Home | History | Annotate | Download | only in dec
      1 // Copyright 2010 Google Inc.
      2 //
      3 // This code is licensed under the same terms as WebM:
      4 //  Software License Agreement:  http://www.webmproject.org/license/software/
      5 //  Additional IP Rights Grant:  http://www.webmproject.org/license/additional/
      6 // -----------------------------------------------------------------------------
      7 //
      8 // Frame-reconstruction function. Memory allocation.
      9 //
     10 // Author: Skal (pascal.massimino (at) gmail.com)
     11 
     12 #include <stdlib.h>
     13 #include "./vp8i.h"
     14 
     15 #if defined(__cplusplus) || defined(c_plusplus)
     16 extern "C" {
     17 #endif
     18 
     19 #define ALIGN_MASK (32 - 1)
     20 
     21 //------------------------------------------------------------------------------
     22 // Memory setup
     23 
     24 // kFilterExtraRows[] = How many extra lines are needed on the MB boundary
     25 // for caching, given a filtering level.
     26 // Simple filter:  up to 2 luma samples are read and 1 is written.
     27 // Complex filter: up to 4 luma samples are read and 3 are written. Same for
     28 //                 U/V, so it's 8 samples total (because of the 2x upsampling).
     29 static const uint8_t kFilterExtraRows[3] = { 0, 2, 8 };
     30 
     31 int VP8InitFrame(VP8Decoder* const dec, VP8Io* io) {
     32   const int mb_w = dec->mb_w_;
     33   const int intra_pred_mode_size = 4 * mb_w * sizeof(uint8_t);
     34   const int top_size = (16 + 8 + 8) * mb_w;
     35   const int info_size = (mb_w + 1) * sizeof(VP8MB);
     36   const int yuv_size = YUV_SIZE * sizeof(*dec->yuv_b_);
     37   const int coeffs_size = 384 * sizeof(*dec->coeffs_);
     38   const int cache_height = (16 + kFilterExtraRows[dec->filter_type_]) * 3 / 2;
     39   const int cache_size = top_size * cache_height;
     40   const int alpha_size =
     41     dec->alpha_data_ ? (dec->pic_hdr_.width_ * dec->pic_hdr_.height_) : 0;
     42   const int needed = intra_pred_mode_size
     43                    + top_size + info_size
     44                    + yuv_size + coeffs_size
     45                    + cache_size + alpha_size + ALIGN_MASK;
     46   uint8_t* mem;
     47 
     48   if (needed > dec->mem_size_) {
     49     free(dec->mem_);
     50     dec->mem_size_ = 0;
     51     dec->mem_ = (uint8_t*)malloc(needed);
     52     if (dec->mem_ == NULL) {
     53       return VP8SetError(dec, VP8_STATUS_OUT_OF_MEMORY,
     54                          "no memory during frame initialization.");
     55     }
     56     dec->mem_size_ = needed;
     57   }
     58 
     59   mem = (uint8_t*)dec->mem_;
     60   dec->intra_t_ = (uint8_t*)mem;
     61   mem += intra_pred_mode_size;
     62 
     63   dec->y_t_ = (uint8_t*)mem;
     64   mem += 16 * mb_w;
     65   dec->u_t_ = (uint8_t*)mem;
     66   mem += 8 * mb_w;
     67   dec->v_t_ = (uint8_t*)mem;
     68   mem += 8 * mb_w;
     69 
     70   dec->mb_info_ = ((VP8MB*)mem) + 1;
     71   mem += info_size;
     72 
     73   mem = (uint8_t*)((uintptr_t)(mem + ALIGN_MASK) & ~ALIGN_MASK);
     74   assert((yuv_size & ALIGN_MASK) == 0);
     75   dec->yuv_b_ = (uint8_t*)mem;
     76   mem += yuv_size;
     77 
     78   dec->coeffs_ = (int16_t*)mem;
     79   mem += coeffs_size;
     80 
     81   dec->cache_y_stride_ = 16 * mb_w;
     82   dec->cache_uv_stride_ = 8 * mb_w;
     83   {
     84     const int extra_rows = kFilterExtraRows[dec->filter_type_];
     85     const int extra_y = extra_rows * dec->cache_y_stride_;
     86     const int extra_uv = (extra_rows / 2) * dec->cache_uv_stride_;
     87     dec->cache_y_ = ((uint8_t*)mem) + extra_y;
     88     dec->cache_u_ = dec->cache_y_ + 16 * dec->cache_y_stride_ + extra_uv;
     89     dec->cache_v_ = dec->cache_u_ + 8 * dec->cache_uv_stride_ + extra_uv;
     90   }
     91   mem += cache_size;
     92 
     93   // alpha plane
     94   dec->alpha_plane_ = alpha_size ? (uint8_t*)mem : NULL;
     95   mem += alpha_size;
     96 
     97   // note: left-info is initialized once for all.
     98   memset(dec->mb_info_ - 1, 0, (mb_w + 1) * sizeof(*dec->mb_info_));
     99 
    100   // initialize top
    101   memset(dec->intra_t_, B_DC_PRED, intra_pred_mode_size);
    102 
    103   // prepare 'io'
    104   io->mb_y = 0;
    105   io->y = dec->cache_y_;
    106   io->u = dec->cache_u_;
    107   io->v = dec->cache_v_;
    108   io->y_stride = dec->cache_y_stride_;
    109   io->uv_stride = dec->cache_uv_stride_;
    110   io->fancy_upsampling = 0;    // default
    111   io->a = NULL;
    112 
    113   // Init critical function pointers and look-up tables.
    114   VP8DspInitTables();
    115   VP8DspInit();
    116 
    117   return 1;
    118 }
    119 
    120 //------------------------------------------------------------------------------
    121 // Filtering
    122 
    123 static inline int hev_thresh_from_level(int level, int keyframe) {
    124   if (keyframe) {
    125     return (level >= 40) ? 2 : (level >= 15) ? 1 : 0;
    126   } else {
    127     return (level >= 40) ? 3 : (level >= 20) ? 2 : (level >= 15) ? 1 : 0;
    128   }
    129 }
    130 
    131 static void DoFilter(const VP8Decoder* const dec, int mb_x, int mb_y) {
    132   VP8MB* const mb = dec->mb_info_ + mb_x;
    133   uint8_t* const y_dst = dec->cache_y_ + mb_x * 16;
    134   const int y_bps = dec->cache_y_stride_;
    135   const int level = mb->f_level_;
    136   const int ilevel = mb->f_ilevel_;
    137   const int limit = 2 * level + ilevel;
    138   if (level == 0) {
    139     return;
    140   }
    141   if (dec->filter_type_ == 1) {   // simple
    142     if (mb_x > 0) {
    143       VP8SimpleHFilter16(y_dst, y_bps, limit + 4);
    144     }
    145     if (mb->f_inner_) {
    146       VP8SimpleHFilter16i(y_dst, y_bps, limit);
    147     }
    148     if (mb_y > 0) {
    149       VP8SimpleVFilter16(y_dst, y_bps, limit + 4);
    150     }
    151     if (mb->f_inner_) {
    152       VP8SimpleVFilter16i(y_dst, y_bps, limit);
    153     }
    154   } else {    // complex
    155     uint8_t* const u_dst = dec->cache_u_ + mb_x * 8;
    156     uint8_t* const v_dst = dec->cache_v_ + mb_x * 8;
    157     const int uv_bps = dec->cache_uv_stride_;
    158     const int hev_thresh =
    159         hev_thresh_from_level(level, dec->frm_hdr_.key_frame_);
    160     if (mb_x > 0) {
    161       VP8HFilter16(y_dst, y_bps, limit + 4, ilevel, hev_thresh);
    162       VP8HFilter8(u_dst, v_dst, uv_bps, limit + 4, ilevel, hev_thresh);
    163     }
    164     if (mb->f_inner_) {
    165       VP8HFilter16i(y_dst, y_bps, limit, ilevel, hev_thresh);
    166       VP8HFilter8i(u_dst, v_dst, uv_bps, limit, ilevel, hev_thresh);
    167     }
    168     if (mb_y > 0) {
    169       VP8VFilter16(y_dst, y_bps, limit + 4, ilevel, hev_thresh);
    170       VP8VFilter8(u_dst, v_dst, uv_bps, limit + 4, ilevel, hev_thresh);
    171     }
    172     if (mb->f_inner_) {
    173       VP8VFilter16i(y_dst, y_bps, limit, ilevel, hev_thresh);
    174       VP8VFilter8i(u_dst, v_dst, uv_bps, limit, ilevel, hev_thresh);
    175     }
    176   }
    177 }
    178 
    179 void VP8FilterRow(const VP8Decoder* const dec) {
    180   int mb_x;
    181   assert(dec->filter_type_ > 0);
    182   if (dec->mb_y_ < dec->tl_mb_y_ || dec->mb_y_ > dec->br_mb_y_) {
    183     return;
    184   }
    185   for (mb_x = dec->tl_mb_x_; mb_x < dec->br_mb_x_; ++mb_x) {
    186     DoFilter(dec, mb_x, dec->mb_y_);
    187   }
    188 }
    189 
    190 //------------------------------------------------------------------------------
    191 
    192 void VP8StoreBlock(VP8Decoder* const dec) {
    193   if (dec->filter_type_ > 0) {
    194     VP8MB* const info = dec->mb_info_ + dec->mb_x_;
    195     int level = dec->filter_levels_[dec->segment_];
    196     if (dec->filter_hdr_.use_lf_delta_) {
    197       // TODO(skal): only CURRENT is handled for now.
    198       level += dec->filter_hdr_.ref_lf_delta_[0];
    199       if (dec->is_i4x4_) {
    200         level += dec->filter_hdr_.mode_lf_delta_[0];
    201       }
    202     }
    203     level = (level < 0) ? 0 : (level > 63) ? 63 : level;
    204     info->f_level_ = level;
    205 
    206     if (dec->filter_hdr_.sharpness_ > 0) {
    207       if (dec->filter_hdr_.sharpness_ > 4) {
    208         level >>= 2;
    209       } else {
    210         level >>= 1;
    211       }
    212       if (level > 9 - dec->filter_hdr_.sharpness_) {
    213         level = 9 - dec->filter_hdr_.sharpness_;
    214       }
    215     }
    216 
    217     info->f_ilevel_ = (level < 1) ? 1 : level;
    218     info->f_inner_ = (!info->skip_ || dec->is_i4x4_);
    219   }
    220   {
    221     // Transfer samples to row cache
    222     int y;
    223     uint8_t* const ydst = dec->cache_y_ + dec->mb_x_ * 16;
    224     uint8_t* const udst = dec->cache_u_ + dec->mb_x_ * 8;
    225     uint8_t* const vdst = dec->cache_v_ + dec->mb_x_ * 8;
    226     for (y = 0; y < 16; ++y) {
    227       memcpy(ydst + y * dec->cache_y_stride_,
    228              dec->yuv_b_ + Y_OFF + y * BPS, 16);
    229     }
    230     for (y = 0; y < 8; ++y) {
    231       memcpy(udst + y * dec->cache_uv_stride_,
    232            dec->yuv_b_ + U_OFF + y * BPS, 8);
    233       memcpy(vdst + y * dec->cache_uv_stride_,
    234            dec->yuv_b_ + V_OFF + y * BPS, 8);
    235     }
    236   }
    237 }
    238 
    239 //------------------------------------------------------------------------------
    240 // This function is called after a row of macroblocks is finished decoding.
    241 // It also takes into account the following restrictions:
    242 //  * In case of in-loop filtering, we must hold off sending some of the bottom
    243 //    pixels as they are yet unfiltered. They will be when the next macroblock
    244 //    row is decoded. Meanwhile, we must preserve them by rotating them in the
    245 //    cache area. This doesn't hold for the very bottom row of the uncropped
    246 //    picture of course.
    247 //  * we must clip the remaining pixels against the cropping area. The VP8Io
    248 //    struct must have the following fields set correctly before calling put():
    249 
    250 #define MACROBLOCK_VPOS(mb_y)  ((mb_y) * 16)    // vertical position of a MB
    251 
    252 int VP8FinishRow(VP8Decoder* const dec, VP8Io* io) {
    253   const int extra_y_rows = kFilterExtraRows[dec->filter_type_];
    254   const int ysize = extra_y_rows * dec->cache_y_stride_;
    255   const int uvsize = (extra_y_rows / 2) * dec->cache_uv_stride_;
    256   uint8_t* const ydst = dec->cache_y_ - ysize;
    257   uint8_t* const udst = dec->cache_u_ - uvsize;
    258   uint8_t* const vdst = dec->cache_v_ - uvsize;
    259   const int first_row = (dec->mb_y_ == 0);
    260   const int last_row = (dec->mb_y_ >= dec->br_mb_y_ - 1);
    261   int y_start = MACROBLOCK_VPOS(dec->mb_y_);
    262   int y_end = MACROBLOCK_VPOS(dec->mb_y_ + 1);
    263   if (io->put) {
    264     if (!first_row) {
    265       y_start -= extra_y_rows;
    266       io->y = ydst;
    267       io->u = udst;
    268       io->v = vdst;
    269     } else {
    270       io->y = dec->cache_y_;
    271       io->u = dec->cache_u_;
    272       io->v = dec->cache_v_;
    273     }
    274 
    275     if (!last_row) {
    276       y_end -= extra_y_rows;
    277     }
    278     if (y_end > io->crop_bottom) {
    279       y_end = io->crop_bottom;    // make sure we don't overflow on last row.
    280     }
    281     io->a = NULL;
    282 #ifdef WEBP_EXPERIMENTAL_FEATURES
    283     if (dec->alpha_data_) {
    284       io->a = VP8DecompressAlphaRows(dec, y_start, y_end - y_start);
    285       if (io->a == NULL) {
    286         return VP8SetError(dec, VP8_STATUS_BITSTREAM_ERROR,
    287                            "Could not decode alpha data.");
    288       }
    289     }
    290 #endif
    291     if (y_start < io->crop_top) {
    292       const int delta_y = io->crop_top - y_start;
    293       y_start = io->crop_top;
    294       assert(!(delta_y & 1));
    295       io->y += dec->cache_y_stride_ * delta_y;
    296       io->u += dec->cache_uv_stride_ * (delta_y >> 1);
    297       io->v += dec->cache_uv_stride_ * (delta_y >> 1);
    298       if (io->a) {
    299         io->a += io->width * delta_y;
    300       }
    301     }
    302     if (y_start < y_end) {
    303       io->y += io->crop_left;
    304       io->u += io->crop_left >> 1;
    305       io->v += io->crop_left >> 1;
    306       if (io->a) {
    307         io->a += io->crop_left;
    308       }
    309       io->mb_y = y_start - io->crop_top;
    310       io->mb_w = io->crop_right - io->crop_left;
    311       io->mb_h = y_end - y_start;
    312       if (!io->put(io)) {
    313         return 0;
    314       }
    315     }
    316   }
    317   // rotate top samples
    318   if (!last_row) {
    319     memcpy(ydst, ydst + 16 * dec->cache_y_stride_, ysize);
    320     memcpy(udst, udst + 8 * dec->cache_uv_stride_, uvsize);
    321     memcpy(vdst, vdst + 8 * dec->cache_uv_stride_, uvsize);
    322   }
    323   return 1;
    324 }
    325 
    326 #undef MACROBLOCK_VPOS
    327 
    328 //------------------------------------------------------------------------------
    329 // Finish setting up the decoding parameter once user's setup() is called.
    330 
    331 VP8StatusCode VP8FinishFrameSetup(VP8Decoder* const dec, VP8Io* const io) {
    332   // Call setup() first. This may trigger additional decoding features on 'io'.
    333   if (io->setup && !io->setup(io)) {
    334     VP8SetError(dec, VP8_STATUS_USER_ABORT, "Frame setup failed");
    335     return dec->status_;
    336   }
    337 
    338   // Disable filtering per user request
    339   if (io->bypass_filtering) {
    340     dec->filter_type_ = 0;
    341   }
    342   // TODO(skal): filter type / strength / sharpness forcing
    343 
    344   // Define the area where we can skip in-loop filtering, in case of cropping.
    345   //
    346   // 'Simple' filter reads two luma samples outside of the macroblock and
    347   // and filters one. It doesn't filter the chroma samples. Hence, we can
    348   // avoid doing the in-loop filtering before crop_top/crop_left position.
    349   // For the 'Complex' filter, 3 samples are read and up to 3 are filtered.
    350   // Means: there's a dependency chain that goes all the way up to the
    351   // top-left corner of the picture (MB #0). We must filter all the previous
    352   // macroblocks.
    353   // TODO(skal): add an 'approximate_decoding' option, that won't produce
    354   // a 1:1 bit-exactness for complex filtering?
    355   {
    356     const int extra_pixels = kFilterExtraRows[dec->filter_type_];
    357     if (dec->filter_type_ == 2) {
    358       // For complex filter, we need to preserve the dependency chain.
    359       dec->tl_mb_x_ = 0;
    360       dec->tl_mb_y_ = 0;
    361     } else {
    362       // For simple filter, we can filter only the cropped region.
    363       dec->tl_mb_y_ = io->crop_top >> 4;
    364       dec->tl_mb_x_ = io->crop_left >> 4;
    365     }
    366     // We need some 'extra' pixels on the right/bottom.
    367     dec->br_mb_y_ = (io->crop_bottom + 15 + extra_pixels) >> 4;
    368     dec->br_mb_x_ = (io->crop_right + 15 + extra_pixels) >> 4;
    369     if (dec->br_mb_x_ > dec->mb_w_) {
    370       dec->br_mb_x_ = dec->mb_w_;
    371     }
    372     if (dec->br_mb_y_ > dec->mb_h_) {
    373       dec->br_mb_y_ = dec->mb_h_;
    374     }
    375   }
    376   return VP8_STATUS_OK;
    377 }
    378 
    379 //------------------------------------------------------------------------------
    380 // Main reconstruction function.
    381 
    382 static const int kScan[16] = {
    383   0 +  0 * BPS,  4 +  0 * BPS, 8 +  0 * BPS, 12 +  0 * BPS,
    384   0 +  4 * BPS,  4 +  4 * BPS, 8 +  4 * BPS, 12 +  4 * BPS,
    385   0 +  8 * BPS,  4 +  8 * BPS, 8 +  8 * BPS, 12 +  8 * BPS,
    386   0 + 12 * BPS,  4 + 12 * BPS, 8 + 12 * BPS, 12 + 12 * BPS
    387 };
    388 
    389 static inline int CheckMode(VP8Decoder* const dec, int mode) {
    390   if (mode == B_DC_PRED) {
    391     if (dec->mb_x_ == 0) {
    392       return (dec->mb_y_ == 0) ? B_DC_PRED_NOTOPLEFT : B_DC_PRED_NOLEFT;
    393     } else {
    394       return (dec->mb_y_ == 0) ? B_DC_PRED_NOTOP : B_DC_PRED;
    395     }
    396   }
    397   return mode;
    398 }
    399 
    400 static inline void Copy32b(uint8_t* dst, uint8_t* src) {
    401   *(uint32_t*)dst = *(uint32_t*)src;
    402 }
    403 
    404 void VP8ReconstructBlock(VP8Decoder* const dec) {
    405   uint8_t* const y_dst = dec->yuv_b_ + Y_OFF;
    406   uint8_t* const u_dst = dec->yuv_b_ + U_OFF;
    407   uint8_t* const v_dst = dec->yuv_b_ + V_OFF;
    408 
    409   // Rotate in the left samples from previously decoded block. We move four
    410   // pixels at a time for alignment reason, and because of in-loop filter.
    411   if (dec->mb_x_ > 0) {
    412     int j;
    413     for (j = -1; j < 16; ++j) {
    414       Copy32b(&y_dst[j * BPS - 4], &y_dst[j * BPS + 12]);
    415     }
    416     for (j = -1; j < 8; ++j) {
    417       Copy32b(&u_dst[j * BPS - 4], &u_dst[j * BPS + 4]);
    418       Copy32b(&v_dst[j * BPS - 4], &v_dst[j * BPS + 4]);
    419     }
    420   } else {
    421     int j;
    422     for (j = 0; j < 16; ++j) {
    423       y_dst[j * BPS - 1] = 129;
    424     }
    425     for (j = 0; j < 8; ++j) {
    426       u_dst[j * BPS - 1] = 129;
    427       v_dst[j * BPS - 1] = 129;
    428     }
    429     // Init top-left sample on left column too
    430     if (dec->mb_y_ > 0) {
    431       y_dst[-1 - BPS] = u_dst[-1 - BPS] = v_dst[-1 - BPS] = 129;
    432     }
    433   }
    434   {
    435     // bring top samples into the cache
    436     uint8_t* const top_y = dec->y_t_ + dec->mb_x_ * 16;
    437     uint8_t* const top_u = dec->u_t_ + dec->mb_x_ * 8;
    438     uint8_t* const top_v = dec->v_t_ + dec->mb_x_ * 8;
    439     const int16_t* coeffs = dec->coeffs_;
    440     int n;
    441 
    442     if (dec->mb_y_ > 0) {
    443       memcpy(y_dst - BPS, top_y, 16);
    444       memcpy(u_dst - BPS, top_u, 8);
    445       memcpy(v_dst - BPS, top_v, 8);
    446     } else if (dec->mb_x_ == 0) {
    447       // we only need to do this init once at block (0,0).
    448       // Afterward, it remains valid for the whole topmost row.
    449       memset(y_dst - BPS - 1, 127, 16 + 4 + 1);
    450       memset(u_dst - BPS - 1, 127, 8 + 1);
    451       memset(v_dst - BPS - 1, 127, 8 + 1);
    452     }
    453 
    454     // predict and add residuals
    455 
    456     if (dec->is_i4x4_) {   // 4x4
    457       uint32_t* const top_right = (uint32_t*)(y_dst - BPS + 16);
    458 
    459       if (dec->mb_y_ > 0) {
    460         if (dec->mb_x_ >= dec->mb_w_ - 1) {    // on rightmost border
    461           top_right[0] = top_y[15] * 0x01010101u;
    462         } else {
    463           memcpy(top_right, top_y + 16, sizeof(*top_right));
    464         }
    465       }
    466       // replicate the top-right pixels below
    467       top_right[BPS] = top_right[2 * BPS] = top_right[3 * BPS] = top_right[0];
    468 
    469       // predict and add residues for all 4x4 blocks in turn.
    470       for (n = 0; n < 16; n++) {
    471         uint8_t* const dst = y_dst + kScan[n];
    472         VP8PredLuma4[dec->imodes_[n]](dst);
    473         if (dec->non_zero_ac_ & (1 << n)) {
    474           VP8Transform(coeffs + n * 16, dst, 0);
    475         } else if (dec->non_zero_ & (1 << n)) {  // only DC is present
    476           VP8TransformDC(coeffs + n * 16, dst);
    477         }
    478       }
    479     } else {    // 16x16
    480       const int pred_func = CheckMode(dec, dec->imodes_[0]);
    481       VP8PredLuma16[pred_func](y_dst);
    482       if (dec->non_zero_) {
    483         for (n = 0; n < 16; n++) {
    484           uint8_t* const dst = y_dst + kScan[n];
    485           if (dec->non_zero_ac_ & (1 << n)) {
    486             VP8Transform(coeffs + n * 16, dst, 0);
    487           } else if (dec->non_zero_ & (1 << n)) {  // only DC is present
    488             VP8TransformDC(coeffs + n * 16, dst);
    489           }
    490         }
    491       }
    492     }
    493     {
    494       // Chroma
    495       const int pred_func = CheckMode(dec, dec->uvmode_);
    496       VP8PredChroma8[pred_func](u_dst);
    497       VP8PredChroma8[pred_func](v_dst);
    498 
    499       if (dec->non_zero_ & 0x0f0000) {   // chroma-U
    500         const int16_t* const u_coeffs = dec->coeffs_ + 16 * 16;
    501         if (dec->non_zero_ac_ & 0x0f0000) {
    502           VP8TransformUV(u_coeffs, u_dst);
    503         } else {
    504           VP8TransformDCUV(u_coeffs, u_dst);
    505         }
    506       }
    507       if (dec->non_zero_ & 0xf00000) {   // chroma-V
    508         const int16_t* const v_coeffs = dec->coeffs_ + 20 * 16;
    509         if (dec->non_zero_ac_ & 0xf00000) {
    510           VP8TransformUV(v_coeffs, v_dst);
    511         } else {
    512           VP8TransformDCUV(v_coeffs, v_dst);
    513         }
    514       }
    515 
    516       // stash away top samples for next block
    517       if (dec->mb_y_ < dec->mb_h_ - 1) {
    518         memcpy(top_y, y_dst + 15 * BPS, 16);
    519         memcpy(top_u, u_dst +  7 * BPS,  8);
    520         memcpy(top_v, v_dst +  7 * BPS,  8);
    521       }
    522     }
    523   }
    524 }
    525 
    526 //------------------------------------------------------------------------------
    527 
    528 #if defined(__cplusplus) || defined(c_plusplus)
    529 }    // extern "C"
    530 #endif
    531