Home | History | Annotate | Download | only in MC
      1 //===-- llvm/Mc/McInstrDesc.h - Instruction Descriptors -*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the MCOperandInfo and MCInstrDesc classes, which
     11 // are used to describe target instructions and their operands.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #ifndef LLVM_MC_MCINSTRDESC_H
     16 #define LLVM_MC_MCINSTRDESC_H
     17 
     18 #include "llvm/Support/DataTypes.h"
     19 
     20 namespace llvm {
     21 
     22 //===----------------------------------------------------------------------===//
     23 // Machine Operand Flags and Description
     24 //===----------------------------------------------------------------------===//
     25 
     26 namespace MCOI {
     27   // Operand constraints
     28   enum OperandConstraint {
     29     TIED_TO = 0,    // Must be allocated the same register as.
     30     EARLY_CLOBBER   // Operand is an early clobber register operand
     31   };
     32 
     33   /// OperandFlags - These are flags set on operands, but should be considered
     34   /// private, all access should go through the MCOperandInfo accessors.
     35   /// See the accessors for a description of what these are.
     36   enum OperandFlags {
     37     LookupPtrRegClass = 0,
     38     Predicate,
     39     OptionalDef
     40   };
     41 
     42   /// Operand Type - Operands are tagged with one of the values of this enum.
     43   enum OperandType {
     44     OPERAND_UNKNOWN,
     45     OPERAND_IMMEDIATE,
     46     OPERAND_REGISTER,
     47     OPERAND_MEMORY,
     48     OPERAND_PCREL
     49   };
     50 }
     51 
     52 /// MCOperandInfo - This holds information about one operand of a machine
     53 /// instruction, indicating the register class for register operands, etc.
     54 ///
     55 class MCOperandInfo {
     56 public:
     57   /// RegClass - This specifies the register class enumeration of the operand
     58   /// if the operand is a register.  If isLookupPtrRegClass is set, then this is
     59   /// an index that is passed to TargetRegisterInfo::getPointerRegClass(x) to
     60   /// get a dynamic register class.
     61   short RegClass;
     62 
     63   /// Flags - These are flags from the MCOI::OperandFlags enum.
     64   unsigned short Flags;
     65 
     66   /// Lower 16 bits are used to specify which constraints are set. The higher 16
     67   /// bits are used to specify the value of constraints (4 bits each).
     68   unsigned Constraints;
     69 
     70   /// OperandType - Information about the type of the operand.
     71   MCOI::OperandType OperandType;
     72   /// Currently no other information.
     73 
     74   /// isLookupPtrRegClass - Set if this operand is a pointer value and it
     75   /// requires a callback to look up its register class.
     76   bool isLookupPtrRegClass() const {return Flags&(1 <<MCOI::LookupPtrRegClass);}
     77 
     78   /// isPredicate - Set if this is one of the operands that made up of
     79   /// the predicate operand that controls an isPredicable() instruction.
     80   bool isPredicate() const { return Flags & (1 << MCOI::Predicate); }
     81 
     82   /// isOptionalDef - Set if this operand is a optional def.
     83   ///
     84   bool isOptionalDef() const { return Flags & (1 << MCOI::OptionalDef); }
     85 };
     86 
     87 
     88 //===----------------------------------------------------------------------===//
     89 // Machine Instruction Flags and Description
     90 //===----------------------------------------------------------------------===//
     91 
     92 /// MCInstrDesc flags - These should be considered private to the
     93 /// implementation of the MCInstrDesc class.  Clients should use the predicate
     94 /// methods on MCInstrDesc, not use these directly.  These all correspond to
     95 /// bitfields in the MCInstrDesc::Flags field.
     96 namespace MCID {
     97   enum {
     98     Variadic = 0,
     99     HasOptionalDef,
    100     Pseudo,
    101     Return,
    102     Call,
    103     Barrier,
    104     Terminator,
    105     Branch,
    106     IndirectBranch,
    107     Compare,
    108     MoveImm,
    109     Bitcast,
    110     DelaySlot,
    111     FoldableAsLoad,
    112     MayLoad,
    113     MayStore,
    114     Predicable,
    115     NotDuplicable,
    116     UnmodeledSideEffects,
    117     Commutable,
    118     ConvertibleTo3Addr,
    119     UsesCustomInserter,
    120     HasPostISelHook,
    121     Rematerializable,
    122     CheapAsAMove,
    123     ExtraSrcRegAllocReq,
    124     ExtraDefRegAllocReq
    125   };
    126 }
    127 
    128 /// MCInstrDesc - Describe properties that are true of each instruction in the
    129 /// target description file.  This captures information about side effects,
    130 /// register use and many other things.  There is one instance of this struct
    131 /// for each target instruction class, and the MachineInstr class points to
    132 /// this struct directly to describe itself.
    133 class MCInstrDesc {
    134 public:
    135   unsigned short  Opcode;        // The opcode number
    136   unsigned short  NumOperands;   // Num of args (may be more if variable_ops)
    137   unsigned short  NumDefs;       // Num of args that are definitions
    138   unsigned short  SchedClass;    // enum identifying instr sched class
    139   unsigned short  Size;          // Number of bytes in encoding.
    140   const char *    Name;          // Name of the instruction record in td file
    141   unsigned        Flags;         // Flags identifying machine instr class
    142   uint64_t        TSFlags;       // Target Specific Flag values
    143   const unsigned *ImplicitUses;  // Registers implicitly read by this instr
    144   const unsigned *ImplicitDefs;  // Registers implicitly defined by this instr
    145   const MCOperandInfo *OpInfo;   // 'NumOperands' entries about operands
    146 
    147   /// getOperandConstraint - Returns the value of the specific constraint if
    148   /// it is set. Returns -1 if it is not set.
    149   int getOperandConstraint(unsigned OpNum,
    150                            MCOI::OperandConstraint Constraint) const {
    151     if (OpNum < NumOperands &&
    152         (OpInfo[OpNum].Constraints & (1 << Constraint))) {
    153       unsigned Pos = 16 + Constraint * 4;
    154       return (int)(OpInfo[OpNum].Constraints >> Pos) & 0xf;
    155     }
    156     return -1;
    157   }
    158 
    159   /// getOpcode - Return the opcode number for this descriptor.
    160   unsigned getOpcode() const {
    161     return Opcode;
    162   }
    163 
    164   /// getName - Return the name of the record in the .td file for this
    165   /// instruction, for example "ADD8ri".
    166   const char *getName() const {
    167     return Name;
    168   }
    169 
    170   /// getNumOperands - Return the number of declared MachineOperands for this
    171   /// MachineInstruction.  Note that variadic (isVariadic() returns true)
    172   /// instructions may have additional operands at the end of the list, and note
    173   /// that the machine instruction may include implicit register def/uses as
    174   /// well.
    175   unsigned getNumOperands() const {
    176     return NumOperands;
    177   }
    178 
    179   /// getNumDefs - Return the number of MachineOperands that are register
    180   /// definitions.  Register definitions always occur at the start of the
    181   /// machine operand list.  This is the number of "outs" in the .td file,
    182   /// and does not include implicit defs.
    183   unsigned getNumDefs() const {
    184     return NumDefs;
    185   }
    186 
    187   /// isVariadic - Return true if this instruction can have a variable number of
    188   /// operands.  In this case, the variable operands will be after the normal
    189   /// operands but before the implicit definitions and uses (if any are
    190   /// present).
    191   bool isVariadic() const {
    192     return Flags & (1 << MCID::Variadic);
    193   }
    194 
    195   /// hasOptionalDef - Set if this instruction has an optional definition, e.g.
    196   /// ARM instructions which can set condition code if 's' bit is set.
    197   bool hasOptionalDef() const {
    198     return Flags & (1 << MCID::HasOptionalDef);
    199   }
    200 
    201   /// getImplicitUses - Return a list of registers that are potentially
    202   /// read by any instance of this machine instruction.  For example, on X86,
    203   /// the "adc" instruction adds two register operands and adds the carry bit in
    204   /// from the flags register.  In this case, the instruction is marked as
    205   /// implicitly reading the flags.  Likewise, the variable shift instruction on
    206   /// X86 is marked as implicitly reading the 'CL' register, which it always
    207   /// does.
    208   ///
    209   /// This method returns null if the instruction has no implicit uses.
    210   const unsigned *getImplicitUses() const {
    211     return ImplicitUses;
    212   }
    213 
    214   /// getNumImplicitUses - Return the number of implicit uses this instruction
    215   /// has.
    216   unsigned getNumImplicitUses() const {
    217     if (ImplicitUses == 0) return 0;
    218     unsigned i = 0;
    219     for (; ImplicitUses[i]; ++i) /*empty*/;
    220     return i;
    221   }
    222 
    223   /// getImplicitDefs - Return a list of registers that are potentially
    224   /// written by any instance of this machine instruction.  For example, on X86,
    225   /// many instructions implicitly set the flags register.  In this case, they
    226   /// are marked as setting the FLAGS.  Likewise, many instructions always
    227   /// deposit their result in a physical register.  For example, the X86 divide
    228   /// instruction always deposits the quotient and remainder in the EAX/EDX
    229   /// registers.  For that instruction, this will return a list containing the
    230   /// EAX/EDX/EFLAGS registers.
    231   ///
    232   /// This method returns null if the instruction has no implicit defs.
    233   const unsigned *getImplicitDefs() const {
    234     return ImplicitDefs;
    235   }
    236 
    237   /// getNumImplicitDefs - Return the number of implicit defs this instruction
    238   /// has.
    239   unsigned getNumImplicitDefs() const {
    240     if (ImplicitDefs == 0) return 0;
    241     unsigned i = 0;
    242     for (; ImplicitDefs[i]; ++i) /*empty*/;
    243     return i;
    244   }
    245 
    246   /// hasImplicitUseOfPhysReg - Return true if this instruction implicitly
    247   /// uses the specified physical register.
    248   bool hasImplicitUseOfPhysReg(unsigned Reg) const {
    249     if (const unsigned *ImpUses = ImplicitUses)
    250       for (; *ImpUses; ++ImpUses)
    251         if (*ImpUses == Reg) return true;
    252     return false;
    253   }
    254 
    255   /// hasImplicitDefOfPhysReg - Return true if this instruction implicitly
    256   /// defines the specified physical register.
    257   bool hasImplicitDefOfPhysReg(unsigned Reg) const {
    258     if (const unsigned *ImpDefs = ImplicitDefs)
    259       for (; *ImpDefs; ++ImpDefs)
    260         if (*ImpDefs == Reg) return true;
    261     return false;
    262   }
    263 
    264   /// getSchedClass - Return the scheduling class for this instruction.  The
    265   /// scheduling class is an index into the InstrItineraryData table.  This
    266   /// returns zero if there is no known scheduling information for the
    267   /// instruction.
    268   ///
    269   unsigned getSchedClass() const {
    270     return SchedClass;
    271   }
    272 
    273   /// getSize - Return the number of bytes in the encoding of this instruction,
    274   /// or zero if the encoding size cannot be known from the opcode.
    275   unsigned getSize() const {
    276     return Size;
    277   }
    278 
    279   /// isPseudo - Return true if this is a pseudo instruction that doesn't
    280   /// correspond to a real machine instruction.
    281   ///
    282   bool isPseudo() const {
    283     return Flags & (1 << MCID::Pseudo);
    284   }
    285 
    286   bool isReturn() const {
    287     return Flags & (1 << MCID::Return);
    288   }
    289 
    290   bool isCall() const {
    291     return Flags & (1 << MCID::Call);
    292   }
    293 
    294   /// isBarrier - Returns true if the specified instruction stops control flow
    295   /// from executing the instruction immediately following it.  Examples include
    296   /// unconditional branches and return instructions.
    297   bool isBarrier() const {
    298     return Flags & (1 << MCID::Barrier);
    299   }
    300 
    301   /// findFirstPredOperandIdx() - Find the index of the first operand in the
    302   /// operand list that is used to represent the predicate. It returns -1 if
    303   /// none is found.
    304   int findFirstPredOperandIdx() const {
    305     if (isPredicable()) {
    306       for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
    307         if (OpInfo[i].isPredicate())
    308           return i;
    309     }
    310     return -1;
    311   }
    312 
    313   /// isTerminator - Returns true if this instruction part of the terminator for
    314   /// a basic block.  Typically this is things like return and branch
    315   /// instructions.
    316   ///
    317   /// Various passes use this to insert code into the bottom of a basic block,
    318   /// but before control flow occurs.
    319   bool isTerminator() const {
    320     return Flags & (1 << MCID::Terminator);
    321   }
    322 
    323   /// isBranch - Returns true if this is a conditional, unconditional, or
    324   /// indirect branch.  Predicates below can be used to discriminate between
    325   /// these cases, and the TargetInstrInfo::AnalyzeBranch method can be used to
    326   /// get more information.
    327   bool isBranch() const {
    328     return Flags & (1 << MCID::Branch);
    329   }
    330 
    331   /// isIndirectBranch - Return true if this is an indirect branch, such as a
    332   /// branch through a register.
    333   bool isIndirectBranch() const {
    334     return Flags & (1 << MCID::IndirectBranch);
    335   }
    336 
    337   /// isConditionalBranch - Return true if this is a branch which may fall
    338   /// through to the next instruction or may transfer control flow to some other
    339   /// block.  The TargetInstrInfo::AnalyzeBranch method can be used to get more
    340   /// information about this branch.
    341   bool isConditionalBranch() const {
    342     return isBranch() & !isBarrier() & !isIndirectBranch();
    343   }
    344 
    345   /// isUnconditionalBranch - Return true if this is a branch which always
    346   /// transfers control flow to some other block.  The
    347   /// TargetInstrInfo::AnalyzeBranch method can be used to get more information
    348   /// about this branch.
    349   bool isUnconditionalBranch() const {
    350     return isBranch() & isBarrier() & !isIndirectBranch();
    351   }
    352 
    353   // isPredicable - Return true if this instruction has a predicate operand that
    354   // controls execution.  It may be set to 'always', or may be set to other
    355   /// values.   There are various methods in TargetInstrInfo that can be used to
    356   /// control and modify the predicate in this instruction.
    357   bool isPredicable() const {
    358     return Flags & (1 << MCID::Predicable);
    359   }
    360 
    361   /// isCompare - Return true if this instruction is a comparison.
    362   bool isCompare() const {
    363     return Flags & (1 << MCID::Compare);
    364   }
    365 
    366   /// isMoveImmediate - Return true if this instruction is a move immediate
    367   /// (including conditional moves) instruction.
    368   bool isMoveImmediate() const {
    369     return Flags & (1 << MCID::MoveImm);
    370   }
    371 
    372   /// isBitcast - Return true if this instruction is a bitcast instruction.
    373   ///
    374   bool isBitcast() const {
    375     return Flags & (1 << MCID::Bitcast);
    376   }
    377 
    378   /// isNotDuplicable - Return true if this instruction cannot be safely
    379   /// duplicated.  For example, if the instruction has a unique labels attached
    380   /// to it, duplicating it would cause multiple definition errors.
    381   bool isNotDuplicable() const {
    382     return Flags & (1 << MCID::NotDuplicable);
    383   }
    384 
    385   /// hasDelaySlot - Returns true if the specified instruction has a delay slot
    386   /// which must be filled by the code generator.
    387   bool hasDelaySlot() const {
    388     return Flags & (1 << MCID::DelaySlot);
    389   }
    390 
    391   /// canFoldAsLoad - Return true for instructions that can be folded as
    392   /// memory operands in other instructions. The most common use for this
    393   /// is instructions that are simple loads from memory that don't modify
    394   /// the loaded value in any way, but it can also be used for instructions
    395   /// that can be expressed as constant-pool loads, such as V_SETALLONES
    396   /// on x86, to allow them to be folded when it is beneficial.
    397   /// This should only be set on instructions that return a value in their
    398   /// only virtual register definition.
    399   bool canFoldAsLoad() const {
    400     return Flags & (1 << MCID::FoldableAsLoad);
    401   }
    402 
    403   //===--------------------------------------------------------------------===//
    404   // Side Effect Analysis
    405   //===--------------------------------------------------------------------===//
    406 
    407   /// mayLoad - Return true if this instruction could possibly read memory.
    408   /// Instructions with this flag set are not necessarily simple load
    409   /// instructions, they may load a value and modify it, for example.
    410   bool mayLoad() const {
    411     return Flags & (1 << MCID::MayLoad);
    412   }
    413 
    414 
    415   /// mayStore - Return true if this instruction could possibly modify memory.
    416   /// Instructions with this flag set are not necessarily simple store
    417   /// instructions, they may store a modified value based on their operands, or
    418   /// may not actually modify anything, for example.
    419   bool mayStore() const {
    420     return Flags & (1 << MCID::MayStore);
    421   }
    422 
    423   /// hasUnmodeledSideEffects - Return true if this instruction has side
    424   /// effects that are not modeled by other flags.  This does not return true
    425   /// for instructions whose effects are captured by:
    426   ///
    427   ///  1. Their operand list and implicit definition/use list.  Register use/def
    428   ///     info is explicit for instructions.
    429   ///  2. Memory accesses.  Use mayLoad/mayStore.
    430   ///  3. Calling, branching, returning: use isCall/isReturn/isBranch.
    431   ///
    432   /// Examples of side effects would be modifying 'invisible' machine state like
    433   /// a control register, flushing a cache, modifying a register invisible to
    434   /// LLVM, etc.
    435   ///
    436   bool hasUnmodeledSideEffects() const {
    437     return Flags & (1 << MCID::UnmodeledSideEffects);
    438   }
    439 
    440   //===--------------------------------------------------------------------===//
    441   // Flags that indicate whether an instruction can be modified by a method.
    442   //===--------------------------------------------------------------------===//
    443 
    444   /// isCommutable - Return true if this may be a 2- or 3-address
    445   /// instruction (of the form "X = op Y, Z, ..."), which produces the same
    446   /// result if Y and Z are exchanged.  If this flag is set, then the
    447   /// TargetInstrInfo::commuteInstruction method may be used to hack on the
    448   /// instruction.
    449   ///
    450   /// Note that this flag may be set on instructions that are only commutable
    451   /// sometimes.  In these cases, the call to commuteInstruction will fail.
    452   /// Also note that some instructions require non-trivial modification to
    453   /// commute them.
    454   bool isCommutable() const {
    455     return Flags & (1 << MCID::Commutable);
    456   }
    457 
    458   /// isConvertibleTo3Addr - Return true if this is a 2-address instruction
    459   /// which can be changed into a 3-address instruction if needed.  Doing this
    460   /// transformation can be profitable in the register allocator, because it
    461   /// means that the instruction can use a 2-address form if possible, but
    462   /// degrade into a less efficient form if the source and dest register cannot
    463   /// be assigned to the same register.  For example, this allows the x86
    464   /// backend to turn a "shl reg, 3" instruction into an LEA instruction, which
    465   /// is the same speed as the shift but has bigger code size.
    466   ///
    467   /// If this returns true, then the target must implement the
    468   /// TargetInstrInfo::convertToThreeAddress method for this instruction, which
    469   /// is allowed to fail if the transformation isn't valid for this specific
    470   /// instruction (e.g. shl reg, 4 on x86).
    471   ///
    472   bool isConvertibleTo3Addr() const {
    473     return Flags & (1 << MCID::ConvertibleTo3Addr);
    474   }
    475 
    476   /// usesCustomInsertionHook - Return true if this instruction requires
    477   /// custom insertion support when the DAG scheduler is inserting it into a
    478   /// machine basic block.  If this is true for the instruction, it basically
    479   /// means that it is a pseudo instruction used at SelectionDAG time that is
    480   /// expanded out into magic code by the target when MachineInstrs are formed.
    481   ///
    482   /// If this is true, the TargetLoweringInfo::InsertAtEndOfBasicBlock method
    483   /// is used to insert this into the MachineBasicBlock.
    484   bool usesCustomInsertionHook() const {
    485     return Flags & (1 << MCID::UsesCustomInserter);
    486   }
    487 
    488   /// hasPostISelHook - Return true if this instruction requires *adjustment*
    489   /// after instruction selection by calling a target hook. For example, this
    490   /// can be used to fill in ARM 's' optional operand depending on whether
    491   /// the conditional flag register is used.
    492   bool hasPostISelHook() const {
    493     return Flags & (1 << MCID::HasPostISelHook);
    494   }
    495 
    496   /// isRematerializable - Returns true if this instruction is a candidate for
    497   /// remat.  This flag is deprecated, please don't use it anymore.  If this
    498   /// flag is set, the isReallyTriviallyReMaterializable() method is called to
    499   /// verify the instruction is really rematable.
    500   bool isRematerializable() const {
    501     return Flags & (1 << MCID::Rematerializable);
    502   }
    503 
    504   /// isAsCheapAsAMove - Returns true if this instruction has the same cost (or
    505   /// less) than a move instruction. This is useful during certain types of
    506   /// optimizations (e.g., remat during two-address conversion or machine licm)
    507   /// where we would like to remat or hoist the instruction, but not if it costs
    508   /// more than moving the instruction into the appropriate register. Note, we
    509   /// are not marking copies from and to the same register class with this flag.
    510   bool isAsCheapAsAMove() const {
    511     return Flags & (1 << MCID::CheapAsAMove);
    512   }
    513 
    514   /// hasExtraSrcRegAllocReq - Returns true if this instruction source operands
    515   /// have special register allocation requirements that are not captured by the
    516   /// operand register classes. e.g. ARM::STRD's two source registers must be an
    517   /// even / odd pair, ARM::STM registers have to be in ascending order.
    518   /// Post-register allocation passes should not attempt to change allocations
    519   /// for sources of instructions with this flag.
    520   bool hasExtraSrcRegAllocReq() const {
    521     return Flags & (1 << MCID::ExtraSrcRegAllocReq);
    522   }
    523 
    524   /// hasExtraDefRegAllocReq - Returns true if this instruction def operands
    525   /// have special register allocation requirements that are not captured by the
    526   /// operand register classes. e.g. ARM::LDRD's two def registers must be an
    527   /// even / odd pair, ARM::LDM registers have to be in ascending order.
    528   /// Post-register allocation passes should not attempt to change allocations
    529   /// for definitions of instructions with this flag.
    530   bool hasExtraDefRegAllocReq() const {
    531     return Flags & (1 << MCID::ExtraDefRegAllocReq);
    532   }
    533 };
    534 
    535 } // end namespace llvm
    536 
    537 #endif
    538