Home | History | Annotate | Download | only in JIT
      1 //===- JITTest.cpp - Unit tests for the JIT -------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 
     10 #include "gtest/gtest.h"
     11 #include "llvm/ADT/OwningPtr.h"
     12 #include "llvm/ADT/SmallPtrSet.h"
     13 #include "llvm/Assembly/Parser.h"
     14 #include "llvm/BasicBlock.h"
     15 #include "llvm/Bitcode/ReaderWriter.h"
     16 #include "llvm/Constant.h"
     17 #include "llvm/Constants.h"
     18 #include "llvm/DerivedTypes.h"
     19 #include "llvm/ExecutionEngine/JIT.h"
     20 #include "llvm/ExecutionEngine/JITMemoryManager.h"
     21 #include "llvm/Function.h"
     22 #include "llvm/GlobalValue.h"
     23 #include "llvm/GlobalVariable.h"
     24 #include "llvm/LLVMContext.h"
     25 #include "llvm/Module.h"
     26 #include "llvm/Support/IRBuilder.h"
     27 #include "llvm/Support/MemoryBuffer.h"
     28 #include "llvm/Support/SourceMgr.h"
     29 #include "llvm/Support/TypeBuilder.h"
     30 #include "llvm/Support/TargetSelect.h"
     31 #include "llvm/Type.h"
     32 
     33 #include <vector>
     34 
     35 using namespace llvm;
     36 
     37 namespace {
     38 
     39 Function *makeReturnGlobal(std::string Name, GlobalVariable *G, Module *M) {
     40   std::vector<Type*> params;
     41   FunctionType *FTy = FunctionType::get(G->getType()->getElementType(),
     42                                               params, false);
     43   Function *F = Function::Create(FTy, GlobalValue::ExternalLinkage, Name, M);
     44   BasicBlock *Entry = BasicBlock::Create(M->getContext(), "entry", F);
     45   IRBuilder<> builder(Entry);
     46   Value *Load = builder.CreateLoad(G);
     47   Type *GTy = G->getType()->getElementType();
     48   Value *Add = builder.CreateAdd(Load, ConstantInt::get(GTy, 1LL));
     49   builder.CreateStore(Add, G);
     50   builder.CreateRet(Add);
     51   return F;
     52 }
     53 
     54 std::string DumpFunction(const Function *F) {
     55   std::string Result;
     56   raw_string_ostream(Result) << "" << *F;
     57   return Result;
     58 }
     59 
     60 class RecordingJITMemoryManager : public JITMemoryManager {
     61   const OwningPtr<JITMemoryManager> Base;
     62 public:
     63   RecordingJITMemoryManager()
     64     : Base(JITMemoryManager::CreateDefaultMemManager()) {
     65     stubsAllocated = 0;
     66   }
     67 
     68   virtual void setMemoryWritable() { Base->setMemoryWritable(); }
     69   virtual void setMemoryExecutable() { Base->setMemoryExecutable(); }
     70   virtual void setPoisonMemory(bool poison) { Base->setPoisonMemory(poison); }
     71   virtual void AllocateGOT() { Base->AllocateGOT(); }
     72   virtual uint8_t *getGOTBase() const { return Base->getGOTBase(); }
     73   struct StartFunctionBodyCall {
     74     StartFunctionBodyCall(uint8_t *Result, const Function *F,
     75                           uintptr_t ActualSize, uintptr_t ActualSizeResult)
     76       : Result(Result), F(F), F_dump(DumpFunction(F)),
     77         ActualSize(ActualSize), ActualSizeResult(ActualSizeResult) {}
     78     uint8_t *Result;
     79     const Function *F;
     80     std::string F_dump;
     81     uintptr_t ActualSize;
     82     uintptr_t ActualSizeResult;
     83   };
     84   std::vector<StartFunctionBodyCall> startFunctionBodyCalls;
     85   virtual uint8_t *startFunctionBody(const Function *F,
     86                                      uintptr_t &ActualSize) {
     87     uintptr_t InitialActualSize = ActualSize;
     88     uint8_t *Result = Base->startFunctionBody(F, ActualSize);
     89     startFunctionBodyCalls.push_back(
     90       StartFunctionBodyCall(Result, F, InitialActualSize, ActualSize));
     91     return Result;
     92   }
     93   int stubsAllocated;
     94   virtual uint8_t *allocateStub(const GlobalValue* F, unsigned StubSize,
     95                                 unsigned Alignment) {
     96     stubsAllocated++;
     97     return Base->allocateStub(F, StubSize, Alignment);
     98   }
     99   struct EndFunctionBodyCall {
    100     EndFunctionBodyCall(const Function *F, uint8_t *FunctionStart,
    101                         uint8_t *FunctionEnd)
    102       : F(F), F_dump(DumpFunction(F)),
    103         FunctionStart(FunctionStart), FunctionEnd(FunctionEnd) {}
    104     const Function *F;
    105     std::string F_dump;
    106     uint8_t *FunctionStart;
    107     uint8_t *FunctionEnd;
    108   };
    109   std::vector<EndFunctionBodyCall> endFunctionBodyCalls;
    110   virtual void endFunctionBody(const Function *F, uint8_t *FunctionStart,
    111                                uint8_t *FunctionEnd) {
    112     endFunctionBodyCalls.push_back(
    113       EndFunctionBodyCall(F, FunctionStart, FunctionEnd));
    114     Base->endFunctionBody(F, FunctionStart, FunctionEnd);
    115   }
    116   virtual uint8_t *allocateSpace(intptr_t Size, unsigned Alignment) {
    117     return Base->allocateSpace(Size, Alignment);
    118   }
    119   virtual uint8_t *allocateGlobal(uintptr_t Size, unsigned Alignment) {
    120     return Base->allocateGlobal(Size, Alignment);
    121   }
    122   struct DeallocateFunctionBodyCall {
    123     DeallocateFunctionBodyCall(const void *Body) : Body(Body) {}
    124     const void *Body;
    125   };
    126   std::vector<DeallocateFunctionBodyCall> deallocateFunctionBodyCalls;
    127   virtual void deallocateFunctionBody(void *Body) {
    128     deallocateFunctionBodyCalls.push_back(DeallocateFunctionBodyCall(Body));
    129     Base->deallocateFunctionBody(Body);
    130   }
    131   struct DeallocateExceptionTableCall {
    132     DeallocateExceptionTableCall(const void *ET) : ET(ET) {}
    133     const void *ET;
    134   };
    135   std::vector<DeallocateExceptionTableCall> deallocateExceptionTableCalls;
    136   virtual void deallocateExceptionTable(void *ET) {
    137     deallocateExceptionTableCalls.push_back(DeallocateExceptionTableCall(ET));
    138     Base->deallocateExceptionTable(ET);
    139   }
    140   struct StartExceptionTableCall {
    141     StartExceptionTableCall(uint8_t *Result, const Function *F,
    142                             uintptr_t ActualSize, uintptr_t ActualSizeResult)
    143       : Result(Result), F(F), F_dump(DumpFunction(F)),
    144         ActualSize(ActualSize), ActualSizeResult(ActualSizeResult) {}
    145     uint8_t *Result;
    146     const Function *F;
    147     std::string F_dump;
    148     uintptr_t ActualSize;
    149     uintptr_t ActualSizeResult;
    150   };
    151   std::vector<StartExceptionTableCall> startExceptionTableCalls;
    152   virtual uint8_t* startExceptionTable(const Function* F,
    153                                        uintptr_t &ActualSize) {
    154     uintptr_t InitialActualSize = ActualSize;
    155     uint8_t *Result = Base->startExceptionTable(F, ActualSize);
    156     startExceptionTableCalls.push_back(
    157       StartExceptionTableCall(Result, F, InitialActualSize, ActualSize));
    158     return Result;
    159   }
    160   struct EndExceptionTableCall {
    161     EndExceptionTableCall(const Function *F, uint8_t *TableStart,
    162                           uint8_t *TableEnd, uint8_t* FrameRegister)
    163       : F(F), F_dump(DumpFunction(F)),
    164         TableStart(TableStart), TableEnd(TableEnd),
    165         FrameRegister(FrameRegister) {}
    166     const Function *F;
    167     std::string F_dump;
    168     uint8_t *TableStart;
    169     uint8_t *TableEnd;
    170     uint8_t *FrameRegister;
    171   };
    172   std::vector<EndExceptionTableCall> endExceptionTableCalls;
    173   virtual void endExceptionTable(const Function *F, uint8_t *TableStart,
    174                                  uint8_t *TableEnd, uint8_t* FrameRegister) {
    175       endExceptionTableCalls.push_back(
    176           EndExceptionTableCall(F, TableStart, TableEnd, FrameRegister));
    177     return Base->endExceptionTable(F, TableStart, TableEnd, FrameRegister);
    178   }
    179 };
    180 
    181 bool LoadAssemblyInto(Module *M, const char *assembly) {
    182   SMDiagnostic Error;
    183   bool success =
    184     NULL != ParseAssemblyString(assembly, M, Error, M->getContext());
    185   std::string errMsg;
    186   raw_string_ostream os(errMsg);
    187   Error.print("", os);
    188   EXPECT_TRUE(success) << os.str();
    189   return success;
    190 }
    191 
    192 class JITTest : public testing::Test {
    193  protected:
    194   virtual void SetUp() {
    195     M = new Module("<main>", Context);
    196     RJMM = new RecordingJITMemoryManager;
    197     RJMM->setPoisonMemory(true);
    198     std::string Error;
    199     TheJIT.reset(EngineBuilder(M).setEngineKind(EngineKind::JIT)
    200                  .setJITMemoryManager(RJMM)
    201                  .setErrorStr(&Error).create());
    202     ASSERT_TRUE(TheJIT.get() != NULL) << Error;
    203   }
    204 
    205   void LoadAssembly(const char *assembly) {
    206     LoadAssemblyInto(M, assembly);
    207   }
    208 
    209   LLVMContext Context;
    210   Module *M;  // Owned by ExecutionEngine.
    211   RecordingJITMemoryManager *RJMM;
    212   OwningPtr<ExecutionEngine> TheJIT;
    213 };
    214 
    215 // Regression test for a bug.  The JIT used to allocate globals inside the same
    216 // memory block used for the function, and when the function code was freed,
    217 // the global was left in the same place.  This test allocates a function
    218 // that uses and global, deallocates it, and then makes sure that the global
    219 // stays alive after that.
    220 TEST(JIT, GlobalInFunction) {
    221   LLVMContext context;
    222   Module *M = new Module("<main>", context);
    223 
    224   JITMemoryManager *MemMgr = JITMemoryManager::CreateDefaultMemManager();
    225   // Tell the memory manager to poison freed memory so that accessing freed
    226   // memory is more easily tested.
    227   MemMgr->setPoisonMemory(true);
    228   std::string Error;
    229   OwningPtr<ExecutionEngine> JIT(EngineBuilder(M)
    230                                  .setEngineKind(EngineKind::JIT)
    231                                  .setErrorStr(&Error)
    232                                  .setJITMemoryManager(MemMgr)
    233                                  // The next line enables the fix:
    234                                  .setAllocateGVsWithCode(false)
    235                                  .create());
    236   ASSERT_EQ(Error, "");
    237 
    238   // Create a global variable.
    239   Type *GTy = Type::getInt32Ty(context);
    240   GlobalVariable *G = new GlobalVariable(
    241       *M,
    242       GTy,
    243       false,  // Not constant.
    244       GlobalValue::InternalLinkage,
    245       Constant::getNullValue(GTy),
    246       "myglobal");
    247 
    248   // Make a function that points to a global.
    249   Function *F1 = makeReturnGlobal("F1", G, M);
    250 
    251   // Get the pointer to the native code to force it to JIT the function and
    252   // allocate space for the global.
    253   void (*F1Ptr)() =
    254       reinterpret_cast<void(*)()>((intptr_t)JIT->getPointerToFunction(F1));
    255 
    256   // Since F1 was codegen'd, a pointer to G should be available.
    257   int32_t *GPtr = (int32_t*)JIT->getPointerToGlobalIfAvailable(G);
    258   ASSERT_NE((int32_t*)NULL, GPtr);
    259   EXPECT_EQ(0, *GPtr);
    260 
    261   // F1() should increment G.
    262   F1Ptr();
    263   EXPECT_EQ(1, *GPtr);
    264 
    265   // Make a second function identical to the first, referring to the same
    266   // global.
    267   Function *F2 = makeReturnGlobal("F2", G, M);
    268   void (*F2Ptr)() =
    269       reinterpret_cast<void(*)()>((intptr_t)JIT->getPointerToFunction(F2));
    270 
    271   // F2() should increment G.
    272   F2Ptr();
    273   EXPECT_EQ(2, *GPtr);
    274 
    275   // Deallocate F1.
    276   JIT->freeMachineCodeForFunction(F1);
    277 
    278   // F2() should *still* increment G.
    279   F2Ptr();
    280   EXPECT_EQ(3, *GPtr);
    281 }
    282 
    283 int PlusOne(int arg) {
    284   return arg + 1;
    285 }
    286 
    287 // ARM tests disabled pending fix for PR10783.
    288 #if !defined(__arm__)
    289 TEST_F(JITTest, FarCallToKnownFunction) {
    290   // x86-64 can only make direct calls to functions within 32 bits of
    291   // the current PC.  To call anything farther away, we have to load
    292   // the address into a register and call through the register.  The
    293   // current JIT does this by allocating a stub for any far call.
    294   // There was a bug in which the JIT tried to emit a direct call when
    295   // the target was already in the JIT's global mappings and lazy
    296   // compilation was disabled.
    297 
    298   Function *KnownFunction = Function::Create(
    299       TypeBuilder<int(int), false>::get(Context),
    300       GlobalValue::ExternalLinkage, "known", M);
    301   TheJIT->addGlobalMapping(KnownFunction, (void*)(intptr_t)PlusOne);
    302 
    303   // int test() { return known(7); }
    304   Function *TestFunction = Function::Create(
    305       TypeBuilder<int(), false>::get(Context),
    306       GlobalValue::ExternalLinkage, "test", M);
    307   BasicBlock *Entry = BasicBlock::Create(Context, "entry", TestFunction);
    308   IRBuilder<> Builder(Entry);
    309   Value *result = Builder.CreateCall(
    310       KnownFunction,
    311       ConstantInt::get(TypeBuilder<int, false>::get(Context), 7));
    312   Builder.CreateRet(result);
    313 
    314   TheJIT->DisableLazyCompilation(true);
    315   int (*TestFunctionPtr)() = reinterpret_cast<int(*)()>(
    316       (intptr_t)TheJIT->getPointerToFunction(TestFunction));
    317   // This used to crash in trying to call PlusOne().
    318   EXPECT_EQ(8, TestFunctionPtr());
    319 }
    320 
    321 // Test a function C which calls A and B which call each other.
    322 TEST_F(JITTest, NonLazyCompilationStillNeedsStubs) {
    323   TheJIT->DisableLazyCompilation(true);
    324 
    325   FunctionType *Func1Ty =
    326       cast<FunctionType>(TypeBuilder<void(void), false>::get(Context));
    327   std::vector<Type*> arg_types;
    328   arg_types.push_back(Type::getInt1Ty(Context));
    329   FunctionType *FuncTy = FunctionType::get(
    330       Type::getVoidTy(Context), arg_types, false);
    331   Function *Func1 = Function::Create(Func1Ty, Function::ExternalLinkage,
    332                                      "func1", M);
    333   Function *Func2 = Function::Create(FuncTy, Function::InternalLinkage,
    334                                      "func2", M);
    335   Function *Func3 = Function::Create(FuncTy, Function::InternalLinkage,
    336                                      "func3", M);
    337   BasicBlock *Block1 = BasicBlock::Create(Context, "block1", Func1);
    338   BasicBlock *Block2 = BasicBlock::Create(Context, "block2", Func2);
    339   BasicBlock *True2 = BasicBlock::Create(Context, "cond_true", Func2);
    340   BasicBlock *False2 = BasicBlock::Create(Context, "cond_false", Func2);
    341   BasicBlock *Block3 = BasicBlock::Create(Context, "block3", Func3);
    342   BasicBlock *True3 = BasicBlock::Create(Context, "cond_true", Func3);
    343   BasicBlock *False3 = BasicBlock::Create(Context, "cond_false", Func3);
    344 
    345   // Make Func1 call Func2(0) and Func3(0).
    346   IRBuilder<> Builder(Block1);
    347   Builder.CreateCall(Func2, ConstantInt::getTrue(Context));
    348   Builder.CreateCall(Func3, ConstantInt::getTrue(Context));
    349   Builder.CreateRetVoid();
    350 
    351   // void Func2(bool b) { if (b) { Func3(false); return; } return; }
    352   Builder.SetInsertPoint(Block2);
    353   Builder.CreateCondBr(Func2->arg_begin(), True2, False2);
    354   Builder.SetInsertPoint(True2);
    355   Builder.CreateCall(Func3, ConstantInt::getFalse(Context));
    356   Builder.CreateRetVoid();
    357   Builder.SetInsertPoint(False2);
    358   Builder.CreateRetVoid();
    359 
    360   // void Func3(bool b) { if (b) { Func2(false); return; } return; }
    361   Builder.SetInsertPoint(Block3);
    362   Builder.CreateCondBr(Func3->arg_begin(), True3, False3);
    363   Builder.SetInsertPoint(True3);
    364   Builder.CreateCall(Func2, ConstantInt::getFalse(Context));
    365   Builder.CreateRetVoid();
    366   Builder.SetInsertPoint(False3);
    367   Builder.CreateRetVoid();
    368 
    369   // Compile the function to native code
    370   void (*F1Ptr)() =
    371      reinterpret_cast<void(*)()>((intptr_t)TheJIT->getPointerToFunction(Func1));
    372 
    373   F1Ptr();
    374 }
    375 
    376 // Regression test for PR5162.  This used to trigger an AssertingVH inside the
    377 // JIT's Function to stub mapping.
    378 TEST_F(JITTest, NonLazyLeaksNoStubs) {
    379   TheJIT->DisableLazyCompilation(true);
    380 
    381   // Create two functions with a single basic block each.
    382   FunctionType *FuncTy =
    383       cast<FunctionType>(TypeBuilder<int(), false>::get(Context));
    384   Function *Func1 = Function::Create(FuncTy, Function::ExternalLinkage,
    385                                      "func1", M);
    386   Function *Func2 = Function::Create(FuncTy, Function::InternalLinkage,
    387                                      "func2", M);
    388   BasicBlock *Block1 = BasicBlock::Create(Context, "block1", Func1);
    389   BasicBlock *Block2 = BasicBlock::Create(Context, "block2", Func2);
    390 
    391   // The first function calls the second and returns the result
    392   IRBuilder<> Builder(Block1);
    393   Value *Result = Builder.CreateCall(Func2);
    394   Builder.CreateRet(Result);
    395 
    396   // The second function just returns a constant
    397   Builder.SetInsertPoint(Block2);
    398   Builder.CreateRet(ConstantInt::get(TypeBuilder<int, false>::get(Context),42));
    399 
    400   // Compile the function to native code
    401   (void)TheJIT->getPointerToFunction(Func1);
    402 
    403   // Free the JIT state for the functions
    404   TheJIT->freeMachineCodeForFunction(Func1);
    405   TheJIT->freeMachineCodeForFunction(Func2);
    406 
    407   // Delete the first function (and show that is has no users)
    408   EXPECT_EQ(Func1->getNumUses(), 0u);
    409   Func1->eraseFromParent();
    410 
    411   // Delete the second function (and show that it has no users - it had one,
    412   // func1 but that's gone now)
    413   EXPECT_EQ(Func2->getNumUses(), 0u);
    414   Func2->eraseFromParent();
    415 }
    416 
    417 TEST_F(JITTest, ModuleDeletion) {
    418   TheJIT->DisableLazyCompilation(false);
    419   LoadAssembly("define void @main() { "
    420                "  call i32 @computeVal() "
    421                "  ret void "
    422                "} "
    423                " "
    424                "define internal i32 @computeVal()  { "
    425                "  ret i32 0 "
    426                "} ");
    427   Function *func = M->getFunction("main");
    428   TheJIT->getPointerToFunction(func);
    429   TheJIT->removeModule(M);
    430   delete M;
    431 
    432   SmallPtrSet<const void*, 2> FunctionsDeallocated;
    433   for (unsigned i = 0, e = RJMM->deallocateFunctionBodyCalls.size();
    434        i != e; ++i) {
    435     FunctionsDeallocated.insert(RJMM->deallocateFunctionBodyCalls[i].Body);
    436   }
    437   for (unsigned i = 0, e = RJMM->startFunctionBodyCalls.size(); i != e; ++i) {
    438     EXPECT_TRUE(FunctionsDeallocated.count(
    439                   RJMM->startFunctionBodyCalls[i].Result))
    440       << "Function leaked: \n" << RJMM->startFunctionBodyCalls[i].F_dump;
    441   }
    442   EXPECT_EQ(RJMM->startFunctionBodyCalls.size(),
    443             RJMM->deallocateFunctionBodyCalls.size());
    444 
    445   SmallPtrSet<const void*, 2> ExceptionTablesDeallocated;
    446   unsigned NumTablesDeallocated = 0;
    447   for (unsigned i = 0, e = RJMM->deallocateExceptionTableCalls.size();
    448        i != e; ++i) {
    449     ExceptionTablesDeallocated.insert(
    450         RJMM->deallocateExceptionTableCalls[i].ET);
    451     if (RJMM->deallocateExceptionTableCalls[i].ET != NULL) {
    452         // If JITEmitDebugInfo is off, we'll "deallocate" NULL, which doesn't
    453         // appear in startExceptionTableCalls.
    454         NumTablesDeallocated++;
    455     }
    456   }
    457   for (unsigned i = 0, e = RJMM->startExceptionTableCalls.size(); i != e; ++i) {
    458     EXPECT_TRUE(ExceptionTablesDeallocated.count(
    459                   RJMM->startExceptionTableCalls[i].Result))
    460       << "Function's exception table leaked: \n"
    461       << RJMM->startExceptionTableCalls[i].F_dump;
    462   }
    463   EXPECT_EQ(RJMM->startExceptionTableCalls.size(),
    464             NumTablesDeallocated);
    465 }
    466 #endif // !defined(__arm__)
    467 
    468 // ARM and PPC still emit stubs for calls since the target may be too far away
    469 // to call directly.  This #if can probably be removed when
    470 // http://llvm.org/PR5201 is fixed.
    471 #if !defined(__arm__) && !defined(__powerpc__) && !defined(__ppc__)
    472 typedef int (*FooPtr) ();
    473 
    474 TEST_F(JITTest, NoStubs) {
    475   LoadAssembly("define void @bar() {"
    476 	       "entry: "
    477 	       "ret void"
    478 	       "}"
    479 	       " "
    480 	       "define i32 @foo() {"
    481 	       "entry:"
    482 	       "call void @bar()"
    483 	       "ret i32 undef"
    484 	       "}"
    485 	       " "
    486 	       "define i32 @main() {"
    487 	       "entry:"
    488 	       "%0 = call i32 @foo()"
    489 	       "call void @bar()"
    490 	       "ret i32 undef"
    491 	       "}");
    492   Function *foo = M->getFunction("foo");
    493   uintptr_t tmp = (uintptr_t)(TheJIT->getPointerToFunction(foo));
    494   FooPtr ptr = (FooPtr)(tmp);
    495 
    496   (ptr)();
    497 
    498   // We should now allocate no more stubs, we have the code to foo
    499   // and the existing stub for bar.
    500   int stubsBefore = RJMM->stubsAllocated;
    501   Function *func = M->getFunction("main");
    502   TheJIT->getPointerToFunction(func);
    503 
    504   Function *bar = M->getFunction("bar");
    505   TheJIT->getPointerToFunction(bar);
    506 
    507   ASSERT_EQ(stubsBefore, RJMM->stubsAllocated);
    508 }
    509 #endif  // !ARM && !PPC
    510 
    511 TEST_F(JITTest, FunctionPointersOutliveTheirCreator) {
    512   TheJIT->DisableLazyCompilation(true);
    513   LoadAssembly("define i8()* @get_foo_addr() { "
    514                "  ret i8()* @foo "
    515                "} "
    516                " "
    517                "define i8 @foo() { "
    518                "  ret i8 42 "
    519                "} ");
    520   Function *F_get_foo_addr = M->getFunction("get_foo_addr");
    521 
    522   typedef char(*fooT)();
    523   fooT (*get_foo_addr)() = reinterpret_cast<fooT(*)()>(
    524       (intptr_t)TheJIT->getPointerToFunction(F_get_foo_addr));
    525   fooT foo_addr = get_foo_addr();
    526 
    527   // Now free get_foo_addr.  This should not free the machine code for foo or
    528   // any call stub returned as foo's canonical address.
    529   TheJIT->freeMachineCodeForFunction(F_get_foo_addr);
    530 
    531   // Check by calling the reported address of foo.
    532   EXPECT_EQ(42, foo_addr());
    533 
    534   // The reported address should also be the same as the result of a subsequent
    535   // getPointerToFunction(foo).
    536 #if 0
    537   // Fails until PR5126 is fixed:
    538   Function *F_foo = M->getFunction("foo");
    539   fooT foo = reinterpret_cast<fooT>(
    540       (intptr_t)TheJIT->getPointerToFunction(F_foo));
    541   EXPECT_EQ((intptr_t)foo, (intptr_t)foo_addr);
    542 #endif
    543 }
    544 
    545 // ARM doesn't have an implementation of replaceMachineCodeForFunction(), so
    546 // recompileAndRelinkFunction doesn't work.
    547 #if !defined(__arm__)
    548 TEST_F(JITTest, FunctionIsRecompiledAndRelinked) {
    549   Function *F = Function::Create(TypeBuilder<int(void), false>::get(Context),
    550                                  GlobalValue::ExternalLinkage, "test", M);
    551   BasicBlock *Entry = BasicBlock::Create(Context, "entry", F);
    552   IRBuilder<> Builder(Entry);
    553   Value *Val = ConstantInt::get(TypeBuilder<int, false>::get(Context), 1);
    554   Builder.CreateRet(Val);
    555 
    556   TheJIT->DisableLazyCompilation(true);
    557   // Compile the function once, and make sure it works.
    558   int (*OrigFPtr)() = reinterpret_cast<int(*)()>(
    559     (intptr_t)TheJIT->recompileAndRelinkFunction(F));
    560   EXPECT_EQ(1, OrigFPtr());
    561 
    562   // Now change the function to return a different value.
    563   Entry->eraseFromParent();
    564   BasicBlock *NewEntry = BasicBlock::Create(Context, "new_entry", F);
    565   Builder.SetInsertPoint(NewEntry);
    566   Val = ConstantInt::get(TypeBuilder<int, false>::get(Context), 2);
    567   Builder.CreateRet(Val);
    568   // Recompile it, which should produce a new function pointer _and_ update the
    569   // old one.
    570   int (*NewFPtr)() = reinterpret_cast<int(*)()>(
    571     (intptr_t)TheJIT->recompileAndRelinkFunction(F));
    572 
    573   EXPECT_EQ(2, NewFPtr())
    574     << "The new pointer should call the new version of the function";
    575   EXPECT_EQ(2, OrigFPtr())
    576     << "The old pointer's target should now jump to the new version";
    577 }
    578 #endif  // !defined(__arm__)
    579 
    580 }  // anonymous namespace
    581 // This variable is intentionally defined differently in the statically-compiled
    582 // program from the IR input to the JIT to assert that the JIT doesn't use its
    583 // definition.
    584 extern "C" int32_t JITTest_AvailableExternallyGlobal;
    585 int32_t JITTest_AvailableExternallyGlobal = 42;
    586 namespace {
    587 
    588 TEST_F(JITTest, AvailableExternallyGlobalIsntEmitted) {
    589   TheJIT->DisableLazyCompilation(true);
    590   LoadAssembly("@JITTest_AvailableExternallyGlobal = "
    591                "  available_externally global i32 7 "
    592                " "
    593                "define i32 @loader() { "
    594                "  %result = load i32* @JITTest_AvailableExternallyGlobal "
    595                "  ret i32 %result "
    596                "} ");
    597   Function *loaderIR = M->getFunction("loader");
    598 
    599   int32_t (*loader)() = reinterpret_cast<int32_t(*)()>(
    600     (intptr_t)TheJIT->getPointerToFunction(loaderIR));
    601   EXPECT_EQ(42, loader()) << "func should return 42 from the external global,"
    602                           << " not 7 from the IR version.";
    603 }
    604 
    605 }  // anonymous namespace
    606 // This function is intentionally defined differently in the statically-compiled
    607 // program from the IR input to the JIT to assert that the JIT doesn't use its
    608 // definition.
    609 extern "C" int32_t JITTest_AvailableExternallyFunction() {
    610   return 42;
    611 }
    612 namespace {
    613 
    614 // ARM tests disabled pending fix for PR10783.
    615 #if !defined(__arm__)
    616 TEST_F(JITTest, AvailableExternallyFunctionIsntCompiled) {
    617   TheJIT->DisableLazyCompilation(true);
    618   LoadAssembly("define available_externally i32 "
    619                "    @JITTest_AvailableExternallyFunction() { "
    620                "  ret i32 7 "
    621                "} "
    622                " "
    623                "define i32 @func() { "
    624                "  %result = tail call i32 "
    625                "    @JITTest_AvailableExternallyFunction() "
    626                "  ret i32 %result "
    627                "} ");
    628   Function *funcIR = M->getFunction("func");
    629 
    630   int32_t (*func)() = reinterpret_cast<int32_t(*)()>(
    631     (intptr_t)TheJIT->getPointerToFunction(funcIR));
    632   EXPECT_EQ(42, func()) << "func should return 42 from the static version,"
    633                         << " not 7 from the IR version.";
    634 }
    635 
    636 TEST_F(JITTest, EscapedLazyStubStillCallable) {
    637   TheJIT->DisableLazyCompilation(false);
    638   LoadAssembly("define internal i32 @stubbed() { "
    639                "  ret i32 42 "
    640                "} "
    641                " "
    642                "define i32()* @get_stub() { "
    643                "  ret i32()* @stubbed "
    644                "} ");
    645   typedef int32_t(*StubTy)();
    646 
    647   // Call get_stub() to get the address of @stubbed without actually JITting it.
    648   Function *get_stubIR = M->getFunction("get_stub");
    649   StubTy (*get_stub)() = reinterpret_cast<StubTy(*)()>(
    650     (intptr_t)TheJIT->getPointerToFunction(get_stubIR));
    651   StubTy stubbed = get_stub();
    652   // Now get_stubIR is the only reference to stubbed's stub.
    653   get_stubIR->eraseFromParent();
    654   // Now there are no references inside the JIT, but we've got a pointer outside
    655   // it.  The stub should be callable and return the right value.
    656   EXPECT_EQ(42, stubbed());
    657 }
    658 
    659 // Converts the LLVM assembly to bitcode and returns it in a std::string.  An
    660 // empty string indicates an error.
    661 std::string AssembleToBitcode(LLVMContext &Context, const char *Assembly) {
    662   Module TempModule("TempModule", Context);
    663   if (!LoadAssemblyInto(&TempModule, Assembly)) {
    664     return "";
    665   }
    666 
    667   std::string Result;
    668   raw_string_ostream OS(Result);
    669   WriteBitcodeToFile(&TempModule, OS);
    670   OS.flush();
    671   return Result;
    672 }
    673 
    674 // Returns a newly-created ExecutionEngine that reads the bitcode in 'Bitcode'
    675 // lazily.  The associated Module (owned by the ExecutionEngine) is returned in
    676 // M.  Both will be NULL on an error.  Bitcode must live at least as long as the
    677 // ExecutionEngine.
    678 ExecutionEngine *getJITFromBitcode(
    679   LLVMContext &Context, const std::string &Bitcode, Module *&M) {
    680   // c_str() is null-terminated like MemoryBuffer::getMemBuffer requires.
    681   MemoryBuffer *BitcodeBuffer =
    682     MemoryBuffer::getMemBuffer(Bitcode, "Bitcode for test");
    683   std::string errMsg;
    684   M = getLazyBitcodeModule(BitcodeBuffer, Context, &errMsg);
    685   if (M == NULL) {
    686     ADD_FAILURE() << errMsg;
    687     delete BitcodeBuffer;
    688     return NULL;
    689   }
    690   ExecutionEngine *TheJIT = EngineBuilder(M)
    691     .setEngineKind(EngineKind::JIT)
    692     .setErrorStr(&errMsg)
    693     .create();
    694   if (TheJIT == NULL) {
    695     ADD_FAILURE() << errMsg;
    696     delete M;
    697     M = NULL;
    698     return NULL;
    699   }
    700   return TheJIT;
    701 }
    702 
    703 TEST(LazyLoadedJITTest, MaterializableAvailableExternallyFunctionIsntCompiled) {
    704   LLVMContext Context;
    705   const std::string Bitcode =
    706     AssembleToBitcode(Context,
    707                       "define available_externally i32 "
    708                       "    @JITTest_AvailableExternallyFunction() { "
    709                       "  ret i32 7 "
    710                       "} "
    711                       " "
    712                       "define i32 @func() { "
    713                       "  %result = tail call i32 "
    714                       "    @JITTest_AvailableExternallyFunction() "
    715                       "  ret i32 %result "
    716                       "} ");
    717   ASSERT_FALSE(Bitcode.empty()) << "Assembling failed";
    718   Module *M;
    719   OwningPtr<ExecutionEngine> TheJIT(getJITFromBitcode(Context, Bitcode, M));
    720   ASSERT_TRUE(TheJIT.get()) << "Failed to create JIT.";
    721   TheJIT->DisableLazyCompilation(true);
    722 
    723   Function *funcIR = M->getFunction("func");
    724   Function *availableFunctionIR =
    725     M->getFunction("JITTest_AvailableExternallyFunction");
    726 
    727   // Double-check that the available_externally function is still unmaterialized
    728   // when getPointerToFunction needs to find out if it's available_externally.
    729   EXPECT_TRUE(availableFunctionIR->isMaterializable());
    730 
    731   int32_t (*func)() = reinterpret_cast<int32_t(*)()>(
    732     (intptr_t)TheJIT->getPointerToFunction(funcIR));
    733   EXPECT_EQ(42, func()) << "func should return 42 from the static version,"
    734                         << " not 7 from the IR version.";
    735 }
    736 
    737 TEST(LazyLoadedJITTest, EagerCompiledRecursionThroughGhost) {
    738   LLVMContext Context;
    739   const std::string Bitcode =
    740     AssembleToBitcode(Context,
    741                       "define i32 @recur1(i32 %a) { "
    742                       "  %zero = icmp eq i32 %a, 0 "
    743                       "  br i1 %zero, label %done, label %notdone "
    744                       "done: "
    745                       "  ret i32 3 "
    746                       "notdone: "
    747                       "  %am1 = sub i32 %a, 1 "
    748                       "  %result = call i32 @recur2(i32 %am1) "
    749                       "  ret i32 %result "
    750                       "} "
    751                       " "
    752                       "define i32 @recur2(i32 %b) { "
    753                       "  %result = call i32 @recur1(i32 %b) "
    754                       "  ret i32 %result "
    755                       "} ");
    756   ASSERT_FALSE(Bitcode.empty()) << "Assembling failed";
    757   Module *M;
    758   OwningPtr<ExecutionEngine> TheJIT(getJITFromBitcode(Context, Bitcode, M));
    759   ASSERT_TRUE(TheJIT.get()) << "Failed to create JIT.";
    760   TheJIT->DisableLazyCompilation(true);
    761 
    762   Function *recur1IR = M->getFunction("recur1");
    763   Function *recur2IR = M->getFunction("recur2");
    764   EXPECT_TRUE(recur1IR->isMaterializable());
    765   EXPECT_TRUE(recur2IR->isMaterializable());
    766 
    767   int32_t (*recur1)(int32_t) = reinterpret_cast<int32_t(*)(int32_t)>(
    768     (intptr_t)TheJIT->getPointerToFunction(recur1IR));
    769   EXPECT_EQ(3, recur1(4));
    770 }
    771 #endif // !defined(__arm__)
    772 
    773 // This code is copied from JITEventListenerTest, but it only runs once for all
    774 // the tests in this directory.  Everything seems fine, but that's strange
    775 // behavior.
    776 class JITEnvironment : public testing::Environment {
    777   virtual void SetUp() {
    778     // Required to create a JIT.
    779     InitializeNativeTarget();
    780   }
    781 };
    782 testing::Environment* const jit_env =
    783   testing::AddGlobalTestEnvironment(new JITEnvironment);
    784 
    785 }
    786