Home | History | Annotate | Download | only in memory
      1 // Copyright (c) 2011 The Chromium Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #ifndef BASE_MEMORY_SINGLETON_H_
      6 #define BASE_MEMORY_SINGLETON_H_
      7 #pragma once
      8 
      9 #include "base/at_exit.h"
     10 #include "base/atomicops.h"
     11 #include "base/third_party/dynamic_annotations/dynamic_annotations.h"
     12 #include "base/threading/platform_thread.h"
     13 #include "base/threading/thread_restrictions.h"
     14 
     15 // Default traits for Singleton<Type>. Calls operator new and operator delete on
     16 // the object. Registers automatic deletion at process exit.
     17 // Overload if you need arguments or another memory allocation function.
     18 template<typename Type>
     19 struct DefaultSingletonTraits {
     20   // Allocates the object.
     21   static Type* New() {
     22     // The parenthesis is very important here; it forces POD type
     23     // initialization.
     24     return new Type();
     25   }
     26 
     27   // Destroys the object.
     28   static void Delete(Type* x) {
     29     delete x;
     30   }
     31 
     32   // Set to true to automatically register deletion of the object on process
     33   // exit. See below for the required call that makes this happen.
     34   static const bool kRegisterAtExit = true;
     35 
     36   // Set to false to disallow access on a non-joinable thread.  This is
     37   // different from kRegisterAtExit because StaticMemorySingletonTraits allows
     38   // access on non-joinable threads, and gracefully handles this.
     39   static const bool kAllowedToAccessOnNonjoinableThread = false;
     40 };
     41 
     42 
     43 // Alternate traits for use with the Singleton<Type>.  Identical to
     44 // DefaultSingletonTraits except that the Singleton will not be cleaned up
     45 // at exit.
     46 template<typename Type>
     47 struct LeakySingletonTraits : public DefaultSingletonTraits<Type> {
     48   static const bool kRegisterAtExit = false;
     49   static const bool kAllowedToAccessOnNonjoinableThread = true;
     50 };
     51 
     52 
     53 // Alternate traits for use with the Singleton<Type>.  Allocates memory
     54 // for the singleton instance from a static buffer.  The singleton will
     55 // be cleaned up at exit, but can't be revived after destruction unless
     56 // the Resurrect() method is called.
     57 //
     58 // This is useful for a certain category of things, notably logging and
     59 // tracing, where the singleton instance is of a type carefully constructed to
     60 // be safe to access post-destruction.
     61 // In logging and tracing you'll typically get stray calls at odd times, like
     62 // during static destruction, thread teardown and the like, and there's a
     63 // termination race on the heap-based singleton - e.g. if one thread calls
     64 // get(), but then another thread initiates AtExit processing, the first thread
     65 // may call into an object residing in unallocated memory. If the instance is
     66 // allocated from the data segment, then this is survivable.
     67 //
     68 // The destructor is to deallocate system resources, in this case to unregister
     69 // a callback the system will invoke when logging levels change. Note that
     70 // this is also used in e.g. Chrome Frame, where you have to allow for the
     71 // possibility of loading briefly into someone else's process space, and
     72 // so leaking is not an option, as that would sabotage the state of your host
     73 // process once you've unloaded.
     74 template <typename Type>
     75 struct StaticMemorySingletonTraits {
     76   // WARNING: User has to deal with get() in the singleton class
     77   // this is traits for returning NULL.
     78   static Type* New() {
     79     if (base::subtle::NoBarrier_AtomicExchange(&dead_, 1))
     80       return NULL;
     81     Type* ptr = reinterpret_cast<Type*>(buffer_);
     82 
     83     // We are protected by a memory barrier.
     84     new(ptr) Type();
     85     return ptr;
     86   }
     87 
     88   static void Delete(Type* p) {
     89     base::subtle::NoBarrier_Store(&dead_, 1);
     90     base::subtle::MemoryBarrier();
     91     if (p != NULL)
     92       p->Type::~Type();
     93   }
     94 
     95   static const bool kRegisterAtExit = true;
     96   static const bool kAllowedToAccessOnNonjoinableThread = true;
     97 
     98   // Exposed for unittesting.
     99   static void Resurrect() {
    100     base::subtle::NoBarrier_Store(&dead_, 0);
    101   }
    102 
    103  private:
    104   static const size_t kBufferSize = (sizeof(Type) +
    105                                      sizeof(intptr_t) - 1) / sizeof(intptr_t);
    106   static intptr_t buffer_[kBufferSize];
    107 
    108   // Signal the object was already deleted, so it is not revived.
    109   static base::subtle::Atomic32 dead_;
    110 };
    111 
    112 template <typename Type> intptr_t
    113     StaticMemorySingletonTraits<Type>::buffer_[kBufferSize];
    114 template <typename Type> base::subtle::Atomic32
    115     StaticMemorySingletonTraits<Type>::dead_ = 0;
    116 
    117 // The Singleton<Type, Traits, DifferentiatingType> class manages a single
    118 // instance of Type which will be created on first use and will be destroyed at
    119 // normal process exit). The Trait::Delete function will not be called on
    120 // abnormal process exit.
    121 //
    122 // DifferentiatingType is used as a key to differentiate two different
    123 // singletons having the same memory allocation functions but serving a
    124 // different purpose. This is mainly used for Locks serving different purposes.
    125 //
    126 // Example usage:
    127 //
    128 // In your header:
    129 //   #include "base/memory/singleton.h"
    130 //   class FooClass {
    131 //    public:
    132 //     static FooClass* GetInstance();  <-- See comment below on this.
    133 //     void Bar() { ... }
    134 //    private:
    135 //     FooClass() { ... }
    136 //     friend struct DefaultSingletonTraits<FooClass>;
    137 //
    138 //     DISALLOW_COPY_AND_ASSIGN(FooClass);
    139 //   };
    140 //
    141 // In your source file:
    142 //  FooClass* FooClass::GetInstance() {
    143 //    return Singleton<FooClass>::get();
    144 //  }
    145 //
    146 // And to call methods on FooClass:
    147 //   FooClass::GetInstance()->Bar();
    148 //
    149 // NOTE: The method accessing Singleton<T>::get() has to be named as GetInstance
    150 // and it is important that FooClass::GetInstance() is not inlined in the
    151 // header. This makes sure that when source files from multiple targets include
    152 // this header they don't end up with different copies of the inlined code
    153 // creating multiple copies of the singleton.
    154 //
    155 // Singleton<> has no non-static members and doesn't need to actually be
    156 // instantiated.
    157 //
    158 // This class is itself thread-safe. The underlying Type must of course be
    159 // thread-safe if you want to use it concurrently. Two parameters may be tuned
    160 // depending on the user's requirements.
    161 //
    162 // Glossary:
    163 //   RAE = kRegisterAtExit
    164 //
    165 // On every platform, if Traits::RAE is true, the singleton will be destroyed at
    166 // process exit. More precisely it uses base::AtExitManager which requires an
    167 // object of this type to be instantiated. AtExitManager mimics the semantics
    168 // of atexit() such as LIFO order but under Windows is safer to call. For more
    169 // information see at_exit.h.
    170 //
    171 // If Traits::RAE is false, the singleton will not be freed at process exit,
    172 // thus the singleton will be leaked if it is ever accessed. Traits::RAE
    173 // shouldn't be false unless absolutely necessary. Remember that the heap where
    174 // the object is allocated may be destroyed by the CRT anyway.
    175 //
    176 // Caveats:
    177 // (a) Every call to get(), operator->() and operator*() incurs some overhead
    178 //     (16ns on my P4/2.8GHz) to check whether the object has already been
    179 //     initialized.  You may wish to cache the result of get(); it will not
    180 //     change.
    181 //
    182 // (b) Your factory function must never throw an exception. This class is not
    183 //     exception-safe.
    184 //
    185 template <typename Type,
    186           typename Traits = DefaultSingletonTraits<Type>,
    187           typename DifferentiatingType = Type>
    188 class Singleton {
    189  private:
    190   // Classes using the Singleton<T> pattern should declare a GetInstance()
    191   // method and call Singleton::get() from within that.
    192   friend Type* Type::GetInstance();
    193 
    194   // This class is safe to be constructed and copy-constructed since it has no
    195   // member.
    196 
    197   // Return a pointer to the one true instance of the class.
    198   static Type* get() {
    199     if (!Traits::kAllowedToAccessOnNonjoinableThread)
    200       base::ThreadRestrictions::AssertSingletonAllowed();
    201 
    202     // Our AtomicWord doubles as a spinlock, where a value of
    203     // kBeingCreatedMarker means the spinlock is being held for creation.
    204     static const base::subtle::AtomicWord kBeingCreatedMarker = 1;
    205 
    206     base::subtle::AtomicWord value = base::subtle::NoBarrier_Load(&instance_);
    207     if (value != 0 && value != kBeingCreatedMarker) {
    208       // See the corresponding HAPPENS_BEFORE below.
    209       ANNOTATE_HAPPENS_AFTER(&instance_);
    210       return reinterpret_cast<Type*>(value);
    211     }
    212 
    213     // Object isn't created yet, maybe we will get to create it, let's try...
    214     if (base::subtle::Acquire_CompareAndSwap(&instance_,
    215                                              0,
    216                                              kBeingCreatedMarker) == 0) {
    217       // instance_ was NULL and is now kBeingCreatedMarker.  Only one thread
    218       // will ever get here.  Threads might be spinning on us, and they will
    219       // stop right after we do this store.
    220       Type* newval = Traits::New();
    221 
    222       // This annotation helps race detectors recognize correct lock-less
    223       // synchronization between different threads calling get().
    224       // See the corresponding HAPPENS_AFTER below and above.
    225       ANNOTATE_HAPPENS_BEFORE(&instance_);
    226       base::subtle::Release_Store(
    227           &instance_, reinterpret_cast<base::subtle::AtomicWord>(newval));
    228 
    229       if (newval != NULL && Traits::kRegisterAtExit)
    230         base::AtExitManager::RegisterCallback(OnExit, NULL);
    231 
    232       return newval;
    233     }
    234 
    235     // We hit a race.  Another thread beat us and either:
    236     // - Has the object in BeingCreated state
    237     // - Already has the object created...
    238     // We know value != NULL.  It could be kBeingCreatedMarker, or a valid ptr.
    239     // Unless your constructor can be very time consuming, it is very unlikely
    240     // to hit this race.  When it does, we just spin and yield the thread until
    241     // the object has been created.
    242     while (true) {
    243       value = base::subtle::NoBarrier_Load(&instance_);
    244       if (value != kBeingCreatedMarker)
    245         break;
    246       base::PlatformThread::YieldCurrentThread();
    247     }
    248 
    249     // See the corresponding HAPPENS_BEFORE above.
    250     ANNOTATE_HAPPENS_AFTER(&instance_);
    251     return reinterpret_cast<Type*>(value);
    252   }
    253 
    254   // Adapter function for use with AtExit().  This should be called single
    255   // threaded, so don't use atomic operations.
    256   // Calling OnExit while singleton is in use by other threads is a mistake.
    257   static void OnExit(void* /*unused*/) {
    258     // AtExit should only ever be register after the singleton instance was
    259     // created.  We should only ever get here with a valid instance_ pointer.
    260     Traits::Delete(
    261         reinterpret_cast<Type*>(base::subtle::NoBarrier_Load(&instance_)));
    262     instance_ = 0;
    263   }
    264   static base::subtle::AtomicWord instance_;
    265 };
    266 
    267 template <typename Type, typename Traits, typename DifferentiatingType>
    268 base::subtle::AtomicWord Singleton<Type, Traits, DifferentiatingType>::
    269     instance_ = 0;
    270 
    271 #endif  // BASE_MEMORY_SINGLETON_H_
    272