Home | History | Annotate | Download | only in CodeGen
      1 //===--- CGRecordLayoutBuilder.cpp - CGRecordLayout builder  ----*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // Builder implementation for CGRecordLayout objects.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "CGRecordLayout.h"
     15 #include "clang/AST/ASTContext.h"
     16 #include "clang/AST/Attr.h"
     17 #include "clang/AST/CXXInheritance.h"
     18 #include "clang/AST/DeclCXX.h"
     19 #include "clang/AST/Expr.h"
     20 #include "clang/AST/RecordLayout.h"
     21 #include "clang/Frontend/CodeGenOptions.h"
     22 #include "CodeGenTypes.h"
     23 #include "CGCXXABI.h"
     24 #include "llvm/DerivedTypes.h"
     25 #include "llvm/Type.h"
     26 #include "llvm/Support/Debug.h"
     27 #include "llvm/Support/raw_ostream.h"
     28 #include "llvm/Target/TargetData.h"
     29 using namespace clang;
     30 using namespace CodeGen;
     31 
     32 namespace {
     33 
     34 class CGRecordLayoutBuilder {
     35 public:
     36   /// FieldTypes - Holds the LLVM types that the struct is created from.
     37   ///
     38   SmallVector<llvm::Type *, 16> FieldTypes;
     39 
     40   /// BaseSubobjectType - Holds the LLVM type for the non-virtual part
     41   /// of the struct. For example, consider:
     42   ///
     43   /// struct A { int i; };
     44   /// struct B { void *v; };
     45   /// struct C : virtual A, B { };
     46   ///
     47   /// The LLVM type of C will be
     48   /// %struct.C = type { i32 (...)**, %struct.A, i32, %struct.B }
     49   ///
     50   /// And the LLVM type of the non-virtual base struct will be
     51   /// %struct.C.base = type { i32 (...)**, %struct.A, i32 }
     52   ///
     53   /// This only gets initialized if the base subobject type is
     54   /// different from the complete-object type.
     55   llvm::StructType *BaseSubobjectType;
     56 
     57   /// FieldInfo - Holds a field and its corresponding LLVM field number.
     58   llvm::DenseMap<const FieldDecl *, unsigned> Fields;
     59 
     60   /// BitFieldInfo - Holds location and size information about a bit field.
     61   llvm::DenseMap<const FieldDecl *, CGBitFieldInfo> BitFields;
     62 
     63   llvm::DenseMap<const CXXRecordDecl *, unsigned> NonVirtualBases;
     64   llvm::DenseMap<const CXXRecordDecl *, unsigned> VirtualBases;
     65 
     66   /// IndirectPrimaryBases - Virtual base classes, direct or indirect, that are
     67   /// primary base classes for some other direct or indirect base class.
     68   CXXIndirectPrimaryBaseSet IndirectPrimaryBases;
     69 
     70   /// LaidOutVirtualBases - A set of all laid out virtual bases, used to avoid
     71   /// avoid laying out virtual bases more than once.
     72   llvm::SmallPtrSet<const CXXRecordDecl *, 4> LaidOutVirtualBases;
     73 
     74   /// IsZeroInitializable - Whether this struct can be C++
     75   /// zero-initialized with an LLVM zeroinitializer.
     76   bool IsZeroInitializable;
     77   bool IsZeroInitializableAsBase;
     78 
     79   /// Packed - Whether the resulting LLVM struct will be packed or not.
     80   bool Packed;
     81 
     82   /// IsMsStruct - Whether ms_struct is in effect or not
     83   bool IsMsStruct;
     84 
     85 private:
     86   CodeGenTypes &Types;
     87 
     88   /// LastLaidOutBaseInfo - Contains the offset and non-virtual size of the
     89   /// last base laid out. Used so that we can replace the last laid out base
     90   /// type with an i8 array if needed.
     91   struct LastLaidOutBaseInfo {
     92     CharUnits Offset;
     93     CharUnits NonVirtualSize;
     94 
     95     bool isValid() const { return !NonVirtualSize.isZero(); }
     96     void invalidate() { NonVirtualSize = CharUnits::Zero(); }
     97 
     98   } LastLaidOutBase;
     99 
    100   /// Alignment - Contains the alignment of the RecordDecl.
    101   CharUnits Alignment;
    102 
    103   /// BitsAvailableInLastField - If a bit field spans only part of a LLVM field,
    104   /// this will have the number of bits still available in the field.
    105   char BitsAvailableInLastField;
    106 
    107   /// NextFieldOffset - Holds the next field offset.
    108   CharUnits NextFieldOffset;
    109 
    110   /// LayoutUnionField - Will layout a field in an union and return the type
    111   /// that the field will have.
    112   llvm::Type *LayoutUnionField(const FieldDecl *Field,
    113                                const ASTRecordLayout &Layout);
    114 
    115   /// LayoutUnion - Will layout a union RecordDecl.
    116   void LayoutUnion(const RecordDecl *D);
    117 
    118   /// LayoutField - try to layout all fields in the record decl.
    119   /// Returns false if the operation failed because the struct is not packed.
    120   bool LayoutFields(const RecordDecl *D);
    121 
    122   /// Layout a single base, virtual or non-virtual
    123   void LayoutBase(const CXXRecordDecl *base,
    124                   const CGRecordLayout &baseLayout,
    125                   CharUnits baseOffset);
    126 
    127   /// LayoutVirtualBase - layout a single virtual base.
    128   void LayoutVirtualBase(const CXXRecordDecl *base,
    129                          CharUnits baseOffset);
    130 
    131   /// LayoutVirtualBases - layout the virtual bases of a record decl.
    132   void LayoutVirtualBases(const CXXRecordDecl *RD,
    133                           const ASTRecordLayout &Layout);
    134 
    135   /// LayoutNonVirtualBase - layout a single non-virtual base.
    136   void LayoutNonVirtualBase(const CXXRecordDecl *base,
    137                             CharUnits baseOffset);
    138 
    139   /// LayoutNonVirtualBases - layout the virtual bases of a record decl.
    140   void LayoutNonVirtualBases(const CXXRecordDecl *RD,
    141                              const ASTRecordLayout &Layout);
    142 
    143   /// ComputeNonVirtualBaseType - Compute the non-virtual base field types.
    144   bool ComputeNonVirtualBaseType(const CXXRecordDecl *RD);
    145 
    146   /// LayoutField - layout a single field. Returns false if the operation failed
    147   /// because the current struct is not packed.
    148   bool LayoutField(const FieldDecl *D, uint64_t FieldOffset);
    149 
    150   /// LayoutBitField - layout a single bit field.
    151   void LayoutBitField(const FieldDecl *D, uint64_t FieldOffset);
    152 
    153   /// AppendField - Appends a field with the given offset and type.
    154   void AppendField(CharUnits fieldOffset, llvm::Type *FieldTy);
    155 
    156   /// AppendPadding - Appends enough padding bytes so that the total
    157   /// struct size is a multiple of the field alignment.
    158   void AppendPadding(CharUnits fieldOffset, CharUnits fieldAlignment);
    159 
    160   /// ResizeLastBaseFieldIfNecessary - Fields and bases can be laid out in the
    161   /// tail padding of a previous base. If this happens, the type of the previous
    162   /// base needs to be changed to an array of i8. Returns true if the last
    163   /// laid out base was resized.
    164   bool ResizeLastBaseFieldIfNecessary(CharUnits offset);
    165 
    166   /// getByteArrayType - Returns a byte array type with the given number of
    167   /// elements.
    168   llvm::Type *getByteArrayType(CharUnits NumBytes);
    169 
    170   /// AppendBytes - Append a given number of bytes to the record.
    171   void AppendBytes(CharUnits numBytes);
    172 
    173   /// AppendTailPadding - Append enough tail padding so that the type will have
    174   /// the passed size.
    175   void AppendTailPadding(CharUnits RecordSize);
    176 
    177   CharUnits getTypeAlignment(llvm::Type *Ty) const;
    178 
    179   /// getAlignmentAsLLVMStruct - Returns the maximum alignment of all the
    180   /// LLVM element types.
    181   CharUnits getAlignmentAsLLVMStruct() const;
    182 
    183   /// CheckZeroInitializable - Check if the given type contains a pointer
    184   /// to data member.
    185   void CheckZeroInitializable(QualType T);
    186 
    187 public:
    188   CGRecordLayoutBuilder(CodeGenTypes &Types)
    189     : BaseSubobjectType(0),
    190       IsZeroInitializable(true), IsZeroInitializableAsBase(true),
    191       Packed(false), IsMsStruct(false),
    192       Types(Types), BitsAvailableInLastField(0) { }
    193 
    194   /// Layout - Will layout a RecordDecl.
    195   void Layout(const RecordDecl *D);
    196 };
    197 
    198 }
    199 
    200 void CGRecordLayoutBuilder::Layout(const RecordDecl *D) {
    201   Alignment = Types.getContext().getASTRecordLayout(D).getAlignment();
    202   Packed = D->hasAttr<PackedAttr>();
    203 
    204   IsMsStruct = D->hasAttr<MsStructAttr>();
    205 
    206   if (D->isUnion()) {
    207     LayoutUnion(D);
    208     return;
    209   }
    210 
    211   if (LayoutFields(D))
    212     return;
    213 
    214   // We weren't able to layout the struct. Try again with a packed struct
    215   Packed = true;
    216   LastLaidOutBase.invalidate();
    217   NextFieldOffset = CharUnits::Zero();
    218   FieldTypes.clear();
    219   Fields.clear();
    220   BitFields.clear();
    221   NonVirtualBases.clear();
    222   VirtualBases.clear();
    223 
    224   LayoutFields(D);
    225 }
    226 
    227 CGBitFieldInfo CGBitFieldInfo::MakeInfo(CodeGenTypes &Types,
    228                                const FieldDecl *FD,
    229                                uint64_t FieldOffset,
    230                                uint64_t FieldSize,
    231                                uint64_t ContainingTypeSizeInBits,
    232                                unsigned ContainingTypeAlign) {
    233   llvm::Type *Ty = Types.ConvertTypeForMem(FD->getType());
    234   CharUnits TypeSizeInBytes =
    235     CharUnits::fromQuantity(Types.getTargetData().getTypeAllocSize(Ty));
    236   uint64_t TypeSizeInBits = Types.getContext().toBits(TypeSizeInBytes);
    237 
    238   bool IsSigned = FD->getType()->isSignedIntegerOrEnumerationType();
    239 
    240   if (FieldSize > TypeSizeInBits) {
    241     // We have a wide bit-field. The extra bits are only used for padding, so
    242     // if we have a bitfield of type T, with size N:
    243     //
    244     // T t : N;
    245     //
    246     // We can just assume that it's:
    247     //
    248     // T t : sizeof(T);
    249     //
    250     FieldSize = TypeSizeInBits;
    251   }
    252 
    253   // in big-endian machines the first fields are in higher bit positions,
    254   // so revert the offset. The byte offsets are reversed(back) later.
    255   if (Types.getTargetData().isBigEndian()) {
    256     FieldOffset = ((ContainingTypeSizeInBits)-FieldOffset-FieldSize);
    257   }
    258 
    259   // Compute the access components. The policy we use is to start by attempting
    260   // to access using the width of the bit-field type itself and to always access
    261   // at aligned indices of that type. If such an access would fail because it
    262   // extends past the bound of the type, then we reduce size to the next smaller
    263   // power of two and retry. The current algorithm assumes pow2 sized types,
    264   // although this is easy to fix.
    265   //
    266   assert(llvm::isPowerOf2_32(TypeSizeInBits) && "Unexpected type size!");
    267   CGBitFieldInfo::AccessInfo Components[3];
    268   unsigned NumComponents = 0;
    269   unsigned AccessedTargetBits = 0;       // The number of target bits accessed.
    270   unsigned AccessWidth = TypeSizeInBits; // The current access width to attempt.
    271 
    272   // If requested, widen the initial bit-field access to be register sized. The
    273   // theory is that this is most likely to allow multiple accesses into the same
    274   // structure to be coalesced, and that the backend should be smart enough to
    275   // narrow the store if no coalescing is ever done.
    276   //
    277   // The subsequent code will handle align these access to common boundaries and
    278   // guaranteeing that we do not access past the end of the structure.
    279   if (Types.getCodeGenOpts().UseRegisterSizedBitfieldAccess) {
    280     if (AccessWidth < Types.getTarget().getRegisterWidth())
    281       AccessWidth = Types.getTarget().getRegisterWidth();
    282   }
    283 
    284   // Round down from the field offset to find the first access position that is
    285   // at an aligned offset of the initial access type.
    286   uint64_t AccessStart = FieldOffset - (FieldOffset % AccessWidth);
    287 
    288   // Adjust initial access size to fit within record.
    289   while (AccessWidth > Types.getTarget().getCharWidth() &&
    290          AccessStart + AccessWidth > ContainingTypeSizeInBits) {
    291     AccessWidth >>= 1;
    292     AccessStart = FieldOffset - (FieldOffset % AccessWidth);
    293   }
    294 
    295   while (AccessedTargetBits < FieldSize) {
    296     // Check that we can access using a type of this size, without reading off
    297     // the end of the structure. This can occur with packed structures and
    298     // -fno-bitfield-type-align, for example.
    299     if (AccessStart + AccessWidth > ContainingTypeSizeInBits) {
    300       // If so, reduce access size to the next smaller power-of-two and retry.
    301       AccessWidth >>= 1;
    302       assert(AccessWidth >= Types.getTarget().getCharWidth()
    303              && "Cannot access under byte size!");
    304       continue;
    305     }
    306 
    307     // Otherwise, add an access component.
    308 
    309     // First, compute the bits inside this access which are part of the
    310     // target. We are reading bits [AccessStart, AccessStart + AccessWidth); the
    311     // intersection with [FieldOffset, FieldOffset + FieldSize) gives the bits
    312     // in the target that we are reading.
    313     assert(FieldOffset < AccessStart + AccessWidth && "Invalid access start!");
    314     assert(AccessStart < FieldOffset + FieldSize && "Invalid access start!");
    315     uint64_t AccessBitsInFieldStart = std::max(AccessStart, FieldOffset);
    316     uint64_t AccessBitsInFieldSize =
    317       std::min(AccessWidth + AccessStart,
    318                FieldOffset + FieldSize) - AccessBitsInFieldStart;
    319 
    320     assert(NumComponents < 3 && "Unexpected number of components!");
    321     CGBitFieldInfo::AccessInfo &AI = Components[NumComponents++];
    322     AI.FieldIndex = 0;
    323     // FIXME: We still follow the old access pattern of only using the field
    324     // byte offset. We should switch this once we fix the struct layout to be
    325     // pretty.
    326 
    327     // on big-endian machines we reverted the bit offset because first fields are
    328     // in higher bits. But this also reverts the bytes, so fix this here by reverting
    329     // the byte offset on big-endian machines.
    330     if (Types.getTargetData().isBigEndian()) {
    331       AI.FieldByteOffset = Types.getContext().toCharUnitsFromBits(
    332           ContainingTypeSizeInBits - AccessStart - AccessWidth);
    333     } else {
    334       AI.FieldByteOffset = Types.getContext().toCharUnitsFromBits(AccessStart);
    335     }
    336     AI.FieldBitStart = AccessBitsInFieldStart - AccessStart;
    337     AI.AccessWidth = AccessWidth;
    338     AI.AccessAlignment = Types.getContext().toCharUnitsFromBits(
    339         llvm::MinAlign(ContainingTypeAlign, AccessStart));
    340     AI.TargetBitOffset = AccessedTargetBits;
    341     AI.TargetBitWidth = AccessBitsInFieldSize;
    342 
    343     AccessStart += AccessWidth;
    344     AccessedTargetBits += AI.TargetBitWidth;
    345   }
    346 
    347   assert(AccessedTargetBits == FieldSize && "Invalid bit-field access!");
    348   return CGBitFieldInfo(FieldSize, NumComponents, Components, IsSigned);
    349 }
    350 
    351 CGBitFieldInfo CGBitFieldInfo::MakeInfo(CodeGenTypes &Types,
    352                                         const FieldDecl *FD,
    353                                         uint64_t FieldOffset,
    354                                         uint64_t FieldSize) {
    355   const RecordDecl *RD = FD->getParent();
    356   const ASTRecordLayout &RL = Types.getContext().getASTRecordLayout(RD);
    357   uint64_t ContainingTypeSizeInBits = Types.getContext().toBits(RL.getSize());
    358   unsigned ContainingTypeAlign = Types.getContext().toBits(RL.getAlignment());
    359 
    360   return MakeInfo(Types, FD, FieldOffset, FieldSize, ContainingTypeSizeInBits,
    361                   ContainingTypeAlign);
    362 }
    363 
    364 void CGRecordLayoutBuilder::LayoutBitField(const FieldDecl *D,
    365                                            uint64_t fieldOffset) {
    366   uint64_t fieldSize = D->getBitWidthValue(Types.getContext());
    367 
    368   if (fieldSize == 0)
    369     return;
    370 
    371   uint64_t nextFieldOffsetInBits = Types.getContext().toBits(NextFieldOffset);
    372   CharUnits numBytesToAppend;
    373   unsigned charAlign = Types.getContext().getTargetInfo().getCharAlign();
    374 
    375   if (fieldOffset < nextFieldOffsetInBits && !BitsAvailableInLastField) {
    376     assert(fieldOffset % charAlign == 0 &&
    377            "Field offset not aligned correctly");
    378 
    379     CharUnits fieldOffsetInCharUnits =
    380       Types.getContext().toCharUnitsFromBits(fieldOffset);
    381 
    382     // Try to resize the last base field.
    383     if (ResizeLastBaseFieldIfNecessary(fieldOffsetInCharUnits))
    384       nextFieldOffsetInBits = Types.getContext().toBits(NextFieldOffset);
    385   }
    386 
    387   if (fieldOffset < nextFieldOffsetInBits) {
    388     assert(BitsAvailableInLastField && "Bitfield size mismatch!");
    389     assert(!NextFieldOffset.isZero() && "Must have laid out at least one byte");
    390 
    391     // The bitfield begins in the previous bit-field.
    392     numBytesToAppend = Types.getContext().toCharUnitsFromBits(
    393       llvm::RoundUpToAlignment(fieldSize - BitsAvailableInLastField,
    394                                charAlign));
    395   } else {
    396     assert(fieldOffset % charAlign == 0 &&
    397            "Field offset not aligned correctly");
    398 
    399     // Append padding if necessary.
    400     AppendPadding(Types.getContext().toCharUnitsFromBits(fieldOffset),
    401                   CharUnits::One());
    402 
    403     numBytesToAppend = Types.getContext().toCharUnitsFromBits(
    404         llvm::RoundUpToAlignment(fieldSize, charAlign));
    405 
    406     assert(!numBytesToAppend.isZero() && "No bytes to append!");
    407   }
    408 
    409   // Add the bit field info.
    410   BitFields.insert(std::make_pair(D,
    411                    CGBitFieldInfo::MakeInfo(Types, D, fieldOffset, fieldSize)));
    412 
    413   AppendBytes(numBytesToAppend);
    414 
    415   BitsAvailableInLastField =
    416     Types.getContext().toBits(NextFieldOffset) - (fieldOffset + fieldSize);
    417 }
    418 
    419 bool CGRecordLayoutBuilder::LayoutField(const FieldDecl *D,
    420                                         uint64_t fieldOffset) {
    421   // If the field is packed, then we need a packed struct.
    422   if (!Packed && D->hasAttr<PackedAttr>())
    423     return false;
    424 
    425   if (D->isBitField()) {
    426     // We must use packed structs for unnamed bit fields since they
    427     // don't affect the struct alignment.
    428     if (!Packed && !D->getDeclName())
    429       return false;
    430 
    431     LayoutBitField(D, fieldOffset);
    432     return true;
    433   }
    434 
    435   CheckZeroInitializable(D->getType());
    436 
    437   assert(fieldOffset % Types.getTarget().getCharWidth() == 0
    438          && "field offset is not on a byte boundary!");
    439   CharUnits fieldOffsetInBytes
    440     = Types.getContext().toCharUnitsFromBits(fieldOffset);
    441 
    442   llvm::Type *Ty = Types.ConvertTypeForMem(D->getType());
    443   CharUnits typeAlignment = getTypeAlignment(Ty);
    444 
    445   // If the type alignment is larger then the struct alignment, we must use
    446   // a packed struct.
    447   if (typeAlignment > Alignment) {
    448     assert(!Packed && "Alignment is wrong even with packed struct!");
    449     return false;
    450   }
    451 
    452   if (!Packed) {
    453     if (const RecordType *RT = D->getType()->getAs<RecordType>()) {
    454       const RecordDecl *RD = cast<RecordDecl>(RT->getDecl());
    455       if (const MaxFieldAlignmentAttr *MFAA =
    456             RD->getAttr<MaxFieldAlignmentAttr>()) {
    457         if (MFAA->getAlignment() != Types.getContext().toBits(typeAlignment))
    458           return false;
    459       }
    460     }
    461   }
    462 
    463   // Round up the field offset to the alignment of the field type.
    464   CharUnits alignedNextFieldOffsetInBytes =
    465     NextFieldOffset.RoundUpToAlignment(typeAlignment);
    466 
    467   if (fieldOffsetInBytes < alignedNextFieldOffsetInBytes) {
    468     // Try to resize the last base field.
    469     if (ResizeLastBaseFieldIfNecessary(fieldOffsetInBytes)) {
    470       alignedNextFieldOffsetInBytes =
    471         NextFieldOffset.RoundUpToAlignment(typeAlignment);
    472     }
    473   }
    474 
    475   if (fieldOffsetInBytes < alignedNextFieldOffsetInBytes) {
    476     assert(!Packed && "Could not place field even with packed struct!");
    477     return false;
    478   }
    479 
    480   AppendPadding(fieldOffsetInBytes, typeAlignment);
    481 
    482   // Now append the field.
    483   Fields[D] = FieldTypes.size();
    484   AppendField(fieldOffsetInBytes, Ty);
    485 
    486   LastLaidOutBase.invalidate();
    487   return true;
    488 }
    489 
    490 llvm::Type *
    491 CGRecordLayoutBuilder::LayoutUnionField(const FieldDecl *Field,
    492                                         const ASTRecordLayout &Layout) {
    493   if (Field->isBitField()) {
    494     uint64_t FieldSize = Field->getBitWidthValue(Types.getContext());
    495 
    496     // Ignore zero sized bit fields.
    497     if (FieldSize == 0)
    498       return 0;
    499 
    500     llvm::Type *FieldTy = llvm::Type::getInt8Ty(Types.getLLVMContext());
    501     CharUnits NumBytesToAppend = Types.getContext().toCharUnitsFromBits(
    502       llvm::RoundUpToAlignment(FieldSize,
    503                                Types.getContext().getTargetInfo().getCharAlign()));
    504 
    505     if (NumBytesToAppend > CharUnits::One())
    506       FieldTy = llvm::ArrayType::get(FieldTy, NumBytesToAppend.getQuantity());
    507 
    508     // Add the bit field info.
    509     BitFields.insert(std::make_pair(Field,
    510                          CGBitFieldInfo::MakeInfo(Types, Field, 0, FieldSize)));
    511     return FieldTy;
    512   }
    513 
    514   // This is a regular union field.
    515   Fields[Field] = 0;
    516   return Types.ConvertTypeForMem(Field->getType());
    517 }
    518 
    519 void CGRecordLayoutBuilder::LayoutUnion(const RecordDecl *D) {
    520   assert(D->isUnion() && "Can't call LayoutUnion on a non-union record!");
    521 
    522   const ASTRecordLayout &layout = Types.getContext().getASTRecordLayout(D);
    523 
    524   llvm::Type *unionType = 0;
    525   CharUnits unionSize = CharUnits::Zero();
    526   CharUnits unionAlign = CharUnits::Zero();
    527 
    528   bool hasOnlyZeroSizedBitFields = true;
    529 
    530   unsigned fieldNo = 0;
    531   for (RecordDecl::field_iterator field = D->field_begin(),
    532        fieldEnd = D->field_end(); field != fieldEnd; ++field, ++fieldNo) {
    533     assert(layout.getFieldOffset(fieldNo) == 0 &&
    534           "Union field offset did not start at the beginning of record!");
    535     llvm::Type *fieldType = LayoutUnionField(*field, layout);
    536 
    537     if (!fieldType)
    538       continue;
    539 
    540     hasOnlyZeroSizedBitFields = false;
    541 
    542     CharUnits fieldAlign = CharUnits::fromQuantity(
    543                           Types.getTargetData().getABITypeAlignment(fieldType));
    544     CharUnits fieldSize = CharUnits::fromQuantity(
    545                              Types.getTargetData().getTypeAllocSize(fieldType));
    546 
    547     if (fieldAlign < unionAlign)
    548       continue;
    549 
    550     if (fieldAlign > unionAlign || fieldSize > unionSize) {
    551       unionType = fieldType;
    552       unionAlign = fieldAlign;
    553       unionSize = fieldSize;
    554     }
    555   }
    556 
    557   // Now add our field.
    558   if (unionType) {
    559     AppendField(CharUnits::Zero(), unionType);
    560 
    561     if (getTypeAlignment(unionType) > layout.getAlignment()) {
    562       // We need a packed struct.
    563       Packed = true;
    564       unionAlign = CharUnits::One();
    565     }
    566   }
    567   if (unionAlign.isZero()) {
    568     assert(hasOnlyZeroSizedBitFields &&
    569            "0-align record did not have all zero-sized bit-fields!");
    570     unionAlign = CharUnits::One();
    571   }
    572 
    573   // Append tail padding.
    574   CharUnits recordSize = layout.getSize();
    575   if (recordSize > unionSize)
    576     AppendPadding(recordSize, unionAlign);
    577 }
    578 
    579 void CGRecordLayoutBuilder::LayoutBase(const CXXRecordDecl *base,
    580                                        const CGRecordLayout &baseLayout,
    581                                        CharUnits baseOffset) {
    582   ResizeLastBaseFieldIfNecessary(baseOffset);
    583 
    584   AppendPadding(baseOffset, CharUnits::One());
    585 
    586   const ASTRecordLayout &baseASTLayout
    587     = Types.getContext().getASTRecordLayout(base);
    588 
    589   LastLaidOutBase.Offset = NextFieldOffset;
    590   LastLaidOutBase.NonVirtualSize = baseASTLayout.getNonVirtualSize();
    591 
    592   // Fields and bases can be laid out in the tail padding of previous
    593   // bases.  If this happens, we need to allocate the base as an i8
    594   // array; otherwise, we can use the subobject type.  However,
    595   // actually doing that would require knowledge of what immediately
    596   // follows this base in the layout, so instead we do a conservative
    597   // approximation, which is to use the base subobject type if it
    598   // has the same LLVM storage size as the nvsize.
    599 
    600   llvm::StructType *subobjectType = baseLayout.getBaseSubobjectLLVMType();
    601   AppendField(baseOffset, subobjectType);
    602 }
    603 
    604 void CGRecordLayoutBuilder::LayoutNonVirtualBase(const CXXRecordDecl *base,
    605                                                  CharUnits baseOffset) {
    606   // Ignore empty bases.
    607   if (base->isEmpty()) return;
    608 
    609   const CGRecordLayout &baseLayout = Types.getCGRecordLayout(base);
    610   if (IsZeroInitializableAsBase) {
    611     assert(IsZeroInitializable &&
    612            "class zero-initializable as base but not as complete object");
    613 
    614     IsZeroInitializable = IsZeroInitializableAsBase =
    615       baseLayout.isZeroInitializableAsBase();
    616   }
    617 
    618   LayoutBase(base, baseLayout, baseOffset);
    619   NonVirtualBases[base] = (FieldTypes.size() - 1);
    620 }
    621 
    622 void
    623 CGRecordLayoutBuilder::LayoutVirtualBase(const CXXRecordDecl *base,
    624                                          CharUnits baseOffset) {
    625   // Ignore empty bases.
    626   if (base->isEmpty()) return;
    627 
    628   const CGRecordLayout &baseLayout = Types.getCGRecordLayout(base);
    629   if (IsZeroInitializable)
    630     IsZeroInitializable = baseLayout.isZeroInitializableAsBase();
    631 
    632   LayoutBase(base, baseLayout, baseOffset);
    633   VirtualBases[base] = (FieldTypes.size() - 1);
    634 }
    635 
    636 /// LayoutVirtualBases - layout the non-virtual bases of a record decl.
    637 void
    638 CGRecordLayoutBuilder::LayoutVirtualBases(const CXXRecordDecl *RD,
    639                                           const ASTRecordLayout &Layout) {
    640   for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
    641        E = RD->bases_end(); I != E; ++I) {
    642     const CXXRecordDecl *BaseDecl =
    643       cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
    644 
    645     // We only want to lay out virtual bases that aren't indirect primary bases
    646     // of some other base.
    647     if (I->isVirtual() && !IndirectPrimaryBases.count(BaseDecl)) {
    648       // Only lay out the base once.
    649       if (!LaidOutVirtualBases.insert(BaseDecl))
    650         continue;
    651 
    652       CharUnits vbaseOffset = Layout.getVBaseClassOffset(BaseDecl);
    653       LayoutVirtualBase(BaseDecl, vbaseOffset);
    654     }
    655 
    656     if (!BaseDecl->getNumVBases()) {
    657       // This base isn't interesting since it doesn't have any virtual bases.
    658       continue;
    659     }
    660 
    661     LayoutVirtualBases(BaseDecl, Layout);
    662   }
    663 }
    664 
    665 void
    666 CGRecordLayoutBuilder::LayoutNonVirtualBases(const CXXRecordDecl *RD,
    667                                              const ASTRecordLayout &Layout) {
    668   const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
    669 
    670   // Check if we need to add a vtable pointer.
    671   if (RD->isDynamicClass()) {
    672     if (PrimaryBase) {
    673       if (!Layout.isPrimaryBaseVirtual())
    674         LayoutNonVirtualBase(PrimaryBase, CharUnits::Zero());
    675       else
    676         LayoutVirtualBase(PrimaryBase, CharUnits::Zero());
    677     } else if (Types.getContext().getTargetInfo().getCXXABI() !=
    678                CXXABI_Microsoft) {
    679       llvm::Type *FunctionType =
    680         llvm::FunctionType::get(llvm::Type::getInt32Ty(Types.getLLVMContext()),
    681                                 /*isVarArg=*/true);
    682       llvm::Type *VTableTy = FunctionType->getPointerTo();
    683 
    684       assert(NextFieldOffset.isZero() &&
    685              "VTable pointer must come first!");
    686       AppendField(CharUnits::Zero(), VTableTy->getPointerTo());
    687 
    688     }
    689   }
    690 
    691   // Layout the non-virtual bases.
    692   for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
    693        E = RD->bases_end(); I != E; ++I) {
    694     if (I->isVirtual())
    695       continue;
    696 
    697     const CXXRecordDecl *BaseDecl =
    698       cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
    699 
    700     // We've already laid out the primary base.
    701     if (BaseDecl == PrimaryBase && !Layout.isPrimaryBaseVirtual())
    702       continue;
    703 
    704     LayoutNonVirtualBase(BaseDecl, Layout.getBaseClassOffset(BaseDecl));
    705   }
    706 }
    707 
    708 bool
    709 CGRecordLayoutBuilder::ComputeNonVirtualBaseType(const CXXRecordDecl *RD) {
    710   const ASTRecordLayout &Layout = Types.getContext().getASTRecordLayout(RD);
    711 
    712   CharUnits NonVirtualSize  = Layout.getNonVirtualSize();
    713   CharUnits NonVirtualAlign = Layout.getNonVirtualAlign();
    714   CharUnits AlignedNonVirtualTypeSize =
    715     NonVirtualSize.RoundUpToAlignment(NonVirtualAlign);
    716 
    717   // First check if we can use the same fields as for the complete class.
    718   CharUnits RecordSize = Layout.getSize();
    719   if (AlignedNonVirtualTypeSize == RecordSize)
    720     return true;
    721 
    722   // Check if we need padding.
    723   CharUnits AlignedNextFieldOffset =
    724     NextFieldOffset.RoundUpToAlignment(getAlignmentAsLLVMStruct());
    725 
    726   if (AlignedNextFieldOffset > AlignedNonVirtualTypeSize) {
    727     assert(!Packed && "cannot layout even as packed struct");
    728     return false; // Needs packing.
    729   }
    730 
    731   bool needsPadding = (AlignedNonVirtualTypeSize != AlignedNextFieldOffset);
    732   if (needsPadding) {
    733     CharUnits NumBytes = AlignedNonVirtualTypeSize - AlignedNextFieldOffset;
    734     FieldTypes.push_back(getByteArrayType(NumBytes));
    735   }
    736 
    737 
    738   BaseSubobjectType = llvm::StructType::create(Types.getLLVMContext(),
    739                                                FieldTypes, "", Packed);
    740   Types.addRecordTypeName(RD, BaseSubobjectType, ".base");
    741 
    742   // Pull the padding back off.
    743   if (needsPadding)
    744     FieldTypes.pop_back();
    745 
    746   return true;
    747 }
    748 
    749 bool CGRecordLayoutBuilder::LayoutFields(const RecordDecl *D) {
    750   assert(!D->isUnion() && "Can't call LayoutFields on a union!");
    751   assert(!Alignment.isZero() && "Did not set alignment!");
    752 
    753   const ASTRecordLayout &Layout = Types.getContext().getASTRecordLayout(D);
    754 
    755   const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D);
    756   if (RD)
    757     LayoutNonVirtualBases(RD, Layout);
    758 
    759   unsigned FieldNo = 0;
    760   const FieldDecl *LastFD = 0;
    761 
    762   for (RecordDecl::field_iterator Field = D->field_begin(),
    763        FieldEnd = D->field_end(); Field != FieldEnd; ++Field, ++FieldNo) {
    764     if (IsMsStruct) {
    765       // Zero-length bitfields following non-bitfield members are
    766       // ignored:
    767       const FieldDecl *FD =  (*Field);
    768       if (Types.getContext().ZeroBitfieldFollowsNonBitfield(FD, LastFD)) {
    769         --FieldNo;
    770         continue;
    771       }
    772       LastFD = FD;
    773     }
    774 
    775     if (!LayoutField(*Field, Layout.getFieldOffset(FieldNo))) {
    776       assert(!Packed &&
    777              "Could not layout fields even with a packed LLVM struct!");
    778       return false;
    779     }
    780   }
    781 
    782   if (RD) {
    783     // We've laid out the non-virtual bases and the fields, now compute the
    784     // non-virtual base field types.
    785     if (!ComputeNonVirtualBaseType(RD)) {
    786       assert(!Packed && "Could not layout even with a packed LLVM struct!");
    787       return false;
    788     }
    789 
    790     // And lay out the virtual bases.
    791     RD->getIndirectPrimaryBases(IndirectPrimaryBases);
    792     if (Layout.isPrimaryBaseVirtual())
    793       IndirectPrimaryBases.insert(Layout.getPrimaryBase());
    794     LayoutVirtualBases(RD, Layout);
    795   }
    796 
    797   // Append tail padding if necessary.
    798   AppendTailPadding(Layout.getSize());
    799 
    800   return true;
    801 }
    802 
    803 void CGRecordLayoutBuilder::AppendTailPadding(CharUnits RecordSize) {
    804   ResizeLastBaseFieldIfNecessary(RecordSize);
    805 
    806   assert(NextFieldOffset <= RecordSize && "Size mismatch!");
    807 
    808   CharUnits AlignedNextFieldOffset =
    809     NextFieldOffset.RoundUpToAlignment(getAlignmentAsLLVMStruct());
    810 
    811   if (AlignedNextFieldOffset == RecordSize) {
    812     // We don't need any padding.
    813     return;
    814   }
    815 
    816   CharUnits NumPadBytes = RecordSize - NextFieldOffset;
    817   AppendBytes(NumPadBytes);
    818 }
    819 
    820 void CGRecordLayoutBuilder::AppendField(CharUnits fieldOffset,
    821                                         llvm::Type *fieldType) {
    822   CharUnits fieldSize =
    823     CharUnits::fromQuantity(Types.getTargetData().getTypeAllocSize(fieldType));
    824 
    825   FieldTypes.push_back(fieldType);
    826 
    827   NextFieldOffset = fieldOffset + fieldSize;
    828   BitsAvailableInLastField = 0;
    829 }
    830 
    831 void CGRecordLayoutBuilder::AppendPadding(CharUnits fieldOffset,
    832                                           CharUnits fieldAlignment) {
    833   assert(NextFieldOffset <= fieldOffset &&
    834          "Incorrect field layout!");
    835 
    836   // Round up the field offset to the alignment of the field type.
    837   CharUnits alignedNextFieldOffset =
    838     NextFieldOffset.RoundUpToAlignment(fieldAlignment);
    839 
    840   if (alignedNextFieldOffset < fieldOffset) {
    841     // Even with alignment, the field offset is not at the right place,
    842     // insert padding.
    843     CharUnits padding = fieldOffset - NextFieldOffset;
    844 
    845     AppendBytes(padding);
    846   }
    847 }
    848 
    849 bool CGRecordLayoutBuilder::ResizeLastBaseFieldIfNecessary(CharUnits offset) {
    850   // Check if we have a base to resize.
    851   if (!LastLaidOutBase.isValid())
    852     return false;
    853 
    854   // This offset does not overlap with the tail padding.
    855   if (offset >= NextFieldOffset)
    856     return false;
    857 
    858   // Restore the field offset and append an i8 array instead.
    859   FieldTypes.pop_back();
    860   NextFieldOffset = LastLaidOutBase.Offset;
    861   AppendBytes(LastLaidOutBase.NonVirtualSize);
    862   LastLaidOutBase.invalidate();
    863 
    864   return true;
    865 }
    866 
    867 llvm::Type *CGRecordLayoutBuilder::getByteArrayType(CharUnits numBytes) {
    868   assert(!numBytes.isZero() && "Empty byte arrays aren't allowed.");
    869 
    870   llvm::Type *Ty = llvm::Type::getInt8Ty(Types.getLLVMContext());
    871   if (numBytes > CharUnits::One())
    872     Ty = llvm::ArrayType::get(Ty, numBytes.getQuantity());
    873 
    874   return Ty;
    875 }
    876 
    877 void CGRecordLayoutBuilder::AppendBytes(CharUnits numBytes) {
    878   if (numBytes.isZero())
    879     return;
    880 
    881   // Append the padding field
    882   AppendField(NextFieldOffset, getByteArrayType(numBytes));
    883 }
    884 
    885 CharUnits CGRecordLayoutBuilder::getTypeAlignment(llvm::Type *Ty) const {
    886   if (Packed)
    887     return CharUnits::One();
    888 
    889   return CharUnits::fromQuantity(Types.getTargetData().getABITypeAlignment(Ty));
    890 }
    891 
    892 CharUnits CGRecordLayoutBuilder::getAlignmentAsLLVMStruct() const {
    893   if (Packed)
    894     return CharUnits::One();
    895 
    896   CharUnits maxAlignment = CharUnits::One();
    897   for (size_t i = 0; i != FieldTypes.size(); ++i)
    898     maxAlignment = std::max(maxAlignment, getTypeAlignment(FieldTypes[i]));
    899 
    900   return maxAlignment;
    901 }
    902 
    903 /// Merge in whether a field of the given type is zero-initializable.
    904 void CGRecordLayoutBuilder::CheckZeroInitializable(QualType T) {
    905   // This record already contains a member pointer.
    906   if (!IsZeroInitializableAsBase)
    907     return;
    908 
    909   // Can only have member pointers if we're compiling C++.
    910   if (!Types.getContext().getLangOptions().CPlusPlus)
    911     return;
    912 
    913   const Type *elementType = T->getBaseElementTypeUnsafe();
    914 
    915   if (const MemberPointerType *MPT = elementType->getAs<MemberPointerType>()) {
    916     if (!Types.getCXXABI().isZeroInitializable(MPT))
    917       IsZeroInitializable = IsZeroInitializableAsBase = false;
    918   } else if (const RecordType *RT = elementType->getAs<RecordType>()) {
    919     const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
    920     const CGRecordLayout &Layout = Types.getCGRecordLayout(RD);
    921     if (!Layout.isZeroInitializable())
    922       IsZeroInitializable = IsZeroInitializableAsBase = false;
    923   }
    924 }
    925 
    926 CGRecordLayout *CodeGenTypes::ComputeRecordLayout(const RecordDecl *D,
    927                                                   llvm::StructType *Ty) {
    928   CGRecordLayoutBuilder Builder(*this);
    929 
    930   Builder.Layout(D);
    931 
    932   Ty->setBody(Builder.FieldTypes, Builder.Packed);
    933 
    934   // If we're in C++, compute the base subobject type.
    935   llvm::StructType *BaseTy = 0;
    936   if (isa<CXXRecordDecl>(D)) {
    937     BaseTy = Builder.BaseSubobjectType;
    938     if (!BaseTy) BaseTy = Ty;
    939   }
    940 
    941   CGRecordLayout *RL =
    942     new CGRecordLayout(Ty, BaseTy, Builder.IsZeroInitializable,
    943                        Builder.IsZeroInitializableAsBase);
    944 
    945   RL->NonVirtualBases.swap(Builder.NonVirtualBases);
    946   RL->CompleteObjectVirtualBases.swap(Builder.VirtualBases);
    947 
    948   // Add all the field numbers.
    949   RL->FieldInfo.swap(Builder.Fields);
    950 
    951   // Add bitfield info.
    952   RL->BitFields.swap(Builder.BitFields);
    953 
    954   // Dump the layout, if requested.
    955   if (getContext().getLangOptions().DumpRecordLayouts) {
    956     llvm::errs() << "\n*** Dumping IRgen Record Layout\n";
    957     llvm::errs() << "Record: ";
    958     D->dump();
    959     llvm::errs() << "\nLayout: ";
    960     RL->dump();
    961   }
    962 
    963 #ifndef NDEBUG
    964   // Verify that the computed LLVM struct size matches the AST layout size.
    965   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(D);
    966 
    967   uint64_t TypeSizeInBits = getContext().toBits(Layout.getSize());
    968   assert(TypeSizeInBits == getTargetData().getTypeAllocSizeInBits(Ty) &&
    969          "Type size mismatch!");
    970 
    971   if (BaseTy) {
    972     CharUnits NonVirtualSize  = Layout.getNonVirtualSize();
    973     CharUnits NonVirtualAlign = Layout.getNonVirtualAlign();
    974     CharUnits AlignedNonVirtualTypeSize =
    975       NonVirtualSize.RoundUpToAlignment(NonVirtualAlign);
    976 
    977     uint64_t AlignedNonVirtualTypeSizeInBits =
    978       getContext().toBits(AlignedNonVirtualTypeSize);
    979 
    980     assert(AlignedNonVirtualTypeSizeInBits ==
    981            getTargetData().getTypeAllocSizeInBits(BaseTy) &&
    982            "Type size mismatch!");
    983   }
    984 
    985   // Verify that the LLVM and AST field offsets agree.
    986   llvm::StructType *ST =
    987     dyn_cast<llvm::StructType>(RL->getLLVMType());
    988   const llvm::StructLayout *SL = getTargetData().getStructLayout(ST);
    989 
    990   const ASTRecordLayout &AST_RL = getContext().getASTRecordLayout(D);
    991   RecordDecl::field_iterator it = D->field_begin();
    992   const FieldDecl *LastFD = 0;
    993   bool IsMsStruct = D->hasAttr<MsStructAttr>();
    994   for (unsigned i = 0, e = AST_RL.getFieldCount(); i != e; ++i, ++it) {
    995     const FieldDecl *FD = *it;
    996 
    997     // For non-bit-fields, just check that the LLVM struct offset matches the
    998     // AST offset.
    999     if (!FD->isBitField()) {
   1000       unsigned FieldNo = RL->getLLVMFieldNo(FD);
   1001       assert(AST_RL.getFieldOffset(i) == SL->getElementOffsetInBits(FieldNo) &&
   1002              "Invalid field offset!");
   1003       LastFD = FD;
   1004       continue;
   1005     }
   1006 
   1007     if (IsMsStruct) {
   1008       // Zero-length bitfields following non-bitfield members are
   1009       // ignored:
   1010       if (getContext().ZeroBitfieldFollowsNonBitfield(FD, LastFD)) {
   1011         --i;
   1012         continue;
   1013       }
   1014       LastFD = FD;
   1015     }
   1016 
   1017     // Ignore unnamed bit-fields.
   1018     if (!FD->getDeclName()) {
   1019       LastFD = FD;
   1020       continue;
   1021     }
   1022 
   1023     const CGBitFieldInfo &Info = RL->getBitFieldInfo(FD);
   1024     for (unsigned i = 0, e = Info.getNumComponents(); i != e; ++i) {
   1025       const CGBitFieldInfo::AccessInfo &AI = Info.getComponent(i);
   1026 
   1027       // Verify that every component access is within the structure.
   1028       uint64_t FieldOffset = SL->getElementOffsetInBits(AI.FieldIndex);
   1029       uint64_t AccessBitOffset = FieldOffset +
   1030         getContext().toBits(AI.FieldByteOffset);
   1031       assert(AccessBitOffset + AI.AccessWidth <= TypeSizeInBits &&
   1032              "Invalid bit-field access (out of range)!");
   1033     }
   1034   }
   1035 #endif
   1036 
   1037   return RL;
   1038 }
   1039 
   1040 void CGRecordLayout::print(raw_ostream &OS) const {
   1041   OS << "<CGRecordLayout\n";
   1042   OS << "  LLVMType:" << *CompleteObjectType << "\n";
   1043   if (BaseSubobjectType)
   1044     OS << "  NonVirtualBaseLLVMType:" << *BaseSubobjectType << "\n";
   1045   OS << "  IsZeroInitializable:" << IsZeroInitializable << "\n";
   1046   OS << "  BitFields:[\n";
   1047 
   1048   // Print bit-field infos in declaration order.
   1049   std::vector<std::pair<unsigned, const CGBitFieldInfo*> > BFIs;
   1050   for (llvm::DenseMap<const FieldDecl*, CGBitFieldInfo>::const_iterator
   1051          it = BitFields.begin(), ie = BitFields.end();
   1052        it != ie; ++it) {
   1053     const RecordDecl *RD = it->first->getParent();
   1054     unsigned Index = 0;
   1055     for (RecordDecl::field_iterator
   1056            it2 = RD->field_begin(); *it2 != it->first; ++it2)
   1057       ++Index;
   1058     BFIs.push_back(std::make_pair(Index, &it->second));
   1059   }
   1060   llvm::array_pod_sort(BFIs.begin(), BFIs.end());
   1061   for (unsigned i = 0, e = BFIs.size(); i != e; ++i) {
   1062     OS.indent(4);
   1063     BFIs[i].second->print(OS);
   1064     OS << "\n";
   1065   }
   1066 
   1067   OS << "]>\n";
   1068 }
   1069 
   1070 void CGRecordLayout::dump() const {
   1071   print(llvm::errs());
   1072 }
   1073 
   1074 void CGBitFieldInfo::print(raw_ostream &OS) const {
   1075   OS << "<CGBitFieldInfo";
   1076   OS << " Size:" << Size;
   1077   OS << " IsSigned:" << IsSigned << "\n";
   1078 
   1079   OS.indent(4 + strlen("<CGBitFieldInfo"));
   1080   OS << " NumComponents:" << getNumComponents();
   1081   OS << " Components: [";
   1082   if (getNumComponents()) {
   1083     OS << "\n";
   1084     for (unsigned i = 0, e = getNumComponents(); i != e; ++i) {
   1085       const AccessInfo &AI = getComponent(i);
   1086       OS.indent(8);
   1087       OS << "<AccessInfo"
   1088          << " FieldIndex:" << AI.FieldIndex
   1089          << " FieldByteOffset:" << AI.FieldByteOffset.getQuantity()
   1090          << " FieldBitStart:" << AI.FieldBitStart
   1091          << " AccessWidth:" << AI.AccessWidth << "\n";
   1092       OS.indent(8 + strlen("<AccessInfo"));
   1093       OS << " AccessAlignment:" << AI.AccessAlignment.getQuantity()
   1094          << " TargetBitOffset:" << AI.TargetBitOffset
   1095          << " TargetBitWidth:" << AI.TargetBitWidth
   1096          << ">\n";
   1097     }
   1098     OS.indent(4);
   1099   }
   1100   OS << "]>";
   1101 }
   1102 
   1103 void CGBitFieldInfo::dump() const {
   1104   print(llvm::errs());
   1105 }
   1106