes " +
    611             Attribute::getAsString(MutI) + " are incompatible!", V);
    612   }
    613 }
    614 
    615 static bool VerifyAttributeCount(const AttrListPtr &Attrs, unsigned Params) {
    616   if (Attrs.isEmpty())
    617     return true;
    618 
    619   unsigned LastSlot = Attrs.getNumSlots() - 1;
    620   unsigned LastIndex = Attrs.getSlot(LastSlot).Index;
    621   if (LastIndex <= Params
    622       || (LastIndex == (unsigned)~0
    623           && (LastSlot == 0 || Attrs.getSlot(LastSlot - 1).Index <= Params)))
    624     return true;
    625 
    626   return false;
    627 }
    628 
    629 // visitFunction - Verify that a function is ok.
    630 //
    631 void Verifier::visitFunction(Function &F) {
    632   // Check function arguments.
    633   FunctionType *FT = F.getFunctionType();
    634   unsigned NumArgs = F.arg_size();
    635 
    636   Assert1(Context == &F.getContext(),
    637           "Function context does not match Module context!", &F);
    638 
    639   Assert1(!F.hasCommonLinkage(), "Functions may not have common linkage", &F);
    640   Assert2(FT->getNumParams() == NumArgs,
    641           "# formal arguments must match # of arguments for function type!",
    642           &F, FT);
    643   Assert1(F.getReturnType()->isFirstClassType() ||
    644           F.getReturnType()->isVoidTy() ||
    645           F.getReturnType()->isStructTy(),
    646           "Functions cannot return aggregate values!", &F);
    647 
    648   Assert1(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(),
    649           "Invalid struct return type!", &F);
    650 
    651   const AttrListPtr &Attrs = F.getAttributes();
    652 
    653   Assert1(VerifyAttributeCount(Attrs, FT->getNumParams()),
    654           "Attributes after last parameter!", &F);
    655 
    656   // Check function attributes.
    657   VerifyFunctionAttrs(FT, Attrs, &F);
    658 
    659   // Check that this function meets the restrictions on this calling convention.
    660   switch (F.getCallingConv()) {
    661   default:
    662     break;
    663   case CallingConv::C:
    664     break;
    665   case CallingConv::Fast:
    666   case CallingConv::Cold:
    667   case CallingConv::X86_FastCall:
    668   case CallingConv::X86_ThisCall:
    669   case CallingConv::PTX_Kernel:
    670   case CallingConv::PTX_Device:
    671     Assert1(!F.isVarArg(),
    672             "Varargs functions must have C calling conventions!", &F);
    673     break;
    674   }
    675 
    676   bool isLLVMdotName = F.getName().size() >= 5 &&
    677                        F.getName().substr(0, 5) == "llvm.";
    678 
    679   // Check that the argument values match the function type for this function...
    680   unsigned i = 0;
    681   for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end();
    682        I != E; ++I, ++i) {
    683     Assert2(I->getType() == FT->getParamType(i),
    684             "Argument value does not match function argument type!",
    685             I, FT->getParamType(i));
    686     Assert1(I->getType()->isFirstClassType(),
    687             "Function arguments must have first-class types!", I);
    688     if (!isLLVMdotName)
    689       Assert2(!I->getType()->isMetadataTy(),
    690               "Function takes metadata but isn't an intrinsic", I, &F);
    691   }
    692 
    693   if (F.isMaterializable()) {
    694     // Function has a body somewhere we can't see.
    695   } else if (F.isDeclaration()) {
    696     Assert1(F.hasExternalLinkage() || F.hasDLLImportLinkage() ||
    697             F.hasExternalWeakLinkage(),
    698             "invalid linkage type for function declaration", &F);
    699   } else {
    700     // Verify that this function (which has a body) is not named "llvm.*".  It
    701     // is not legal to define intrinsics.
    702     Assert1(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F);
    703 
    704     // Check the entry node
    705     BasicBlock *Entry = &F.getEntryBlock();
    706     Assert1(pred_begin(Entry) == pred_end(Entry),
    707             "Entry block to function must not have predecessors!", Entry);
    708 
    709     // The address of the entry block cannot be taken, unless it is dead.
    710     if (Entry->hasAddressTaken()) {
    711       Assert1(!BlockAddress::get(Entry)->isConstantUsed(),
    712               "blockaddress may not be used with the entry block!", Entry);
    713     }
    714   }
    715 
    716   // If this function is actually an intrinsic, verify that it is only used in
    717   // direct call/invokes, never having its "address taken".
    718   if (F.getIntrinsicID()) {
    719     const User *U;
    720     if (F.hasAddressTaken(&U))
    721       Assert1(0, "Invalid user of intrinsic instruction!", U);
    722   }
    723 }
    724 
    725 // verifyBasicBlock - Verify that a basic block is well formed...
    726 //
    727 void Verifier::visitBasicBlock(BasicBlock &BB) {
    728   InstsInThisBlock.clear();
    729 
    730   // Ensure that basic blocks have terminators!
    731   Assert1(BB.getTerminator(), "Basic Block does not have terminator!", &BB);
    732 
    733   // Check constraints that this basic block imposes on all of the PHI nodes in
    734   // it.
    735   if (isa<PHINode>(BB.front())) {
    736     SmallVector<BasicBlock*, 8> Preds(pred_begin(&BB), pred_end(&BB));
    737     SmallVector<std::pair<BasicBlock*, Value*>, 8> Values;
    738     std::sort(Preds.begin(), Preds.end());
    739     PHINode *PN;
    740     for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast<PHINode>(I));++I) {
    741       // Ensure that PHI nodes have at least one entry!
    742       Assert1(PN->getNumIncomingValues() != 0,
    743               "PHI nodes must have at least one entry.  If the block is dead, "
    744               "the PHI should be removed!", PN);
    745       Assert1(PN->getNumIncomingValues() == Preds.size(),
    746               "PHINode should have one entry for each predecessor of its "
    747               "parent basic block!", PN);
    748 
    749       // Get and sort all incoming values in the PHI node...
    750       Values.clear();
    751       Values.reserve(PN->getNumIncomingValues());
    752       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
    753         Values.push_back(std::make_pair(PN->getIncomingBlock(i),
    754                                         PN->getIncomingValue(i)));
    755       std::sort(Values.begin(), Values.end());
    756 
    757       for (unsigned i = 0, e = Values.size(); i != e; ++i) {
    758         // Check to make sure that if there is more than one entry for a
    759         // particular basic block in this PHI node, that the incoming values are
    760         // all identical.
    761         //
    762         Assert4(i == 0 || Values[i].first  != Values[i-1].first ||
    763                 Values[i].second == Values[i-1].second,
    764                 "PHI node has multiple entries for the same basic block with "
    765                 "different incoming values!", PN, Values[i].first,
    766                 Values[i].second, Values[i-1].second);
    767 
    768         // Check to make sure that the predecessors and PHI node entries are
    769         // matched up.
    770         Assert3(Values[i].first == Preds[i],
    771                 "PHI node entries do not match predecessors!", PN,
    772                 Values[i].first, Preds[i]);
    773       }
    774     }
    775   }
    776 }
    777 
    778 void Verifier::visitTerminatorInst(TerminatorInst &I) {
    779   // Ensure that terminators only exist at the end of the basic block.
    780   Assert1(&I == I.getParent()->getTerminator(),
    781           "Terminator found in the middle of a basic block!", I.getParent());
    782   visitInstruction(I);
    783 }
    784 
    785 void Verifier::visitBranchInst(BranchInst &BI) {
    786   if (BI.isConditional()) {
    787     Assert2(BI.getCondition()->getType()->isIntegerTy(1),
    788             "Branch condition is not 'i1' type!", &BI, BI.getCondition());
    789   }
    790   visitTerminatorInst(BI);
    791 }
    792 
    793 void Verifier::visitReturnInst(ReturnInst &RI) {
    794   Function *F = RI.getParent()->getParent();
    795   unsigned N = RI.getNumOperands();
    796   if (F->getReturnType()->isVoidTy())
    797     Assert2(N == 0,
    798             "Found return instr that returns non-void in Function of void "
    799             "return type!", &RI, F->getReturnType());
    800   else
    801     Assert2(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(),
    802             "Function return type does not match operand "
    803             "type of return inst!", &RI, F->getReturnType());
    804 
    805   // Check to make sure that the return value has necessary properties for
    806   // terminators...
    807   visitTerminatorInst(RI);
    808 }
    809 
    810 void Verifier::visitSwitchInst(SwitchInst &SI) {
    811   // Check to make sure that all of the constants in the switch instruction
    812   // have the same type as the switched-on value.
    813   Type *SwitchTy = SI.getCondition()->getType();
    814   SmallPtrSet<ConstantInt*, 32> Constants;
    815   for (unsigned i = 1, e = SI.getNumCases(); i != e; ++i) {
    816     Assert1(SI.getCaseValue(i)->getType() == SwitchTy,
    817             "Switch constants must all be same type as switch value!", &SI);
    818     Assert2(Constants.insert(SI.getCaseValue(i)),
    819             "Duplicate integer as switch case", &SI, SI.getCaseValue(i));
    820   }
    821 
    822   visitTerminatorInst(SI);
    823 }
    824 
    825 void Verifier::visitIndirectBrInst(IndirectBrInst &BI) {
    826   Assert1(BI.getAddress()->getType()->isPointerTy(),
    827           "Indirectbr operand must have pointer type!", &BI);
    828   for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i)
    829     Assert1(BI.getDestination(i)->getType()->isLabelTy(),
    830             "Indirectbr destinations must all have pointer type!", &BI);
    831 
    832   visitTerminatorInst(BI);
    833 }
    834 
    835 void Verifier::visitSelectInst(SelectInst &SI) {
    836   Assert1(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1),
    837                                           SI.getOperand(2)),
    838           "Invalid operands for select instruction!", &SI);
    839 
    840   Assert1(SI.getTrueValue()->getType() == SI.getType(),
    841           "Select values must have same type as select instruction!", &SI);
    842   visitInstruction(SI);
    843 }
    844 
    845 /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
    846 /// a pass, if any exist, it's an error.
    847 ///
    848 void Verifier::visitUserOp1(Instruction &I) {
    849   Assert1(0, "User-defined operators should not live outside of a pass!", &I);
    850 }
    851 
    852 void Verifier::visitTruncInst(TruncInst &I) {
    853   // Get the source and destination types
    854   Type *SrcTy = I.getOperand(0)->getType();
    855   Type *DestTy = I.getType();
    856 
    857   // Get the size of the types in bits, we'll need this later
    858   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
    859   unsigned DestBitSize = DestTy->getScalarSizeInBits();
    860 
    861   Assert1(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I);
    862   Assert1(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I);
    863   Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
    864           "trunc source and destination must both be a vector or neither", &I);
    865   Assert1(SrcBitSize > DestBitSize,"DestTy too big for Trunc", &I);
    866 
    867   visitInstruction(I);
    868 }
    869 
    870 void Verifier::visitZExtInst(ZExtInst &I) {
    871   // Get the source and destination types
    872   Type *SrcTy = I.getOperand(0)->getType();
    873   Type *DestTy = I.getType();
    874 
    875   // Get the size of the types in bits, we'll need this later
    876   Assert1(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I);
    877   Assert1(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I);
    878   Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
    879           "zext source and destination must both be a vector or neither", &I);
    880   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
    881   unsigned DestBitSize = DestTy->getScalarSizeInBits();
    882 
    883   Assert1(SrcBitSize < DestBitSize,"Type too small for ZExt", &I);
    884 
    885   visitInstruction(I);
    886 }
    887 
    888 void Verifier::visitSExtInst(SExtInst &I) {
    889   // Get the source and destination types
    890   Type *SrcTy = I.getOperand(0)->getType();
    891   Type *DestTy = I.getType();
    892 
    893   // Get the size of the types in bits, we'll need this later
    894   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
    895   unsigned DestBitSize = DestTy->getScalarSizeInBits();
    896 
    897   Assert1(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I);
    898   Assert1(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I);
    899   Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
    900           "sext source and destination must both be a vector or neither", &I);
    901   Assert1(SrcBitSize < DestBitSize,"Type too small for SExt", &I);
    902 
    903   visitInstruction(I);
    904 }
    905 
    906 void Verifier::visitFPTruncInst(FPTruncInst &I) {
    907   // Get the source and destination types
    908   Type *SrcTy = I.getOperand(0)->getType();
    909   Type *DestTy = I.getType();
    910   // Get the size of the types in bits, we'll need this later
    911   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
    912   unsigned DestBitSize = DestTy->getScalarSizeInBits();
    913 
    914   Assert1(SrcTy->isFPOrFPVectorTy(),"FPTrunc only operates on FP", &I);
    915   Assert1(DestTy->isFPOrFPVectorTy(),"FPTrunc only produces an FP", &I);
    916   Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
    917           "fptrunc source and destination must both be a vector or neither",&I);
    918   Assert1(SrcBitSize > DestBitSize,"DestTy too big for FPTrunc", &I);
    919 
    920   visitInstruction(I);
    921 }
    922 
    923 void Verifier::visitFPExtInst(FPExtInst &I) {
    924   // Get the source and destination types
    925   Type *SrcTy = I.getOperand(0)->getType();
    926   Type *DestTy = I.getType();
    927 
    928   // Get the size of the types in bits, we'll need this later
    929   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
    930   unsigned DestBitSize = DestTy->getScalarSizeInBits();
    931 
    932   Assert1(SrcTy->isFPOrFPVectorTy(),"FPExt only operates on FP", &I);
    933   Assert1(DestTy->isFPOrFPVectorTy(),"FPExt only produces an FP", &I);
    934   Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
    935           "fpext source and destination must both be a vector or neither", &I);
    936   Assert1(SrcBitSize < DestBitSize,"DestTy too small for FPExt", &I);
    937 
    938   visitInstruction(I);
    939 }
    940 
    941 void Verifier::visitUIToFPInst(UIToFPInst &I) {
    942   // Get the source and destination types
    943   Type *SrcTy = I.getOperand(0)->getType();
    944   Type *DestTy = I.getType();
    945 
    946   bool SrcVec = SrcTy->isVectorTy();
    947   bool DstVec = DestTy->isVectorTy();
    948 
    949   Assert1(SrcVec == DstVec,
    950           "UIToFP source and dest must both be vector or scalar", &I);
    951   Assert1(SrcTy->isIntOrIntVectorTy(),
    952           "UIToFP source must be integer or integer vector", &I);
    953   Assert1(DestTy->isFPOrFPVectorTy(),
    954           "UIToFP result must be FP or FP vector", &I);
    955 
    956   if (SrcVec && DstVec)
    957     Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
    958             cast<VectorType>(DestTy)->getNumElements(),
    959             "UIToFP source and dest vector length mismatch", &I);
    960 
    961   visitInstruction(I);
    962 }
    963 
    964 void Verifier::visitSIToFPInst(SIToFPInst &I) {
    965   // Get the source and destination types
    966   Type *SrcTy = I.getOperand(0)->getType();
    967   Type *DestTy = I.getType();
    968 
    969   bool SrcVec = SrcTy->isVectorTy();
    970   bool DstVec = DestTy->isVectorTy();
    971 
    972   Assert1(SrcVec == DstVec,
    973           "SIToFP source and dest must both be vector or scalar", &I);
    974   Assert1(SrcTy->isIntOrIntVectorTy(),
    975           "SIToFP source must be integer or integer vector", &I);
    976   Assert1(DestTy->isFPOrFPVectorTy(),
    977           "SIToFP result must be FP or FP vector", &I);
    978 
    979   if (SrcVec && DstVec)
    980     Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
    981             cast<VectorType>(DestTy)->getNumElements(),
    982             "SIToFP source and dest vector length mismatch", &I);
    983 
    984   visitInstruction(I);
    985 }
    986 
    987 void Verifier::visitFPToUIInst(FPToUIInst &I) {
    988   // Get the source and destination types
    989   Type *SrcTy = I.getOperand(0)->getType();
    990   Type *DestTy = I.getType();
    991 
    992   bool SrcVec = SrcTy->isVectorTy();
    993   bool DstVec = DestTy->isVectorTy();
    994 
    995   Assert1(SrcVec == DstVec,
    996           "FPToUI source and dest must both be vector or scalar", &I);
    997   Assert1(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector",
    998           &I);
    999   Assert1(DestTy->isIntOrIntVectorTy(),
   1000           "FPToUI result must be integer or integer vector", &I);
   1001 
   1002   if (SrcVec && DstVec)
   1003     Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
   1004             cast<VectorType>(DestTy)->getNumElements(),
   1005             "FPToUI source and dest vector length mismatch", &I);
   1006 
   1007   visitInstruction(I);
   1008 }
   1009 
   1010 void Verifier::visitFPToSIInst(FPToSIInst &I) {
   1011   // Get the source and destination types
   1012   Type *SrcTy = I.getOperand(0)->getType();
   1013   Type *DestTy = I.getType();
   1014 
   1015   bool SrcVec = SrcTy->isVectorTy();
   1016   bool DstVec = DestTy->isVectorTy();
   1017 
   1018   Assert1(SrcVec == DstVec,
   1019           "FPToSI source and dest must both be vector or scalar", &I);
   1020   Assert1(SrcTy->isFPOrFPVectorTy(),
   1021           "FPToSI source must be FP or FP vector", &I);
   1022   Assert1(DestTy->isIntOrIntVectorTy(),
   1023           "FPToSI result must be integer or integer vector", &I);
   1024 
   1025   if (SrcVec && DstVec)
   1026     Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
   1027             cast<VectorType>(DestTy)->getNumElements(),
   1028             "FPToSI source and dest vector length mismatch", &I);
   1029 
   1030   visitInstruction(I);
   1031 }
   1032 
   1033 void Verifier::visitPtrToIntInst(PtrToIntInst &I) {
   1034   // Get the source and destination types
   1035   Type *SrcTy = I.getOperand(0)->getType();
   1036   Type *DestTy = I.getType();
   1037 
   1038   Assert1(SrcTy->isPointerTy(), "PtrToInt source must be pointer", &I);
   1039   Assert1(DestTy->isIntegerTy(), "PtrToInt result must be integral", &I);
   1040 
   1041   visitInstruction(I);
   1042 }
   1043 
   1044 void Verifier::visitIntToPtrInst(IntToPtrInst &I) {
   1045   // Get the source and destination types
   1046   Type *SrcTy = I.getOperand(0)->getType();
   1047   Type *DestTy = I.getType();
   1048 
   1049   Assert1(SrcTy->isIntegerTy(), "IntToPtr source must be an integral", &I);
   1050   Assert1(DestTy->isPointerTy(), "IntToPtr result must be a pointer",&I);
   1051 
   1052   visitInstruction(I);
   1053 }
   1054 
   1055 void Verifier::visitBitCastInst(BitCastInst &I) {
   1056   // Get the source and destination types
   1057   Type *SrcTy = I.getOperand(0)->getType();
   1058   Type *DestTy = I.getType();
   1059 
   1060   // Get the size of the types in bits, we'll need this later
   1061   unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
   1062   unsigned DestBitSize = DestTy->getPrimitiveSizeInBits();
   1063 
   1064   // BitCast implies a no-op cast of type only. No bits change.
   1065   // However, you can't cast pointers to anything but pointers.
   1066   Assert1(DestTy->isPointerTy() == DestTy->isPointerTy(),
   1067           "Bitcast requires both operands to be pointer or neither", &I);
   1068   Assert1(SrcBitSize == DestBitSize, "Bitcast requires types of same width",&I);
   1069 
   1070   // Disallow aggregates.
   1071   Assert1(!SrcTy->isAggregateType(),
   1072           "Bitcast operand must not be aggregate", &I);
   1073   Assert1(!DestTy->isAggregateType(),
   1074           "Bitcast type must not be aggregate", &I);
   1075 
   1076   visitInstruction(I);
   1077 }
   1078 
   1079 /// visitPHINode - Ensure that a PHI node is well formed.
   1080 ///
   1081 void Verifier::visitPHINode(PHINode &PN) {
   1082   // Ensure that the PHI nodes are all grouped together at the top of the block.
   1083   // This can be tested by checking whether the instruction before this is
   1084   // either nonexistent (because this is begin()) or is a PHI node.  If not,
   1085   // then there is some other instruction before a PHI.
   1086   Assert2(&PN == &PN.getParent()->front() ||
   1087           isa<PHINode>(--BasicBlock::iterator(&PN)),
   1088           "PHI nodes not grouped at top of basic block!",
   1089           &PN, PN.getParent());
   1090 
   1091   // Check that all of the values of the PHI node have the same type as the
   1092   // result, and that the incoming blocks are really basic blocks.
   1093   for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
   1094     Assert1(PN.getType() == PN.getIncomingValue(i)->getType(),
   1095             "PHI node operands are not the same type as the result!", &PN);
   1096   }
   1097 
   1098   // All other PHI node constraints are checked in the visitBasicBlock method.
   1099 
   1100   visitInstruction(PN);
   1101 }
   1102 
   1103 void Verifier::VerifyCallSite(CallSite CS) {
   1104   Instruction *I = CS.getInstruction();
   1105 
   1106   Assert1(CS.getCalledValue()->getType()->isPointerTy(),
   1107           "Called function must be a pointer!", I);
   1108   PointerType *FPTy = cast<PointerType>(CS.getCalledValue()->getType());
   1109 
   1110   Assert1(FPTy->getElementType()->isFunctionTy(),
   1111           "Called function is not pointer to function type!", I);
   1112   FunctionType *FTy = cast<FunctionType>(FPTy->getElementType());
   1113 
   1114   // Verify that the correct number of arguments are being passed
   1115   if (FTy->isVarArg())
   1116     Assert1(CS.arg_size() >= FTy->getNumParams(),
   1117             "Called function requires more parameters than were provided!",I);
   1118   else
   1119     Assert1(CS.arg_size() == FTy->getNumParams(),
   1120             "Incorrect number of arguments passed to called function!", I);
   1121 
   1122   // Verify that all arguments to the call match the function type.
   1123   for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
   1124     Assert3(CS.getArgument(i)->getType() == FTy->getParamType(i),
   1125             "Call parameter type does not match function signature!",
   1126             CS.getArgument(i), FTy->getParamType(i), I);
   1127 
   1128   const AttrListPtr &Attrs = CS.getAttributes();
   1129 
   1130   Assert1(VerifyAttributeCount(Attrs, CS.arg_size()),
   1131           "Attributes after last parameter!", I);
   1132 
   1133   // Verify call attributes.
   1134   VerifyFunctionAttrs(FTy, Attrs, I);
   1135 
   1136   if (FTy->isVarArg())
   1137     // Check attributes on the varargs part.
   1138     for (unsigned Idx = 1 + FTy->getNumParams(); Idx <= CS.arg_size(); ++Idx) {
   1139       Attributes Attr = Attrs.getParamAttributes(Idx);
   1140 
   1141       VerifyParameterAttrs(Attr, CS.getArgument(Idx-1)->getType(), false, I);
   1142 
   1143       Attributes VArgI = Attr & Attribute::VarArgsIncompatible;
   1144       Assert1(!VArgI, "Attribute " + Attribute::getAsString(VArgI) +
   1145               " cannot be used for vararg call arguments!", I);
   1146     }
   1147 
   1148   // Verify that there's no metadata unless it's a direct call to an intrinsic.
   1149   if (CS.getCalledFunction() == 0 ||
   1150       !CS.getCalledFunction()->getName().startswith("llvm.")) {
   1151     for (FunctionType::param_iterator PI = FTy->param_begin(),
   1152            PE = FTy->param_end(); PI != PE; ++PI)
   1153       Assert1(!(*PI)->isMetadataTy(),
   1154               "Function has metadata parameter but isn't an intrinsic", I);
   1155   }
   1156 
   1157   visitInstruction(*I);
   1158 }
   1159 
   1160 void Verifier::visitCallInst(CallInst &CI) {
   1161   VerifyCallSite(&CI);
   1162 
   1163   if (Function *F = CI.getCalledFunction())
   1164     if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
   1165       visitIntrinsicFunctionCall(ID, CI);
   1166 }
   1167 
   1168 void Verifier::visitInvokeInst(InvokeInst &II) {
   1169   VerifyCallSite(&II);
   1170 
   1171   // Verify that there is a landingpad instruction as the first non-PHI
   1172   // instruction of the 'unwind' destination.
   1173   Assert1(II.getUnwindDest()->isLandingPad(),
   1174           "The unwind destination does not have a landingpad instruction!",&II);
   1175 
   1176   visitTerminatorInst(II);
   1177 }
   1178 
   1179 /// visitBinaryOperator - Check that both arguments to the binary operator are
   1180 /// of the same type!
   1181 ///
   1182 void Verifier::visitBinaryOperator(BinaryOperator &B) {
   1183   Assert1(B.getOperand(0)->getType() == B.getOperand(1)->getType(),
   1184           "Both operands to a binary operator are not of the same type!", &B);
   1185 
   1186   switch (B.getOpcode()) {
   1187   // Check that integer arithmetic operators are only used with
   1188   // integral operands.
   1189   case Instruction::Add:
   1190   case Instruction::Sub:
   1191   case Instruction::Mul:
   1192   case Instruction::SDiv:
   1193   case Instruction::UDiv:
   1194   case Instruction::SRem:
   1195   case Instruction::URem:
   1196     Assert1(B.getType()->isIntOrIntVectorTy(),
   1197             "Integer arithmetic operators only work with integral types!", &B);
   1198     Assert1(B.getType() == B.getOperand(0)->getType(),
   1199             "Integer arithmetic operators must have same type "
   1200             "for operands and result!", &B);
   1201     break;
   1202   // Check that floating-point arithmetic operators are only used with
   1203   // floating-point operands.
   1204   case Instruction::FAdd:
   1205   case Instruction::FSub:
   1206   case Instruction::FMul:
   1207   case Instruction::FDiv:
   1208   case Instruction::FRem:
   1209     Assert1(B.getType()->isFPOrFPVectorTy(),
   1210             "Floating-point arithmetic operators only work with "
   1211             "floating-point types!", &B);
   1212     Assert1(B.getType() == B.getOperand(0)->getType(),
   1213             "Floating-point arithmetic operators must have same type "
   1214             "for operands and result!", &B);
   1215     break;
   1216   // Check that logical operators are only used with integral operands.
   1217   case Instruction::And:
   1218   case Instruction::Or:
   1219   case Instruction::Xor:
   1220     Assert1(B.getType()->isIntOrIntVectorTy(),
   1221             "Logical operators only work with integral types!", &B);
   1222     Assert1(B.getType() == B.getOperand(0)->getType(),
   1223             "Logical operators must have same type for operands and result!",
   1224             &B);
   1225     break;
   1226   case Instruction::Shl:
   1227   case Instruction::LShr:
   1228   case Instruction::AShr:
   1229     Assert1(B.getType()->isIntOrIntVectorTy(),
   1230             "Shifts only work with integral types!", &B);
   1231     Assert1(B.getType() == B.getOperand(0)->getType(),
   1232             "Shift return type must be same as operands!", &B);
   1233     break;
   1234   default:
   1235     llvm_unreachable("Unknown BinaryOperator opcode!");
   1236   }
   1237 
   1238   visitInstruction(B);
   1239 }
   1240 
   1241 void Verifier::visitICmpInst(ICmpInst &IC) {
   1242   // Check that the operands are the same type
   1243   Type *Op0Ty = IC.getOperand(0)->getType();
   1244   Type *Op1Ty = IC.getOperand(1)->getType();
   1245   Assert1(Op0Ty == Op1Ty,
   1246           "Both operands to ICmp instruction are not of the same type!", &IC);
   1247   // Check that the operands are the right type
   1248   Assert1(Op0Ty->isIntOrIntVectorTy() || Op0Ty->isPointerTy(),
   1249           "Invalid operand types for ICmp instruction", &IC);
   1250   // Check that the predicate is valid.
   1251   Assert1(IC.getPredicate() >= CmpInst::FIRST_ICMP_PREDICATE &&
   1252           IC.getPredicate() <= CmpInst::LAST_ICMP_PREDICATE,
   1253           "Invalid predicate in ICmp instruction!", &IC);
   1254 
   1255   visitInstruction(IC);
   1256 }
   1257 
   1258 void Verifier::visitFCmpInst(FCmpInst &FC) {
   1259   // Check that the operands are the same type
   1260   Type *Op0Ty = FC.getOperand(0)->getType();
   1261   Type *Op1Ty = FC.getOperand(1)->getType();
   1262   Assert1(Op0Ty == Op1Ty,
   1263           "Both operands to FCmp instruction are not of the same type!", &FC);
   1264   // Check that the operands are the right type
   1265   Assert1(Op0Ty->isFPOrFPVectorTy(),
   1266           "Invalid operand types for FCmp instruction", &FC);
   1267   // Check that the predicate is valid.
   1268   Assert1(FC.getPredicate() >= CmpInst::FIRST_FCMP_PREDICATE &&
   1269           FC.getPredicate() <= CmpInst::LAST_FCMP_PREDICATE,
   1270           "Invalid predicate in FCmp instruction!", &FC);
   1271 
   1272   visitInstruction(FC);
   1273 }
   1274 
   1275 void Verifier::visitExtractElementInst(ExtractElementInst &EI) {
   1276   Assert1(ExtractElementInst::isValidOperands(EI.getOperand(0),
   1277                                               EI.getOperand(1)),
   1278           "Invalid extractelement operands!", &EI);
   1279   visitInstruction(EI);
   1280 }
   1281 
   1282 void Verifier::visitInsertElementInst(InsertElementInst &IE) {
   1283   Assert1(InsertElementInst::isValidOperands(IE.getOperand(0),
   1284                                              IE.getOperand(1),
   1285                                              IE.getOperand(2)),
   1286           "Invalid insertelement operands!", &IE);
   1287   visitInstruction(IE);
   1288 }
   1289 
   1290 void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) {
   1291   Assert1(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1),
   1292                                              SV.getOperand(2)),
   1293           "Invalid shufflevector operands!", &SV);
   1294   visitInstruction(SV);
   1295 }
   1296 
   1297 void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
   1298   Assert1(cast<PointerType>(GEP.getOperand(0)->getType())
   1299             ->getElementType()->isSized(),
   1300           "GEP into unsized type!", &GEP);
   1301 
   1302   SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end());
   1303   Type *ElTy =
   1304     GetElementPtrInst::getIndexedType(GEP.getOperand(0)->getType(), Idxs);
   1305   Assert1(ElTy, "Invalid indices for GEP pointer type!", &GEP);
   1306   Assert2(GEP.getType()->isPointerTy() &&
   1307           cast<PointerType>(GEP.getType())->getElementType() == ElTy,
   1308           "GEP is not of right type for indices!", &GEP, ElTy);
   1309   visitInstruction(GEP);
   1310 }
   1311 
   1312 void Verifier::visitLoadInst(LoadInst &LI) {
   1313   PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType());
   1314   Assert1(PTy, "Load operand must be a pointer.", &LI);
   1315   Type *ElTy = PTy->getElementType();
   1316   Assert2(ElTy == LI.getType(),
   1317           "Load result type does not match pointer operand type!", &LI, ElTy);
   1318   if (LI.isAtomic()) {
   1319     Assert1(LI.getOrdering() != Release && LI.getOrdering() != AcquireRelease,
   1320             "Load cannot have Release ordering", &LI);
   1321     Assert1(LI.getAlignment() != 0,
   1322             "Atomic load must specify explicit alignment", &LI);
   1323   } else {
   1324     Assert1(LI.getSynchScope() == CrossThread,
   1325             "Non-atomic load cannot have SynchronizationScope specified", &LI);
   1326   }
   1327   visitInstruction(LI);
   1328 }
   1329 
   1330 void Verifier::visitStoreInst(StoreInst &SI) {
   1331   PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType());
   1332   Assert1(PTy, "Store operand must be a pointer.", &SI);
   1333   Type *ElTy = PTy->getElementType();
   1334   Assert2(ElTy == SI.getOperand(0)->getType(),
   1335           "Stored value type does not match pointer operand type!",
   1336           &SI, ElTy);
   1337   if (SI.isAtomic()) {
   1338     Assert1(SI.getOrdering() != Acquire && SI.getOrdering() != AcquireRelease,
   1339             "Store cannot have Acquire ordering", &SI);
   1340     Assert1(SI.getAlignment() != 0,
   1341             "Atomic store must specify explicit alignment", &SI);
   1342   } else {
   1343     Assert1(SI.getSynchScope() == CrossThread,
   1344             "Non-atomic store cannot have SynchronizationScope specified", &SI);
   1345   }
   1346   visitInstruction(SI);
   1347 }
   1348 
   1349 void Verifier::visitAllocaInst(AllocaInst &AI) {
   1350   PointerType *PTy = AI.getType();
   1351   Assert1(PTy->getAddressSpace() == 0,
   1352           "Allocation instruction pointer not in the generic address space!",
   1353           &AI);
   1354   Assert1(PTy->getElementType()->isSized(), "Cannot allocate unsized type",
   1355           &AI);
   1356   Assert1(AI.getArraySize()->getType()->isIntegerTy(),
   1357           "Alloca array size must have integer type", &AI);
   1358   visitInstruction(AI);
   1359 }
   1360 
   1361 void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) {
   1362   Assert1(CXI.getOrdering() != NotAtomic,
   1363           "cmpxchg instructions must be atomic.", &CXI);
   1364   Assert1(CXI.getOrdering() != Unordered,
   1365           "cmpxchg instructions cannot be unordered.", &CXI);
   1366   PointerType *PTy = dyn_cast<PointerType>(CXI.getOperand(0)->getType());
   1367   Assert1(PTy, "First cmpxchg operand must be a pointer.", &CXI);
   1368   Type *ElTy = PTy->getElementType();
   1369   Assert2(ElTy == CXI.getOperand(1)->getType(),
   1370           "Expected value type does not match pointer operand type!",
   1371           &CXI, ElTy);
   1372   Assert2(ElTy == CXI.getOperand(2)->getType(),
   1373           "Stored value type does not match pointer operand type!",
   1374           &CXI, ElTy);
   1375   visitInstruction(CXI);
   1376 }
   1377 
   1378 void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) {
   1379   Assert1(RMWI.getOrdering() != NotAtomic,
   1380           "atomicrmw instructions must be atomic.", &RMWI);
   1381   Assert1(RMWI.getOrdering() != Unordered,
   1382           "atomicrmw instructions cannot be unordered.", &RMWI);
   1383   PointerType *PTy = dyn_cast<PointerType>(RMWI.getOperand(0)->getType());
   1384   Assert1(PTy, "First atomicrmw operand must be a pointer.", &RMWI);
   1385   Type *ElTy = PTy->getElementType();
   1386   Assert2(ElTy == RMWI.getOperand(1)->getType(),
   1387           "Argument value type does not match pointer operand type!",
   1388           &RMWI, ElTy);
   1389   Assert1(AtomicRMWInst::FIRST_BINOP <= RMWI.getOperation() &&
   1390           RMWI.getOperation() <= AtomicRMWInst::LAST_BINOP,
   1391           "Invalid binary operation!", &RMWI);
   1392   visitInstruction(RMWI);
   1393 }
   1394 
   1395 void Verifier::visitFenceInst(FenceInst &FI) {
   1396   const AtomicOrdering Ordering = FI.getOrdering();
   1397   Assert1(Ordering == Acquire || Ordering == Release ||
   1398           Ordering == AcquireRelease || Ordering == SequentiallyConsistent,
   1399           "fence instructions may only have "
   1400           "acquire, release, acq_rel, or seq_cst ordering.", &FI);
   1401   visitInstruction(FI);
   1402 }
   1403 
   1404 void Verifier::visitExtractValueInst(ExtractValueInst &EVI) {
   1405   Assert1(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(),
   1406                                            EVI.getIndices()) ==
   1407           EVI.getType(),
   1408           "Invalid ExtractValueInst operands!", &EVI);
   1409 
   1410   visitInstruction(EVI);
   1411 }
   1412 
   1413 void Verifier::visitInsertValueInst(InsertValueInst &IVI) {
   1414   Assert1(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(),
   1415                                            IVI.getIndices()) ==
   1416           IVI.getOperand(1)->getType(),
   1417           "Invalid InsertValueInst operands!", &IVI);
   1418 
   1419   visitInstruction(IVI);
   1420 }
   1421 
   1422 void Verifier::visitLandingPadInst(LandingPadInst &LPI) {
   1423   BasicBlock *BB = LPI.getParent();
   1424 
   1425   // The landingpad instruction is ill-formed if it doesn't have any clauses and
   1426   // isn't a cleanup.
   1427   Assert1(LPI.getNumClauses() > 0 || LPI.isCleanup(),
   1428           "LandingPadInst needs at least one clause or to be a cleanup.", &LPI);
   1429 
   1430   // The landingpad instruction defines its parent as a landing pad block. The
   1431   // landing pad block may be branched to only by the unwind edge of an invoke.
   1432   for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
   1433     const InvokeInst *II = dyn_cast<InvokeInst>((*I)->getTerminator());
   1434     Assert1(II && II->getUnwindDest() == BB,
   1435             "Block containing LandingPadInst must be jumped to "
   1436             "only by the unwind edge of an invoke.", &LPI);
   1437   }
   1438 
   1439   // The landingpad instruction must be the first non-PHI instruction in the
   1440   // block.
   1441   Assert1(LPI.getParent()->getLandingPadInst() == &LPI,
   1442           "LandingPadInst not the first non-PHI instruction in the block.",
   1443           &LPI);
   1444 
   1445   // The personality functions for all landingpad instructions within the same
   1446   // function should match.
   1447   if (PersonalityFn)
   1448     Assert1(LPI.getPersonalityFn() == PersonalityFn,
   1449             "Personality function doesn't match others in function", &LPI);
   1450   PersonalityFn = LPI.getPersonalityFn();
   1451 
   1452   // All operands must be constants.
   1453   Assert1(isa<Constant>(PersonalityFn), "Personality function is not constant!",
   1454           &LPI);
   1455   for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) {
   1456     Value *Clause = LPI.getClause(i);
   1457     Assert1(isa<Constant>(Clause), "Clause is not constant!", &LPI);
   1458     if (LPI.isCatch(i)) {
   1459       Assert1(isa<PointerType>(Clause->getType()),
   1460               "Catch operand does not have pointer type!", &LPI);
   1461     } else {
   1462       Assert1(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI);
   1463       Assert1(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause),
   1464               "Filter operand is not an array of constants!", &LPI);
   1465     }
   1466   }
   1467 
   1468   visitInstruction(LPI);
   1469 }
   1470 
   1471 /// verifyInstruction - Verify that an instruction is well formed.
   1472 ///
   1473 void Verifier::visitInstruction(Instruction &I) {
   1474   BasicBlock *BB = I.getParent();
   1475   Assert1(BB, "Instruction not embedded in basic block!", &I);
   1476 
   1477   if (!isa<PHINode>(I)) {   // Check that non-phi nodes are not self referential
   1478     for (Value::use_iterator UI = I.use_begin(), UE = I.use_end();
   1479          UI != UE; ++UI)
   1480       Assert1(*UI != (User*)&I || !DT->isReachableFromEntry(BB),
   1481               "Only PHI nodes may reference their own value!", &I);
   1482   }
   1483 
   1484   // Check that void typed values don't have names
   1485   Assert1(!I.getType()->isVoidTy() || !I.hasName(),
   1486           "Instruction has a name, but provides a void value!", &I);
   1487 
   1488   // Check that the return value of the instruction is either void or a legal
   1489   // value type.
   1490   Assert1(I.getType()->isVoidTy() ||
   1491           I.getType()->isFirstClassType(),
   1492           "Instruction returns a non-scalar type!", &I);
   1493 
   1494   // Check that the instruction doesn't produce metadata. Calls are already
   1495   // checked against the callee type.
   1496   Assert1(!I.getType()->isMetadataTy() ||
   1497           isa<CallInst>(I) || isa<InvokeInst>(I),
   1498           "Invalid use of metadata!", &I);
   1499 
   1500   // Check that all uses of the instruction, if they are instructions
   1501   // themselves, actually have parent basic blocks.  If the use is not an
   1502   // instruction, it is an error!
   1503   for (User::use_iterator UI = I.use_begin(), UE = I.use_end();
   1504        UI != UE; ++UI) {
   1505     if (Instruction *Used = dyn_cast<Instruction>(*UI))
   1506       Assert2(Used->getParent() != 0, "Instruction referencing instruction not"
   1507               " embedded in a basic block!", &I, Used);
   1508     else {
   1509       CheckFailed("Use of instruction is not an instruction!", *UI);
   1510       return;
   1511     }
   1512   }
   1513 
   1514   for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
   1515     Assert1(I.getOperand(i) != 0, "Instruction has null operand!", &I);
   1516 
   1517     // Check to make sure that only first-class-values are operands to
   1518     // instructions.
   1519     if (!I.getOperand(i)->getType()->isFirstClassType()) {
   1520       Assert1(0, "Instruction operands must be first-class values!", &I);
   1521     }
   1522 
   1523     if (Function *F = dyn_cast<Function>(I.getOperand(i))) {
   1524       // Check to make sure that the "address of" an intrinsic function is never
   1525       // taken.
   1526       Assert1(!F->isIntrinsic() || (i + 1 == e && isa<CallInst>(I)),
   1527               "Cannot take the address of an intrinsic!", &I);
   1528       Assert1(F->getParent() == Mod, "Referencing function in another module!",
   1529               &I);
   1530     } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) {
   1531       Assert1(OpBB->getParent() == BB->getParent(),
   1532               "Referring to a basic block in another function!", &I);
   1533     } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) {
   1534       Assert1(OpArg->getParent() == BB->getParent(),
   1535               "Referring to an argument in another function!", &I);
   1536     } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) {
   1537       Assert1(GV->getParent() == Mod, "Referencing global in another module!",
   1538               &I);
   1539     } else if (Instruction *Op = dyn_cast<Instruction>(I.getOperand(i))) {
   1540       BasicBlock *OpBlock = Op->getParent();
   1541 
   1542       // Check that a definition dominates all of its uses.
   1543       if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) {
   1544         // Invoke results are only usable in the normal destination, not in the
   1545         // exceptional destination.
   1546         BasicBlock *NormalDest = II->getNormalDest();
   1547 
   1548         Assert2(NormalDest != II->getUnwindDest(),
   1549                 "No uses of invoke possible due to dominance structure!",
   1550                 Op, &I);
   1551 
   1552         // PHI nodes differ from other nodes because they actually "use" the
   1553         // value in the predecessor basic blocks they correspond to.
   1554         BasicBlock *UseBlock = BB;
   1555         if (PHINode *PN = dyn_cast<PHINode>(&I)) {
   1556           unsigned j = PHINode::getIncomingValueNumForOperand(i);
   1557           UseBlock = PN->getIncomingBlock(j);
   1558         }
   1559         Assert2(UseBlock, "Invoke operand is PHI node with bad incoming-BB",
   1560                 Op, &I);
   1561 
   1562         if (isa<PHINode>(I) && UseBlock == OpBlock) {
   1563           // Special case of a phi node in the normal destination or the unwind
   1564           // destination.
   1565           Assert2(BB == NormalDest || !DT->isReachableFromEntry(UseBlock),
   1566                   "Invoke result not available in the unwind destination!",
   1567                   Op, &I);
   1568         } else {
   1569           Assert2(DT->dominates(NormalDest, UseBlock) ||
   1570                   !DT->isReachableFromEntry(UseBlock),
   1571                   "Invoke result does not dominate all uses!", Op, &I);
   1572 
   1573           // If the normal successor of an invoke instruction has multiple
   1574           // predecessors, then the normal edge from the invoke is critical,
   1575           // so the invoke value can only be live if the destination block
   1576           // dominates all of it's predecessors (other than the invoke).
   1577           if (!NormalDest->getSinglePredecessor() &&
   1578               DT->isReachableFromEntry(UseBlock))
   1579             // If it is used by something non-phi, then the other case is that
   1580             // 'NormalDest' dominates all of its predecessors other than the
   1581             // invoke.  In this case, the invoke value can still be used.
   1582             for (pred_iterator PI = pred_begin(NormalDest),
   1583                  E = pred_end(NormalDest); PI != E; ++PI)
   1584               if (*PI != II->getParent() && !DT->dominates(NormalDest, *PI) &&
   1585                   DT->isReachableFromEntry(*PI)) {
   1586                 CheckFailed("Invoke result does not dominate all uses!", Op,&I);
   1587                 return;
   1588               }
   1589         }
   1590       } else if (PHINode *PN = dyn_cast<PHINode>(&I)) {
   1591         // PHI nodes are more difficult than other nodes because they actually
   1592         // "use" the value in the predecessor basic blocks they correspond to.
   1593         unsigned j = PHINode::getIncomingValueNumForOperand(i);
   1594         BasicBlock *PredBB = PN->getIncomingBlock(j);
   1595         Assert2(PredBB && (DT->dominates(OpBlock, PredBB) ||
   1596                            !DT->isReachableFromEntry(PredBB)),
   1597                 "Instruction does not dominate all uses!", Op, &I);
   1598       } else {
   1599         if (OpBlock == BB) {
   1600           // If they are in the same basic block, make sure that the definition
   1601           // comes before the use.
   1602           Assert2(InstsInThisBlock.count(Op) || !DT->isReachableFromEntry(BB),
   1603                   "Instruction does not dominate all uses!", Op, &I);
   1604         }
   1605 
   1606         // Definition must dominate use unless use is unreachable!
   1607         Assert2(InstsInThisBlock.count(Op) || DT->dominates(Op, &I) ||
   1608                 !DT->isReachableFromEntry(BB),
   1609                 "Instruction does not dominate all uses!", Op, &I);
   1610       }
   1611     } else if (isa<InlineAsm>(I.getOperand(i))) {
   1612       Assert1((i + 1 == e && isa<CallInst>(I)) ||
   1613               (i + 3 == e && isa<InvokeInst>(I)),
   1614               "Cannot take the address of an inline asm!", &I);
   1615     }
   1616   }
   1617   InstsInThisBlock.insert(&I);
   1618 }
   1619 
   1620 // Flags used by TableGen to mark intrinsic parameters with the
   1621 // LLVMExtendedElementVectorType and LLVMTruncatedElementVectorType classes.
   1622 static const unsigned ExtendedElementVectorType = 0x40000000;
   1623 static const unsigned TruncatedElementVectorType = 0x20000000;
   1624 
   1625 /// visitIntrinsicFunction - Allow intrinsics to be verified in different ways.
   1626 ///
   1627 void Verifier::visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI) {
   1628   Function *IF = CI.getCalledFunction();
   1629   Assert1(IF->isDeclaration(), "Intrinsic functions should never be defined!",
   1630           IF);
   1631 
   1632 #define GET_INTRINSIC_VERIFIER
   1633 #include "llvm/Intrinsics.gen"
   1634 #undef GET_INTRINSIC_VERIFIER
   1635 
   1636   // If the intrinsic takes MDNode arguments, verify that they are either global
   1637   // or are local to *this* function.
   1638   for (unsigned i = 0, e = CI.getNumArgOperands(); i != e; ++i)
   1639     if (MDNode *MD = dyn_cast<MDNode>(CI.getArgOperand(i)))
   1640       visitMDNode(*MD, CI.getParent()->getParent());
   1641 
   1642   switch (ID) {
   1643   default:
   1644     break;
   1645   case Intrinsic::dbg_declare: {  // llvm.dbg.declare
   1646     Assert1(CI.getArgOperand(0) && isa<MDNode>(CI.getArgOperand(0)),
   1647                 "invalid llvm.dbg.declare intrinsic call 1", &CI);
   1648     MDNode *MD = cast<MDNode>(CI.getArgOperand(0));
   1649     Assert1(MD->getNumOperands() == 1,
   1650                 "invalid llvm.dbg.declare intrinsic call 2", &CI);
   1651   } break;
   1652   case Intrinsic::memcpy:
   1653   case Intrinsic::memmove:
   1654   case Intrinsic::memset:
   1655     Assert1(isa<ConstantInt>(CI.getArgOperand(3)),
   1656             "alignment argument of memory intrinsics must be a constant int",
   1657             &CI);
   1658     Assert1(isa<ConstantInt>(CI.getArgOperand(4)),
   1659             "isvolatile argument of memory intrinsics must be a constant int",
   1660             &CI);
   1661     break;
   1662   case Intrinsic::gcroot:
   1663   case Intrinsic::gcwrite:
   1664   case Intrinsic::gcread:
   1665     if (ID == Intrinsic::gcroot) {
   1666       AllocaInst *AI =
   1667         dyn_cast<AllocaInst>(CI.getArgOperand(0)->stripPointerCasts());
   1668       Assert1(AI, "llvm.gcroot parameter #1 must be an alloca.", &CI);
   1669       Assert1(isa<Constant>(CI.getArgOperand(1)),
   1670               "llvm.gcroot parameter #2 must be a constant.", &CI);
   1671       if (!AI->getType()->getElementType()->isPointerTy()) {
   1672         Assert1(!isa<ConstantPointerNull>(CI.getArgOperand(1)),
   1673                 "llvm.gcroot parameter #1 must either be a pointer alloca, "
   1674                 "or argument #2 must be a non-null constant.", &CI);
   1675       }
   1676     }
   1677 
   1678     Assert1(CI.getParent()->getParent()->hasGC(),
   1679             "Enclosing function does not use GC.", &CI);
   1680     break;
   1681   case Intrinsic::init_trampoline:
   1682     Assert1(isa<Function>(CI.getArgOperand(1)->stripPointerCasts()),
   1683             "llvm.init_trampoline parameter #2 must resolve to a function.",
   1684             &CI);
   1685     break;
   1686   case Intrinsic::prefetch:
   1687     Assert1(isa<ConstantInt>(CI.getArgOperand(1)) &&
   1688             isa<ConstantInt>(CI.getArgOperand(2)) &&
   1689             cast<ConstantInt>(CI.getArgOperand(1))->getZExtValue() < 2 &&
   1690             cast<ConstantInt>(CI.getArgOperand(2))->getZExtValue() < 4,
   1691             "invalid arguments to llvm.prefetch",
   1692             &CI);
   1693     break;
   1694   case Intrinsic::stackprotector:
   1695     Assert1(isa<AllocaInst>(CI.getArgOperand(1)->stripPointerCasts()),
   1696             "llvm.stackprotector parameter #2 must resolve to an alloca.",
   1697             &CI);
   1698     break;
   1699   case Intrinsic::lifetime_start:
   1700   case Intrinsic::lifetime_end:
   1701   case Intrinsic::invariant_start:
   1702     Assert1(isa<ConstantInt>(CI.getArgOperand(0)),
   1703             "size argument of memory use markers must be a constant integer",
   1704             &CI);
   1705     break;
   1706   case Intrinsic::invariant_end:
   1707     Assert1(isa<ConstantInt>(CI.getArgOperand(1)),
   1708             "llvm.invariant.end parameter #2 must be a constant integer", &CI);
   1709     break;
   1710   }
   1711 }
   1712 
   1713 /// Produce a string to identify an intrinsic parameter or return value.
   1714 /// The ArgNo value numbers the return values from 0 to NumRets-1 and the
   1715 /// parameters beginning with NumRets.
   1716 ///
   1717 static std::string IntrinsicParam(unsigned ArgNo, unsigned NumRets) {
   1718   if (ArgNo >= NumRets)
   1719     return "Intrinsic parameter #" + utostr(ArgNo - NumRets);
   1720   if (NumRets == 1)
   1721     return "Intrinsic result type";
   1722   return "Intrinsic result type #" + utostr(ArgNo);
   1723 }
   1724 
   1725 bool Verifier::PerformTypeCheck(Intrinsic::ID ID, Function *F, Type *Ty,
   1726                                 int VT, unsigned ArgNo, std::string &Suffix) {
   1727   FunctionType *FTy = F->getFunctionType();
   1728 
   1729   unsigned NumElts = 0;
   1730   Type *EltTy = Ty;
   1731   VectorType *VTy = dyn_cast<VectorType>(Ty);
   1732   if (VTy) {
   1733     EltTy = VTy->getElementType();
   1734     NumElts = VTy->getNumElements();
   1735   }
   1736 
   1737   Type *RetTy = FTy->getReturnType();
   1738   StructType *ST = dyn_cast<StructType>(RetTy);
   1739   unsigned NumRetVals;
   1740   if (RetTy->isVoidTy())
   1741     NumRetVals = 0;
   1742   else if (ST)
   1743     NumRetVals = ST->getNumElements();
   1744   else
   1745     NumRetVals = 1;
   1746 
   1747   if (VT < 0) {
   1748     int Match = ~VT;
   1749 
   1750     // Check flags that indicate a type that is an integral vector type with
   1751     // elements that are larger or smaller than the elements of the matched
   1752     // type.
   1753     if ((Match & (ExtendedElementVectorType |
   1754                   TruncatedElementVectorType)) != 0) {
   1755       IntegerType *IEltTy = dyn_cast<IntegerType>(EltTy);
   1756       if (!VTy || !IEltTy) {
   1757         CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " is not "
   1758                     "an integral vector type.", F);
   1759         return false;
   1760       }
   1761       // Adjust the current Ty (in the opposite direction) rather than
   1762       // the type being matched against.
   1763       if ((Match & ExtendedElementVectorType) != 0) {
   1764         if ((IEltTy->getBitWidth() & 1) != 0) {
   1765           CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " vector "
   1766                       "element bit-width is odd.", F);
   1767           return false;
   1768         }
   1769         Ty = VectorType::getTruncatedElementVectorType(VTy);
   1770       } else
   1771         Ty = VectorType::getExtendedElementVectorType(VTy);
   1772       Match &= ~(ExtendedElementVectorType | TruncatedElementVectorType);
   1773     }
   1774 
   1775     if (Match <= static_cast<int>(NumRetVals - 1)) {
   1776       if (ST)
   1777         RetTy = ST->getElementType(Match);
   1778 
   1779       if (Ty != RetTy) {
   1780         CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " does not "
   1781                     "match return type.", F);
   1782         return false;
   1783       }
   1784     } else {
   1785       if (Ty != FTy->getParamType(Match - NumRetVals)) {
   1786         CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " does not "
   1787                     "match parameter %" + utostr(Match - NumRetVals) + ".", F);
   1788         return false;
   1789       }
   1790     }
   1791   } else if (VT == MVT::iAny) {
   1792     if (!EltTy->isIntegerTy()) {
   1793       CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " is not "
   1794                   "an integer type.", F);
   1795       return false;
   1796     }
   1797 
   1798     unsigned GotBits = cast<IntegerType>(EltTy)->getBitWidth();
   1799     Suffix += ".";
   1800 
   1801     if (EltTy != Ty)
   1802       Suffix += "v" + utostr(NumElts);
   1803 
   1804     Suffix += "i" + utostr(GotBits);
   1805 
   1806     // Check some constraints on various intrinsics.
   1807     switch (ID) {
   1808     default: break; // Not everything needs to be checked.
   1809     case Intrinsic::bswap:
   1810       if (GotBits < 16 || GotBits % 16 != 0) {
   1811         CheckFailed("Intrinsic requires even byte width argument", F);
   1812         return false;
   1813       }
   1814       break;
   1815     }
   1816   } else if (VT == MVT::fAny) {
   1817     if (!EltTy->isFloatingPointTy()) {
   1818       CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " is not "
   1819                   "a floating-point type.", F);
   1820       return false;
   1821     }
   1822 
   1823     Suffix += ".";
   1824 
   1825     if (EltTy != Ty)
   1826       Suffix += "v" + utostr(NumElts);
   1827 
   1828     Suffix += EVT::getEVT(EltTy).getEVTString();
   1829   } else if (VT == MVT::vAny) {
   1830     if (!VTy) {
   1831       CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " is not a vector type.",
   1832                   F);
   1833       return false;
   1834     }
   1835     Suffix += ".v" + utostr(NumElts) + EVT::getEVT(EltTy).getEVTString();
   1836   } else if (VT == MVT::iPTR) {
   1837     if (!Ty->isPointerTy()) {
   1838       CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " is not a "
   1839                   "pointer and a pointer is required.", F);
   1840       return false;
   1841     }
   1842   } else if (VT == MVT::iPTRAny) {
   1843     // Outside of TableGen, we don't distinguish iPTRAny (to any address space)
   1844     // and iPTR. In the verifier, we can not distinguish which case we have so
   1845     // allow either case to be legal.
   1846     if (PointerType* PTyp = dyn_cast<PointerType>(Ty)) {
   1847       EVT PointeeVT = EVT::getEVT(PTyp->getElementType(), true);
   1848       if (PointeeVT == MVT::Other) {
   1849         CheckFailed("Intrinsic has pointer to complex type.");
   1850         return false;
   1851       }
   1852       Suffix += ".p" + utostr(PTyp->getAddressSpace()) +
   1853         PointeeVT.getEVTString();
   1854     } else {
   1855       CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " is not a "
   1856                   "pointer and a pointer is required.", F);
   1857       return false;
   1858     }
   1859   } else if (EVT((MVT::SimpleValueType)VT).isVector()) {
   1860     EVT VVT = EVT((MVT::SimpleValueType)VT);
   1861 
   1862     // If this is a vector argument, verify the number and type of elements.
   1863     if (VVT.getVectorElementType() != EVT::getEVT(EltTy)) {
   1864       CheckFailed("Intrinsic prototype has incorrect vector element type!", F);
   1865       return false;
   1866     }
   1867 
   1868     if (VVT.getVectorNumElements() != NumElts) {
   1869       CheckFailed("Intrinsic prototype has incorrect number of "
   1870                   "vector elements!", F);
   1871       return false;
   1872     }
   1873   } else if (EVT((MVT::SimpleValueType)VT).getTypeForEVT(Ty->getContext()) !=
   1874              EltTy) {
   1875     CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " is wrong!", F);
   1876     return false;
   1877   } else if (EltTy != Ty) {
   1878     CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " is a vector "
   1879                 "and a scalar is required.", F);
   1880     return false;
   1881   }
   1882 
   1883   return true;
   1884 }
   1885 
   1886 /// VerifyIntrinsicPrototype - TableGen emits calls to this function into
   1887 /// Intrinsics.gen.  This implements a little state machine that verifies the
   1888 /// prototype of intrinsics.
   1889 void Verifier::VerifyIntrinsicPrototype(Intrinsic::ID ID, Function *F,
   1890                                         unsigned NumRetVals,
   1891                                         unsigned NumParams, ...) {
   1892   va_list VA;
   1893   va_start(VA, NumParams);
   1894   FunctionType *FTy = F->getFunctionType();
   1895 
   1896   // For overloaded intrinsics, the Suffix of the function name must match the
   1897   // types of the arguments. This variable keeps track of the expected
   1898   // suffix, to be checked at the end.
   1899   std::string Suffix;
   1900 
   1901   if (FTy->getNumParams() + FTy->isVarArg() != NumParams) {
   1902     CheckFailed("Intrinsic prototype has incorrect number of arguments!", F);
   1903     return;
   1904   }
   1905 
   1906   Type *Ty = FTy->getReturnType();
   1907   StructType *ST = dyn_cast<StructType>(Ty);
   1908 
   1909   if (NumRetVals == 0 && !Ty->isVoidTy()) {
   1910     CheckFailed("Intrinsic should return void", F);
   1911     return;
   1912   }
   1913 
   1914   // Verify the return types.
   1915   if (ST && ST->getNumElements() != NumRetVals) {
   1916     CheckFailed("Intrinsic prototype has incorrect number of return types!", F);
   1917     return;
   1918   }
   1919 
   1920   for (unsigned ArgNo = 0; ArgNo != NumRetVals; ++ArgNo) {
   1921     int VT = va_arg(VA, int); // An MVT::SimpleValueType when non-negative.
   1922 
   1923     if (ST) Ty = ST->getElementType(ArgNo);
   1924     if (!PerformTypeCheck(ID, F, Ty, VT, ArgNo, Suffix))
   1925       break;
   1926   }
   1927 
   1928   // Verify the parameter types.
   1929   for (unsigned ArgNo = 0; ArgNo != NumParams; ++ArgNo) {
   1930     int VT = va_arg(VA, int); // An MVT::SimpleValueType when non-negative.
   1931 
   1932     if (VT == MVT::isVoid && ArgNo > 0) {
   1933       if (!FTy->isVarArg())
   1934         CheckFailed("Intrinsic prototype has no '...'!", F);
   1935       break;
   1936     }
   1937 
   1938     if (!PerformTypeCheck(ID, F, FTy->getParamType(ArgNo), VT,
   1939                           ArgNo + NumRetVals, Suffix))
   1940       break;
   1941   }
   1942 
   1943   va_end(VA);
   1944 
   1945   // For intrinsics without pointer arguments, if we computed a Suffix then the
   1946   // intrinsic is overloaded and we need to make sure that the name of the
   1947   // function is correct. We add the suffix to the name of the intrinsic and
   1948   // compare against the given function name. If they are not the same, the
   1949   // function name is invalid. This ensures that overloading of intrinsics
   1950   // uses a sane and consistent naming convention.  Note that intrinsics with
   1951   // pointer argument may or may not be overloaded so we will check assuming it
   1952   // has a suffix and not.
   1953   if (!Suffix.empty()) {
   1954     std::string Name(Intrinsic::getName(ID));
   1955     if (Name + Suffix != F->getName()) {
   1956       CheckFailed("Overloaded intrinsic has incorrect suffix: '" +
   1957                   F->getName().substr(Name.length()) + "'. It should be '" +
   1958                   Suffix + "'", F);
   1959     }
   1960   }
   1961 
   1962   // Check parameter attributes.
   1963   Assert1(F->getAttributes() == Intrinsic::getAttributes(ID),
   1964           "Intrinsic has wrong parameter attributes!", F);
   1965 }
   1966 
   1967 
   1968 //===----------------------------------------------------------------------===//
   1969 //  Implement the public interfaces to this file...
   1970 //===----------------------------------------------------------------------===//
   1971 
   1972 FunctionPass *llvm::createVerifierPass(VerifierFailureAction action) {
   1973   return new Verifier(action);
   1974 }
   1975 
   1976 
   1977 /// verifyFunction - Check a function for errors, printing messages on stderr.
   1978 /// Return true if the function is corrupt.
   1979 ///
   1980 bool llvm::verifyFunction(const Function &f, VerifierFailureAction action) {
   1981   Function &F = const_cast<Function&>(f);
   1982   assert(!F.isDeclaration() && "Cannot verify external functions");
   1983 
   1984   FunctionPassManager FPM(F.getParent());
   1985   Verifier *V = new Verifier(action);
   1986   FPM.add(V);
   1987   FPM.run(F);
   1988   return V->Broken;
   1989 }
   1990 
   1991 /// verifyModule - Check a module for errors, printing messages on stderr.
   1992 /// Return true if the module is corrupt.
   1993 ///
   1994 bool llvm::verifyModule(const Module &M, VerifierFailureAction action,
   1995                         std::string *ErrorInfo) {
   1996   PassManager PM;
   1997   Verifier *V = new Verifier(action);
   1998   PM.add(V);
   1999   PM.run(const_cast<Module&>(M));
   2000 
   2001   if (ErrorInfo && V->Broken)
   2002     *ErrorInfo = V->MessagesStr.str();
   2003   return V->Broken;
   2004 }
   2005