1 // Copyright 2009 the V8 project authors. All rights reserved. 2 // Redistribution and use in source and binary forms, with or without 3 // modification, are permitted provided that the following conditions are 4 // met: 5 // 6 // * Redistributions of source code must retain the above copyright 7 // notice, this list of conditions and the following disclaimer. 8 // * Redistributions in binary form must reproduce the above 9 // copyright notice, this list of conditions and the following 10 // disclaimer in the documentation and/or other materials provided 11 // with the distribution. 12 // * Neither the name of Google Inc. nor the names of its 13 // contributors may be used to endorse or promote products derived 14 // from this software without specific prior written permission. 15 // 16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 28 #include "v8.h" 29 30 #include "accessors.h" 31 #include "api.h" 32 #include "arguments.h" 33 #include "bootstrapper.h" 34 #include "compiler.h" 35 #include "debug.h" 36 #include "execution.h" 37 #include "global-handles.h" 38 #include "natives.h" 39 #include "runtime.h" 40 #include "string-search.h" 41 #include "stub-cache.h" 42 #include "vm-state-inl.h" 43 44 namespace v8 { 45 namespace internal { 46 47 48 int HandleScope::NumberOfHandles() { 49 Isolate* isolate = Isolate::Current(); 50 HandleScopeImplementer* impl = isolate->handle_scope_implementer(); 51 int n = impl->blocks()->length(); 52 if (n == 0) return 0; 53 return ((n - 1) * kHandleBlockSize) + static_cast<int>( 54 (isolate->handle_scope_data()->next - impl->blocks()->last())); 55 } 56 57 58 Object** HandleScope::Extend() { 59 Isolate* isolate = Isolate::Current(); 60 v8::ImplementationUtilities::HandleScopeData* current = 61 isolate->handle_scope_data(); 62 63 Object** result = current->next; 64 65 ASSERT(result == current->limit); 66 // Make sure there's at least one scope on the stack and that the 67 // top of the scope stack isn't a barrier. 68 if (current->level == 0) { 69 Utils::ReportApiFailure("v8::HandleScope::CreateHandle()", 70 "Cannot create a handle without a HandleScope"); 71 return NULL; 72 } 73 HandleScopeImplementer* impl = isolate->handle_scope_implementer(); 74 // If there's more room in the last block, we use that. This is used 75 // for fast creation of scopes after scope barriers. 76 if (!impl->blocks()->is_empty()) { 77 Object** limit = &impl->blocks()->last()[kHandleBlockSize]; 78 if (current->limit != limit) { 79 current->limit = limit; 80 ASSERT(limit - current->next < kHandleBlockSize); 81 } 82 } 83 84 // If we still haven't found a slot for the handle, we extend the 85 // current handle scope by allocating a new handle block. 86 if (result == current->limit) { 87 // If there's a spare block, use it for growing the current scope. 88 result = impl->GetSpareOrNewBlock(); 89 // Add the extension to the global list of blocks, but count the 90 // extension as part of the current scope. 91 impl->blocks()->Add(result); 92 current->limit = &result[kHandleBlockSize]; 93 } 94 95 return result; 96 } 97 98 99 void HandleScope::DeleteExtensions(Isolate* isolate) { 100 ASSERT(isolate == Isolate::Current()); 101 v8::ImplementationUtilities::HandleScopeData* current = 102 isolate->handle_scope_data(); 103 isolate->handle_scope_implementer()->DeleteExtensions(current->limit); 104 } 105 106 107 void HandleScope::ZapRange(Object** start, Object** end) { 108 ASSERT(end - start <= kHandleBlockSize); 109 for (Object** p = start; p != end; p++) { 110 *reinterpret_cast<Address*>(p) = v8::internal::kHandleZapValue; 111 } 112 } 113 114 115 Address HandleScope::current_level_address() { 116 return reinterpret_cast<Address>( 117 &Isolate::Current()->handle_scope_data()->level); 118 } 119 120 121 Address HandleScope::current_next_address() { 122 return reinterpret_cast<Address>( 123 &Isolate::Current()->handle_scope_data()->next); 124 } 125 126 127 Address HandleScope::current_limit_address() { 128 return reinterpret_cast<Address>( 129 &Isolate::Current()->handle_scope_data()->limit); 130 } 131 132 133 Handle<FixedArray> AddKeysFromJSArray(Handle<FixedArray> content, 134 Handle<JSArray> array) { 135 CALL_HEAP_FUNCTION(content->GetIsolate(), 136 content->AddKeysFromJSArray(*array), FixedArray); 137 } 138 139 140 Handle<FixedArray> UnionOfKeys(Handle<FixedArray> first, 141 Handle<FixedArray> second) { 142 CALL_HEAP_FUNCTION(first->GetIsolate(), 143 first->UnionOfKeys(*second), FixedArray); 144 } 145 146 147 Handle<JSGlobalProxy> ReinitializeJSGlobalProxy( 148 Handle<JSFunction> constructor, 149 Handle<JSGlobalProxy> global) { 150 CALL_HEAP_FUNCTION( 151 constructor->GetIsolate(), 152 constructor->GetHeap()->ReinitializeJSGlobalProxy(*constructor, *global), 153 JSGlobalProxy); 154 } 155 156 157 void SetExpectedNofProperties(Handle<JSFunction> func, int nof) { 158 // If objects constructed from this function exist then changing 159 // 'estimated_nof_properties' is dangerous since the previous value might 160 // have been compiled into the fast construct stub. More over, the inobject 161 // slack tracking logic might have adjusted the previous value, so even 162 // passing the same value is risky. 163 if (func->shared()->live_objects_may_exist()) return; 164 165 func->shared()->set_expected_nof_properties(nof); 166 if (func->has_initial_map()) { 167 Handle<Map> new_initial_map = 168 func->GetIsolate()->factory()->CopyMapDropTransitions( 169 Handle<Map>(func->initial_map())); 170 new_initial_map->set_unused_property_fields(nof); 171 func->set_initial_map(*new_initial_map); 172 } 173 } 174 175 176 void SetPrototypeProperty(Handle<JSFunction> func, Handle<JSObject> value) { 177 CALL_HEAP_FUNCTION_VOID(func->GetIsolate(), 178 func->SetPrototype(*value)); 179 } 180 181 182 static int ExpectedNofPropertiesFromEstimate(int estimate) { 183 // If no properties are added in the constructor, they are more likely 184 // to be added later. 185 if (estimate == 0) estimate = 2; 186 187 // We do not shrink objects that go into a snapshot (yet), so we adjust 188 // the estimate conservatively. 189 if (Serializer::enabled()) return estimate + 2; 190 191 // Inobject slack tracking will reclaim redundant inobject space later, 192 // so we can afford to adjust the estimate generously. 193 return estimate + 8; 194 } 195 196 197 void SetExpectedNofPropertiesFromEstimate(Handle<SharedFunctionInfo> shared, 198 int estimate) { 199 // See the comment in SetExpectedNofProperties. 200 if (shared->live_objects_may_exist()) return; 201 202 shared->set_expected_nof_properties( 203 ExpectedNofPropertiesFromEstimate(estimate)); 204 } 205 206 207 void NormalizeProperties(Handle<JSObject> object, 208 PropertyNormalizationMode mode, 209 int expected_additional_properties) { 210 CALL_HEAP_FUNCTION_VOID(object->GetIsolate(), 211 object->NormalizeProperties( 212 mode, 213 expected_additional_properties)); 214 } 215 216 217 void NormalizeElements(Handle<JSObject> object) { 218 CALL_HEAP_FUNCTION_VOID(object->GetIsolate(), 219 object->NormalizeElements()); 220 } 221 222 223 void TransformToFastProperties(Handle<JSObject> object, 224 int unused_property_fields) { 225 CALL_HEAP_FUNCTION_VOID( 226 object->GetIsolate(), 227 object->TransformToFastProperties(unused_property_fields)); 228 } 229 230 231 void NumberDictionarySet(Handle<NumberDictionary> dictionary, 232 uint32_t index, 233 Handle<Object> value, 234 PropertyDetails details) { 235 CALL_HEAP_FUNCTION_VOID(dictionary->GetIsolate(), 236 dictionary->Set(index, *value, details)); 237 } 238 239 240 void FlattenString(Handle<String> string) { 241 CALL_HEAP_FUNCTION_VOID(string->GetIsolate(), string->TryFlatten()); 242 } 243 244 245 Handle<String> FlattenGetString(Handle<String> string) { 246 CALL_HEAP_FUNCTION(string->GetIsolate(), string->TryFlatten(), String); 247 } 248 249 250 Handle<Object> SetPrototype(Handle<JSFunction> function, 251 Handle<Object> prototype) { 252 ASSERT(function->should_have_prototype()); 253 CALL_HEAP_FUNCTION(function->GetIsolate(), 254 Accessors::FunctionSetPrototype(*function, 255 *prototype, 256 NULL), 257 Object); 258 } 259 260 261 Handle<Object> SetProperty(Handle<JSObject> object, 262 Handle<String> key, 263 Handle<Object> value, 264 PropertyAttributes attributes, 265 StrictModeFlag strict_mode) { 266 CALL_HEAP_FUNCTION(object->GetIsolate(), 267 object->SetProperty(*key, *value, attributes, strict_mode), 268 Object); 269 } 270 271 272 Handle<Object> SetProperty(Handle<Object> object, 273 Handle<Object> key, 274 Handle<Object> value, 275 PropertyAttributes attributes, 276 StrictModeFlag strict_mode) { 277 Isolate* isolate = Isolate::Current(); 278 CALL_HEAP_FUNCTION( 279 isolate, 280 Runtime::SetObjectProperty( 281 isolate, object, key, value, attributes, strict_mode), 282 Object); 283 } 284 285 286 Handle<Object> ForceSetProperty(Handle<JSObject> object, 287 Handle<Object> key, 288 Handle<Object> value, 289 PropertyAttributes attributes) { 290 Isolate* isolate = object->GetIsolate(); 291 CALL_HEAP_FUNCTION( 292 isolate, 293 Runtime::ForceSetObjectProperty( 294 isolate, object, key, value, attributes), 295 Object); 296 } 297 298 299 Handle<Object> SetNormalizedProperty(Handle<JSObject> object, 300 Handle<String> key, 301 Handle<Object> value, 302 PropertyDetails details) { 303 CALL_HEAP_FUNCTION(object->GetIsolate(), 304 object->SetNormalizedProperty(*key, *value, details), 305 Object); 306 } 307 308 309 Handle<Object> ForceDeleteProperty(Handle<JSObject> object, 310 Handle<Object> key) { 311 Isolate* isolate = object->GetIsolate(); 312 CALL_HEAP_FUNCTION(isolate, 313 Runtime::ForceDeleteObjectProperty(isolate, object, key), 314 Object); 315 } 316 317 318 Handle<Object> SetLocalPropertyIgnoreAttributes( 319 Handle<JSObject> object, 320 Handle<String> key, 321 Handle<Object> value, 322 PropertyAttributes attributes) { 323 CALL_HEAP_FUNCTION( 324 object->GetIsolate(), 325 object->SetLocalPropertyIgnoreAttributes(*key, *value, attributes), 326 Object); 327 } 328 329 330 void SetLocalPropertyNoThrow(Handle<JSObject> object, 331 Handle<String> key, 332 Handle<Object> value, 333 PropertyAttributes attributes) { 334 Isolate* isolate = object->GetIsolate(); 335 ASSERT(!isolate->has_pending_exception()); 336 CHECK(!SetLocalPropertyIgnoreAttributes( 337 object, key, value, attributes).is_null()); 338 CHECK(!isolate->has_pending_exception()); 339 } 340 341 342 Handle<Object> SetPropertyWithInterceptor(Handle<JSObject> object, 343 Handle<String> key, 344 Handle<Object> value, 345 PropertyAttributes attributes, 346 StrictModeFlag strict_mode) { 347 CALL_HEAP_FUNCTION(object->GetIsolate(), 348 object->SetPropertyWithInterceptor(*key, 349 *value, 350 attributes, 351 strict_mode), 352 Object); 353 } 354 355 356 Handle<Object> GetProperty(Handle<JSObject> obj, 357 const char* name) { 358 Isolate* isolate = obj->GetIsolate(); 359 Handle<String> str = isolate->factory()->LookupAsciiSymbol(name); 360 CALL_HEAP_FUNCTION(isolate, obj->GetProperty(*str), Object); 361 } 362 363 364 Handle<Object> GetProperty(Handle<Object> obj, 365 Handle<Object> key) { 366 Isolate* isolate = Isolate::Current(); 367 CALL_HEAP_FUNCTION(isolate, 368 Runtime::GetObjectProperty(isolate, obj, key), Object); 369 } 370 371 372 Handle<Object> GetProperty(Handle<JSObject> obj, 373 Handle<String> name, 374 LookupResult* result) { 375 PropertyAttributes attributes; 376 Isolate* isolate = Isolate::Current(); 377 CALL_HEAP_FUNCTION(isolate, 378 obj->GetProperty(*obj, result, *name, &attributes), 379 Object); 380 } 381 382 383 Handle<Object> GetElement(Handle<Object> obj, 384 uint32_t index) { 385 Isolate* isolate = Isolate::Current(); 386 CALL_HEAP_FUNCTION(isolate, Runtime::GetElement(obj, index), Object); 387 } 388 389 390 Handle<Object> GetPropertyWithInterceptor(Handle<JSObject> receiver, 391 Handle<JSObject> holder, 392 Handle<String> name, 393 PropertyAttributes* attributes) { 394 Isolate* isolate = receiver->GetIsolate(); 395 CALL_HEAP_FUNCTION(isolate, 396 holder->GetPropertyWithInterceptor(*receiver, 397 *name, 398 attributes), 399 Object); 400 } 401 402 403 Handle<Object> GetPrototype(Handle<Object> obj) { 404 Handle<Object> result(obj->GetPrototype()); 405 return result; 406 } 407 408 409 Handle<Object> SetPrototype(Handle<JSObject> obj, Handle<Object> value) { 410 const bool skip_hidden_prototypes = false; 411 CALL_HEAP_FUNCTION(obj->GetIsolate(), 412 obj->SetPrototype(*value, skip_hidden_prototypes), Object); 413 } 414 415 416 Handle<Object> PreventExtensions(Handle<JSObject> object) { 417 CALL_HEAP_FUNCTION(object->GetIsolate(), object->PreventExtensions(), Object); 418 } 419 420 421 Handle<Object> GetHiddenProperties(Handle<JSObject> obj, 422 bool create_if_needed) { 423 Isolate* isolate = obj->GetIsolate(); 424 Object* holder = obj->BypassGlobalProxy(); 425 if (holder->IsUndefined()) return isolate->factory()->undefined_value(); 426 obj = Handle<JSObject>(JSObject::cast(holder), isolate); 427 428 if (obj->HasFastProperties()) { 429 // If the object has fast properties, check whether the first slot 430 // in the descriptor array matches the hidden symbol. Since the 431 // hidden symbols hash code is zero (and no other string has hash 432 // code zero) it will always occupy the first entry if present. 433 DescriptorArray* descriptors = obj->map()->instance_descriptors(); 434 if ((descriptors->number_of_descriptors() > 0) && 435 (descriptors->GetKey(0) == isolate->heap()->hidden_symbol()) && 436 descriptors->IsProperty(0)) { 437 ASSERT(descriptors->GetType(0) == FIELD); 438 return Handle<Object>(obj->FastPropertyAt(descriptors->GetFieldIndex(0)), 439 isolate); 440 } 441 } 442 443 // Only attempt to find the hidden properties in the local object and not 444 // in the prototype chain. Note that HasLocalProperty() can cause a GC in 445 // the general case in the presence of interceptors. 446 if (!obj->HasHiddenPropertiesObject()) { 447 // Hidden properties object not found. Allocate a new hidden properties 448 // object if requested. Otherwise return the undefined value. 449 if (create_if_needed) { 450 Handle<Object> hidden_obj = 451 isolate->factory()->NewJSObject(isolate->object_function()); 452 CALL_HEAP_FUNCTION(isolate, 453 obj->SetHiddenPropertiesObject(*hidden_obj), Object); 454 } else { 455 return isolate->factory()->undefined_value(); 456 } 457 } 458 return Handle<Object>(obj->GetHiddenPropertiesObject(), isolate); 459 } 460 461 462 Handle<Object> DeleteElement(Handle<JSObject> obj, 463 uint32_t index) { 464 CALL_HEAP_FUNCTION(obj->GetIsolate(), 465 obj->DeleteElement(index, JSObject::NORMAL_DELETION), 466 Object); 467 } 468 469 470 Handle<Object> DeleteProperty(Handle<JSObject> obj, 471 Handle<String> prop) { 472 CALL_HEAP_FUNCTION(obj->GetIsolate(), 473 obj->DeleteProperty(*prop, JSObject::NORMAL_DELETION), 474 Object); 475 } 476 477 478 Handle<Object> LookupSingleCharacterStringFromCode(uint32_t index) { 479 Isolate* isolate = Isolate::Current(); 480 CALL_HEAP_FUNCTION( 481 isolate, 482 isolate->heap()->LookupSingleCharacterStringFromCode(index), Object); 483 } 484 485 486 Handle<String> SubString(Handle<String> str, 487 int start, 488 int end, 489 PretenureFlag pretenure) { 490 CALL_HEAP_FUNCTION(str->GetIsolate(), 491 str->SubString(start, end, pretenure), String); 492 } 493 494 495 Handle<Object> SetElement(Handle<JSObject> object, 496 uint32_t index, 497 Handle<Object> value, 498 StrictModeFlag strict_mode) { 499 if (object->HasExternalArrayElements()) { 500 if (!value->IsSmi() && !value->IsHeapNumber() && !value->IsUndefined()) { 501 bool has_exception; 502 Handle<Object> number = Execution::ToNumber(value, &has_exception); 503 if (has_exception) return Handle<Object>(); 504 value = number; 505 } 506 } 507 CALL_HEAP_FUNCTION(object->GetIsolate(), 508 object->SetElement(index, *value, strict_mode), Object); 509 } 510 511 512 Handle<Object> SetOwnElement(Handle<JSObject> object, 513 uint32_t index, 514 Handle<Object> value, 515 StrictModeFlag strict_mode) { 516 ASSERT(!object->HasExternalArrayElements()); 517 CALL_HEAP_FUNCTION(object->GetIsolate(), 518 object->SetElement(index, *value, strict_mode, false), 519 Object); 520 } 521 522 523 Handle<JSObject> Copy(Handle<JSObject> obj) { 524 Isolate* isolate = obj->GetIsolate(); 525 CALL_HEAP_FUNCTION(isolate, 526 isolate->heap()->CopyJSObject(*obj), JSObject); 527 } 528 529 530 Handle<Object> SetAccessor(Handle<JSObject> obj, Handle<AccessorInfo> info) { 531 CALL_HEAP_FUNCTION(obj->GetIsolate(), obj->DefineAccessor(*info), Object); 532 } 533 534 535 // Wrappers for scripts are kept alive and cached in weak global 536 // handles referred from proxy objects held by the scripts as long as 537 // they are used. When they are not used anymore, the garbage 538 // collector will call the weak callback on the global handle 539 // associated with the wrapper and get rid of both the wrapper and the 540 // handle. 541 static void ClearWrapperCache(Persistent<v8::Value> handle, void*) { 542 #ifdef ENABLE_HEAP_PROTECTION 543 // Weak reference callbacks are called as if from outside V8. We 544 // need to reeenter to unprotect the heap. 545 VMState state(OTHER); 546 #endif 547 Handle<Object> cache = Utils::OpenHandle(*handle); 548 JSValue* wrapper = JSValue::cast(*cache); 549 Proxy* proxy = Script::cast(wrapper->value())->wrapper(); 550 ASSERT(proxy->proxy() == reinterpret_cast<Address>(cache.location())); 551 proxy->set_proxy(0); 552 Isolate* isolate = Isolate::Current(); 553 isolate->global_handles()->Destroy(cache.location()); 554 isolate->counters()->script_wrappers()->Decrement(); 555 } 556 557 558 Handle<JSValue> GetScriptWrapper(Handle<Script> script) { 559 if (script->wrapper()->proxy() != NULL) { 560 // Return the script wrapper directly from the cache. 561 return Handle<JSValue>( 562 reinterpret_cast<JSValue**>(script->wrapper()->proxy())); 563 } 564 Isolate* isolate = Isolate::Current(); 565 // Construct a new script wrapper. 566 isolate->counters()->script_wrappers()->Increment(); 567 Handle<JSFunction> constructor = isolate->script_function(); 568 Handle<JSValue> result = 569 Handle<JSValue>::cast(isolate->factory()->NewJSObject(constructor)); 570 result->set_value(*script); 571 572 // Create a new weak global handle and use it to cache the wrapper 573 // for future use. The cache will automatically be cleared by the 574 // garbage collector when it is not used anymore. 575 Handle<Object> handle = isolate->global_handles()->Create(*result); 576 isolate->global_handles()->MakeWeak(handle.location(), NULL, 577 &ClearWrapperCache); 578 script->wrapper()->set_proxy(reinterpret_cast<Address>(handle.location())); 579 return result; 580 } 581 582 583 // Init line_ends array with code positions of line ends inside script 584 // source. 585 void InitScriptLineEnds(Handle<Script> script) { 586 if (!script->line_ends()->IsUndefined()) return; 587 588 Isolate* isolate = script->GetIsolate(); 589 590 if (!script->source()->IsString()) { 591 ASSERT(script->source()->IsUndefined()); 592 Handle<FixedArray> empty = isolate->factory()->NewFixedArray(0); 593 script->set_line_ends(*empty); 594 ASSERT(script->line_ends()->IsFixedArray()); 595 return; 596 } 597 598 Handle<String> src(String::cast(script->source()), isolate); 599 600 Handle<FixedArray> array = CalculateLineEnds(src, true); 601 602 if (*array != isolate->heap()->empty_fixed_array()) { 603 array->set_map(isolate->heap()->fixed_cow_array_map()); 604 } 605 606 script->set_line_ends(*array); 607 ASSERT(script->line_ends()->IsFixedArray()); 608 } 609 610 611 template <typename SourceChar> 612 static void CalculateLineEnds(Isolate* isolate, 613 List<int>* line_ends, 614 Vector<const SourceChar> src, 615 bool with_last_line) { 616 const int src_len = src.length(); 617 StringSearch<char, SourceChar> search(isolate, CStrVector("\n")); 618 619 // Find and record line ends. 620 int position = 0; 621 while (position != -1 && position < src_len) { 622 position = search.Search(src, position); 623 if (position != -1) { 624 line_ends->Add(position); 625 position++; 626 } else if (with_last_line) { 627 // Even if the last line misses a line end, it is counted. 628 line_ends->Add(src_len); 629 return; 630 } 631 } 632 } 633 634 635 Handle<FixedArray> CalculateLineEnds(Handle<String> src, 636 bool with_last_line) { 637 src = FlattenGetString(src); 638 // Rough estimate of line count based on a roughly estimated average 639 // length of (unpacked) code. 640 int line_count_estimate = src->length() >> 4; 641 List<int> line_ends(line_count_estimate); 642 Isolate* isolate = src->GetIsolate(); 643 { 644 AssertNoAllocation no_heap_allocation; // ensure vectors stay valid. 645 // Dispatch on type of strings. 646 if (src->IsAsciiRepresentation()) { 647 CalculateLineEnds(isolate, 648 &line_ends, 649 src->ToAsciiVector(), 650 with_last_line); 651 } else { 652 CalculateLineEnds(isolate, 653 &line_ends, 654 src->ToUC16Vector(), 655 with_last_line); 656 } 657 } 658 int line_count = line_ends.length(); 659 Handle<FixedArray> array = isolate->factory()->NewFixedArray(line_count); 660 for (int i = 0; i < line_count; i++) { 661 array->set(i, Smi::FromInt(line_ends[i])); 662 } 663 return array; 664 } 665 666 667 // Convert code position into line number. 668 int GetScriptLineNumber(Handle<Script> script, int code_pos) { 669 InitScriptLineEnds(script); 670 AssertNoAllocation no_allocation; 671 FixedArray* line_ends_array = FixedArray::cast(script->line_ends()); 672 const int line_ends_len = line_ends_array->length(); 673 674 if (!line_ends_len) return -1; 675 676 if ((Smi::cast(line_ends_array->get(0)))->value() >= code_pos) { 677 return script->line_offset()->value(); 678 } 679 680 int left = 0; 681 int right = line_ends_len; 682 while (int half = (right - left) / 2) { 683 if ((Smi::cast(line_ends_array->get(left + half)))->value() > code_pos) { 684 right -= half; 685 } else { 686 left += half; 687 } 688 } 689 return right + script->line_offset()->value(); 690 } 691 692 693 int GetScriptLineNumberSafe(Handle<Script> script, int code_pos) { 694 AssertNoAllocation no_allocation; 695 if (!script->line_ends()->IsUndefined()) { 696 return GetScriptLineNumber(script, code_pos); 697 } 698 // Slow mode: we do not have line_ends. We have to iterate through source. 699 if (!script->source()->IsString()) { 700 return -1; 701 } 702 String* source = String::cast(script->source()); 703 int line = 0; 704 int len = source->length(); 705 for (int pos = 0; pos < len; pos++) { 706 if (pos == code_pos) { 707 break; 708 } 709 if (source->Get(pos) == '\n') { 710 line++; 711 } 712 } 713 return line; 714 } 715 716 717 void CustomArguments::IterateInstance(ObjectVisitor* v) { 718 v->VisitPointers(values_, values_ + ARRAY_SIZE(values_)); 719 } 720 721 722 // Compute the property keys from the interceptor. 723 v8::Handle<v8::Array> GetKeysForNamedInterceptor(Handle<JSObject> receiver, 724 Handle<JSObject> object) { 725 Isolate* isolate = receiver->GetIsolate(); 726 Handle<InterceptorInfo> interceptor(object->GetNamedInterceptor()); 727 CustomArguments args(isolate, interceptor->data(), *receiver, *object); 728 v8::AccessorInfo info(args.end()); 729 v8::Handle<v8::Array> result; 730 if (!interceptor->enumerator()->IsUndefined()) { 731 v8::NamedPropertyEnumerator enum_fun = 732 v8::ToCData<v8::NamedPropertyEnumerator>(interceptor->enumerator()); 733 LOG(isolate, ApiObjectAccess("interceptor-named-enum", *object)); 734 { 735 // Leaving JavaScript. 736 VMState state(isolate, EXTERNAL); 737 result = enum_fun(info); 738 } 739 } 740 return result; 741 } 742 743 744 // Compute the element keys from the interceptor. 745 v8::Handle<v8::Array> GetKeysForIndexedInterceptor(Handle<JSObject> receiver, 746 Handle<JSObject> object) { 747 Isolate* isolate = receiver->GetIsolate(); 748 Handle<InterceptorInfo> interceptor(object->GetIndexedInterceptor()); 749 CustomArguments args(isolate, interceptor->data(), *receiver, *object); 750 v8::AccessorInfo info(args.end()); 751 v8::Handle<v8::Array> result; 752 if (!interceptor->enumerator()->IsUndefined()) { 753 v8::IndexedPropertyEnumerator enum_fun = 754 v8::ToCData<v8::IndexedPropertyEnumerator>(interceptor->enumerator()); 755 LOG(isolate, ApiObjectAccess("interceptor-indexed-enum", *object)); 756 { 757 // Leaving JavaScript. 758 VMState state(isolate, EXTERNAL); 759 result = enum_fun(info); 760 } 761 } 762 return result; 763 } 764 765 766 static bool ContainsOnlyValidKeys(Handle<FixedArray> array) { 767 int len = array->length(); 768 for (int i = 0; i < len; i++) { 769 Object* e = array->get(i); 770 if (!(e->IsString() || e->IsNumber())) return false; 771 } 772 return true; 773 } 774 775 776 Handle<FixedArray> GetKeysInFixedArrayFor(Handle<JSObject> object, 777 KeyCollectionType type) { 778 USE(ContainsOnlyValidKeys); 779 Isolate* isolate = object->GetIsolate(); 780 Handle<FixedArray> content = isolate->factory()->empty_fixed_array(); 781 Handle<JSObject> arguments_boilerplate = Handle<JSObject>( 782 isolate->context()->global_context()->arguments_boilerplate(), 783 isolate); 784 Handle<JSFunction> arguments_function = Handle<JSFunction>( 785 JSFunction::cast(arguments_boilerplate->map()->constructor()), 786 isolate); 787 788 // Only collect keys if access is permitted. 789 for (Handle<Object> p = object; 790 *p != isolate->heap()->null_value(); 791 p = Handle<Object>(p->GetPrototype(), isolate)) { 792 Handle<JSObject> current(JSObject::cast(*p), isolate); 793 794 // Check access rights if required. 795 if (current->IsAccessCheckNeeded() && 796 !isolate->MayNamedAccess(*current, 797 isolate->heap()->undefined_value(), 798 v8::ACCESS_KEYS)) { 799 isolate->ReportFailedAccessCheck(*current, v8::ACCESS_KEYS); 800 break; 801 } 802 803 // Compute the element keys. 804 Handle<FixedArray> element_keys = 805 isolate->factory()->NewFixedArray(current->NumberOfEnumElements()); 806 current->GetEnumElementKeys(*element_keys); 807 content = UnionOfKeys(content, element_keys); 808 ASSERT(ContainsOnlyValidKeys(content)); 809 810 // Add the element keys from the interceptor. 811 if (current->HasIndexedInterceptor()) { 812 v8::Handle<v8::Array> result = 813 GetKeysForIndexedInterceptor(object, current); 814 if (!result.IsEmpty()) 815 content = AddKeysFromJSArray(content, v8::Utils::OpenHandle(*result)); 816 ASSERT(ContainsOnlyValidKeys(content)); 817 } 818 819 // We can cache the computed property keys if access checks are 820 // not needed and no interceptors are involved. 821 // 822 // We do not use the cache if the object has elements and 823 // therefore it does not make sense to cache the property names 824 // for arguments objects. Arguments objects will always have 825 // elements. 826 // Wrapped strings have elements, but don't have an elements 827 // array or dictionary. So the fast inline test for whether to 828 // use the cache says yes, so we should not create a cache. 829 bool cache_enum_keys = 830 ((current->map()->constructor() != *arguments_function) && 831 !current->IsJSValue() && 832 !current->IsAccessCheckNeeded() && 833 !current->HasNamedInterceptor() && 834 !current->HasIndexedInterceptor()); 835 // Compute the property keys and cache them if possible. 836 content = 837 UnionOfKeys(content, GetEnumPropertyKeys(current, cache_enum_keys)); 838 ASSERT(ContainsOnlyValidKeys(content)); 839 840 // Add the property keys from the interceptor. 841 if (current->HasNamedInterceptor()) { 842 v8::Handle<v8::Array> result = 843 GetKeysForNamedInterceptor(object, current); 844 if (!result.IsEmpty()) 845 content = AddKeysFromJSArray(content, v8::Utils::OpenHandle(*result)); 846 ASSERT(ContainsOnlyValidKeys(content)); 847 } 848 849 // If we only want local properties we bail out after the first 850 // iteration. 851 if (type == LOCAL_ONLY) 852 break; 853 } 854 return content; 855 } 856 857 858 Handle<JSArray> GetKeysFor(Handle<JSObject> object) { 859 Isolate* isolate = object->GetIsolate(); 860 isolate->counters()->for_in()->Increment(); 861 Handle<FixedArray> elements = GetKeysInFixedArrayFor(object, 862 INCLUDE_PROTOS); 863 return isolate->factory()->NewJSArrayWithElements(elements); 864 } 865 866 867 Handle<FixedArray> GetEnumPropertyKeys(Handle<JSObject> object, 868 bool cache_result) { 869 int index = 0; 870 Isolate* isolate = object->GetIsolate(); 871 if (object->HasFastProperties()) { 872 if (object->map()->instance_descriptors()->HasEnumCache()) { 873 isolate->counters()->enum_cache_hits()->Increment(); 874 DescriptorArray* desc = object->map()->instance_descriptors(); 875 return Handle<FixedArray>(FixedArray::cast(desc->GetEnumCache()), 876 isolate); 877 } 878 isolate->counters()->enum_cache_misses()->Increment(); 879 int num_enum = object->NumberOfEnumProperties(); 880 Handle<FixedArray> storage = isolate->factory()->NewFixedArray(num_enum); 881 Handle<FixedArray> sort_array = isolate->factory()->NewFixedArray(num_enum); 882 Handle<DescriptorArray> descs = 883 Handle<DescriptorArray>(object->map()->instance_descriptors(), isolate); 884 for (int i = 0; i < descs->number_of_descriptors(); i++) { 885 if (descs->IsProperty(i) && !descs->IsDontEnum(i)) { 886 (*storage)->set(index, descs->GetKey(i)); 887 PropertyDetails details(descs->GetDetails(i)); 888 (*sort_array)->set(index, Smi::FromInt(details.index())); 889 index++; 890 } 891 } 892 (*storage)->SortPairs(*sort_array, sort_array->length()); 893 if (cache_result) { 894 Handle<FixedArray> bridge_storage = 895 isolate->factory()->NewFixedArray( 896 DescriptorArray::kEnumCacheBridgeLength); 897 DescriptorArray* desc = object->map()->instance_descriptors(); 898 desc->SetEnumCache(*bridge_storage, *storage); 899 } 900 ASSERT(storage->length() == index); 901 return storage; 902 } else { 903 int num_enum = object->NumberOfEnumProperties(); 904 Handle<FixedArray> storage = isolate->factory()->NewFixedArray(num_enum); 905 Handle<FixedArray> sort_array = isolate->factory()->NewFixedArray(num_enum); 906 object->property_dictionary()->CopyEnumKeysTo(*storage, *sort_array); 907 return storage; 908 } 909 } 910 911 912 bool EnsureCompiled(Handle<SharedFunctionInfo> shared, 913 ClearExceptionFlag flag) { 914 return shared->is_compiled() || CompileLazyShared(shared, flag); 915 } 916 917 918 static bool CompileLazyHelper(CompilationInfo* info, 919 ClearExceptionFlag flag) { 920 // Compile the source information to a code object. 921 ASSERT(info->IsOptimizing() || !info->shared_info()->is_compiled()); 922 ASSERT(!info->isolate()->has_pending_exception()); 923 bool result = Compiler::CompileLazy(info); 924 ASSERT(result != Isolate::Current()->has_pending_exception()); 925 if (!result && flag == CLEAR_EXCEPTION) { 926 info->isolate()->clear_pending_exception(); 927 } 928 return result; 929 } 930 931 932 bool CompileLazyShared(Handle<SharedFunctionInfo> shared, 933 ClearExceptionFlag flag) { 934 CompilationInfo info(shared); 935 return CompileLazyHelper(&info, flag); 936 } 937 938 939 static bool CompileLazyFunction(Handle<JSFunction> function, 940 ClearExceptionFlag flag, 941 InLoopFlag in_loop_flag) { 942 bool result = true; 943 if (function->shared()->is_compiled()) { 944 function->ReplaceCode(function->shared()->code()); 945 function->shared()->set_code_age(0); 946 } else { 947 CompilationInfo info(function); 948 if (in_loop_flag == IN_LOOP) info.MarkAsInLoop(); 949 result = CompileLazyHelper(&info, flag); 950 ASSERT(!result || function->is_compiled()); 951 } 952 return result; 953 } 954 955 956 bool CompileLazy(Handle<JSFunction> function, 957 ClearExceptionFlag flag) { 958 return CompileLazyFunction(function, flag, NOT_IN_LOOP); 959 } 960 961 962 bool CompileLazyInLoop(Handle<JSFunction> function, 963 ClearExceptionFlag flag) { 964 return CompileLazyFunction(function, flag, IN_LOOP); 965 } 966 967 968 bool CompileOptimized(Handle<JSFunction> function, 969 int osr_ast_id, 970 ClearExceptionFlag flag) { 971 CompilationInfo info(function); 972 info.SetOptimizing(osr_ast_id); 973 return CompileLazyHelper(&info, flag); 974 } 975 976 } } // namespace v8::internal 977