Home | History | Annotate | Download | only in massif
      1 //--------------------------------------------------------------------*/
      2 //--- Massif: a heap profiling tool.                     ms_main.c ---*/
      3 //--------------------------------------------------------------------*/
      4 
      5 /*
      6    This file is part of Massif, a Valgrind tool for profiling memory
      7    usage of programs.
      8 
      9    Copyright (C) 2003-2010 Nicholas Nethercote
     10       njn (at) valgrind.org
     11 
     12    This program is free software; you can redistribute it and/or
     13    modify it under the terms of the GNU General Public License as
     14    published by the Free Software Foundation; either version 2 of the
     15    License, or (at your option) any later version.
     16 
     17    This program is distributed in the hope that it will be useful, but
     18    WITHOUT ANY WARRANTY; without even the implied warranty of
     19    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
     20    General Public License for more details.
     21 
     22    You should have received a copy of the GNU General Public License
     23    along with this program; if not, write to the Free Software
     24    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
     25    02111-1307, USA.
     26 
     27    The GNU General Public License is contained in the file COPYING.
     28 */
     29 
     30 //---------------------------------------------------------------------------
     31 // XXX:
     32 //---------------------------------------------------------------------------
     33 // Todo -- nice, but less critical:
     34 // - do a graph-drawing test
     35 // - make file format more generic.  Obstacles:
     36 //   - unit prefixes are not generic
     37 //   - preset column widths for stats are not generic
     38 //   - preset column headers are not generic
     39 //   - "Massif arguments:" line is not generic
     40 // - do snapshots on client requests
     41 //   - (Michael Meeks): have an interactive way to request a dump
     42 //     (callgrind_control-style)
     43 //     - "profile now"
     44 //     - "show me the extra allocations since the last snapshot"
     45 //     - "start/stop logging" (eg. quickly skip boring bits)
     46 // - Add ability to draw multiple graphs, eg. heap-only, stack-only, total.
     47 //   Give each graph a title.  (try to do it generically!)
     48 // - allow truncation of long fnnames if the exact line number is
     49 //   identified?  [hmm, could make getting the name of alloc-fns more
     50 //   difficult] [could dump full names to file, truncate in ms_print]
     51 // - make --show-below-main=no work
     52 // - Options like --alloc-fn='operator new(unsigned, std::nothrow_t const&)'
     53 //   don't work in a .valgrindrc file or in $VALGRIND_OPTS.
     54 //   m_commandline.c:add_args_from_string() needs to respect single quotes.
     55 // - With --stack=yes, want to add a stack trace for detailed snapshots so
     56 //   it's clear where/why the peak is occurring. (Mattieu Castet)  Also,
     57 //   possibly useful even with --stack=no? (Andi Yin)
     58 //
     59 // Performance:
     60 // - To run the benchmarks:
     61 //
     62 //     perl perf/vg_perf --tools=massif --reps=3 perf/{heap,tinycc} massif
     63 //     time valgrind --tool=massif --depth=100 konqueror
     64 //
     65 //   The other benchmarks don't do much allocation, and so give similar speeds
     66 //   to Nulgrind.
     67 //
     68 //   Timing results on 'nevermore' (njn's machine) as of r7013:
     69 //
     70 //     heap      0.53s  ma:12.4s (23.5x, -----)
     71 //     tinycc    0.46s  ma: 4.9s (10.7x, -----)
     72 //     many-xpts 0.08s  ma: 2.0s (25.0x, -----)
     73 //     konqueror 29.6s real  0:21.0s user
     74 //
     75 //   [Introduction of --time-unit=i as the default slowed things down by
     76 //   roughly 0--20%.]
     77 //
     78 // - get_XCon accounts for about 9% of konqueror startup time.  Try
     79 //   keeping XPt children sorted by 'ip' and use binary search in get_XCon.
     80 //   Requires factoring out binary search code from various places into a
     81 //   VG_(bsearch) function.
     82 //
     83 // Todo -- low priority:
     84 // - In each XPt, record both bytes and the number of allocations, and
     85 //   possibly the global number of allocations.
     86 // - (Andy Lin) Give a stack trace on detailed snapshots?
     87 // - (Artur Wisz) add a feature to Massif to ignore any heap blocks larger
     88 //   than a certain size!  Because: "linux's malloc allows to set a
     89 //   MMAP_THRESHOLD value, so we set it to 4096 - all blocks above that will
     90 //   be handled directly by the kernel, and are guaranteed to be returned to
     91 //   the system when freed. So we needed to profile only blocks below this
     92 //   limit."
     93 //
     94 // File format working notes:
     95 
     96 #if 0
     97 desc: --heap-admin=foo
     98 cmd: date
     99 time_unit: ms
    100 #-----------
    101 snapshot=0
    102 #-----------
    103 time=0
    104 mem_heap_B=0
    105 mem_heap_admin_B=0
    106 mem_stacks_B=0
    107 heap_tree=empty
    108 #-----------
    109 snapshot=1
    110 #-----------
    111 time=353
    112 mem_heap_B=5
    113 mem_heap_admin_B=0
    114 mem_stacks_B=0
    115 heap_tree=detailed
    116 n1: 5 (heap allocation functions) malloc/new/new[], --alloc-fns, etc.
    117  n1: 5 0x27F6E0: _nl_normalize_codeset (in /lib/libc-2.3.5.so)
    118   n1: 5 0x279DE6: _nl_load_locale_from_archive (in /lib/libc-2.3.5.so)
    119    n1: 5 0x278E97: _nl_find_locale (in /lib/libc-2.3.5.so)
    120     n1: 5 0x278871: setlocale (in /lib/libc-2.3.5.so)
    121      n1: 5 0x8049821: (within /bin/date)
    122       n0: 5 0x26ED5E: (below main) (in /lib/libc-2.3.5.so)
    123 
    124 
    125 n_events: n  time(ms)  total(B)    useful-heap(B)  admin-heap(B)  stacks(B)
    126 t_events: B
    127 n 0 0 0 0 0
    128 n 0 0 0 0 0
    129 t1: 5 <string...>
    130  t1: 6 <string...>
    131 
    132 Ideas:
    133 - each snapshot specifies an x-axis value and one or more y-axis values.
    134 - can display the y-axis values separately if you like
    135 - can completely separate connection between snapshots and trees.
    136 
    137 Challenges:
    138 - how to specify and scale/abbreviate units on axes?
    139 - how to combine multiple values into the y-axis?
    140 
    141 --------------------------------------------------------------------------------Command:            date
    142 Massif arguments:   --heap-admin=foo
    143 ms_print arguments: massif.out
    144 --------------------------------------------------------------------------------
    145     KB
    146 6.472^                                                       :#
    147      |                                                       :#  ::  .    .
    148      ...
    149      |                                     ::@  :@    :@ :@:::#  ::  :    ::::
    150    0 +-----------------------------------@---@---@-----@--@---#-------------->ms     0                                                                     713
    151 
    152 Number of snapshots: 50
    153  Detailed snapshots: [2, 11, 13, 19, 25, 32 (peak)]
    154 --------------------------------------------------------------------------------  n       time(ms)         total(B)   useful-heap(B) admin-heap(B)    stacks(B)
    155 --------------------------------------------------------------------------------  0              0                0                0             0            0
    156   1            345                5                5             0            0
    157   2            353                5                5             0            0
    158 100.00% (5B) (heap allocation functions) malloc/new/new[], --alloc-fns, etc.
    159 ->100.00% (5B) 0x27F6E0: _nl_normalize_codeset (in /lib/libc-2.3.5.so)
    160 #endif
    161 
    162 //---------------------------------------------------------------------------
    163 
    164 #include "pub_tool_basics.h"
    165 #include "pub_tool_vki.h"
    166 #include "pub_tool_aspacemgr.h"
    167 #include "pub_tool_debuginfo.h"
    168 #include "pub_tool_hashtable.h"
    169 #include "pub_tool_libcbase.h"
    170 #include "pub_tool_libcassert.h"
    171 #include "pub_tool_libcfile.h"
    172 #include "pub_tool_libcprint.h"
    173 #include "pub_tool_libcproc.h"
    174 #include "pub_tool_machine.h"
    175 #include "pub_tool_mallocfree.h"
    176 #include "pub_tool_options.h"
    177 #include "pub_tool_replacemalloc.h"
    178 #include "pub_tool_stacktrace.h"
    179 #include "pub_tool_threadstate.h"
    180 #include "pub_tool_tooliface.h"
    181 #include "pub_tool_xarray.h"
    182 #include "pub_tool_clientstate.h"
    183 
    184 #include "valgrind.h"           // For {MALLOC,FREE}LIKE_BLOCK
    185 
    186 //------------------------------------------------------------*/
    187 //--- Overview of operation                                ---*/
    188 //------------------------------------------------------------*/
    189 
    190 // The size of the stacks and heap is tracked.  The heap is tracked in a lot
    191 // of detail, enough to tell how many bytes each line of code is responsible
    192 // for, more or less.  The main data structure is a tree representing the
    193 // call tree beneath all the allocation functions like malloc().
    194 // (Alternatively, if --pages-as-heap=yes is specified, memory is tracked at
    195 // the page level, and each page is treated much like a heap block.  We use
    196 // "heap" throughout below to cover this case because the concepts are all the
    197 // same.)
    198 //
    199 // "Snapshots" are recordings of the memory usage.  There are two basic
    200 // kinds:
    201 // - Normal:  these record the current time, total memory size, total heap
    202 //   size, heap admin size and stack size.
    203 // - Detailed: these record those things in a normal snapshot, plus a very
    204 //   detailed XTree (see below) indicating how the heap is structured.
    205 //
    206 // Snapshots are taken every so often.  There are two storage classes of
    207 // snapshots:
    208 // - Temporary:  Massif does a temporary snapshot every so often.  The idea
    209 //   is to always have a certain number of temporary snapshots around.  So
    210 //   we take them frequently to begin with, but decreasingly often as the
    211 //   program continues to run.  Also, we remove some old ones after a while.
    212 //   Overall it's a kind of exponential decay thing.  Most of these are
    213 //   normal snapshots, a small fraction are detailed snapshots.
    214 // - Permanent:  Massif takes a permanent (detailed) snapshot in some
    215 //   circumstances.  They are:
    216 //   - Peak snapshot:  When the memory usage peak is reached, it takes a
    217 //     snapshot.  It keeps this, unless the peak is subsequently exceeded,
    218 //     in which case it will overwrite the peak snapshot.
    219 //   - User-requested snapshots:  These are done in response to client
    220 //     requests.  They are always kept.
    221 
    222 // Used for printing things when clo_verbosity > 1.
    223 #define VERB(verb, format, args...) \
    224    if (VG_(clo_verbosity) > verb) { \
    225       VG_(dmsg)("Massif: " format, ##args); \
    226    }
    227 
    228 // Used for printing stats when clo_stats == True.
    229 #define STATS(format, args...) \
    230    if (VG_(clo_stats)) { \
    231       VG_(dmsg)("Massif: " format, ##args); \
    232    }
    233 
    234 //------------------------------------------------------------//
    235 //--- Statistics                                           ---//
    236 //------------------------------------------------------------//
    237 
    238 // Konqueror startup, to give an idea of the numbers involved with a biggish
    239 // program, with default depth:
    240 //
    241 //  depth=3                   depth=40
    242 //  - 310,000 allocations
    243 //  - 300,000 frees
    244 //  -  15,000 XPts            800,000 XPts
    245 //  -   1,800 top-XPts
    246 
    247 static UInt n_heap_allocs           = 0;
    248 static UInt n_heap_reallocs         = 0;
    249 static UInt n_heap_frees            = 0;
    250 static UInt n_ignored_heap_allocs   = 0;
    251 static UInt n_ignored_heap_frees    = 0;
    252 static UInt n_ignored_heap_reallocs = 0;
    253 static UInt n_stack_allocs          = 0;
    254 static UInt n_stack_frees           = 0;
    255 static UInt n_xpts                  = 0;
    256 static UInt n_xpt_init_expansions   = 0;
    257 static UInt n_xpt_later_expansions  = 0;
    258 static UInt n_sxpt_allocs           = 0;
    259 static UInt n_sxpt_frees            = 0;
    260 static UInt n_skipped_snapshots     = 0;
    261 static UInt n_real_snapshots        = 0;
    262 static UInt n_detailed_snapshots    = 0;
    263 static UInt n_peak_snapshots        = 0;
    264 static UInt n_cullings              = 0;
    265 static UInt n_XCon_redos            = 0;
    266 
    267 //------------------------------------------------------------//
    268 //--- Globals                                              ---//
    269 //------------------------------------------------------------//
    270 
    271 // Number of guest instructions executed so far.  Only used with
    272 // --time-unit=i.
    273 static Long guest_instrs_executed = 0;
    274 
    275 static SizeT heap_szB       = 0; // Live heap size
    276 static SizeT heap_extra_szB = 0; // Live heap extra size -- slop + admin bytes
    277 static SizeT stacks_szB     = 0; // Live stacks size
    278 
    279 // This is the total size from the current peak snapshot, or 0 if no peak
    280 // snapshot has been taken yet.
    281 static SizeT peak_snapshot_total_szB = 0;
    282 
    283 // Incremented every time memory is allocated/deallocated, by the
    284 // allocated/deallocated amount;  includes heap, heap-admin and stack
    285 // memory.  An alternative to milliseconds as a unit of program "time".
    286 static ULong total_allocs_deallocs_szB = 0;
    287 
    288 // When running with --heap=yes --pages-as-heap=no, we don't start taking
    289 // snapshots until the first basic block is executed, rather than doing it in
    290 // ms_post_clo_init (which is the obvious spot), for two reasons.
    291 // - It lets us ignore stack events prior to that, because they're not
    292 //   really proper ones and just would screw things up.
    293 // - Because there's still some core initialisation to do, and so there
    294 //   would be an artificial time gap between the first and second snapshots.
    295 //
    296 // When running with --heap=yes --pages-as-heap=yes, snapshots start much
    297 // earlier due to new_mem_startup so this isn't relevant.
    298 //
    299 static Bool have_started_executing_code = False;
    300 
    301 //------------------------------------------------------------//
    302 //--- Alloc fns                                            ---//
    303 //------------------------------------------------------------//
    304 
    305 static XArray* alloc_fns;
    306 static XArray* ignore_fns;
    307 
    308 static void init_alloc_fns(void)
    309 {
    310    // Create the list, and add the default elements.
    311    alloc_fns = VG_(newXA)(VG_(malloc), "ms.main.iaf.1",
    312                                        VG_(free), sizeof(Char*));
    313    #define DO(x)  { Char* s = x; VG_(addToXA)(alloc_fns, &s); }
    314 
    315    // Ordered roughly according to (presumed) frequency.
    316    // Nb: The C++ "operator new*" ones are overloadable.  We include them
    317    // always anyway, because even if they're overloaded, it would be a
    318    // prodigiously stupid overloading that caused them to not allocate
    319    // memory.
    320    //
    321    // XXX: because we don't look at the first stack entry (unless it's a
    322    // custom allocation) there's not much point to having all these alloc
    323    // functions here -- they should never appear anywhere (I think?) other
    324    // than the top stack entry.  The only exceptions are those that in
    325    // vg_replace_malloc.c are partly or fully implemented in terms of another
    326    // alloc function: realloc (which uses malloc);  valloc,
    327    // malloc_zone_valloc, posix_memalign and memalign_common (which use
    328    // memalign).
    329    //
    330    DO("malloc"                                              );
    331    DO("__builtin_new"                                       );
    332    DO("operator new(unsigned)"                              );
    333    DO("operator new(unsigned long)"                         );
    334    DO("__builtin_vec_new"                                   );
    335    DO("operator new[](unsigned)"                            );
    336    DO("operator new[](unsigned long)"                       );
    337    DO("calloc"                                              );
    338    DO("realloc"                                             );
    339    DO("memalign"                                            );
    340    DO("posix_memalign"                                      );
    341    DO("valloc"                                              );
    342    DO("operator new(unsigned, std::nothrow_t const&)"       );
    343    DO("operator new[](unsigned, std::nothrow_t const&)"     );
    344    DO("operator new(unsigned long, std::nothrow_t const&)"  );
    345    DO("operator new[](unsigned long, std::nothrow_t const&)");
    346 #if defined(VGP_ppc32_aix5) || defined(VGP_ppc64_aix5)
    347    DO("malloc_common"                                       );
    348    DO("calloc_common"                                       );
    349    DO("realloc_common"                                      );
    350    DO("memalign_common"                                     );
    351 #elif defined(VGO_darwin)
    352    DO("malloc_zone_malloc"                                  );
    353    DO("malloc_zone_calloc"                                  );
    354    DO("malloc_zone_realloc"                                 );
    355    DO("malloc_zone_memalign"                                );
    356    DO("malloc_zone_valloc"                                  );
    357 #endif
    358 }
    359 
    360 static void init_ignore_fns(void)
    361 {
    362    // Create the (empty) list.
    363    ignore_fns = VG_(newXA)(VG_(malloc), "ms.main.iif.1",
    364                                         VG_(free), sizeof(Char*));
    365 }
    366 
    367 // Determines if the named function is a member of the XArray.
    368 static Bool is_member_fn(XArray* fns, Char* fnname)
    369 {
    370    Char** fn_ptr;
    371    Int i;
    372 
    373    // Nb: It's a linear search through the list, because we're comparing
    374    // strings rather than pointers to strings.
    375    // Nb: This gets called a lot.  It was an OSet, but they're quite slow to
    376    // iterate through so it wasn't a good choice.
    377    for (i = 0; i < VG_(sizeXA)(fns); i++) {
    378       fn_ptr = VG_(indexXA)(fns, i);
    379       if (VG_STREQ(fnname, *fn_ptr))
    380          return True;
    381    }
    382    return False;
    383 }
    384 
    385 
    386 //------------------------------------------------------------//
    387 //--- Command line args                                    ---//
    388 //------------------------------------------------------------//
    389 
    390 #define MAX_DEPTH       200
    391 
    392 typedef enum { TimeI, TimeMS, TimeB } TimeUnit;
    393 
    394 static Char* TimeUnit_to_string(TimeUnit time_unit)
    395 {
    396    switch (time_unit) {
    397    case TimeI:  return "i";
    398    case TimeMS: return "ms";
    399    case TimeB:  return "B";
    400    default:     tl_assert2(0, "TimeUnit_to_string: unrecognised TimeUnit");
    401    }
    402 }
    403 
    404 static Bool   clo_heap            = True;
    405    // clo_heap_admin is deliberately a word-sized type.  At one point it was
    406    // a UInt, but this caused problems on 64-bit machines when it was
    407    // multiplied by a small negative number and then promoted to a
    408    // word-sized type -- it ended up with a value of 4.2 billion.  Sigh.
    409 static SSizeT clo_heap_admin      = 8;
    410 static Bool   clo_pages_as_heap   = False;
    411 static Bool   clo_stacks          = False;
    412 static Int    clo_depth           = 30;
    413 static double clo_threshold       = 1.0;  // percentage
    414 static double clo_peak_inaccuracy = 1.0;  // percentage
    415 static Int    clo_time_unit       = TimeI;
    416 static Int    clo_detailed_freq   = 10;
    417 static Int    clo_max_snapshots   = 100;
    418 static Char*  clo_massif_out_file = "massif.out.%p";
    419 
    420 static XArray* args_for_massif;
    421 
    422 static Bool ms_process_cmd_line_option(Char* arg)
    423 {
    424    Char* tmp_str;
    425 
    426    // Remember the arg for later use.
    427    VG_(addToXA)(args_for_massif, &arg);
    428 
    429         if VG_BOOL_CLO(arg, "--heap",           clo_heap)   {}
    430    else if VG_BINT_CLO(arg, "--heap-admin",     clo_heap_admin, 0, 1024) {}
    431 
    432    else if VG_BOOL_CLO(arg, "--stacks",         clo_stacks) {}
    433 
    434    else if VG_BOOL_CLO(arg, "--pages-as-heap",  clo_pages_as_heap) {}
    435 
    436    else if VG_BINT_CLO(arg, "--depth",          clo_depth, 1, MAX_DEPTH) {}
    437 
    438    else if VG_STR_CLO(arg, "--alloc-fn",        tmp_str) {
    439       VG_(addToXA)(alloc_fns, &tmp_str);
    440    }
    441    else if VG_STR_CLO(arg, "--ignore-fn",       tmp_str) {
    442       VG_(addToXA)(ignore_fns, &tmp_str);
    443    }
    444 
    445    else if VG_DBL_CLO(arg, "--threshold",  clo_threshold) {
    446       if (clo_threshold < 0 || clo_threshold > 100) {
    447          VG_(fmsg_bad_option)(arg,
    448             "--threshold must be between 0.0 and 100.0\n");
    449       }
    450    }
    451 
    452    else if VG_DBL_CLO(arg, "--peak-inaccuracy", clo_peak_inaccuracy) {}
    453 
    454    else if VG_XACT_CLO(arg, "--time-unit=i",    clo_time_unit, TimeI)  {}
    455    else if VG_XACT_CLO(arg, "--time-unit=ms",   clo_time_unit, TimeMS) {}
    456    else if VG_XACT_CLO(arg, "--time-unit=B",    clo_time_unit, TimeB)  {}
    457 
    458    else if VG_BINT_CLO(arg, "--detailed-freq",  clo_detailed_freq, 1, 1000000) {}
    459 
    460    else if VG_BINT_CLO(arg, "--max-snapshots",  clo_max_snapshots, 10, 1000) {}
    461 
    462    else if VG_STR_CLO(arg, "--massif-out-file", clo_massif_out_file) {}
    463 
    464    else
    465       return VG_(replacement_malloc_process_cmd_line_option)(arg);
    466 
    467    return True;
    468 }
    469 
    470 static void ms_print_usage(void)
    471 {
    472    VG_(printf)(
    473 "    --heap=no|yes             profile heap blocks [yes]\n"
    474 "    --heap-admin=<size>       average admin bytes per heap block;\n"
    475 "                               ignored if --heap=no [8]\n"
    476 "    --stacks=no|yes           profile stack(s) [no]\n"
    477 "    --pages-as-heap=no|yes    profile memory at the page level [no]\n"
    478 "    --depth=<number>          depth of contexts [30]\n"
    479 "    --alloc-fn=<name>         specify <name> as an alloc function [empty]\n"
    480 "    --ignore-fn=<name>        ignore heap allocations within <name> [empty]\n"
    481 "    --threshold=<m.n>         significance threshold, as a percentage [1.0]\n"
    482 "    --peak-inaccuracy=<m.n>   maximum peak inaccuracy, as a percentage [1.0]\n"
    483 "    --time-unit=i|ms|B        time unit: instructions executed, milliseconds\n"
    484 "                              or heap bytes alloc'd/dealloc'd [i]\n"
    485 "    --detailed-freq=<N>       every Nth snapshot should be detailed [10]\n"
    486 "    --max-snapshots=<N>       maximum number of snapshots recorded [100]\n"
    487 "    --massif-out-file=<file>  output file name [massif.out.%%p]\n"
    488    );
    489 }
    490 
    491 static void ms_print_debug_usage(void)
    492 {
    493    VG_(printf)(
    494 "    (none)\n"
    495    );
    496 }
    497 
    498 
    499 //------------------------------------------------------------//
    500 //--- XPts, XTrees and XCons                               ---//
    501 //------------------------------------------------------------//
    502 
    503 // An XPt represents an "execution point", ie. a code address.  Each XPt is
    504 // part of a tree of XPts (an "execution tree", or "XTree").  The details of
    505 // the heap are represented by a single XTree.
    506 //
    507 // The root of the tree is 'alloc_xpt', which represents all allocation
    508 // functions, eg:
    509 // - malloc/calloc/realloc/memalign/new/new[];
    510 // - user-specified allocation functions (using --alloc-fn);
    511 // - custom allocation (MALLOCLIKE) points
    512 // It's a bit of a fake XPt (ie. its 'ip' is zero), and is only used because
    513 // it makes the code simpler.
    514 //
    515 // Any child of 'alloc_xpt' is called a "top-XPt".  The XPts at the bottom
    516 // of an XTree (leaf nodes) are "bottom-XPTs".
    517 //
    518 // Each path from a top-XPt to a bottom-XPt through an XTree gives an
    519 // execution context ("XCon"), ie. a stack trace.  (And sub-paths represent
    520 // stack sub-traces.)  The number of XCons in an XTree is equal to the
    521 // number of bottom-XPTs in that XTree.
    522 //
    523 //      alloc_xpt       XTrees are bi-directional.
    524 //        | ^
    525 //        v |
    526 //     > parent <       Example: if child1() calls parent() and child2()
    527 //    /    |     \      also calls parent(), and parent() calls malloc(),
    528 //   |    / \     |     the XTree will look like this.
    529 //   |   v   v    |
    530 //  child1   child2
    531 //
    532 // (Note that malformed stack traces can lead to difficulties.  See the
    533 // comment at the bottom of get_XCon.)
    534 //
    535 // XTrees and XPts are mirrored by SXTrees and SXPts, where the 'S' is short
    536 // for "saved".  When the XTree is duplicated for a snapshot, we duplicate
    537 // it as an SXTree, which is similar but omits some things it does not need,
    538 // and aggregates up insignificant nodes.  This is important as an SXTree is
    539 // typically much smaller than an XTree.
    540 
    541 // XXX: make XPt and SXPt extensible arrays, to avoid having to do two
    542 // allocations per Pt.
    543 
    544 typedef struct _XPt XPt;
    545 struct _XPt {
    546    Addr  ip;              // code address
    547 
    548    // Bottom-XPts: space for the precise context.
    549    // Other XPts:  space of all the descendent bottom-XPts.
    550    // Nb: this value goes up and down as the program executes.
    551    SizeT szB;
    552 
    553    XPt*  parent;           // pointer to parent XPt
    554 
    555    // Children.
    556    // n_children and max_children are 32-bit integers.  16-bit integers
    557    // are too small -- a very big program might have more than 65536
    558    // allocation points (ie. top-XPts) -- Konqueror starting up has 1800.
    559    UInt  n_children;       // number of children
    560    UInt  max_children;     // capacity of children array
    561    XPt** children;         // pointers to children XPts
    562 };
    563 
    564 typedef
    565    enum {
    566       SigSXPt,
    567       InsigSXPt
    568    }
    569    SXPtTag;
    570 
    571 typedef struct _SXPt SXPt;
    572 struct _SXPt {
    573    SXPtTag tag;
    574    SizeT szB;              // memory size for the node, be it Sig or Insig
    575    union {
    576       // An SXPt representing a single significant code location.  Much like
    577       // an XPt, minus the fields that aren't necessary.
    578       struct {
    579          Addr   ip;
    580          UInt   n_children;
    581          SXPt** children;
    582       }
    583       Sig;
    584 
    585       // An SXPt representing one or more code locations, all below the
    586       // significance threshold.
    587       struct {
    588          Int   n_xpts;     // number of aggregated XPts
    589       }
    590       Insig;
    591    };
    592 };
    593 
    594 // Fake XPt representing all allocation functions like malloc().  Acts as
    595 // parent node to all top-XPts.
    596 static XPt* alloc_xpt;
    597 
    598 // Cheap allocation for blocks that never need to be freed.  Saves about 10%
    599 // for Konqueror startup with --depth=40.
    600 static void* perm_malloc(SizeT n_bytes)
    601 {
    602    static Addr hp     = 0;    // current heap pointer
    603    static Addr hp_lim = 0;    // maximum usable byte in current block
    604 
    605    #define SUPERBLOCK_SIZE  (1 << 20)         // 1 MB
    606 
    607    if (hp + n_bytes > hp_lim) {
    608       hp = (Addr)VG_(am_shadow_alloc)(SUPERBLOCK_SIZE);
    609       if (0 == hp)
    610          VG_(out_of_memory_NORETURN)( "massif:perm_malloc",
    611                                       SUPERBLOCK_SIZE);
    612       hp_lim = hp + SUPERBLOCK_SIZE - 1;
    613    }
    614 
    615    hp += n_bytes;
    616 
    617    return (void*)(hp - n_bytes);
    618 }
    619 
    620 static XPt* new_XPt(Addr ip, XPt* parent)
    621 {
    622    // XPts are never freed, so we can use perm_malloc to allocate them.
    623    // Note that we cannot use perm_malloc for the 'children' array, because
    624    // that needs to be resizable.
    625    XPt* xpt    = perm_malloc(sizeof(XPt));
    626    xpt->ip     = ip;
    627    xpt->szB    = 0;
    628    xpt->parent = parent;
    629 
    630    // We don't initially allocate any space for children.  We let that
    631    // happen on demand.  Many XPts (ie. all the bottom-XPts) don't have any
    632    // children anyway.
    633    xpt->n_children   = 0;
    634    xpt->max_children = 0;
    635    xpt->children     = NULL;
    636 
    637    // Update statistics
    638    n_xpts++;
    639 
    640    return xpt;
    641 }
    642 
    643 static void add_child_xpt(XPt* parent, XPt* child)
    644 {
    645    // Expand 'children' if necessary.
    646    tl_assert(parent->n_children <= parent->max_children);
    647    if (parent->n_children == parent->max_children) {
    648       if (0 == parent->max_children) {
    649          parent->max_children = 4;
    650          parent->children = VG_(malloc)( "ms.main.acx.1",
    651                                          parent->max_children * sizeof(XPt*) );
    652          n_xpt_init_expansions++;
    653       } else {
    654          parent->max_children *= 2;    // Double size
    655          parent->children = VG_(realloc)( "ms.main.acx.2",
    656                                           parent->children,
    657                                           parent->max_children * sizeof(XPt*) );
    658          n_xpt_later_expansions++;
    659       }
    660    }
    661 
    662    // Insert new child XPt in parent's children list.
    663    parent->children[ parent->n_children++ ] = child;
    664 }
    665 
    666 // Reverse comparison for a reverse sort -- biggest to smallest.
    667 static Int SXPt_revcmp_szB(void* n1, void* n2)
    668 {
    669    SXPt* sxpt1 = *(SXPt**)n1;
    670    SXPt* sxpt2 = *(SXPt**)n2;
    671    return ( sxpt1->szB < sxpt2->szB ?  1
    672           : sxpt1->szB > sxpt2->szB ? -1
    673           :                            0);
    674 }
    675 
    676 //------------------------------------------------------------//
    677 //--- XTree Operations                                     ---//
    678 //------------------------------------------------------------//
    679 
    680 // Duplicates an XTree as an SXTree.
    681 static SXPt* dup_XTree(XPt* xpt, SizeT total_szB)
    682 {
    683    Int  i, n_sig_children, n_insig_children, n_child_sxpts;
    684    SizeT sig_child_threshold_szB;
    685    SXPt* sxpt;
    686 
    687    // Number of XPt children  Action for SXPT
    688    // ------------------      ---------------
    689    // 0 sig, 0 insig          alloc 0 children
    690    // N sig, 0 insig          alloc N children, dup all
    691    // N sig, M insig          alloc N+1, dup first N, aggregate remaining M
    692    // 0 sig, M insig          alloc 1, aggregate M
    693 
    694    // Work out how big a child must be to be significant.  If the current
    695    // total_szB is zero, then we set it to 1, which means everything will be
    696    // judged insignificant -- this is sensible, as there's no point showing
    697    // any detail for this case.  Unless they used --threshold=0, in which
    698    // case we show them everything because that's what they asked for.
    699    //
    700    // Nb: We do this once now, rather than once per child, because if we do
    701    // that the cost of all the divisions adds up to something significant.
    702    if (0 == total_szB && 0 != clo_threshold) {
    703       sig_child_threshold_szB = 1;
    704    } else {
    705       sig_child_threshold_szB = (SizeT)((total_szB * clo_threshold) / 100);
    706    }
    707 
    708    // How many children are significant?  And do we need an aggregate SXPt?
    709    n_sig_children = 0;
    710    for (i = 0; i < xpt->n_children; i++) {
    711       if (xpt->children[i]->szB >= sig_child_threshold_szB) {
    712          n_sig_children++;
    713       }
    714    }
    715    n_insig_children = xpt->n_children - n_sig_children;
    716    n_child_sxpts = n_sig_children + ( n_insig_children > 0 ? 1 : 0 );
    717 
    718    // Duplicate the XPt.
    719    sxpt                 = VG_(malloc)("ms.main.dX.1", sizeof(SXPt));
    720    n_sxpt_allocs++;
    721    sxpt->tag            = SigSXPt;
    722    sxpt->szB            = xpt->szB;
    723    sxpt->Sig.ip         = xpt->ip;
    724    sxpt->Sig.n_children = n_child_sxpts;
    725 
    726    // Create the SXPt's children.
    727    if (n_child_sxpts > 0) {
    728       Int j;
    729       SizeT sig_children_szB = 0, insig_children_szB = 0;
    730       sxpt->Sig.children = VG_(malloc)("ms.main.dX.2",
    731                                        n_child_sxpts * sizeof(SXPt*));
    732 
    733       // Duplicate the significant children.  (Nb: sig_children_szB +
    734       // insig_children_szB doesn't necessarily equal xpt->szB.)
    735       j = 0;
    736       for (i = 0; i < xpt->n_children; i++) {
    737          if (xpt->children[i]->szB >= sig_child_threshold_szB) {
    738             sxpt->Sig.children[j++] = dup_XTree(xpt->children[i], total_szB);
    739             sig_children_szB   += xpt->children[i]->szB;
    740          } else {
    741             insig_children_szB += xpt->children[i]->szB;
    742          }
    743       }
    744 
    745       // Create the SXPt for the insignificant children, if any, and put it
    746       // in the last child entry.
    747       if (n_insig_children > 0) {
    748          // Nb: We 'n_sxpt_allocs' here because creating an Insig SXPt
    749          // doesn't involve a call to dup_XTree().
    750          SXPt* insig_sxpt = VG_(malloc)("ms.main.dX.3", sizeof(SXPt));
    751          n_sxpt_allocs++;
    752          insig_sxpt->tag = InsigSXPt;
    753          insig_sxpt->szB = insig_children_szB;
    754          insig_sxpt->Insig.n_xpts = n_insig_children;
    755          sxpt->Sig.children[n_sig_children] = insig_sxpt;
    756       }
    757    } else {
    758       sxpt->Sig.children = NULL;
    759    }
    760 
    761    return sxpt;
    762 }
    763 
    764 static void free_SXTree(SXPt* sxpt)
    765 {
    766    Int  i;
    767    tl_assert(sxpt != NULL);
    768 
    769    switch (sxpt->tag) {
    770     case SigSXPt:
    771       // Free all children SXPts, then the children array.
    772       for (i = 0; i < sxpt->Sig.n_children; i++) {
    773          free_SXTree(sxpt->Sig.children[i]);
    774          sxpt->Sig.children[i] = NULL;
    775       }
    776       VG_(free)(sxpt->Sig.children);  sxpt->Sig.children = NULL;
    777       break;
    778 
    779     case InsigSXPt:
    780       break;
    781 
    782     default: tl_assert2(0, "free_SXTree: unknown SXPt tag");
    783    }
    784 
    785    // Free the SXPt itself.
    786    VG_(free)(sxpt);     sxpt = NULL;
    787    n_sxpt_frees++;
    788 }
    789 
    790 // Sanity checking:  we periodically check the heap XTree with
    791 // ms_expensive_sanity_check.
    792 static void sanity_check_XTree(XPt* xpt, XPt* parent)
    793 {
    794    tl_assert(xpt != NULL);
    795 
    796    // Check back-pointer.
    797    tl_assert2(xpt->parent == parent,
    798       "xpt->parent = %p, parent = %p\n", xpt->parent, parent);
    799 
    800    // Check children counts look sane.
    801    tl_assert(xpt->n_children <= xpt->max_children);
    802 
    803    // Unfortunately, xpt's size is not necessarily equal to the sum of xpt's
    804    // children's sizes.  See comment at the bottom of get_XCon.
    805 }
    806 
    807 // Sanity checking:  we check SXTrees (which are in snapshots) after
    808 // snapshots are created, before they are deleted, and before they are
    809 // printed.
    810 static void sanity_check_SXTree(SXPt* sxpt)
    811 {
    812    Int i;
    813 
    814    tl_assert(sxpt != NULL);
    815 
    816    // Check the sum of any children szBs equals the SXPt's szB.  Check the
    817    // children at the same time.
    818    switch (sxpt->tag) {
    819     case SigSXPt: {
    820       if (sxpt->Sig.n_children > 0) {
    821          for (i = 0; i < sxpt->Sig.n_children; i++) {
    822             sanity_check_SXTree(sxpt->Sig.children[i]);
    823          }
    824       }
    825       break;
    826     }
    827     case InsigSXPt:
    828       break;         // do nothing
    829 
    830     default: tl_assert2(0, "sanity_check_SXTree: unknown SXPt tag");
    831    }
    832 }
    833 
    834 
    835 //------------------------------------------------------------//
    836 //--- XCon Operations                                      ---//
    837 //------------------------------------------------------------//
    838 
    839 // This is the limit on the number of removed alloc-fns that can be in a
    840 // single XCon.
    841 #define MAX_OVERESTIMATE   50
    842 #define MAX_IPS            (MAX_DEPTH + MAX_OVERESTIMATE)
    843 
    844 // This is used for various buffers which can hold function names/IP
    845 // description.  Some C++ names can get really long so 1024 isn't big
    846 // enough.
    847 #define BUF_LEN   2048
    848 
    849 // Determine if the given IP belongs to a function that should be ignored.
    850 static Bool fn_should_be_ignored(Addr ip)
    851 {
    852    static Char buf[BUF_LEN];
    853    return
    854       ( VG_(get_fnname)(ip, buf, BUF_LEN) && is_member_fn(ignore_fns, buf)
    855       ? True : False );
    856 }
    857 
    858 // Get the stack trace for an XCon, filtering out uninteresting entries:
    859 // alloc-fns and entries above alloc-fns, and entries below main-or-below-main.
    860 //   Eg:       alloc-fn1 / alloc-fn2 / a / b / main / (below main) / c
    861 //   becomes:  a / b / main
    862 // Nb: it's possible to end up with an empty trace, eg. if 'main' is marked
    863 // as an alloc-fn.  This is ok.
    864 static
    865 Int get_IPs( ThreadId tid, Bool exclude_first_entry, Addr ips[])
    866 {
    867    static Char buf[BUF_LEN];
    868    Int n_ips, i, n_alloc_fns_removed;
    869    Int overestimate;
    870    Bool redo;
    871 
    872    // We ask for a few more IPs than clo_depth suggests we need.  Then we
    873    // remove every entry that is an alloc-fn.  Depending on the
    874    // circumstances, we may need to redo it all, asking for more IPs.
    875    // Details:
    876    // - If the original stack trace is smaller than asked-for, redo=False
    877    // - Else if after filtering we have >= clo_depth IPs,      redo=False
    878    // - Else redo=True
    879    // In other words, to redo, we'd have to get a stack trace as big as we
    880    // asked for and remove more than 'overestimate' alloc-fns.
    881 
    882    // Main loop.
    883    redo = True;      // Assume this to begin with.
    884    for (overestimate = 3; redo; overestimate += 6) {
    885       // This should never happen -- would require MAX_OVERESTIMATE
    886       // alloc-fns to be removed from the stack trace.
    887       if (overestimate > MAX_OVERESTIMATE)
    888          VG_(tool_panic)("get_IPs: ips[] too small, inc. MAX_OVERESTIMATE?");
    889 
    890       // Ask for more IPs than clo_depth suggests we need.
    891       n_ips = VG_(get_StackTrace)( tid, ips, clo_depth + overestimate,
    892                                    NULL/*array to dump SP values in*/,
    893                                    NULL/*array to dump FP values in*/,
    894                                    0/*first_ip_delta*/ );
    895       tl_assert(n_ips > 0);
    896 
    897       // If the original stack trace is smaller than asked-for, redo=False.
    898       if (n_ips < clo_depth + overestimate) { redo = False; }
    899 
    900       // Filter out alloc fns.  If requested, we automatically remove the
    901       // first entry (which presumably will be something like malloc or
    902       // __builtin_new that we're sure to filter out) without looking at it,
    903       // because VG_(get_fnname) is expensive.
    904       n_alloc_fns_removed = ( exclude_first_entry ? 1 : 0 );
    905       for (i = n_alloc_fns_removed; i < n_ips; i++) {
    906          if (VG_(get_fnname)(ips[i], buf, BUF_LEN)) {
    907             if (is_member_fn(alloc_fns, buf)) {
    908                n_alloc_fns_removed++;
    909             } else {
    910                break;
    911             }
    912          }
    913       }
    914       // Remove the alloc fns by shuffling the rest down over them.
    915       n_ips -= n_alloc_fns_removed;
    916       for (i = 0; i < n_ips; i++) {
    917          ips[i] = ips[i + n_alloc_fns_removed];
    918       }
    919 
    920       // If after filtering we have >= clo_depth IPs, redo=False
    921       if (n_ips >= clo_depth) {
    922          redo = False;
    923          n_ips = clo_depth;      // Ignore any IPs below --depth.
    924       }
    925 
    926       if (redo) {
    927          n_XCon_redos++;
    928       }
    929    }
    930    return n_ips;
    931 }
    932 
    933 // Gets an XCon and puts it in the tree.  Returns the XCon's bottom-XPt.
    934 // Unless the allocation should be ignored, in which case we return NULL.
    935 static XPt* get_XCon( ThreadId tid, Bool exclude_first_entry )
    936 {
    937    static Addr ips[MAX_IPS];
    938    Int i;
    939    XPt* xpt = alloc_xpt;
    940 
    941    // After this call, the IPs we want are in ips[0]..ips[n_ips-1].
    942    Int n_ips = get_IPs(tid, exclude_first_entry, ips);
    943 
    944    // Should we ignore this allocation?  (Nb: n_ips can be zero, eg. if
    945    // 'main' is marked as an alloc-fn.)
    946    if (n_ips > 0 && fn_should_be_ignored(ips[0])) {
    947       return NULL;
    948    }
    949 
    950    // Now do the search/insertion of the XCon.
    951    for (i = 0; i < n_ips; i++) {
    952       Addr ip = ips[i];
    953       Int ch;
    954       // Look for IP in xpt's children.
    955       // Linear search, ugh -- about 10% of time for konqueror startup tried
    956       // caching last result, only hit about 4% for konqueror.
    957       // Nb:  this search hits about 98% of the time for konqueror
    958       for (ch = 0; True; ch++) {
    959          if (ch == xpt->n_children) {
    960             // IP not found in the children.
    961             // Create and add new child XPt, then stop.
    962             XPt* new_child_xpt = new_XPt(ip, xpt);
    963             add_child_xpt(xpt, new_child_xpt);
    964             xpt = new_child_xpt;
    965             break;
    966 
    967          } else if (ip == xpt->children[ch]->ip) {
    968             // Found the IP in the children, stop.
    969             xpt = xpt->children[ch];
    970             break;
    971          }
    972       }
    973    }
    974 
    975    // [Note: several comments refer to this comment.  Do not delete it
    976    // without updating them.]
    977    //
    978    // A complication... If all stack traces were well-formed, then the
    979    // returned xpt would always be a bottom-XPt.  As a consequence, an XPt's
    980    // size would always be equal to the sum of its children's sizes, which
    981    // is an excellent sanity check.
    982    //
    983    // Unfortunately, stack traces occasionally are malformed, ie. truncated.
    984    // This allows a stack trace to be a sub-trace of another, eg. a/b/c is a
    985    // sub-trace of a/b/c/d.  So we can't assume this xpt is a bottom-XPt;
    986    // nor can we do sanity check an XPt's size against its children's sizes.
    987    // This is annoying, but must be dealt with.  (Older versions of Massif
    988    // had this assertion in, and it was reported to fail by real users a
    989    // couple of times.)  Even more annoyingly, I can't come up with a simple
    990    // test case that exhibit such a malformed stack trace, so I can't
    991    // regression test it.  Sigh.
    992    //
    993    // However, we can print a warning, so that if it happens (unexpectedly)
    994    // in existing regression tests we'll know.  Also, it warns users that
    995    // the output snapshots may not add up the way they might expect.
    996    //
    997    //tl_assert(0 == xpt->n_children); // Must be bottom-XPt
    998    if (0 != xpt->n_children) {
    999       static Int n_moans = 0;
   1000       if (n_moans < 3) {
   1001          VG_(umsg)(
   1002             "Warning: Malformed stack trace detected.  In Massif's output,\n");
   1003          VG_(umsg)(
   1004             "         the size of an entry's child entries may not sum up\n");
   1005          VG_(umsg)(
   1006             "         to the entry's size as they normally do.\n");
   1007          n_moans++;
   1008          if (3 == n_moans)
   1009             VG_(umsg)(
   1010             "         (And Massif now won't warn about this again.)\n");
   1011       }
   1012    }
   1013    return xpt;
   1014 }
   1015 
   1016 // Update 'szB' of every XPt in the XCon, by percolating upwards.
   1017 static void update_XCon(XPt* xpt, SSizeT space_delta)
   1018 {
   1019    tl_assert(clo_heap);
   1020    tl_assert(NULL != xpt);
   1021 
   1022    if (0 == space_delta)
   1023       return;
   1024 
   1025    while (xpt != alloc_xpt) {
   1026       if (space_delta < 0) tl_assert(xpt->szB >= -space_delta);
   1027       xpt->szB += space_delta;
   1028       xpt = xpt->parent;
   1029    }
   1030    if (space_delta < 0) tl_assert(alloc_xpt->szB >= -space_delta);
   1031    alloc_xpt->szB += space_delta;
   1032 }
   1033 
   1034 
   1035 //------------------------------------------------------------//
   1036 //--- Snapshots                                            ---//
   1037 //------------------------------------------------------------//
   1038 
   1039 // Snapshots are done in a way so that we always have a reasonable number of
   1040 // them.  We start by taking them quickly.  Once we hit our limit, we cull
   1041 // some (eg. half), and start taking them more slowly.  Once we hit the
   1042 // limit again, we again cull and then take them even more slowly, and so
   1043 // on.
   1044 
   1045 // Time is measured either in i or ms or bytes, depending on the --time-unit
   1046 // option.  It's a Long because it can exceed 32-bits reasonably easily, and
   1047 // because we need to allow negative values to represent unset times.
   1048 typedef Long Time;
   1049 
   1050 #define UNUSED_SNAPSHOT_TIME  -333  // A conspicuous negative number.
   1051 
   1052 typedef
   1053    enum {
   1054       Normal = 77,
   1055       Peak,
   1056       Unused
   1057    }
   1058    SnapshotKind;
   1059 
   1060 typedef
   1061    struct {
   1062       SnapshotKind kind;
   1063       Time  time;
   1064       SizeT heap_szB;
   1065       SizeT heap_extra_szB;// Heap slop + admin bytes.
   1066       SizeT stacks_szB;
   1067       SXPt* alloc_sxpt;    // Heap XTree root, if a detailed snapshot,
   1068    }                       // otherwise NULL.
   1069    Snapshot;
   1070 
   1071 static UInt      next_snapshot_i = 0;  // Index of where next snapshot will go.
   1072 static Snapshot* snapshots;            // Array of snapshots.
   1073 
   1074 static Bool is_snapshot_in_use(Snapshot* snapshot)
   1075 {
   1076    if (Unused == snapshot->kind) {
   1077       // If snapshot is unused, check all the fields are unset.
   1078       tl_assert(snapshot->time           == UNUSED_SNAPSHOT_TIME);
   1079       tl_assert(snapshot->heap_extra_szB == 0);
   1080       tl_assert(snapshot->heap_szB       == 0);
   1081       tl_assert(snapshot->stacks_szB     == 0);
   1082       tl_assert(snapshot->alloc_sxpt     == NULL);
   1083       return False;
   1084    } else {
   1085       tl_assert(snapshot->time           != UNUSED_SNAPSHOT_TIME);
   1086       return True;
   1087    }
   1088 }
   1089 
   1090 static Bool is_detailed_snapshot(Snapshot* snapshot)
   1091 {
   1092    return (snapshot->alloc_sxpt ? True : False);
   1093 }
   1094 
   1095 static Bool is_uncullable_snapshot(Snapshot* snapshot)
   1096 {
   1097    return &snapshots[0] == snapshot                   // First snapshot
   1098        || &snapshots[next_snapshot_i-1] == snapshot   // Last snapshot
   1099        || snapshot->kind == Peak;                     // Peak snapshot
   1100 }
   1101 
   1102 static void sanity_check_snapshot(Snapshot* snapshot)
   1103 {
   1104    if (snapshot->alloc_sxpt) {
   1105       sanity_check_SXTree(snapshot->alloc_sxpt);
   1106    }
   1107 }
   1108 
   1109 // All the used entries should look used, all the unused ones should be clear.
   1110 static void sanity_check_snapshots_array(void)
   1111 {
   1112    Int i;
   1113    for (i = 0; i < next_snapshot_i; i++) {
   1114       tl_assert( is_snapshot_in_use( & snapshots[i] ));
   1115    }
   1116    for (    ; i < clo_max_snapshots; i++) {
   1117       tl_assert(!is_snapshot_in_use( & snapshots[i] ));
   1118    }
   1119 }
   1120 
   1121 // This zeroes all the fields in the snapshot, but does not free the heap
   1122 // XTree if present.  It also does a sanity check unless asked not to;  we
   1123 // can't sanity check at startup when clearing the initial snapshots because
   1124 // they're full of junk.
   1125 static void clear_snapshot(Snapshot* snapshot, Bool do_sanity_check)
   1126 {
   1127    if (do_sanity_check) sanity_check_snapshot(snapshot);
   1128    snapshot->kind           = Unused;
   1129    snapshot->time           = UNUSED_SNAPSHOT_TIME;
   1130    snapshot->heap_extra_szB = 0;
   1131    snapshot->heap_szB       = 0;
   1132    snapshot->stacks_szB     = 0;
   1133    snapshot->alloc_sxpt     = NULL;
   1134 }
   1135 
   1136 // This zeroes all the fields in the snapshot, and frees the heap XTree if
   1137 // present.
   1138 static void delete_snapshot(Snapshot* snapshot)
   1139 {
   1140    // Nb: if there's an XTree, we free it after calling clear_snapshot,
   1141    // because clear_snapshot does a sanity check which includes checking the
   1142    // XTree.
   1143    SXPt* tmp_sxpt = snapshot->alloc_sxpt;
   1144    clear_snapshot(snapshot, /*do_sanity_check*/True);
   1145    if (tmp_sxpt) {
   1146       free_SXTree(tmp_sxpt);
   1147    }
   1148 }
   1149 
   1150 static void VERB_snapshot(Int verbosity, Char* prefix, Int i)
   1151 {
   1152    Snapshot* snapshot = &snapshots[i];
   1153    Char* suffix;
   1154    switch (snapshot->kind) {
   1155    case Peak:   suffix = "p";                                            break;
   1156    case Normal: suffix = ( is_detailed_snapshot(snapshot) ? "d" : "." ); break;
   1157    case Unused: suffix = "u";                                            break;
   1158    default:
   1159       tl_assert2(0, "VERB_snapshot: unknown snapshot kind: %d", snapshot->kind);
   1160    }
   1161    VERB(verbosity, "%s S%s%3d (t:%lld, hp:%ld, ex:%ld, st:%ld)\n",
   1162       prefix, suffix, i,
   1163       snapshot->time,
   1164       snapshot->heap_szB,
   1165       snapshot->heap_extra_szB,
   1166       snapshot->stacks_szB
   1167    );
   1168 }
   1169 
   1170 // Cull half the snapshots;  we choose those that represent the smallest
   1171 // time-spans, because that gives us the most even distribution of snapshots
   1172 // over time.  (It's possible to lose interesting spikes, however.)
   1173 //
   1174 // Algorithm for N snapshots:  We find the snapshot representing the smallest
   1175 // timeframe, and remove it.  We repeat this until (N/2) snapshots are gone.
   1176 // We have to do this one snapshot at a time, rather than finding the (N/2)
   1177 // smallest snapshots in one hit, because when a snapshot is removed, its
   1178 // neighbours immediately cover greater timespans.  So it's O(N^2), but N is
   1179 // small, and it's not done very often.
   1180 //
   1181 // Once we're done, we return the new smallest interval between snapshots.
   1182 // That becomes our minimum time interval.
   1183 static UInt cull_snapshots(void)
   1184 {
   1185    Int  i, jp, j, jn, min_timespan_i;
   1186    Int  n_deleted = 0;
   1187    Time min_timespan;
   1188 
   1189    n_cullings++;
   1190 
   1191    // Sets j to the index of the first not-yet-removed snapshot at or after i
   1192    #define FIND_SNAPSHOT(i, j) \
   1193       for (j = i; \
   1194            j < clo_max_snapshots && !is_snapshot_in_use(&snapshots[j]); \
   1195            j++) { }
   1196 
   1197    VERB(2, "Culling...\n");
   1198 
   1199    // First we remove enough snapshots by clearing them in-place.  Once
   1200    // that's done, we can slide the remaining ones down.
   1201    for (i = 0; i < clo_max_snapshots/2; i++) {
   1202       // Find the snapshot representing the smallest timespan.  The timespan
   1203       // for snapshot n = d(N-1,N)+d(N,N+1), where d(A,B) is the time between
   1204       // snapshot A and B.  We don't consider the first and last snapshots for
   1205       // removal.
   1206       Snapshot* min_snapshot;
   1207       Int min_j;
   1208 
   1209       // Initial triple: (prev, curr, next) == (jp, j, jn)
   1210       // Initial min_timespan is the first one.
   1211       jp = 0;
   1212       FIND_SNAPSHOT(1,   j);
   1213       FIND_SNAPSHOT(j+1, jn);
   1214       min_timespan = 0x7fffffffffffffffLL;
   1215       min_j        = -1;
   1216       while (jn < clo_max_snapshots) {
   1217          Time timespan = snapshots[jn].time - snapshots[jp].time;
   1218          tl_assert(timespan >= 0);
   1219          // Nb: We never cull the peak snapshot.
   1220          if (Peak != snapshots[j].kind && timespan < min_timespan) {
   1221             min_timespan = timespan;
   1222             min_j        = j;
   1223          }
   1224          // Move on to next triple
   1225          jp = j;
   1226          j  = jn;
   1227          FIND_SNAPSHOT(jn+1, jn);
   1228       }
   1229       // We've found the least important snapshot, now delete it.  First
   1230       // print it if necessary.
   1231       tl_assert(-1 != min_j);    // Check we found a minimum.
   1232       min_snapshot = & snapshots[ min_j ];
   1233       if (VG_(clo_verbosity) > 1) {
   1234          Char buf[64];
   1235          VG_(snprintf)(buf, 64, " %3d (t-span = %lld)", i, min_timespan);
   1236          VERB_snapshot(2, buf, min_j);
   1237       }
   1238       delete_snapshot(min_snapshot);
   1239       n_deleted++;
   1240    }
   1241 
   1242    // Slide down the remaining snapshots over the removed ones.  First set i
   1243    // to point to the first empty slot, and j to the first full slot after
   1244    // i.  Then slide everything down.
   1245    for (i = 0;  is_snapshot_in_use( &snapshots[i] ); i++) { }
   1246    for (j = i; !is_snapshot_in_use( &snapshots[j] ); j++) { }
   1247    for (  ; j < clo_max_snapshots; j++) {
   1248       if (is_snapshot_in_use( &snapshots[j] )) {
   1249          snapshots[i++] = snapshots[j];
   1250          clear_snapshot(&snapshots[j], /*do_sanity_check*/True);
   1251       }
   1252    }
   1253    next_snapshot_i = i;
   1254 
   1255    // Check snapshots array looks ok after changes.
   1256    sanity_check_snapshots_array();
   1257 
   1258    // Find the minimum timespan remaining;  that will be our new minimum
   1259    // time interval.  Note that above we were finding timespans by measuring
   1260    // two intervals around a snapshot that was under consideration for
   1261    // deletion.  Here we only measure single intervals because all the
   1262    // deletions have occurred.
   1263    //
   1264    // But we have to be careful -- some snapshots (eg. snapshot 0, and the
   1265    // peak snapshot) are uncullable.  If two uncullable snapshots end up
   1266    // next to each other, they'll never be culled (assuming the peak doesn't
   1267    // change), and the time gap between them will not change.  However, the
   1268    // time between the remaining cullable snapshots will grow ever larger.
   1269    // This means that the min_timespan found will always be that between the
   1270    // two uncullable snapshots, and it will be much smaller than it should
   1271    // be.  To avoid this problem, when computing the minimum timespan, we
   1272    // ignore any timespans between two uncullable snapshots.
   1273    tl_assert(next_snapshot_i > 1);
   1274    min_timespan = 0x7fffffffffffffffLL;
   1275    min_timespan_i = -1;
   1276    for (i = 1; i < next_snapshot_i; i++) {
   1277       if (is_uncullable_snapshot(&snapshots[i]) &&
   1278           is_uncullable_snapshot(&snapshots[i-1]))
   1279       {
   1280          VERB(2, "(Ignoring interval %d--%d when computing minimum)\n", i-1, i);
   1281       } else {
   1282          Time timespan = snapshots[i].time - snapshots[i-1].time;
   1283          tl_assert(timespan >= 0);
   1284          if (timespan < min_timespan) {
   1285             min_timespan = timespan;
   1286             min_timespan_i = i;
   1287          }
   1288       }
   1289    }
   1290    tl_assert(-1 != min_timespan_i);    // Check we found a minimum.
   1291 
   1292    // Print remaining snapshots, if necessary.
   1293    if (VG_(clo_verbosity) > 1) {
   1294       VERB(2, "Finished culling (%3d of %3d deleted)\n",
   1295          n_deleted, clo_max_snapshots);
   1296       for (i = 0; i < next_snapshot_i; i++) {
   1297          VERB_snapshot(2, "  post-cull", i);
   1298       }
   1299       VERB(2, "New time interval = %lld (between snapshots %d and %d)\n",
   1300          min_timespan, min_timespan_i-1, min_timespan_i);
   1301    }
   1302 
   1303    return min_timespan;
   1304 }
   1305 
   1306 static Time get_time(void)
   1307 {
   1308    // Get current time, in whatever time unit we're using.
   1309    if (clo_time_unit == TimeI) {
   1310       return guest_instrs_executed;
   1311    } else if (clo_time_unit == TimeMS) {
   1312       // Some stuff happens between the millisecond timer being initialised
   1313       // to zero and us taking our first snapshot.  We determine that time
   1314       // gap so we can subtract it from all subsequent times so that our
   1315       // first snapshot is considered to be at t = 0ms.  Unfortunately, a
   1316       // bunch of symbols get read after the first snapshot is taken but
   1317       // before the second one (which is triggered by the first allocation),
   1318       // so when the time-unit is 'ms' we always have a big gap between the
   1319       // first two snapshots.  But at least users won't have to wonder why
   1320       // the first snapshot isn't at t=0.
   1321       static Bool is_first_get_time = True;
   1322       static Time start_time_ms;
   1323       if (is_first_get_time) {
   1324          start_time_ms = VG_(read_millisecond_timer)();
   1325          is_first_get_time = False;
   1326          return 0;
   1327       } else {
   1328          return VG_(read_millisecond_timer)() - start_time_ms;
   1329       }
   1330    } else if (clo_time_unit == TimeB) {
   1331       return total_allocs_deallocs_szB;
   1332    } else {
   1333       tl_assert2(0, "bad --time-unit value");
   1334    }
   1335 }
   1336 
   1337 // Take a snapshot, and only that -- decisions on whether to take a
   1338 // snapshot, or what kind of snapshot, are made elsewhere.
   1339 // Nb: we call the arg "my_time" because "time" shadows a global declaration
   1340 // in /usr/include/time.h on Darwin.
   1341 static void
   1342 take_snapshot(Snapshot* snapshot, SnapshotKind kind, Time my_time,
   1343               Bool is_detailed)
   1344 {
   1345    tl_assert(!is_snapshot_in_use(snapshot));
   1346    if (!clo_pages_as_heap) {
   1347       tl_assert(have_started_executing_code);
   1348    }
   1349 
   1350    // Heap and heap admin.
   1351    if (clo_heap) {
   1352       snapshot->heap_szB = heap_szB;
   1353       if (is_detailed) {
   1354          SizeT total_szB = heap_szB + heap_extra_szB + stacks_szB;
   1355          snapshot->alloc_sxpt = dup_XTree(alloc_xpt, total_szB);
   1356          tl_assert(           alloc_xpt->szB == heap_szB);
   1357          tl_assert(snapshot->alloc_sxpt->szB == heap_szB);
   1358       }
   1359       snapshot->heap_extra_szB = heap_extra_szB;
   1360    }
   1361 
   1362    // Stack(s).
   1363    if (clo_stacks) {
   1364       snapshot->stacks_szB = stacks_szB;
   1365    }
   1366 
   1367    // Rest of snapshot.
   1368    snapshot->kind = kind;
   1369    snapshot->time = my_time;
   1370    sanity_check_snapshot(snapshot);
   1371 
   1372    // Update stats.
   1373    if (Peak == kind) n_peak_snapshots++;
   1374    if (is_detailed)  n_detailed_snapshots++;
   1375    n_real_snapshots++;
   1376 }
   1377 
   1378 
   1379 // Take a snapshot, if it's time, or if we've hit a peak.
   1380 static void
   1381 maybe_take_snapshot(SnapshotKind kind, Char* what)
   1382 {
   1383    // 'min_time_interval' is the minimum time interval between snapshots.
   1384    // If we try to take a snapshot and less than this much time has passed,
   1385    // we don't take it.  It gets larger as the program runs longer.  It's
   1386    // initialised to zero so that we begin by taking snapshots as quickly as
   1387    // possible.
   1388    static Time min_time_interval = 0;
   1389    // Zero allows startup snapshot.
   1390    static Time earliest_possible_time_of_next_snapshot = 0;
   1391    static Int  n_snapshots_since_last_detailed         = 0;
   1392    static Int  n_skipped_snapshots_since_last_snapshot = 0;
   1393 
   1394    Snapshot* snapshot;
   1395    Bool      is_detailed;
   1396    // Nb: we call this variable "my_time" because "time" shadows a global
   1397    // declaration in /usr/include/time.h on Darwin.
   1398    Time      my_time = get_time();
   1399 
   1400    switch (kind) {
   1401     case Normal:
   1402       // Only do a snapshot if it's time.
   1403       if (my_time < earliest_possible_time_of_next_snapshot) {
   1404          n_skipped_snapshots++;
   1405          n_skipped_snapshots_since_last_snapshot++;
   1406          return;
   1407       }
   1408       is_detailed = (clo_detailed_freq-1 == n_snapshots_since_last_detailed);
   1409       break;
   1410 
   1411     case Peak: {
   1412       // Because we're about to do a deallocation, we're coming down from a
   1413       // local peak.  If it is (a) actually a global peak, and (b) a certain
   1414       // amount bigger than the previous peak, then we take a peak snapshot.
   1415       // By not taking a snapshot for every peak, we save a lot of effort --
   1416       // because many peaks remain peak only for a short time.
   1417       SizeT total_szB = heap_szB + heap_extra_szB + stacks_szB;
   1418       SizeT excess_szB_for_new_peak =
   1419          (SizeT)((peak_snapshot_total_szB * clo_peak_inaccuracy) / 100);
   1420       if (total_szB <= peak_snapshot_total_szB + excess_szB_for_new_peak) {
   1421          return;
   1422       }
   1423       is_detailed = True;
   1424       break;
   1425     }
   1426 
   1427     default:
   1428       tl_assert2(0, "maybe_take_snapshot: unrecognised snapshot kind");
   1429    }
   1430 
   1431    // Take the snapshot.
   1432    snapshot = & snapshots[next_snapshot_i];
   1433    take_snapshot(snapshot, kind, my_time, is_detailed);
   1434 
   1435    // Record if it was detailed.
   1436    if (is_detailed) {
   1437       n_snapshots_since_last_detailed = 0;
   1438    } else {
   1439       n_snapshots_since_last_detailed++;
   1440    }
   1441 
   1442    // Update peak data, if it's a Peak snapshot.
   1443    if (Peak == kind) {
   1444       Int i, number_of_peaks_snapshots_found = 0;
   1445 
   1446       // Sanity check the size, then update our recorded peak.
   1447       SizeT snapshot_total_szB =
   1448          snapshot->heap_szB + snapshot->heap_extra_szB + snapshot->stacks_szB;
   1449       tl_assert2(snapshot_total_szB > peak_snapshot_total_szB,
   1450          "%ld, %ld\n", snapshot_total_szB, peak_snapshot_total_szB);
   1451       peak_snapshot_total_szB = snapshot_total_szB;
   1452 
   1453       // Find the old peak snapshot, if it exists, and mark it as normal.
   1454       for (i = 0; i < next_snapshot_i; i++) {
   1455          if (Peak == snapshots[i].kind) {
   1456             snapshots[i].kind = Normal;
   1457             number_of_peaks_snapshots_found++;
   1458          }
   1459       }
   1460       tl_assert(number_of_peaks_snapshots_found <= 1);
   1461    }
   1462 
   1463    // Finish up verbosity and stats stuff.
   1464    if (n_skipped_snapshots_since_last_snapshot > 0) {
   1465       VERB(2, "  (skipped %d snapshot%s)\n",
   1466          n_skipped_snapshots_since_last_snapshot,
   1467          ( 1 == n_skipped_snapshots_since_last_snapshot ? "" : "s") );
   1468    }
   1469    VERB_snapshot(2, what, next_snapshot_i);
   1470    n_skipped_snapshots_since_last_snapshot = 0;
   1471 
   1472    // Cull the entries, if our snapshot table is full.
   1473    next_snapshot_i++;
   1474    if (clo_max_snapshots == next_snapshot_i) {
   1475       min_time_interval = cull_snapshots();
   1476    }
   1477 
   1478    // Work out the earliest time when the next snapshot can happen.
   1479    earliest_possible_time_of_next_snapshot = my_time + min_time_interval;
   1480 }
   1481 
   1482 
   1483 //------------------------------------------------------------//
   1484 //--- Sanity checking                                      ---//
   1485 //------------------------------------------------------------//
   1486 
   1487 static Bool ms_cheap_sanity_check ( void )
   1488 {
   1489    return True;   // Nothing useful we can cheaply check.
   1490 }
   1491 
   1492 static Bool ms_expensive_sanity_check ( void )
   1493 {
   1494    sanity_check_XTree(alloc_xpt, /*parent*/NULL);
   1495    sanity_check_snapshots_array();
   1496    return True;
   1497 }
   1498 
   1499 
   1500 //------------------------------------------------------------//
   1501 //--- Heap management                                      ---//
   1502 //------------------------------------------------------------//
   1503 
   1504 // Metadata for heap blocks.  Each one contains a pointer to a bottom-XPt,
   1505 // which is a foothold into the XCon at which it was allocated.  From
   1506 // HP_Chunks, XPt 'space' fields are incremented (at allocation) and
   1507 // decremented (at deallocation).
   1508 //
   1509 // Nb: first two fields must match core's VgHashNode.
   1510 typedef
   1511    struct _HP_Chunk {
   1512       struct _HP_Chunk* next;
   1513       Addr              data;       // Ptr to actual block
   1514       SizeT             req_szB;    // Size requested
   1515       SizeT             slop_szB;   // Extra bytes given above those requested
   1516       XPt*              where;      // Where allocated; bottom-XPt
   1517    }
   1518    HP_Chunk;
   1519 
   1520 static VgHashTable malloc_list  = NULL;   // HP_Chunks
   1521 
   1522 static void update_alloc_stats(SSizeT szB_delta)
   1523 {
   1524    // Update total_allocs_deallocs_szB.
   1525    if (szB_delta < 0) szB_delta = -szB_delta;
   1526    total_allocs_deallocs_szB += szB_delta;
   1527 }
   1528 
   1529 static void update_heap_stats(SSizeT heap_szB_delta, Int heap_extra_szB_delta)
   1530 {
   1531    if (heap_szB_delta < 0)
   1532       tl_assert(heap_szB >= -heap_szB_delta);
   1533    if (heap_extra_szB_delta < 0)
   1534       tl_assert(heap_extra_szB >= -heap_extra_szB_delta);
   1535 
   1536    heap_extra_szB += heap_extra_szB_delta;
   1537    heap_szB       += heap_szB_delta;
   1538 
   1539    update_alloc_stats(heap_szB_delta + heap_extra_szB_delta);
   1540 }
   1541 
   1542 static
   1543 void* record_block( ThreadId tid, void* p, SizeT req_szB, SizeT slop_szB,
   1544                     Bool exclude_first_entry, Bool maybe_snapshot )
   1545 {
   1546    // Make new HP_Chunk node, add to malloc_list
   1547    HP_Chunk* hc = VG_(malloc)("ms.main.rb.1", sizeof(HP_Chunk));
   1548    hc->req_szB  = req_szB;
   1549    hc->slop_szB = slop_szB;
   1550    hc->data     = (Addr)p;
   1551    hc->where    = NULL;
   1552    VG_(HT_add_node)(malloc_list, hc);
   1553 
   1554    if (clo_heap) {
   1555       VERB(3, "<<< record_block (%lu, %lu)\n", req_szB, slop_szB);
   1556 
   1557       hc->where = get_XCon( tid, exclude_first_entry );
   1558 
   1559       if (hc->where) {
   1560          // Update statistics.
   1561          n_heap_allocs++;
   1562 
   1563          // Update heap stats.
   1564          update_heap_stats(req_szB, clo_heap_admin + slop_szB);
   1565 
   1566          // Update XTree.
   1567          update_XCon(hc->where, req_szB);
   1568 
   1569          // Maybe take a snapshot.
   1570          if (maybe_snapshot) {
   1571             maybe_take_snapshot(Normal, "  alloc");
   1572          }
   1573 
   1574       } else {
   1575          // Ignored allocation.
   1576          n_ignored_heap_allocs++;
   1577 
   1578          VERB(3, "(ignored)\n");
   1579       }
   1580 
   1581       VERB(3, ">>>\n");
   1582    }
   1583 
   1584    return p;
   1585 }
   1586 
   1587 static __inline__
   1588 void* alloc_and_record_block ( ThreadId tid, SizeT req_szB, SizeT req_alignB,
   1589                                Bool is_zeroed )
   1590 {
   1591    SizeT actual_szB, slop_szB;
   1592    void* p;
   1593 
   1594    if ((SSizeT)req_szB < 0) return NULL;
   1595 
   1596    // Allocate and zero if necessary.
   1597    p = VG_(cli_malloc)( req_alignB, req_szB );
   1598    if (!p) {
   1599       return NULL;
   1600    }
   1601    if (is_zeroed) VG_(memset)(p, 0, req_szB);
   1602    actual_szB = VG_(malloc_usable_size)(p);
   1603    tl_assert(actual_szB >= req_szB);
   1604    slop_szB = actual_szB - req_szB;
   1605 
   1606    // Record block.
   1607    record_block(tid, p, req_szB, slop_szB, /*exclude_first_entry*/True,
   1608                 /*maybe_snapshot*/True);
   1609 
   1610    return p;
   1611 }
   1612 
   1613 static __inline__
   1614 void unrecord_block ( void* p, Bool maybe_snapshot )
   1615 {
   1616    // Remove HP_Chunk from malloc_list
   1617    HP_Chunk* hc = VG_(HT_remove)(malloc_list, (UWord)p);
   1618    if (NULL == hc) {
   1619       return;   // must have been a bogus free()
   1620    }
   1621 
   1622    if (clo_heap) {
   1623       VERB(3, "<<< unrecord_block\n");
   1624 
   1625       if (hc->where) {
   1626          // Update statistics.
   1627          n_heap_frees++;
   1628 
   1629          // Maybe take a peak snapshot, since it's a deallocation.
   1630          if (maybe_snapshot) {
   1631             maybe_take_snapshot(Peak, "de-PEAK");
   1632          }
   1633 
   1634          // Update heap stats.
   1635          update_heap_stats(-hc->req_szB, -clo_heap_admin - hc->slop_szB);
   1636 
   1637          // Update XTree.
   1638          update_XCon(hc->where, -hc->req_szB);
   1639 
   1640          // Maybe take a snapshot.
   1641          if (maybe_snapshot) {
   1642             maybe_take_snapshot(Normal, "dealloc");
   1643          }
   1644 
   1645       } else {
   1646          n_ignored_heap_frees++;
   1647 
   1648          VERB(3, "(ignored)\n");
   1649       }
   1650 
   1651       VERB(3, ">>> (-%lu, -%lu)\n", hc->req_szB, hc->slop_szB);
   1652    }
   1653 
   1654    // Actually free the chunk, and the heap block (if necessary)
   1655    VG_(free)( hc );  hc = NULL;
   1656 }
   1657 
   1658 // Nb: --ignore-fn is tricky for realloc.  If the block's original alloc was
   1659 // ignored, but the realloc is not requested to be ignored, and we are
   1660 // shrinking the block, then we have to ignore the realloc -- otherwise we
   1661 // could end up with negative heap sizes.  This isn't a danger if we are
   1662 // growing such a block, but for consistency (it also simplifies things) we
   1663 // ignore such reallocs as well.
   1664 static __inline__
   1665 void* realloc_block ( ThreadId tid, void* p_old, SizeT new_req_szB )
   1666 {
   1667    HP_Chunk* hc;
   1668    void*     p_new;
   1669    SizeT     old_req_szB, old_slop_szB, new_slop_szB, new_actual_szB;
   1670    XPt      *old_where, *new_where;
   1671    Bool      is_ignored = False;
   1672 
   1673    // Remove the old block
   1674    hc = VG_(HT_remove)(malloc_list, (UWord)p_old);
   1675    if (hc == NULL) {
   1676       return NULL;   // must have been a bogus realloc()
   1677    }
   1678 
   1679    old_req_szB  = hc->req_szB;
   1680    old_slop_szB = hc->slop_szB;
   1681 
   1682    tl_assert(!clo_pages_as_heap);  // Shouldn't be here if --pages-as-heap=yes.
   1683    if (clo_heap) {
   1684       VERB(3, "<<< realloc_block (%lu)\n", new_req_szB);
   1685 
   1686       if (hc->where) {
   1687          // Update statistics.
   1688          n_heap_reallocs++;
   1689 
   1690          // Maybe take a peak snapshot, if it's (effectively) a deallocation.
   1691          if (new_req_szB < old_req_szB) {
   1692             maybe_take_snapshot(Peak, "re-PEAK");
   1693          }
   1694       } else {
   1695          // The original malloc was ignored, so we have to ignore the
   1696          // realloc as well.
   1697          is_ignored = True;
   1698       }
   1699    }
   1700 
   1701    // Actually do the allocation, if necessary.
   1702    if (new_req_szB <= old_req_szB + old_slop_szB) {
   1703       // New size is smaller or same;  block not moved.
   1704       p_new = p_old;
   1705       new_slop_szB = old_slop_szB + (old_req_szB - new_req_szB);
   1706 
   1707    } else {
   1708       // New size is bigger;  make new block, copy shared contents, free old.
   1709       p_new = VG_(cli_malloc)(VG_(clo_alignment), new_req_szB);
   1710       if (!p_new) {
   1711          // Nb: if realloc fails, NULL is returned but the old block is not
   1712          // touched.  What an awful function.
   1713          return NULL;
   1714       }
   1715       VG_(memcpy)(p_new, p_old, old_req_szB);
   1716       VG_(cli_free)(p_old);
   1717       new_actual_szB = VG_(malloc_usable_size)(p_new);
   1718       tl_assert(new_actual_szB >= new_req_szB);
   1719       new_slop_szB = new_actual_szB - new_req_szB;
   1720    }
   1721 
   1722    if (p_new) {
   1723       // Update HP_Chunk.
   1724       hc->data     = (Addr)p_new;
   1725       hc->req_szB  = new_req_szB;
   1726       hc->slop_szB = new_slop_szB;
   1727       old_where    = hc->where;
   1728       hc->where    = NULL;
   1729 
   1730       // Update XTree.
   1731       if (clo_heap) {
   1732          new_where = get_XCon( tid, /*exclude_first_entry*/True);
   1733          if (!is_ignored && new_where) {
   1734             hc->where = new_where;
   1735             update_XCon(old_where, -old_req_szB);
   1736             update_XCon(new_where,  new_req_szB);
   1737          } else {
   1738             // The realloc itself is ignored.
   1739             is_ignored = True;
   1740 
   1741             // Update statistics.
   1742             n_ignored_heap_reallocs++;
   1743          }
   1744       }
   1745    }
   1746 
   1747    // Now insert the new hc (with a possibly new 'data' field) into
   1748    // malloc_list.  If this realloc() did not increase the memory size, we
   1749    // will have removed and then re-added hc unnecessarily.  But that's ok
   1750    // because shrinking a block with realloc() is (presumably) much rarer
   1751    // than growing it, and this way simplifies the growing case.
   1752    VG_(HT_add_node)(malloc_list, hc);
   1753 
   1754    if (clo_heap) {
   1755       if (!is_ignored) {
   1756          // Update heap stats.
   1757          update_heap_stats(new_req_szB - old_req_szB,
   1758                           new_slop_szB - old_slop_szB);
   1759 
   1760          // Maybe take a snapshot.
   1761          maybe_take_snapshot(Normal, "realloc");
   1762       } else {
   1763 
   1764          VERB(3, "(ignored)\n");
   1765       }
   1766 
   1767       VERB(3, ">>> (%ld, %ld)\n",
   1768          new_req_szB - old_req_szB, new_slop_szB - old_slop_szB);
   1769    }
   1770 
   1771    return p_new;
   1772 }
   1773 
   1774 
   1775 //------------------------------------------------------------//
   1776 //--- malloc() et al replacement wrappers                  ---//
   1777 //------------------------------------------------------------//
   1778 
   1779 static void* ms_malloc ( ThreadId tid, SizeT szB )
   1780 {
   1781    return alloc_and_record_block( tid, szB, VG_(clo_alignment), /*is_zeroed*/False );
   1782 }
   1783 
   1784 static void* ms___builtin_new ( ThreadId tid, SizeT szB )
   1785 {
   1786    return alloc_and_record_block( tid, szB, VG_(clo_alignment), /*is_zeroed*/False );
   1787 }
   1788 
   1789 static void* ms___builtin_vec_new ( ThreadId tid, SizeT szB )
   1790 {
   1791    return alloc_and_record_block( tid, szB, VG_(clo_alignment), /*is_zeroed*/False );
   1792 }
   1793 
   1794 static void* ms_calloc ( ThreadId tid, SizeT m, SizeT szB )
   1795 {
   1796    return alloc_and_record_block( tid, m*szB, VG_(clo_alignment), /*is_zeroed*/True );
   1797 }
   1798 
   1799 static void *ms_memalign ( ThreadId tid, SizeT alignB, SizeT szB )
   1800 {
   1801    return alloc_and_record_block( tid, szB, alignB, False );
   1802 }
   1803 
   1804 static void ms_free ( ThreadId tid __attribute__((unused)), void* p )
   1805 {
   1806    unrecord_block(p, /*maybe_snapshot*/True);
   1807    VG_(cli_free)(p);
   1808 }
   1809 
   1810 static void ms___builtin_delete ( ThreadId tid, void* p )
   1811 {
   1812    unrecord_block(p, /*maybe_snapshot*/True);
   1813    VG_(cli_free)(p);
   1814 }
   1815 
   1816 static void ms___builtin_vec_delete ( ThreadId tid, void* p )
   1817 {
   1818    unrecord_block(p, /*maybe_snapshot*/True);
   1819    VG_(cli_free)(p);
   1820 }
   1821 
   1822 static void* ms_realloc ( ThreadId tid, void* p_old, SizeT new_szB )
   1823 {
   1824    return realloc_block(tid, p_old, new_szB);
   1825 }
   1826 
   1827 static SizeT ms_malloc_usable_size ( ThreadId tid, void* p )
   1828 {
   1829    HP_Chunk* hc = VG_(HT_lookup)( malloc_list, (UWord)p );
   1830 
   1831    return ( hc ? hc->req_szB + hc->slop_szB : 0 );
   1832 }
   1833 
   1834 //------------------------------------------------------------//
   1835 //--- Page handling                                        ---//
   1836 //------------------------------------------------------------//
   1837 
   1838 static
   1839 void ms_record_page_mem ( Addr a, SizeT len )
   1840 {
   1841    ThreadId tid = VG_(get_running_tid)();
   1842    Addr end;
   1843    tl_assert(VG_IS_PAGE_ALIGNED(len));
   1844    tl_assert(len >= VKI_PAGE_SIZE);
   1845    // Record the first N-1 pages as blocks, but don't do any snapshots.
   1846    for (end = a + len - VKI_PAGE_SIZE; a < end; a += VKI_PAGE_SIZE) {
   1847       record_block( tid, (void*)a, VKI_PAGE_SIZE, /*slop_szB*/0,
   1848                     /*exclude_first_entry*/False, /*maybe_snapshot*/False );
   1849    }
   1850    // Record the last page as a block, and maybe do a snapshot afterwards.
   1851    record_block( tid, (void*)a, VKI_PAGE_SIZE, /*slop_szB*/0,
   1852                  /*exclude_first_entry*/False, /*maybe_snapshot*/True );
   1853 }
   1854 
   1855 static
   1856 void ms_unrecord_page_mem( Addr a, SizeT len )
   1857 {
   1858    Addr end;
   1859    tl_assert(VG_IS_PAGE_ALIGNED(len));
   1860    tl_assert(len >= VKI_PAGE_SIZE);
   1861    for (end = a + len - VKI_PAGE_SIZE; a < end; a += VKI_PAGE_SIZE) {
   1862       unrecord_block((void*)a, /*maybe_snapshot*/False);
   1863    }
   1864    unrecord_block((void*)a, /*maybe_snapshot*/True);
   1865 }
   1866 
   1867 //------------------------------------------------------------//
   1868 
   1869 static
   1870 void ms_new_mem_mmap ( Addr a, SizeT len,
   1871                        Bool rr, Bool ww, Bool xx, ULong di_handle )
   1872 {
   1873    tl_assert(VG_IS_PAGE_ALIGNED(len));
   1874    ms_record_page_mem(a, len);
   1875 }
   1876 
   1877 static
   1878 void ms_new_mem_startup( Addr a, SizeT len,
   1879                          Bool rr, Bool ww, Bool xx, ULong di_handle )
   1880 {
   1881    // startup maps are always be page-sized, except the trampoline page is
   1882    // marked by the core as only being the size of the trampoline itself,
   1883    // which is something like 57 bytes.  Round it up to page size.
   1884    len = VG_PGROUNDUP(len);
   1885    ms_record_page_mem(a, len);
   1886 }
   1887 
   1888 static
   1889 void ms_new_mem_brk ( Addr a, SizeT len, ThreadId tid )
   1890 {
   1891    tl_assert(VG_IS_PAGE_ALIGNED(len));
   1892    ms_record_page_mem(a, len);
   1893 }
   1894 
   1895 static
   1896 void ms_copy_mem_remap( Addr from, Addr to, SizeT len)
   1897 {
   1898    tl_assert(VG_IS_PAGE_ALIGNED(len));
   1899    ms_unrecord_page_mem(from, len);
   1900    ms_record_page_mem(to, len);
   1901 }
   1902 
   1903 static
   1904 void ms_die_mem_munmap( Addr a, SizeT len )
   1905 {
   1906    tl_assert(VG_IS_PAGE_ALIGNED(len));
   1907    ms_unrecord_page_mem(a, len);
   1908 }
   1909 
   1910 static
   1911 void ms_die_mem_brk( Addr a, SizeT len )
   1912 {
   1913    tl_assert(VG_IS_PAGE_ALIGNED(len));
   1914    ms_unrecord_page_mem(a, len);
   1915 }
   1916 
   1917 //------------------------------------------------------------//
   1918 //--- Stacks                                               ---//
   1919 //------------------------------------------------------------//
   1920 
   1921 // We really want the inlining to occur...
   1922 #define INLINE    inline __attribute__((always_inline))
   1923 
   1924 static void update_stack_stats(SSizeT stack_szB_delta)
   1925 {
   1926    if (stack_szB_delta < 0) tl_assert(stacks_szB >= -stack_szB_delta);
   1927    stacks_szB += stack_szB_delta;
   1928 
   1929    update_alloc_stats(stack_szB_delta);
   1930 }
   1931 
   1932 static INLINE void new_mem_stack_2(SizeT len, Char* what)
   1933 {
   1934    if (have_started_executing_code) {
   1935       VERB(3, "<<< new_mem_stack (%ld)\n", len);
   1936       n_stack_allocs++;
   1937       update_stack_stats(len);
   1938       maybe_take_snapshot(Normal, what);
   1939       VERB(3, ">>>\n");
   1940    }
   1941 }
   1942 
   1943 static INLINE void die_mem_stack_2(SizeT len, Char* what)
   1944 {
   1945    if (have_started_executing_code) {
   1946       VERB(3, "<<< die_mem_stack (%ld)\n", -len);
   1947       n_stack_frees++;
   1948       maybe_take_snapshot(Peak,   "stkPEAK");
   1949       update_stack_stats(-len);
   1950       maybe_take_snapshot(Normal, what);
   1951       VERB(3, ">>>\n");
   1952    }
   1953 }
   1954 
   1955 static void new_mem_stack(Addr a, SizeT len)
   1956 {
   1957    new_mem_stack_2(len, "stk-new");
   1958 }
   1959 
   1960 static void die_mem_stack(Addr a, SizeT len)
   1961 {
   1962    die_mem_stack_2(len, "stk-die");
   1963 }
   1964 
   1965 static void new_mem_stack_signal(Addr a, SizeT len, ThreadId tid)
   1966 {
   1967    new_mem_stack_2(len, "sig-new");
   1968 }
   1969 
   1970 static void die_mem_stack_signal(Addr a, SizeT len)
   1971 {
   1972    die_mem_stack_2(len, "sig-die");
   1973 }
   1974 
   1975 
   1976 //------------------------------------------------------------//
   1977 //--- Client Requests                                      ---//
   1978 //------------------------------------------------------------//
   1979 
   1980 static Bool ms_handle_client_request ( ThreadId tid, UWord* argv, UWord* ret )
   1981 {
   1982    switch (argv[0]) {
   1983    case VG_USERREQ__MALLOCLIKE_BLOCK: {
   1984       void* p   = (void*)argv[1];
   1985       SizeT szB =        argv[2];
   1986       record_block( tid, p, szB, /*slop_szB*/0, /*exclude_first_entry*/False,
   1987                     /*maybe_snapshot*/True );
   1988       *ret = 0;
   1989       return True;
   1990    }
   1991    case VG_USERREQ__FREELIKE_BLOCK: {
   1992       void* p = (void*)argv[1];
   1993       unrecord_block(p, /*maybe_snapshot*/True);
   1994       *ret = 0;
   1995       return True;
   1996    }
   1997    default:
   1998       *ret = 0;
   1999       return False;
   2000    }
   2001 }
   2002 
   2003 //------------------------------------------------------------//
   2004 //--- Instrumentation                                      ---//
   2005 //------------------------------------------------------------//
   2006 
   2007 static void add_counter_update(IRSB* sbOut, Int n)
   2008 {
   2009    #if defined(VG_BIGENDIAN)
   2010    # define END Iend_BE
   2011    #elif defined(VG_LITTLEENDIAN)
   2012    # define END Iend_LE
   2013    #else
   2014    # error "Unknown endianness"
   2015    #endif
   2016    // Add code to increment 'guest_instrs_executed' by 'n', like this:
   2017    //   WrTmp(t1, Load64(&guest_instrs_executed))
   2018    //   WrTmp(t2, Add64(RdTmp(t1), Const(n)))
   2019    //   Store(&guest_instrs_executed, t2)
   2020    IRTemp t1 = newIRTemp(sbOut->tyenv, Ity_I64);
   2021    IRTemp t2 = newIRTemp(sbOut->tyenv, Ity_I64);
   2022    IRExpr* counter_addr = mkIRExpr_HWord( (HWord)&guest_instrs_executed );
   2023 
   2024    IRStmt* st1 = IRStmt_WrTmp(t1, IRExpr_Load(END, Ity_I64, counter_addr));
   2025    IRStmt* st2 =
   2026       IRStmt_WrTmp(t2,
   2027                    IRExpr_Binop(Iop_Add64, IRExpr_RdTmp(t1),
   2028                                            IRExpr_Const(IRConst_U64(n))));
   2029    IRStmt* st3 = IRStmt_Store(END, counter_addr, IRExpr_RdTmp(t2));
   2030 
   2031    addStmtToIRSB( sbOut, st1 );
   2032    addStmtToIRSB( sbOut, st2 );
   2033    addStmtToIRSB( sbOut, st3 );
   2034 }
   2035 
   2036 static IRSB* ms_instrument2( IRSB* sbIn )
   2037 {
   2038    Int   i, n = 0;
   2039    IRSB* sbOut;
   2040 
   2041    // We increment the instruction count in two places:
   2042    // - just before any Ist_Exit statements;
   2043    // - just before the IRSB's end.
   2044    // In the former case, we zero 'n' and then continue instrumenting.
   2045 
   2046    sbOut = deepCopyIRSBExceptStmts(sbIn);
   2047 
   2048    for (i = 0; i < sbIn->stmts_used; i++) {
   2049       IRStmt* st = sbIn->stmts[i];
   2050 
   2051       if (!st || st->tag == Ist_NoOp) continue;
   2052 
   2053       if (st->tag == Ist_IMark) {
   2054          n++;
   2055       } else if (st->tag == Ist_Exit) {
   2056          if (n > 0) {
   2057             // Add an increment before the Exit statement, then reset 'n'.
   2058             add_counter_update(sbOut, n);
   2059             n = 0;
   2060          }
   2061       }
   2062       addStmtToIRSB( sbOut, st );
   2063    }
   2064 
   2065    if (n > 0) {
   2066       // Add an increment before the SB end.
   2067       add_counter_update(sbOut, n);
   2068    }
   2069    return sbOut;
   2070 }
   2071 
   2072 static
   2073 IRSB* ms_instrument ( VgCallbackClosure* closure,
   2074                       IRSB* sbIn,
   2075                       VexGuestLayout* layout,
   2076                       VexGuestExtents* vge,
   2077                       IRType gWordTy, IRType hWordTy )
   2078 {
   2079    if (! have_started_executing_code) {
   2080       // Do an initial sample to guarantee that we have at least one.
   2081       // We use 'maybe_take_snapshot' instead of 'take_snapshot' to ensure
   2082       // 'maybe_take_snapshot's internal static variables are initialised.
   2083       have_started_executing_code = True;
   2084       maybe_take_snapshot(Normal, "startup");
   2085    }
   2086 
   2087    if      (clo_time_unit == TimeI)  { return ms_instrument2(sbIn); }
   2088    else if (clo_time_unit == TimeMS) { return sbIn; }
   2089    else if (clo_time_unit == TimeB)  { return sbIn; }
   2090    else                              { tl_assert2(0, "bad --time-unit value"); }
   2091 }
   2092 
   2093 
   2094 //------------------------------------------------------------//
   2095 //--- Writing snapshots                                    ---//
   2096 //------------------------------------------------------------//
   2097 
   2098 Char FP_buf[BUF_LEN];
   2099 
   2100 // XXX: implement f{,n}printf in m_libcprint.c eventually, and use it here.
   2101 // Then change Cachegrind to use it too.
   2102 #define FP(format, args...) ({ \
   2103    VG_(snprintf)(FP_buf, BUF_LEN, format, ##args); \
   2104    FP_buf[BUF_LEN-1] = '\0';  /* Make sure the string is terminated. */ \
   2105    VG_(write)(fd, (void*)FP_buf, VG_(strlen)(FP_buf)); \
   2106 })
   2107 
   2108 // Nb: uses a static buffer, each call trashes the last string returned.
   2109 static Char* make_perc(double x)
   2110 {
   2111    static Char mbuf[32];
   2112 
   2113    VG_(percentify)((ULong)(x * 100), 10000, 2, 6, mbuf);
   2114    // XXX: this is bogus if the denominator was zero -- resulting string is
   2115    // something like "0 --%")
   2116    if (' ' == mbuf[0]) mbuf[0] = '0';
   2117    return mbuf;
   2118 }
   2119 
   2120 static void pp_snapshot_SXPt(Int fd, SXPt* sxpt, Int depth, Char* depth_str,
   2121                             Int depth_str_len,
   2122                             SizeT snapshot_heap_szB, SizeT snapshot_total_szB)
   2123 {
   2124    Int   i, j, n_insig_children_sxpts;
   2125    SXPt* child = NULL;
   2126 
   2127    // Used for printing function names.  Is made static to keep it out
   2128    // of the stack frame -- this function is recursive.  Obviously this
   2129    // now means its contents are trashed across the recursive call.
   2130    static Char ip_desc_array[BUF_LEN];
   2131    Char* ip_desc = ip_desc_array;
   2132 
   2133    switch (sxpt->tag) {
   2134     case SigSXPt:
   2135       // Print the SXPt itself.
   2136       if (0 == depth) {
   2137          if (clo_heap) {
   2138             ip_desc =
   2139                ( clo_pages_as_heap
   2140                ? "(page allocation syscalls) mmap/mremap/brk, --alloc-fns, etc."
   2141                : "(heap allocation functions) malloc/new/new[], --alloc-fns, etc."
   2142                );
   2143          } else {
   2144             // XXX: --alloc-fns?
   2145          }
   2146       } else {
   2147          // If it's main-or-below-main, we (if appropriate) ignore everything
   2148          // below it by pretending it has no children.
   2149          if ( ! VG_(clo_show_below_main) ) {
   2150             Vg_FnNameKind kind = VG_(get_fnname_kind_from_IP)(sxpt->Sig.ip);
   2151             if (Vg_FnNameMain == kind || Vg_FnNameBelowMain == kind) {
   2152                sxpt->Sig.n_children = 0;
   2153             }
   2154          }
   2155 
   2156          // We need the -1 to get the line number right, But I'm not sure why.
   2157          ip_desc = VG_(describe_IP)(sxpt->Sig.ip-1, ip_desc, BUF_LEN);
   2158       }
   2159 
   2160       // Do the non-ip_desc part first...
   2161       FP("%sn%d: %lu ", depth_str, sxpt->Sig.n_children, sxpt->szB);
   2162 
   2163       // For ip_descs beginning with "0xABCD...:" addresses, we first
   2164       // measure the length of the "0xabcd: " address at the start of the
   2165       // ip_desc.
   2166       j = 0;
   2167       if ('0' == ip_desc[0] && 'x' == ip_desc[1]) {
   2168          j = 2;
   2169          while (True) {
   2170             if (ip_desc[j]) {
   2171                if (':' == ip_desc[j]) break;
   2172                j++;
   2173             } else {
   2174                tl_assert2(0, "ip_desc has unexpected form: %s\n", ip_desc);
   2175             }
   2176          }
   2177       }
   2178       // Nb: We treat this specially (ie. we don't use FP) so that if the
   2179       // ip_desc is too long (eg. due to a long C++ function name), it'll
   2180       // get truncated, but the '\n' is still there so its a valid file.
   2181       // (At one point we were truncating without adding the '\n', which
   2182       // caused bug #155929.)
   2183       //
   2184       // Also, we account for the length of the address in ip_desc when
   2185       // truncating.  (The longest address we could have is 18 chars:  "0x"
   2186       // plus 16 address digits.)  This ensures that the truncated function
   2187       // name always has the same length, which makes truncation
   2188       // deterministic and thus makes testing easier.
   2189       tl_assert(j <= 18);
   2190       VG_(snprintf)(FP_buf, BUF_LEN, "%s\n", ip_desc);
   2191       FP_buf[BUF_LEN-18+j-5] = '.';    // "..." at the end make the
   2192       FP_buf[BUF_LEN-18+j-4] = '.';    //   truncation more obvious.
   2193       FP_buf[BUF_LEN-18+j-3] = '.';
   2194       FP_buf[BUF_LEN-18+j-2] = '\n';   // The last char is '\n'.
   2195       FP_buf[BUF_LEN-18+j-1] = '\0';   // The string is terminated.
   2196       VG_(write)(fd, (void*)FP_buf, VG_(strlen)(FP_buf));
   2197 
   2198       // Indent.
   2199       tl_assert(depth+1 < depth_str_len-1);    // -1 for end NUL char
   2200       depth_str[depth+0] = ' ';
   2201       depth_str[depth+1] = '\0';
   2202 
   2203       // Sort SXPt's children by szB (reverse order:  biggest to smallest).
   2204       // Nb: we sort them here, rather than earlier (eg. in dup_XTree), for
   2205       // two reasons.  First, if we do it during dup_XTree, it can get
   2206       // expensive (eg. 15% of execution time for konqueror
   2207       // startup/shutdown).  Second, this way we get the Insig SXPt (if one
   2208       // is present) in its sorted position, not at the end.
   2209       VG_(ssort)(sxpt->Sig.children, sxpt->Sig.n_children, sizeof(SXPt*),
   2210                  SXPt_revcmp_szB);
   2211 
   2212       // Print the SXPt's children.  They should already be in sorted order.
   2213       n_insig_children_sxpts = 0;
   2214       for (i = 0; i < sxpt->Sig.n_children; i++) {
   2215          child = sxpt->Sig.children[i];
   2216 
   2217          if (InsigSXPt == child->tag)
   2218             n_insig_children_sxpts++;
   2219 
   2220          // Ok, print the child.  NB: contents of ip_desc_array will be
   2221          // trashed by this recursive call.  Doesn't matter currently,
   2222          // but worth noting.
   2223          pp_snapshot_SXPt(fd, child, depth+1, depth_str, depth_str_len,
   2224             snapshot_heap_szB, snapshot_total_szB);
   2225       }
   2226 
   2227       // Unindent.
   2228       depth_str[depth+0] = '\0';
   2229       depth_str[depth+1] = '\0';
   2230 
   2231       // There should be 0 or 1 Insig children SXPts.
   2232       tl_assert(n_insig_children_sxpts <= 1);
   2233       break;
   2234 
   2235     case InsigSXPt: {
   2236       Char* s = ( 1 == sxpt->Insig.n_xpts ? "," : "s, all" );
   2237       FP("%sn0: %lu in %d place%s below massif's threshold (%s)\n",
   2238          depth_str, sxpt->szB, sxpt->Insig.n_xpts, s,
   2239          make_perc(clo_threshold));
   2240       break;
   2241     }
   2242 
   2243     default:
   2244       tl_assert2(0, "pp_snapshot_SXPt: unrecognised SXPt tag");
   2245    }
   2246 }
   2247 
   2248 static void pp_snapshot(Int fd, Snapshot* snapshot, Int snapshot_n)
   2249 {
   2250    sanity_check_snapshot(snapshot);
   2251 
   2252    FP("#-----------\n");
   2253    FP("snapshot=%d\n", snapshot_n);
   2254    FP("#-----------\n");
   2255    FP("time=%lld\n",            snapshot->time);
   2256    FP("mem_heap_B=%lu\n",       snapshot->heap_szB);
   2257    FP("mem_heap_extra_B=%lu\n", snapshot->heap_extra_szB);
   2258    FP("mem_stacks_B=%lu\n",     snapshot->stacks_szB);
   2259 
   2260    if (is_detailed_snapshot(snapshot)) {
   2261       // Detailed snapshot -- print heap tree.
   2262       Int   depth_str_len = clo_depth + 3;
   2263       Char* depth_str = VG_(malloc)("ms.main.pps.1",
   2264                                     sizeof(Char) * depth_str_len);
   2265       SizeT snapshot_total_szB =
   2266          snapshot->heap_szB + snapshot->heap_extra_szB + snapshot->stacks_szB;
   2267       depth_str[0] = '\0';   // Initialise depth_str to "".
   2268 
   2269       FP("heap_tree=%s\n", ( Peak == snapshot->kind ? "peak" : "detailed" ));
   2270       pp_snapshot_SXPt(fd, snapshot->alloc_sxpt, 0, depth_str,
   2271                        depth_str_len, snapshot->heap_szB,
   2272                        snapshot_total_szB);
   2273 
   2274       VG_(free)(depth_str);
   2275 
   2276    } else {
   2277       FP("heap_tree=empty\n");
   2278    }
   2279 }
   2280 
   2281 static void write_snapshots_to_file(void)
   2282 {
   2283    Int i, fd;
   2284    SysRes sres;
   2285 
   2286    // Setup output filename.  Nb: it's important to do this now, ie. as late
   2287    // as possible.  If we do it at start-up and the program forks and the
   2288    // output file format string contains a %p (pid) specifier, both the
   2289    // parent and child will incorrectly write to the same file;  this
   2290    // happened in 3.3.0.
   2291    Char* massif_out_file =
   2292       VG_(expand_file_name)("--massif-out-file", clo_massif_out_file);
   2293 
   2294    sres = VG_(open)(massif_out_file, VKI_O_CREAT|VKI_O_TRUNC|VKI_O_WRONLY,
   2295                                      VKI_S_IRUSR|VKI_S_IWUSR);
   2296    if (sr_isError(sres)) {
   2297       // If the file can't be opened for whatever reason (conflict
   2298       // between multiple cachegrinded processes?), give up now.
   2299       VG_(umsg)("error: can't open output file '%s'\n", massif_out_file );
   2300       VG_(umsg)("       ... so profiling results will be missing.\n");
   2301       VG_(free)(massif_out_file);
   2302       return;
   2303    } else {
   2304       fd = sr_Res(sres);
   2305       VG_(free)(massif_out_file);
   2306    }
   2307 
   2308    // Print massif-specific options that were used.
   2309    // XXX: is it worth having a "desc:" line?  Could just call it "options:"
   2310    // -- this file format isn't as generic as Cachegrind's, so the
   2311    // implied genericity of "desc:" is bogus.
   2312    FP("desc:");
   2313    for (i = 0; i < VG_(sizeXA)(args_for_massif); i++) {
   2314       Char* arg = *(Char**)VG_(indexXA)(args_for_massif, i);
   2315       FP(" %s", arg);
   2316    }
   2317    if (0 == i) FP(" (none)");
   2318    FP("\n");
   2319 
   2320    // Print "cmd:" line.
   2321    FP("cmd: ");
   2322    if (VG_(args_the_exename)) {
   2323       FP("%s", VG_(args_the_exename));
   2324       for (i = 0; i < VG_(sizeXA)( VG_(args_for_client) ); i++) {
   2325          HChar* arg = * (HChar**) VG_(indexXA)( VG_(args_for_client), i );
   2326          if (arg)
   2327             FP(" %s", arg);
   2328       }
   2329    } else {
   2330       FP(" ???");
   2331    }
   2332    FP("\n");
   2333 
   2334    FP("time_unit: %s\n", TimeUnit_to_string(clo_time_unit));
   2335 
   2336    for (i = 0; i < next_snapshot_i; i++) {
   2337       Snapshot* snapshot = & snapshots[i];
   2338       pp_snapshot(fd, snapshot, i);     // Detailed snapshot!
   2339    }
   2340 }
   2341 
   2342 
   2343 //------------------------------------------------------------//
   2344 //--- Finalisation                                         ---//
   2345 //------------------------------------------------------------//
   2346 
   2347 static void ms_fini(Int exit_status)
   2348 {
   2349    // Output.
   2350    write_snapshots_to_file();
   2351 
   2352    // Stats
   2353    tl_assert(n_xpts > 0);  // always have alloc_xpt
   2354    STATS("heap allocs:           %u\n", n_heap_allocs);
   2355    STATS("heap reallocs:         %u\n", n_heap_reallocs);
   2356    STATS("heap frees:            %u\n", n_heap_frees);
   2357    STATS("ignored heap allocs:   %u\n", n_ignored_heap_allocs);
   2358    STATS("ignored heap frees:    %u\n", n_ignored_heap_frees);
   2359    STATS("ignored heap reallocs: %u\n", n_ignored_heap_reallocs);
   2360    STATS("stack allocs:          %u\n", n_stack_allocs);
   2361    STATS("stack frees:           %u\n", n_stack_frees);
   2362    STATS("XPts:                  %u\n", n_xpts);
   2363    STATS("top-XPts:              %u (%d%%)\n",
   2364       alloc_xpt->n_children,
   2365       ( n_xpts ? alloc_xpt->n_children * 100 / n_xpts : 0));
   2366    STATS("XPt init expansions:   %u\n", n_xpt_init_expansions);
   2367    STATS("XPt later expansions:  %u\n", n_xpt_later_expansions);
   2368    STATS("SXPt allocs:           %u\n", n_sxpt_allocs);
   2369    STATS("SXPt frees:            %u\n", n_sxpt_frees);
   2370    STATS("skipped snapshots:     %u\n", n_skipped_snapshots);
   2371    STATS("real snapshots:        %u\n", n_real_snapshots);
   2372    STATS("detailed snapshots:    %u\n", n_detailed_snapshots);
   2373    STATS("peak snapshots:        %u\n", n_peak_snapshots);
   2374    STATS("cullings:              %u\n", n_cullings);
   2375    STATS("XCon redos:            %u\n", n_XCon_redos);
   2376 }
   2377 
   2378 
   2379 //------------------------------------------------------------//
   2380 //--- Initialisation                                       ---//
   2381 //------------------------------------------------------------//
   2382 
   2383 static void ms_post_clo_init(void)
   2384 {
   2385    Int i;
   2386    Char* LD_PRELOAD_val;
   2387    Char* s;
   2388    Char* s2;
   2389 
   2390    // Check options.
   2391    if (clo_pages_as_heap) {
   2392       if (clo_stacks) {
   2393          VG_(fmsg_bad_option)(
   2394             "--pages-as-heap=yes together with --stacks=yes", "");
   2395       }
   2396    }
   2397    if (!clo_heap) {
   2398       clo_pages_as_heap = False;
   2399    }
   2400 
   2401    // If --pages-as-heap=yes we don't want malloc replacement to occur.  So we
   2402    // disable vgpreload_massif-$PLATFORM.so by removing it from LD_PRELOAD (or
   2403    // platform-equivalent).  We replace it entirely with spaces because then
   2404    // the linker doesn't complain (it does complain if we just change the name
   2405    // to a bogus file).  This is a bit of a hack, but LD_PRELOAD is setup well
   2406    // before tool initialisation, so this seems the best way to do it.
   2407    if (clo_pages_as_heap) {
   2408       clo_heap_admin = 0;     // No heap admin on pages.
   2409 
   2410       LD_PRELOAD_val = VG_(getenv)( (Char*)VG_(LD_PRELOAD_var_name) );
   2411       tl_assert(LD_PRELOAD_val);
   2412 
   2413       // Make sure the vgpreload_core-$PLATFORM entry is there, for sanity.
   2414       s2 = VG_(strstr)(LD_PRELOAD_val, "vgpreload_core");
   2415       tl_assert(s2);
   2416 
   2417       // Now find the vgpreload_massif-$PLATFORM entry.
   2418       s2 = VG_(strstr)(LD_PRELOAD_val, "vgpreload_massif");
   2419       tl_assert(s2);
   2420 
   2421       // Blank out everything to the previous ':', which must be there because
   2422       // of the preceding vgpreload_core-$PLATFORM entry.
   2423       for (s = s2; *s != ':'; s--) {
   2424          *s = ' ';
   2425       }
   2426 
   2427       // Blank out everything to the end of the entry, which will be '\0' if
   2428       // LD_PRELOAD was empty before Valgrind started, or ':' otherwise.
   2429       for (s = s2; *s != ':' && *s != '\0'; s++) {
   2430          *s = ' ';
   2431       }
   2432    }
   2433 
   2434    // Print alloc-fns and ignore-fns, if necessary.
   2435    if (VG_(clo_verbosity) > 1) {
   2436       VERB(1, "alloc-fns:\n");
   2437       for (i = 0; i < VG_(sizeXA)(alloc_fns); i++) {
   2438          Char** fn_ptr = VG_(indexXA)(alloc_fns, i);
   2439          VERB(1, "  %s\n", *fn_ptr);
   2440       }
   2441 
   2442       VERB(1, "ignore-fns:\n");
   2443       if (0 == VG_(sizeXA)(ignore_fns)) {
   2444          VERB(1, "  <empty>\n");
   2445       }
   2446       for (i = 0; i < VG_(sizeXA)(ignore_fns); i++) {
   2447          Char** fn_ptr = VG_(indexXA)(ignore_fns, i);
   2448          VERB(1, "  %d: %s\n", i, *fn_ptr);
   2449       }
   2450    }
   2451 
   2452    // Events to track.
   2453    if (clo_stacks) {
   2454       VG_(track_new_mem_stack)        ( new_mem_stack        );
   2455       VG_(track_die_mem_stack)        ( die_mem_stack        );
   2456       VG_(track_new_mem_stack_signal) ( new_mem_stack_signal );
   2457       VG_(track_die_mem_stack_signal) ( die_mem_stack_signal );
   2458    }
   2459 
   2460    if (clo_pages_as_heap) {
   2461       VG_(track_new_mem_startup) ( ms_new_mem_startup );
   2462       VG_(track_new_mem_brk)     ( ms_new_mem_brk     );
   2463       VG_(track_new_mem_mmap)    ( ms_new_mem_mmap    );
   2464 
   2465       VG_(track_copy_mem_remap)  ( ms_copy_mem_remap  );
   2466 
   2467       VG_(track_die_mem_brk)     ( ms_die_mem_brk     );
   2468       VG_(track_die_mem_munmap)  ( ms_die_mem_munmap  );
   2469    }
   2470 
   2471    // Initialise snapshot array, and sanity-check it.
   2472    snapshots = VG_(malloc)("ms.main.mpoci.1",
   2473                            sizeof(Snapshot) * clo_max_snapshots);
   2474    // We don't want to do snapshot sanity checks here, because they're
   2475    // currently uninitialised.
   2476    for (i = 0; i < clo_max_snapshots; i++) {
   2477       clear_snapshot( & snapshots[i], /*do_sanity_check*/False );
   2478    }
   2479    sanity_check_snapshots_array();
   2480 }
   2481 
   2482 static void ms_pre_clo_init(void)
   2483 {
   2484    VG_(details_name)            ("Massif");
   2485    VG_(details_version)         (NULL);
   2486    VG_(details_description)     ("a heap profiler");
   2487    VG_(details_copyright_author)(
   2488       "Copyright (C) 2003-2010, and GNU GPL'd, by Nicholas Nethercote");
   2489    VG_(details_bug_reports_to)  (VG_BUGS_TO);
   2490 
   2491    // Basic functions.
   2492    VG_(basic_tool_funcs)          (ms_post_clo_init,
   2493                                    ms_instrument,
   2494                                    ms_fini);
   2495 
   2496    // Needs.
   2497    VG_(needs_libc_freeres)();
   2498    VG_(needs_command_line_options)(ms_process_cmd_line_option,
   2499                                    ms_print_usage,
   2500                                    ms_print_debug_usage);
   2501    VG_(needs_client_requests)     (ms_handle_client_request);
   2502    VG_(needs_sanity_checks)       (ms_cheap_sanity_check,
   2503                                    ms_expensive_sanity_check);
   2504    VG_(needs_malloc_replacement)  (ms_malloc,
   2505                                    ms___builtin_new,
   2506                                    ms___builtin_vec_new,
   2507                                    ms_memalign,
   2508                                    ms_calloc,
   2509                                    ms_free,
   2510                                    ms___builtin_delete,
   2511                                    ms___builtin_vec_delete,
   2512                                    ms_realloc,
   2513                                    ms_malloc_usable_size,
   2514                                    0 );
   2515 
   2516    // HP_Chunks.
   2517    malloc_list = VG_(HT_construct)( "Massif's malloc list" );
   2518 
   2519    // Dummy node at top of the context structure.
   2520    alloc_xpt = new_XPt(/*ip*/0, /*parent*/NULL);
   2521 
   2522    // Initialise alloc_fns and ignore_fns.
   2523    init_alloc_fns();
   2524    init_ignore_fns();
   2525 
   2526    // Initialise args_for_massif.
   2527    args_for_massif = VG_(newXA)(VG_(malloc), "ms.main.mprci.1",
   2528                                 VG_(free), sizeof(HChar*));
   2529 }
   2530 
   2531 VG_DETERMINE_INTERFACE_VERSION(ms_pre_clo_init)
   2532 
   2533 //--------------------------------------------------------------------//
   2534 //--- end                                                          ---//
   2535 //--------------------------------------------------------------------//
   2536