1 //--------------------------------------------------------------------*/ 2 //--- Massif: a heap profiling tool. ms_main.c ---*/ 3 //--------------------------------------------------------------------*/ 4 5 /* 6 This file is part of Massif, a Valgrind tool for profiling memory 7 usage of programs. 8 9 Copyright (C) 2003-2010 Nicholas Nethercote 10 njn (at) valgrind.org 11 12 This program is free software; you can redistribute it and/or 13 modify it under the terms of the GNU General Public License as 14 published by the Free Software Foundation; either version 2 of the 15 License, or (at your option) any later version. 16 17 This program is distributed in the hope that it will be useful, but 18 WITHOUT ANY WARRANTY; without even the implied warranty of 19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 20 General Public License for more details. 21 22 You should have received a copy of the GNU General Public License 23 along with this program; if not, write to the Free Software 24 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 25 02111-1307, USA. 26 27 The GNU General Public License is contained in the file COPYING. 28 */ 29 30 //--------------------------------------------------------------------------- 31 // XXX: 32 //--------------------------------------------------------------------------- 33 // Todo -- nice, but less critical: 34 // - do a graph-drawing test 35 // - make file format more generic. Obstacles: 36 // - unit prefixes are not generic 37 // - preset column widths for stats are not generic 38 // - preset column headers are not generic 39 // - "Massif arguments:" line is not generic 40 // - do snapshots on client requests 41 // - (Michael Meeks): have an interactive way to request a dump 42 // (callgrind_control-style) 43 // - "profile now" 44 // - "show me the extra allocations since the last snapshot" 45 // - "start/stop logging" (eg. quickly skip boring bits) 46 // - Add ability to draw multiple graphs, eg. heap-only, stack-only, total. 47 // Give each graph a title. (try to do it generically!) 48 // - allow truncation of long fnnames if the exact line number is 49 // identified? [hmm, could make getting the name of alloc-fns more 50 // difficult] [could dump full names to file, truncate in ms_print] 51 // - make --show-below-main=no work 52 // - Options like --alloc-fn='operator new(unsigned, std::nothrow_t const&)' 53 // don't work in a .valgrindrc file or in $VALGRIND_OPTS. 54 // m_commandline.c:add_args_from_string() needs to respect single quotes. 55 // - With --stack=yes, want to add a stack trace for detailed snapshots so 56 // it's clear where/why the peak is occurring. (Mattieu Castet) Also, 57 // possibly useful even with --stack=no? (Andi Yin) 58 // 59 // Performance: 60 // - To run the benchmarks: 61 // 62 // perl perf/vg_perf --tools=massif --reps=3 perf/{heap,tinycc} massif 63 // time valgrind --tool=massif --depth=100 konqueror 64 // 65 // The other benchmarks don't do much allocation, and so give similar speeds 66 // to Nulgrind. 67 // 68 // Timing results on 'nevermore' (njn's machine) as of r7013: 69 // 70 // heap 0.53s ma:12.4s (23.5x, -----) 71 // tinycc 0.46s ma: 4.9s (10.7x, -----) 72 // many-xpts 0.08s ma: 2.0s (25.0x, -----) 73 // konqueror 29.6s real 0:21.0s user 74 // 75 // [Introduction of --time-unit=i as the default slowed things down by 76 // roughly 0--20%.] 77 // 78 // - get_XCon accounts for about 9% of konqueror startup time. Try 79 // keeping XPt children sorted by 'ip' and use binary search in get_XCon. 80 // Requires factoring out binary search code from various places into a 81 // VG_(bsearch) function. 82 // 83 // Todo -- low priority: 84 // - In each XPt, record both bytes and the number of allocations, and 85 // possibly the global number of allocations. 86 // - (Andy Lin) Give a stack trace on detailed snapshots? 87 // - (Artur Wisz) add a feature to Massif to ignore any heap blocks larger 88 // than a certain size! Because: "linux's malloc allows to set a 89 // MMAP_THRESHOLD value, so we set it to 4096 - all blocks above that will 90 // be handled directly by the kernel, and are guaranteed to be returned to 91 // the system when freed. So we needed to profile only blocks below this 92 // limit." 93 // 94 // File format working notes: 95 96 #if 0 97 desc: --heap-admin=foo 98 cmd: date 99 time_unit: ms 100 #----------- 101 snapshot=0 102 #----------- 103 time=0 104 mem_heap_B=0 105 mem_heap_admin_B=0 106 mem_stacks_B=0 107 heap_tree=empty 108 #----------- 109 snapshot=1 110 #----------- 111 time=353 112 mem_heap_B=5 113 mem_heap_admin_B=0 114 mem_stacks_B=0 115 heap_tree=detailed 116 n1: 5 (heap allocation functions) malloc/new/new[], --alloc-fns, etc. 117 n1: 5 0x27F6E0: _nl_normalize_codeset (in /lib/libc-2.3.5.so) 118 n1: 5 0x279DE6: _nl_load_locale_from_archive (in /lib/libc-2.3.5.so) 119 n1: 5 0x278E97: _nl_find_locale (in /lib/libc-2.3.5.so) 120 n1: 5 0x278871: setlocale (in /lib/libc-2.3.5.so) 121 n1: 5 0x8049821: (within /bin/date) 122 n0: 5 0x26ED5E: (below main) (in /lib/libc-2.3.5.so) 123 124 125 n_events: n time(ms) total(B) useful-heap(B) admin-heap(B) stacks(B) 126 t_events: B 127 n 0 0 0 0 0 128 n 0 0 0 0 0 129 t1: 5 <string...> 130 t1: 6 <string...> 131 132 Ideas: 133 - each snapshot specifies an x-axis value and one or more y-axis values. 134 - can display the y-axis values separately if you like 135 - can completely separate connection between snapshots and trees. 136 137 Challenges: 138 - how to specify and scale/abbreviate units on axes? 139 - how to combine multiple values into the y-axis? 140 141 --------------------------------------------------------------------------------Command: date 142 Massif arguments: --heap-admin=foo 143 ms_print arguments: massif.out 144 -------------------------------------------------------------------------------- 145 KB 146 6.472^ :# 147 | :# :: . . 148 ... 149 | ::@ :@ :@ :@:::# :: : :::: 150 0 +-----------------------------------@---@---@-----@--@---#-------------->ms 0 713 151 152 Number of snapshots: 50 153 Detailed snapshots: [2, 11, 13, 19, 25, 32 (peak)] 154 -------------------------------------------------------------------------------- n time(ms) total(B) useful-heap(B) admin-heap(B) stacks(B) 155 -------------------------------------------------------------------------------- 0 0 0 0 0 0 156 1 345 5 5 0 0 157 2 353 5 5 0 0 158 100.00% (5B) (heap allocation functions) malloc/new/new[], --alloc-fns, etc. 159 ->100.00% (5B) 0x27F6E0: _nl_normalize_codeset (in /lib/libc-2.3.5.so) 160 #endif 161 162 //--------------------------------------------------------------------------- 163 164 #include "pub_tool_basics.h" 165 #include "pub_tool_vki.h" 166 #include "pub_tool_aspacemgr.h" 167 #include "pub_tool_debuginfo.h" 168 #include "pub_tool_hashtable.h" 169 #include "pub_tool_libcbase.h" 170 #include "pub_tool_libcassert.h" 171 #include "pub_tool_libcfile.h" 172 #include "pub_tool_libcprint.h" 173 #include "pub_tool_libcproc.h" 174 #include "pub_tool_machine.h" 175 #include "pub_tool_mallocfree.h" 176 #include "pub_tool_options.h" 177 #include "pub_tool_replacemalloc.h" 178 #include "pub_tool_stacktrace.h" 179 #include "pub_tool_threadstate.h" 180 #include "pub_tool_tooliface.h" 181 #include "pub_tool_xarray.h" 182 #include "pub_tool_clientstate.h" 183 184 #include "valgrind.h" // For {MALLOC,FREE}LIKE_BLOCK 185 186 //------------------------------------------------------------*/ 187 //--- Overview of operation ---*/ 188 //------------------------------------------------------------*/ 189 190 // The size of the stacks and heap is tracked. The heap is tracked in a lot 191 // of detail, enough to tell how many bytes each line of code is responsible 192 // for, more or less. The main data structure is a tree representing the 193 // call tree beneath all the allocation functions like malloc(). 194 // (Alternatively, if --pages-as-heap=yes is specified, memory is tracked at 195 // the page level, and each page is treated much like a heap block. We use 196 // "heap" throughout below to cover this case because the concepts are all the 197 // same.) 198 // 199 // "Snapshots" are recordings of the memory usage. There are two basic 200 // kinds: 201 // - Normal: these record the current time, total memory size, total heap 202 // size, heap admin size and stack size. 203 // - Detailed: these record those things in a normal snapshot, plus a very 204 // detailed XTree (see below) indicating how the heap is structured. 205 // 206 // Snapshots are taken every so often. There are two storage classes of 207 // snapshots: 208 // - Temporary: Massif does a temporary snapshot every so often. The idea 209 // is to always have a certain number of temporary snapshots around. So 210 // we take them frequently to begin with, but decreasingly often as the 211 // program continues to run. Also, we remove some old ones after a while. 212 // Overall it's a kind of exponential decay thing. Most of these are 213 // normal snapshots, a small fraction are detailed snapshots. 214 // - Permanent: Massif takes a permanent (detailed) snapshot in some 215 // circumstances. They are: 216 // - Peak snapshot: When the memory usage peak is reached, it takes a 217 // snapshot. It keeps this, unless the peak is subsequently exceeded, 218 // in which case it will overwrite the peak snapshot. 219 // - User-requested snapshots: These are done in response to client 220 // requests. They are always kept. 221 222 // Used for printing things when clo_verbosity > 1. 223 #define VERB(verb, format, args...) \ 224 if (VG_(clo_verbosity) > verb) { \ 225 VG_(dmsg)("Massif: " format, ##args); \ 226 } 227 228 // Used for printing stats when clo_stats == True. 229 #define STATS(format, args...) \ 230 if (VG_(clo_stats)) { \ 231 VG_(dmsg)("Massif: " format, ##args); \ 232 } 233 234 //------------------------------------------------------------// 235 //--- Statistics ---// 236 //------------------------------------------------------------// 237 238 // Konqueror startup, to give an idea of the numbers involved with a biggish 239 // program, with default depth: 240 // 241 // depth=3 depth=40 242 // - 310,000 allocations 243 // - 300,000 frees 244 // - 15,000 XPts 800,000 XPts 245 // - 1,800 top-XPts 246 247 static UInt n_heap_allocs = 0; 248 static UInt n_heap_reallocs = 0; 249 static UInt n_heap_frees = 0; 250 static UInt n_ignored_heap_allocs = 0; 251 static UInt n_ignored_heap_frees = 0; 252 static UInt n_ignored_heap_reallocs = 0; 253 static UInt n_stack_allocs = 0; 254 static UInt n_stack_frees = 0; 255 static UInt n_xpts = 0; 256 static UInt n_xpt_init_expansions = 0; 257 static UInt n_xpt_later_expansions = 0; 258 static UInt n_sxpt_allocs = 0; 259 static UInt n_sxpt_frees = 0; 260 static UInt n_skipped_snapshots = 0; 261 static UInt n_real_snapshots = 0; 262 static UInt n_detailed_snapshots = 0; 263 static UInt n_peak_snapshots = 0; 264 static UInt n_cullings = 0; 265 static UInt n_XCon_redos = 0; 266 267 //------------------------------------------------------------// 268 //--- Globals ---// 269 //------------------------------------------------------------// 270 271 // Number of guest instructions executed so far. Only used with 272 // --time-unit=i. 273 static Long guest_instrs_executed = 0; 274 275 static SizeT heap_szB = 0; // Live heap size 276 static SizeT heap_extra_szB = 0; // Live heap extra size -- slop + admin bytes 277 static SizeT stacks_szB = 0; // Live stacks size 278 279 // This is the total size from the current peak snapshot, or 0 if no peak 280 // snapshot has been taken yet. 281 static SizeT peak_snapshot_total_szB = 0; 282 283 // Incremented every time memory is allocated/deallocated, by the 284 // allocated/deallocated amount; includes heap, heap-admin and stack 285 // memory. An alternative to milliseconds as a unit of program "time". 286 static ULong total_allocs_deallocs_szB = 0; 287 288 // When running with --heap=yes --pages-as-heap=no, we don't start taking 289 // snapshots until the first basic block is executed, rather than doing it in 290 // ms_post_clo_init (which is the obvious spot), for two reasons. 291 // - It lets us ignore stack events prior to that, because they're not 292 // really proper ones and just would screw things up. 293 // - Because there's still some core initialisation to do, and so there 294 // would be an artificial time gap between the first and second snapshots. 295 // 296 // When running with --heap=yes --pages-as-heap=yes, snapshots start much 297 // earlier due to new_mem_startup so this isn't relevant. 298 // 299 static Bool have_started_executing_code = False; 300 301 //------------------------------------------------------------// 302 //--- Alloc fns ---// 303 //------------------------------------------------------------// 304 305 static XArray* alloc_fns; 306 static XArray* ignore_fns; 307 308 static void init_alloc_fns(void) 309 { 310 // Create the list, and add the default elements. 311 alloc_fns = VG_(newXA)(VG_(malloc), "ms.main.iaf.1", 312 VG_(free), sizeof(Char*)); 313 #define DO(x) { Char* s = x; VG_(addToXA)(alloc_fns, &s); } 314 315 // Ordered roughly according to (presumed) frequency. 316 // Nb: The C++ "operator new*" ones are overloadable. We include them 317 // always anyway, because even if they're overloaded, it would be a 318 // prodigiously stupid overloading that caused them to not allocate 319 // memory. 320 // 321 // XXX: because we don't look at the first stack entry (unless it's a 322 // custom allocation) there's not much point to having all these alloc 323 // functions here -- they should never appear anywhere (I think?) other 324 // than the top stack entry. The only exceptions are those that in 325 // vg_replace_malloc.c are partly or fully implemented in terms of another 326 // alloc function: realloc (which uses malloc); valloc, 327 // malloc_zone_valloc, posix_memalign and memalign_common (which use 328 // memalign). 329 // 330 DO("malloc" ); 331 DO("__builtin_new" ); 332 DO("operator new(unsigned)" ); 333 DO("operator new(unsigned long)" ); 334 DO("__builtin_vec_new" ); 335 DO("operator new[](unsigned)" ); 336 DO("operator new[](unsigned long)" ); 337 DO("calloc" ); 338 DO("realloc" ); 339 DO("memalign" ); 340 DO("posix_memalign" ); 341 DO("valloc" ); 342 DO("operator new(unsigned, std::nothrow_t const&)" ); 343 DO("operator new[](unsigned, std::nothrow_t const&)" ); 344 DO("operator new(unsigned long, std::nothrow_t const&)" ); 345 DO("operator new[](unsigned long, std::nothrow_t const&)"); 346 #if defined(VGP_ppc32_aix5) || defined(VGP_ppc64_aix5) 347 DO("malloc_common" ); 348 DO("calloc_common" ); 349 DO("realloc_common" ); 350 DO("memalign_common" ); 351 #elif defined(VGO_darwin) 352 DO("malloc_zone_malloc" ); 353 DO("malloc_zone_calloc" ); 354 DO("malloc_zone_realloc" ); 355 DO("malloc_zone_memalign" ); 356 DO("malloc_zone_valloc" ); 357 #endif 358 } 359 360 static void init_ignore_fns(void) 361 { 362 // Create the (empty) list. 363 ignore_fns = VG_(newXA)(VG_(malloc), "ms.main.iif.1", 364 VG_(free), sizeof(Char*)); 365 } 366 367 // Determines if the named function is a member of the XArray. 368 static Bool is_member_fn(XArray* fns, Char* fnname) 369 { 370 Char** fn_ptr; 371 Int i; 372 373 // Nb: It's a linear search through the list, because we're comparing 374 // strings rather than pointers to strings. 375 // Nb: This gets called a lot. It was an OSet, but they're quite slow to 376 // iterate through so it wasn't a good choice. 377 for (i = 0; i < VG_(sizeXA)(fns); i++) { 378 fn_ptr = VG_(indexXA)(fns, i); 379 if (VG_STREQ(fnname, *fn_ptr)) 380 return True; 381 } 382 return False; 383 } 384 385 386 //------------------------------------------------------------// 387 //--- Command line args ---// 388 //------------------------------------------------------------// 389 390 #define MAX_DEPTH 200 391 392 typedef enum { TimeI, TimeMS, TimeB } TimeUnit; 393 394 static Char* TimeUnit_to_string(TimeUnit time_unit) 395 { 396 switch (time_unit) { 397 case TimeI: return "i"; 398 case TimeMS: return "ms"; 399 case TimeB: return "B"; 400 default: tl_assert2(0, "TimeUnit_to_string: unrecognised TimeUnit"); 401 } 402 } 403 404 static Bool clo_heap = True; 405 // clo_heap_admin is deliberately a word-sized type. At one point it was 406 // a UInt, but this caused problems on 64-bit machines when it was 407 // multiplied by a small negative number and then promoted to a 408 // word-sized type -- it ended up with a value of 4.2 billion. Sigh. 409 static SSizeT clo_heap_admin = 8; 410 static Bool clo_pages_as_heap = False; 411 static Bool clo_stacks = False; 412 static Int clo_depth = 30; 413 static double clo_threshold = 1.0; // percentage 414 static double clo_peak_inaccuracy = 1.0; // percentage 415 static Int clo_time_unit = TimeI; 416 static Int clo_detailed_freq = 10; 417 static Int clo_max_snapshots = 100; 418 static Char* clo_massif_out_file = "massif.out.%p"; 419 420 static XArray* args_for_massif; 421 422 static Bool ms_process_cmd_line_option(Char* arg) 423 { 424 Char* tmp_str; 425 426 // Remember the arg for later use. 427 VG_(addToXA)(args_for_massif, &arg); 428 429 if VG_BOOL_CLO(arg, "--heap", clo_heap) {} 430 else if VG_BINT_CLO(arg, "--heap-admin", clo_heap_admin, 0, 1024) {} 431 432 else if VG_BOOL_CLO(arg, "--stacks", clo_stacks) {} 433 434 else if VG_BOOL_CLO(arg, "--pages-as-heap", clo_pages_as_heap) {} 435 436 else if VG_BINT_CLO(arg, "--depth", clo_depth, 1, MAX_DEPTH) {} 437 438 else if VG_STR_CLO(arg, "--alloc-fn", tmp_str) { 439 VG_(addToXA)(alloc_fns, &tmp_str); 440 } 441 else if VG_STR_CLO(arg, "--ignore-fn", tmp_str) { 442 VG_(addToXA)(ignore_fns, &tmp_str); 443 } 444 445 else if VG_DBL_CLO(arg, "--threshold", clo_threshold) { 446 if (clo_threshold < 0 || clo_threshold > 100) { 447 VG_(fmsg_bad_option)(arg, 448 "--threshold must be between 0.0 and 100.0\n"); 449 } 450 } 451 452 else if VG_DBL_CLO(arg, "--peak-inaccuracy", clo_peak_inaccuracy) {} 453 454 else if VG_XACT_CLO(arg, "--time-unit=i", clo_time_unit, TimeI) {} 455 else if VG_XACT_CLO(arg, "--time-unit=ms", clo_time_unit, TimeMS) {} 456 else if VG_XACT_CLO(arg, "--time-unit=B", clo_time_unit, TimeB) {} 457 458 else if VG_BINT_CLO(arg, "--detailed-freq", clo_detailed_freq, 1, 1000000) {} 459 460 else if VG_BINT_CLO(arg, "--max-snapshots", clo_max_snapshots, 10, 1000) {} 461 462 else if VG_STR_CLO(arg, "--massif-out-file", clo_massif_out_file) {} 463 464 else 465 return VG_(replacement_malloc_process_cmd_line_option)(arg); 466 467 return True; 468 } 469 470 static void ms_print_usage(void) 471 { 472 VG_(printf)( 473 " --heap=no|yes profile heap blocks [yes]\n" 474 " --heap-admin=<size> average admin bytes per heap block;\n" 475 " ignored if --heap=no [8]\n" 476 " --stacks=no|yes profile stack(s) [no]\n" 477 " --pages-as-heap=no|yes profile memory at the page level [no]\n" 478 " --depth=<number> depth of contexts [30]\n" 479 " --alloc-fn=<name> specify <name> as an alloc function [empty]\n" 480 " --ignore-fn=<name> ignore heap allocations within <name> [empty]\n" 481 " --threshold=<m.n> significance threshold, as a percentage [1.0]\n" 482 " --peak-inaccuracy=<m.n> maximum peak inaccuracy, as a percentage [1.0]\n" 483 " --time-unit=i|ms|B time unit: instructions executed, milliseconds\n" 484 " or heap bytes alloc'd/dealloc'd [i]\n" 485 " --detailed-freq=<N> every Nth snapshot should be detailed [10]\n" 486 " --max-snapshots=<N> maximum number of snapshots recorded [100]\n" 487 " --massif-out-file=<file> output file name [massif.out.%%p]\n" 488 ); 489 } 490 491 static void ms_print_debug_usage(void) 492 { 493 VG_(printf)( 494 " (none)\n" 495 ); 496 } 497 498 499 //------------------------------------------------------------// 500 //--- XPts, XTrees and XCons ---// 501 //------------------------------------------------------------// 502 503 // An XPt represents an "execution point", ie. a code address. Each XPt is 504 // part of a tree of XPts (an "execution tree", or "XTree"). The details of 505 // the heap are represented by a single XTree. 506 // 507 // The root of the tree is 'alloc_xpt', which represents all allocation 508 // functions, eg: 509 // - malloc/calloc/realloc/memalign/new/new[]; 510 // - user-specified allocation functions (using --alloc-fn); 511 // - custom allocation (MALLOCLIKE) points 512 // It's a bit of a fake XPt (ie. its 'ip' is zero), and is only used because 513 // it makes the code simpler. 514 // 515 // Any child of 'alloc_xpt' is called a "top-XPt". The XPts at the bottom 516 // of an XTree (leaf nodes) are "bottom-XPTs". 517 // 518 // Each path from a top-XPt to a bottom-XPt through an XTree gives an 519 // execution context ("XCon"), ie. a stack trace. (And sub-paths represent 520 // stack sub-traces.) The number of XCons in an XTree is equal to the 521 // number of bottom-XPTs in that XTree. 522 // 523 // alloc_xpt XTrees are bi-directional. 524 // | ^ 525 // v | 526 // > parent < Example: if child1() calls parent() and child2() 527 // / | \ also calls parent(), and parent() calls malloc(), 528 // | / \ | the XTree will look like this. 529 // | v v | 530 // child1 child2 531 // 532 // (Note that malformed stack traces can lead to difficulties. See the 533 // comment at the bottom of get_XCon.) 534 // 535 // XTrees and XPts are mirrored by SXTrees and SXPts, where the 'S' is short 536 // for "saved". When the XTree is duplicated for a snapshot, we duplicate 537 // it as an SXTree, which is similar but omits some things it does not need, 538 // and aggregates up insignificant nodes. This is important as an SXTree is 539 // typically much smaller than an XTree. 540 541 // XXX: make XPt and SXPt extensible arrays, to avoid having to do two 542 // allocations per Pt. 543 544 typedef struct _XPt XPt; 545 struct _XPt { 546 Addr ip; // code address 547 548 // Bottom-XPts: space for the precise context. 549 // Other XPts: space of all the descendent bottom-XPts. 550 // Nb: this value goes up and down as the program executes. 551 SizeT szB; 552 553 XPt* parent; // pointer to parent XPt 554 555 // Children. 556 // n_children and max_children are 32-bit integers. 16-bit integers 557 // are too small -- a very big program might have more than 65536 558 // allocation points (ie. top-XPts) -- Konqueror starting up has 1800. 559 UInt n_children; // number of children 560 UInt max_children; // capacity of children array 561 XPt** children; // pointers to children XPts 562 }; 563 564 typedef 565 enum { 566 SigSXPt, 567 InsigSXPt 568 } 569 SXPtTag; 570 571 typedef struct _SXPt SXPt; 572 struct _SXPt { 573 SXPtTag tag; 574 SizeT szB; // memory size for the node, be it Sig or Insig 575 union { 576 // An SXPt representing a single significant code location. Much like 577 // an XPt, minus the fields that aren't necessary. 578 struct { 579 Addr ip; 580 UInt n_children; 581 SXPt** children; 582 } 583 Sig; 584 585 // An SXPt representing one or more code locations, all below the 586 // significance threshold. 587 struct { 588 Int n_xpts; // number of aggregated XPts 589 } 590 Insig; 591 }; 592 }; 593 594 // Fake XPt representing all allocation functions like malloc(). Acts as 595 // parent node to all top-XPts. 596 static XPt* alloc_xpt; 597 598 // Cheap allocation for blocks that never need to be freed. Saves about 10% 599 // for Konqueror startup with --depth=40. 600 static void* perm_malloc(SizeT n_bytes) 601 { 602 static Addr hp = 0; // current heap pointer 603 static Addr hp_lim = 0; // maximum usable byte in current block 604 605 #define SUPERBLOCK_SIZE (1 << 20) // 1 MB 606 607 if (hp + n_bytes > hp_lim) { 608 hp = (Addr)VG_(am_shadow_alloc)(SUPERBLOCK_SIZE); 609 if (0 == hp) 610 VG_(out_of_memory_NORETURN)( "massif:perm_malloc", 611 SUPERBLOCK_SIZE); 612 hp_lim = hp + SUPERBLOCK_SIZE - 1; 613 } 614 615 hp += n_bytes; 616 617 return (void*)(hp - n_bytes); 618 } 619 620 static XPt* new_XPt(Addr ip, XPt* parent) 621 { 622 // XPts are never freed, so we can use perm_malloc to allocate them. 623 // Note that we cannot use perm_malloc for the 'children' array, because 624 // that needs to be resizable. 625 XPt* xpt = perm_malloc(sizeof(XPt)); 626 xpt->ip = ip; 627 xpt->szB = 0; 628 xpt->parent = parent; 629 630 // We don't initially allocate any space for children. We let that 631 // happen on demand. Many XPts (ie. all the bottom-XPts) don't have any 632 // children anyway. 633 xpt->n_children = 0; 634 xpt->max_children = 0; 635 xpt->children = NULL; 636 637 // Update statistics 638 n_xpts++; 639 640 return xpt; 641 } 642 643 static void add_child_xpt(XPt* parent, XPt* child) 644 { 645 // Expand 'children' if necessary. 646 tl_assert(parent->n_children <= parent->max_children); 647 if (parent->n_children == parent->max_children) { 648 if (0 == parent->max_children) { 649 parent->max_children = 4; 650 parent->children = VG_(malloc)( "ms.main.acx.1", 651 parent->max_children * sizeof(XPt*) ); 652 n_xpt_init_expansions++; 653 } else { 654 parent->max_children *= 2; // Double size 655 parent->children = VG_(realloc)( "ms.main.acx.2", 656 parent->children, 657 parent->max_children * sizeof(XPt*) ); 658 n_xpt_later_expansions++; 659 } 660 } 661 662 // Insert new child XPt in parent's children list. 663 parent->children[ parent->n_children++ ] = child; 664 } 665 666 // Reverse comparison for a reverse sort -- biggest to smallest. 667 static Int SXPt_revcmp_szB(void* n1, void* n2) 668 { 669 SXPt* sxpt1 = *(SXPt**)n1; 670 SXPt* sxpt2 = *(SXPt**)n2; 671 return ( sxpt1->szB < sxpt2->szB ? 1 672 : sxpt1->szB > sxpt2->szB ? -1 673 : 0); 674 } 675 676 //------------------------------------------------------------// 677 //--- XTree Operations ---// 678 //------------------------------------------------------------// 679 680 // Duplicates an XTree as an SXTree. 681 static SXPt* dup_XTree(XPt* xpt, SizeT total_szB) 682 { 683 Int i, n_sig_children, n_insig_children, n_child_sxpts; 684 SizeT sig_child_threshold_szB; 685 SXPt* sxpt; 686 687 // Number of XPt children Action for SXPT 688 // ------------------ --------------- 689 // 0 sig, 0 insig alloc 0 children 690 // N sig, 0 insig alloc N children, dup all 691 // N sig, M insig alloc N+1, dup first N, aggregate remaining M 692 // 0 sig, M insig alloc 1, aggregate M 693 694 // Work out how big a child must be to be significant. If the current 695 // total_szB is zero, then we set it to 1, which means everything will be 696 // judged insignificant -- this is sensible, as there's no point showing 697 // any detail for this case. Unless they used --threshold=0, in which 698 // case we show them everything because that's what they asked for. 699 // 700 // Nb: We do this once now, rather than once per child, because if we do 701 // that the cost of all the divisions adds up to something significant. 702 if (0 == total_szB && 0 != clo_threshold) { 703 sig_child_threshold_szB = 1; 704 } else { 705 sig_child_threshold_szB = (SizeT)((total_szB * clo_threshold) / 100); 706 } 707 708 // How many children are significant? And do we need an aggregate SXPt? 709 n_sig_children = 0; 710 for (i = 0; i < xpt->n_children; i++) { 711 if (xpt->children[i]->szB >= sig_child_threshold_szB) { 712 n_sig_children++; 713 } 714 } 715 n_insig_children = xpt->n_children - n_sig_children; 716 n_child_sxpts = n_sig_children + ( n_insig_children > 0 ? 1 : 0 ); 717 718 // Duplicate the XPt. 719 sxpt = VG_(malloc)("ms.main.dX.1", sizeof(SXPt)); 720 n_sxpt_allocs++; 721 sxpt->tag = SigSXPt; 722 sxpt->szB = xpt->szB; 723 sxpt->Sig.ip = xpt->ip; 724 sxpt->Sig.n_children = n_child_sxpts; 725 726 // Create the SXPt's children. 727 if (n_child_sxpts > 0) { 728 Int j; 729 SizeT sig_children_szB = 0, insig_children_szB = 0; 730 sxpt->Sig.children = VG_(malloc)("ms.main.dX.2", 731 n_child_sxpts * sizeof(SXPt*)); 732 733 // Duplicate the significant children. (Nb: sig_children_szB + 734 // insig_children_szB doesn't necessarily equal xpt->szB.) 735 j = 0; 736 for (i = 0; i < xpt->n_children; i++) { 737 if (xpt->children[i]->szB >= sig_child_threshold_szB) { 738 sxpt->Sig.children[j++] = dup_XTree(xpt->children[i], total_szB); 739 sig_children_szB += xpt->children[i]->szB; 740 } else { 741 insig_children_szB += xpt->children[i]->szB; 742 } 743 } 744 745 // Create the SXPt for the insignificant children, if any, and put it 746 // in the last child entry. 747 if (n_insig_children > 0) { 748 // Nb: We 'n_sxpt_allocs' here because creating an Insig SXPt 749 // doesn't involve a call to dup_XTree(). 750 SXPt* insig_sxpt = VG_(malloc)("ms.main.dX.3", sizeof(SXPt)); 751 n_sxpt_allocs++; 752 insig_sxpt->tag = InsigSXPt; 753 insig_sxpt->szB = insig_children_szB; 754 insig_sxpt->Insig.n_xpts = n_insig_children; 755 sxpt->Sig.children[n_sig_children] = insig_sxpt; 756 } 757 } else { 758 sxpt->Sig.children = NULL; 759 } 760 761 return sxpt; 762 } 763 764 static void free_SXTree(SXPt* sxpt) 765 { 766 Int i; 767 tl_assert(sxpt != NULL); 768 769 switch (sxpt->tag) { 770 case SigSXPt: 771 // Free all children SXPts, then the children array. 772 for (i = 0; i < sxpt->Sig.n_children; i++) { 773 free_SXTree(sxpt->Sig.children[i]); 774 sxpt->Sig.children[i] = NULL; 775 } 776 VG_(free)(sxpt->Sig.children); sxpt->Sig.children = NULL; 777 break; 778 779 case InsigSXPt: 780 break; 781 782 default: tl_assert2(0, "free_SXTree: unknown SXPt tag"); 783 } 784 785 // Free the SXPt itself. 786 VG_(free)(sxpt); sxpt = NULL; 787 n_sxpt_frees++; 788 } 789 790 // Sanity checking: we periodically check the heap XTree with 791 // ms_expensive_sanity_check. 792 static void sanity_check_XTree(XPt* xpt, XPt* parent) 793 { 794 tl_assert(xpt != NULL); 795 796 // Check back-pointer. 797 tl_assert2(xpt->parent == parent, 798 "xpt->parent = %p, parent = %p\n", xpt->parent, parent); 799 800 // Check children counts look sane. 801 tl_assert(xpt->n_children <= xpt->max_children); 802 803 // Unfortunately, xpt's size is not necessarily equal to the sum of xpt's 804 // children's sizes. See comment at the bottom of get_XCon. 805 } 806 807 // Sanity checking: we check SXTrees (which are in snapshots) after 808 // snapshots are created, before they are deleted, and before they are 809 // printed. 810 static void sanity_check_SXTree(SXPt* sxpt) 811 { 812 Int i; 813 814 tl_assert(sxpt != NULL); 815 816 // Check the sum of any children szBs equals the SXPt's szB. Check the 817 // children at the same time. 818 switch (sxpt->tag) { 819 case SigSXPt: { 820 if (sxpt->Sig.n_children > 0) { 821 for (i = 0; i < sxpt->Sig.n_children; i++) { 822 sanity_check_SXTree(sxpt->Sig.children[i]); 823 } 824 } 825 break; 826 } 827 case InsigSXPt: 828 break; // do nothing 829 830 default: tl_assert2(0, "sanity_check_SXTree: unknown SXPt tag"); 831 } 832 } 833 834 835 //------------------------------------------------------------// 836 //--- XCon Operations ---// 837 //------------------------------------------------------------// 838 839 // This is the limit on the number of removed alloc-fns that can be in a 840 // single XCon. 841 #define MAX_OVERESTIMATE 50 842 #define MAX_IPS (MAX_DEPTH + MAX_OVERESTIMATE) 843 844 // This is used for various buffers which can hold function names/IP 845 // description. Some C++ names can get really long so 1024 isn't big 846 // enough. 847 #define BUF_LEN 2048 848 849 // Determine if the given IP belongs to a function that should be ignored. 850 static Bool fn_should_be_ignored(Addr ip) 851 { 852 static Char buf[BUF_LEN]; 853 return 854 ( VG_(get_fnname)(ip, buf, BUF_LEN) && is_member_fn(ignore_fns, buf) 855 ? True : False ); 856 } 857 858 // Get the stack trace for an XCon, filtering out uninteresting entries: 859 // alloc-fns and entries above alloc-fns, and entries below main-or-below-main. 860 // Eg: alloc-fn1 / alloc-fn2 / a / b / main / (below main) / c 861 // becomes: a / b / main 862 // Nb: it's possible to end up with an empty trace, eg. if 'main' is marked 863 // as an alloc-fn. This is ok. 864 static 865 Int get_IPs( ThreadId tid, Bool exclude_first_entry, Addr ips[]) 866 { 867 static Char buf[BUF_LEN]; 868 Int n_ips, i, n_alloc_fns_removed; 869 Int overestimate; 870 Bool redo; 871 872 // We ask for a few more IPs than clo_depth suggests we need. Then we 873 // remove every entry that is an alloc-fn. Depending on the 874 // circumstances, we may need to redo it all, asking for more IPs. 875 // Details: 876 // - If the original stack trace is smaller than asked-for, redo=False 877 // - Else if after filtering we have >= clo_depth IPs, redo=False 878 // - Else redo=True 879 // In other words, to redo, we'd have to get a stack trace as big as we 880 // asked for and remove more than 'overestimate' alloc-fns. 881 882 // Main loop. 883 redo = True; // Assume this to begin with. 884 for (overestimate = 3; redo; overestimate += 6) { 885 // This should never happen -- would require MAX_OVERESTIMATE 886 // alloc-fns to be removed from the stack trace. 887 if (overestimate > MAX_OVERESTIMATE) 888 VG_(tool_panic)("get_IPs: ips[] too small, inc. MAX_OVERESTIMATE?"); 889 890 // Ask for more IPs than clo_depth suggests we need. 891 n_ips = VG_(get_StackTrace)( tid, ips, clo_depth + overestimate, 892 NULL/*array to dump SP values in*/, 893 NULL/*array to dump FP values in*/, 894 0/*first_ip_delta*/ ); 895 tl_assert(n_ips > 0); 896 897 // If the original stack trace is smaller than asked-for, redo=False. 898 if (n_ips < clo_depth + overestimate) { redo = False; } 899 900 // Filter out alloc fns. If requested, we automatically remove the 901 // first entry (which presumably will be something like malloc or 902 // __builtin_new that we're sure to filter out) without looking at it, 903 // because VG_(get_fnname) is expensive. 904 n_alloc_fns_removed = ( exclude_first_entry ? 1 : 0 ); 905 for (i = n_alloc_fns_removed; i < n_ips; i++) { 906 if (VG_(get_fnname)(ips[i], buf, BUF_LEN)) { 907 if (is_member_fn(alloc_fns, buf)) { 908 n_alloc_fns_removed++; 909 } else { 910 break; 911 } 912 } 913 } 914 // Remove the alloc fns by shuffling the rest down over them. 915 n_ips -= n_alloc_fns_removed; 916 for (i = 0; i < n_ips; i++) { 917 ips[i] = ips[i + n_alloc_fns_removed]; 918 } 919 920 // If after filtering we have >= clo_depth IPs, redo=False 921 if (n_ips >= clo_depth) { 922 redo = False; 923 n_ips = clo_depth; // Ignore any IPs below --depth. 924 } 925 926 if (redo) { 927 n_XCon_redos++; 928 } 929 } 930 return n_ips; 931 } 932 933 // Gets an XCon and puts it in the tree. Returns the XCon's bottom-XPt. 934 // Unless the allocation should be ignored, in which case we return NULL. 935 static XPt* get_XCon( ThreadId tid, Bool exclude_first_entry ) 936 { 937 static Addr ips[MAX_IPS]; 938 Int i; 939 XPt* xpt = alloc_xpt; 940 941 // After this call, the IPs we want are in ips[0]..ips[n_ips-1]. 942 Int n_ips = get_IPs(tid, exclude_first_entry, ips); 943 944 // Should we ignore this allocation? (Nb: n_ips can be zero, eg. if 945 // 'main' is marked as an alloc-fn.) 946 if (n_ips > 0 && fn_should_be_ignored(ips[0])) { 947 return NULL; 948 } 949 950 // Now do the search/insertion of the XCon. 951 for (i = 0; i < n_ips; i++) { 952 Addr ip = ips[i]; 953 Int ch; 954 // Look for IP in xpt's children. 955 // Linear search, ugh -- about 10% of time for konqueror startup tried 956 // caching last result, only hit about 4% for konqueror. 957 // Nb: this search hits about 98% of the time for konqueror 958 for (ch = 0; True; ch++) { 959 if (ch == xpt->n_children) { 960 // IP not found in the children. 961 // Create and add new child XPt, then stop. 962 XPt* new_child_xpt = new_XPt(ip, xpt); 963 add_child_xpt(xpt, new_child_xpt); 964 xpt = new_child_xpt; 965 break; 966 967 } else if (ip == xpt->children[ch]->ip) { 968 // Found the IP in the children, stop. 969 xpt = xpt->children[ch]; 970 break; 971 } 972 } 973 } 974 975 // [Note: several comments refer to this comment. Do not delete it 976 // without updating them.] 977 // 978 // A complication... If all stack traces were well-formed, then the 979 // returned xpt would always be a bottom-XPt. As a consequence, an XPt's 980 // size would always be equal to the sum of its children's sizes, which 981 // is an excellent sanity check. 982 // 983 // Unfortunately, stack traces occasionally are malformed, ie. truncated. 984 // This allows a stack trace to be a sub-trace of another, eg. a/b/c is a 985 // sub-trace of a/b/c/d. So we can't assume this xpt is a bottom-XPt; 986 // nor can we do sanity check an XPt's size against its children's sizes. 987 // This is annoying, but must be dealt with. (Older versions of Massif 988 // had this assertion in, and it was reported to fail by real users a 989 // couple of times.) Even more annoyingly, I can't come up with a simple 990 // test case that exhibit such a malformed stack trace, so I can't 991 // regression test it. Sigh. 992 // 993 // However, we can print a warning, so that if it happens (unexpectedly) 994 // in existing regression tests we'll know. Also, it warns users that 995 // the output snapshots may not add up the way they might expect. 996 // 997 //tl_assert(0 == xpt->n_children); // Must be bottom-XPt 998 if (0 != xpt->n_children) { 999 static Int n_moans = 0; 1000 if (n_moans < 3) { 1001 VG_(umsg)( 1002 "Warning: Malformed stack trace detected. In Massif's output,\n"); 1003 VG_(umsg)( 1004 " the size of an entry's child entries may not sum up\n"); 1005 VG_(umsg)( 1006 " to the entry's size as they normally do.\n"); 1007 n_moans++; 1008 if (3 == n_moans) 1009 VG_(umsg)( 1010 " (And Massif now won't warn about this again.)\n"); 1011 } 1012 } 1013 return xpt; 1014 } 1015 1016 // Update 'szB' of every XPt in the XCon, by percolating upwards. 1017 static void update_XCon(XPt* xpt, SSizeT space_delta) 1018 { 1019 tl_assert(clo_heap); 1020 tl_assert(NULL != xpt); 1021 1022 if (0 == space_delta) 1023 return; 1024 1025 while (xpt != alloc_xpt) { 1026 if (space_delta < 0) tl_assert(xpt->szB >= -space_delta); 1027 xpt->szB += space_delta; 1028 xpt = xpt->parent; 1029 } 1030 if (space_delta < 0) tl_assert(alloc_xpt->szB >= -space_delta); 1031 alloc_xpt->szB += space_delta; 1032 } 1033 1034 1035 //------------------------------------------------------------// 1036 //--- Snapshots ---// 1037 //------------------------------------------------------------// 1038 1039 // Snapshots are done in a way so that we always have a reasonable number of 1040 // them. We start by taking them quickly. Once we hit our limit, we cull 1041 // some (eg. half), and start taking them more slowly. Once we hit the 1042 // limit again, we again cull and then take them even more slowly, and so 1043 // on. 1044 1045 // Time is measured either in i or ms or bytes, depending on the --time-unit 1046 // option. It's a Long because it can exceed 32-bits reasonably easily, and 1047 // because we need to allow negative values to represent unset times. 1048 typedef Long Time; 1049 1050 #define UNUSED_SNAPSHOT_TIME -333 // A conspicuous negative number. 1051 1052 typedef 1053 enum { 1054 Normal = 77, 1055 Peak, 1056 Unused 1057 } 1058 SnapshotKind; 1059 1060 typedef 1061 struct { 1062 SnapshotKind kind; 1063 Time time; 1064 SizeT heap_szB; 1065 SizeT heap_extra_szB;// Heap slop + admin bytes. 1066 SizeT stacks_szB; 1067 SXPt* alloc_sxpt; // Heap XTree root, if a detailed snapshot, 1068 } // otherwise NULL. 1069 Snapshot; 1070 1071 static UInt next_snapshot_i = 0; // Index of where next snapshot will go. 1072 static Snapshot* snapshots; // Array of snapshots. 1073 1074 static Bool is_snapshot_in_use(Snapshot* snapshot) 1075 { 1076 if (Unused == snapshot->kind) { 1077 // If snapshot is unused, check all the fields are unset. 1078 tl_assert(snapshot->time == UNUSED_SNAPSHOT_TIME); 1079 tl_assert(snapshot->heap_extra_szB == 0); 1080 tl_assert(snapshot->heap_szB == 0); 1081 tl_assert(snapshot->stacks_szB == 0); 1082 tl_assert(snapshot->alloc_sxpt == NULL); 1083 return False; 1084 } else { 1085 tl_assert(snapshot->time != UNUSED_SNAPSHOT_TIME); 1086 return True; 1087 } 1088 } 1089 1090 static Bool is_detailed_snapshot(Snapshot* snapshot) 1091 { 1092 return (snapshot->alloc_sxpt ? True : False); 1093 } 1094 1095 static Bool is_uncullable_snapshot(Snapshot* snapshot) 1096 { 1097 return &snapshots[0] == snapshot // First snapshot 1098 || &snapshots[next_snapshot_i-1] == snapshot // Last snapshot 1099 || snapshot->kind == Peak; // Peak snapshot 1100 } 1101 1102 static void sanity_check_snapshot(Snapshot* snapshot) 1103 { 1104 if (snapshot->alloc_sxpt) { 1105 sanity_check_SXTree(snapshot->alloc_sxpt); 1106 } 1107 } 1108 1109 // All the used entries should look used, all the unused ones should be clear. 1110 static void sanity_check_snapshots_array(void) 1111 { 1112 Int i; 1113 for (i = 0; i < next_snapshot_i; i++) { 1114 tl_assert( is_snapshot_in_use( & snapshots[i] )); 1115 } 1116 for ( ; i < clo_max_snapshots; i++) { 1117 tl_assert(!is_snapshot_in_use( & snapshots[i] )); 1118 } 1119 } 1120 1121 // This zeroes all the fields in the snapshot, but does not free the heap 1122 // XTree if present. It also does a sanity check unless asked not to; we 1123 // can't sanity check at startup when clearing the initial snapshots because 1124 // they're full of junk. 1125 static void clear_snapshot(Snapshot* snapshot, Bool do_sanity_check) 1126 { 1127 if (do_sanity_check) sanity_check_snapshot(snapshot); 1128 snapshot->kind = Unused; 1129 snapshot->time = UNUSED_SNAPSHOT_TIME; 1130 snapshot->heap_extra_szB = 0; 1131 snapshot->heap_szB = 0; 1132 snapshot->stacks_szB = 0; 1133 snapshot->alloc_sxpt = NULL; 1134 } 1135 1136 // This zeroes all the fields in the snapshot, and frees the heap XTree if 1137 // present. 1138 static void delete_snapshot(Snapshot* snapshot) 1139 { 1140 // Nb: if there's an XTree, we free it after calling clear_snapshot, 1141 // because clear_snapshot does a sanity check which includes checking the 1142 // XTree. 1143 SXPt* tmp_sxpt = snapshot->alloc_sxpt; 1144 clear_snapshot(snapshot, /*do_sanity_check*/True); 1145 if (tmp_sxpt) { 1146 free_SXTree(tmp_sxpt); 1147 } 1148 } 1149 1150 static void VERB_snapshot(Int verbosity, Char* prefix, Int i) 1151 { 1152 Snapshot* snapshot = &snapshots[i]; 1153 Char* suffix; 1154 switch (snapshot->kind) { 1155 case Peak: suffix = "p"; break; 1156 case Normal: suffix = ( is_detailed_snapshot(snapshot) ? "d" : "." ); break; 1157 case Unused: suffix = "u"; break; 1158 default: 1159 tl_assert2(0, "VERB_snapshot: unknown snapshot kind: %d", snapshot->kind); 1160 } 1161 VERB(verbosity, "%s S%s%3d (t:%lld, hp:%ld, ex:%ld, st:%ld)\n", 1162 prefix, suffix, i, 1163 snapshot->time, 1164 snapshot->heap_szB, 1165 snapshot->heap_extra_szB, 1166 snapshot->stacks_szB 1167 ); 1168 } 1169 1170 // Cull half the snapshots; we choose those that represent the smallest 1171 // time-spans, because that gives us the most even distribution of snapshots 1172 // over time. (It's possible to lose interesting spikes, however.) 1173 // 1174 // Algorithm for N snapshots: We find the snapshot representing the smallest 1175 // timeframe, and remove it. We repeat this until (N/2) snapshots are gone. 1176 // We have to do this one snapshot at a time, rather than finding the (N/2) 1177 // smallest snapshots in one hit, because when a snapshot is removed, its 1178 // neighbours immediately cover greater timespans. So it's O(N^2), but N is 1179 // small, and it's not done very often. 1180 // 1181 // Once we're done, we return the new smallest interval between snapshots. 1182 // That becomes our minimum time interval. 1183 static UInt cull_snapshots(void) 1184 { 1185 Int i, jp, j, jn, min_timespan_i; 1186 Int n_deleted = 0; 1187 Time min_timespan; 1188 1189 n_cullings++; 1190 1191 // Sets j to the index of the first not-yet-removed snapshot at or after i 1192 #define FIND_SNAPSHOT(i, j) \ 1193 for (j = i; \ 1194 j < clo_max_snapshots && !is_snapshot_in_use(&snapshots[j]); \ 1195 j++) { } 1196 1197 VERB(2, "Culling...\n"); 1198 1199 // First we remove enough snapshots by clearing them in-place. Once 1200 // that's done, we can slide the remaining ones down. 1201 for (i = 0; i < clo_max_snapshots/2; i++) { 1202 // Find the snapshot representing the smallest timespan. The timespan 1203 // for snapshot n = d(N-1,N)+d(N,N+1), where d(A,B) is the time between 1204 // snapshot A and B. We don't consider the first and last snapshots for 1205 // removal. 1206 Snapshot* min_snapshot; 1207 Int min_j; 1208 1209 // Initial triple: (prev, curr, next) == (jp, j, jn) 1210 // Initial min_timespan is the first one. 1211 jp = 0; 1212 FIND_SNAPSHOT(1, j); 1213 FIND_SNAPSHOT(j+1, jn); 1214 min_timespan = 0x7fffffffffffffffLL; 1215 min_j = -1; 1216 while (jn < clo_max_snapshots) { 1217 Time timespan = snapshots[jn].time - snapshots[jp].time; 1218 tl_assert(timespan >= 0); 1219 // Nb: We never cull the peak snapshot. 1220 if (Peak != snapshots[j].kind && timespan < min_timespan) { 1221 min_timespan = timespan; 1222 min_j = j; 1223 } 1224 // Move on to next triple 1225 jp = j; 1226 j = jn; 1227 FIND_SNAPSHOT(jn+1, jn); 1228 } 1229 // We've found the least important snapshot, now delete it. First 1230 // print it if necessary. 1231 tl_assert(-1 != min_j); // Check we found a minimum. 1232 min_snapshot = & snapshots[ min_j ]; 1233 if (VG_(clo_verbosity) > 1) { 1234 Char buf[64]; 1235 VG_(snprintf)(buf, 64, " %3d (t-span = %lld)", i, min_timespan); 1236 VERB_snapshot(2, buf, min_j); 1237 } 1238 delete_snapshot(min_snapshot); 1239 n_deleted++; 1240 } 1241 1242 // Slide down the remaining snapshots over the removed ones. First set i 1243 // to point to the first empty slot, and j to the first full slot after 1244 // i. Then slide everything down. 1245 for (i = 0; is_snapshot_in_use( &snapshots[i] ); i++) { } 1246 for (j = i; !is_snapshot_in_use( &snapshots[j] ); j++) { } 1247 for ( ; j < clo_max_snapshots; j++) { 1248 if (is_snapshot_in_use( &snapshots[j] )) { 1249 snapshots[i++] = snapshots[j]; 1250 clear_snapshot(&snapshots[j], /*do_sanity_check*/True); 1251 } 1252 } 1253 next_snapshot_i = i; 1254 1255 // Check snapshots array looks ok after changes. 1256 sanity_check_snapshots_array(); 1257 1258 // Find the minimum timespan remaining; that will be our new minimum 1259 // time interval. Note that above we were finding timespans by measuring 1260 // two intervals around a snapshot that was under consideration for 1261 // deletion. Here we only measure single intervals because all the 1262 // deletions have occurred. 1263 // 1264 // But we have to be careful -- some snapshots (eg. snapshot 0, and the 1265 // peak snapshot) are uncullable. If two uncullable snapshots end up 1266 // next to each other, they'll never be culled (assuming the peak doesn't 1267 // change), and the time gap between them will not change. However, the 1268 // time between the remaining cullable snapshots will grow ever larger. 1269 // This means that the min_timespan found will always be that between the 1270 // two uncullable snapshots, and it will be much smaller than it should 1271 // be. To avoid this problem, when computing the minimum timespan, we 1272 // ignore any timespans between two uncullable snapshots. 1273 tl_assert(next_snapshot_i > 1); 1274 min_timespan = 0x7fffffffffffffffLL; 1275 min_timespan_i = -1; 1276 for (i = 1; i < next_snapshot_i; i++) { 1277 if (is_uncullable_snapshot(&snapshots[i]) && 1278 is_uncullable_snapshot(&snapshots[i-1])) 1279 { 1280 VERB(2, "(Ignoring interval %d--%d when computing minimum)\n", i-1, i); 1281 } else { 1282 Time timespan = snapshots[i].time - snapshots[i-1].time; 1283 tl_assert(timespan >= 0); 1284 if (timespan < min_timespan) { 1285 min_timespan = timespan; 1286 min_timespan_i = i; 1287 } 1288 } 1289 } 1290 tl_assert(-1 != min_timespan_i); // Check we found a minimum. 1291 1292 // Print remaining snapshots, if necessary. 1293 if (VG_(clo_verbosity) > 1) { 1294 VERB(2, "Finished culling (%3d of %3d deleted)\n", 1295 n_deleted, clo_max_snapshots); 1296 for (i = 0; i < next_snapshot_i; i++) { 1297 VERB_snapshot(2, " post-cull", i); 1298 } 1299 VERB(2, "New time interval = %lld (between snapshots %d and %d)\n", 1300 min_timespan, min_timespan_i-1, min_timespan_i); 1301 } 1302 1303 return min_timespan; 1304 } 1305 1306 static Time get_time(void) 1307 { 1308 // Get current time, in whatever time unit we're using. 1309 if (clo_time_unit == TimeI) { 1310 return guest_instrs_executed; 1311 } else if (clo_time_unit == TimeMS) { 1312 // Some stuff happens between the millisecond timer being initialised 1313 // to zero and us taking our first snapshot. We determine that time 1314 // gap so we can subtract it from all subsequent times so that our 1315 // first snapshot is considered to be at t = 0ms. Unfortunately, a 1316 // bunch of symbols get read after the first snapshot is taken but 1317 // before the second one (which is triggered by the first allocation), 1318 // so when the time-unit is 'ms' we always have a big gap between the 1319 // first two snapshots. But at least users won't have to wonder why 1320 // the first snapshot isn't at t=0. 1321 static Bool is_first_get_time = True; 1322 static Time start_time_ms; 1323 if (is_first_get_time) { 1324 start_time_ms = VG_(read_millisecond_timer)(); 1325 is_first_get_time = False; 1326 return 0; 1327 } else { 1328 return VG_(read_millisecond_timer)() - start_time_ms; 1329 } 1330 } else if (clo_time_unit == TimeB) { 1331 return total_allocs_deallocs_szB; 1332 } else { 1333 tl_assert2(0, "bad --time-unit value"); 1334 } 1335 } 1336 1337 // Take a snapshot, and only that -- decisions on whether to take a 1338 // snapshot, or what kind of snapshot, are made elsewhere. 1339 // Nb: we call the arg "my_time" because "time" shadows a global declaration 1340 // in /usr/include/time.h on Darwin. 1341 static void 1342 take_snapshot(Snapshot* snapshot, SnapshotKind kind, Time my_time, 1343 Bool is_detailed) 1344 { 1345 tl_assert(!is_snapshot_in_use(snapshot)); 1346 if (!clo_pages_as_heap) { 1347 tl_assert(have_started_executing_code); 1348 } 1349 1350 // Heap and heap admin. 1351 if (clo_heap) { 1352 snapshot->heap_szB = heap_szB; 1353 if (is_detailed) { 1354 SizeT total_szB = heap_szB + heap_extra_szB + stacks_szB; 1355 snapshot->alloc_sxpt = dup_XTree(alloc_xpt, total_szB); 1356 tl_assert( alloc_xpt->szB == heap_szB); 1357 tl_assert(snapshot->alloc_sxpt->szB == heap_szB); 1358 } 1359 snapshot->heap_extra_szB = heap_extra_szB; 1360 } 1361 1362 // Stack(s). 1363 if (clo_stacks) { 1364 snapshot->stacks_szB = stacks_szB; 1365 } 1366 1367 // Rest of snapshot. 1368 snapshot->kind = kind; 1369 snapshot->time = my_time; 1370 sanity_check_snapshot(snapshot); 1371 1372 // Update stats. 1373 if (Peak == kind) n_peak_snapshots++; 1374 if (is_detailed) n_detailed_snapshots++; 1375 n_real_snapshots++; 1376 } 1377 1378 1379 // Take a snapshot, if it's time, or if we've hit a peak. 1380 static void 1381 maybe_take_snapshot(SnapshotKind kind, Char* what) 1382 { 1383 // 'min_time_interval' is the minimum time interval between snapshots. 1384 // If we try to take a snapshot and less than this much time has passed, 1385 // we don't take it. It gets larger as the program runs longer. It's 1386 // initialised to zero so that we begin by taking snapshots as quickly as 1387 // possible. 1388 static Time min_time_interval = 0; 1389 // Zero allows startup snapshot. 1390 static Time earliest_possible_time_of_next_snapshot = 0; 1391 static Int n_snapshots_since_last_detailed = 0; 1392 static Int n_skipped_snapshots_since_last_snapshot = 0; 1393 1394 Snapshot* snapshot; 1395 Bool is_detailed; 1396 // Nb: we call this variable "my_time" because "time" shadows a global 1397 // declaration in /usr/include/time.h on Darwin. 1398 Time my_time = get_time(); 1399 1400 switch (kind) { 1401 case Normal: 1402 // Only do a snapshot if it's time. 1403 if (my_time < earliest_possible_time_of_next_snapshot) { 1404 n_skipped_snapshots++; 1405 n_skipped_snapshots_since_last_snapshot++; 1406 return; 1407 } 1408 is_detailed = (clo_detailed_freq-1 == n_snapshots_since_last_detailed); 1409 break; 1410 1411 case Peak: { 1412 // Because we're about to do a deallocation, we're coming down from a 1413 // local peak. If it is (a) actually a global peak, and (b) a certain 1414 // amount bigger than the previous peak, then we take a peak snapshot. 1415 // By not taking a snapshot for every peak, we save a lot of effort -- 1416 // because many peaks remain peak only for a short time. 1417 SizeT total_szB = heap_szB + heap_extra_szB + stacks_szB; 1418 SizeT excess_szB_for_new_peak = 1419 (SizeT)((peak_snapshot_total_szB * clo_peak_inaccuracy) / 100); 1420 if (total_szB <= peak_snapshot_total_szB + excess_szB_for_new_peak) { 1421 return; 1422 } 1423 is_detailed = True; 1424 break; 1425 } 1426 1427 default: 1428 tl_assert2(0, "maybe_take_snapshot: unrecognised snapshot kind"); 1429 } 1430 1431 // Take the snapshot. 1432 snapshot = & snapshots[next_snapshot_i]; 1433 take_snapshot(snapshot, kind, my_time, is_detailed); 1434 1435 // Record if it was detailed. 1436 if (is_detailed) { 1437 n_snapshots_since_last_detailed = 0; 1438 } else { 1439 n_snapshots_since_last_detailed++; 1440 } 1441 1442 // Update peak data, if it's a Peak snapshot. 1443 if (Peak == kind) { 1444 Int i, number_of_peaks_snapshots_found = 0; 1445 1446 // Sanity check the size, then update our recorded peak. 1447 SizeT snapshot_total_szB = 1448 snapshot->heap_szB + snapshot->heap_extra_szB + snapshot->stacks_szB; 1449 tl_assert2(snapshot_total_szB > peak_snapshot_total_szB, 1450 "%ld, %ld\n", snapshot_total_szB, peak_snapshot_total_szB); 1451 peak_snapshot_total_szB = snapshot_total_szB; 1452 1453 // Find the old peak snapshot, if it exists, and mark it as normal. 1454 for (i = 0; i < next_snapshot_i; i++) { 1455 if (Peak == snapshots[i].kind) { 1456 snapshots[i].kind = Normal; 1457 number_of_peaks_snapshots_found++; 1458 } 1459 } 1460 tl_assert(number_of_peaks_snapshots_found <= 1); 1461 } 1462 1463 // Finish up verbosity and stats stuff. 1464 if (n_skipped_snapshots_since_last_snapshot > 0) { 1465 VERB(2, " (skipped %d snapshot%s)\n", 1466 n_skipped_snapshots_since_last_snapshot, 1467 ( 1 == n_skipped_snapshots_since_last_snapshot ? "" : "s") ); 1468 } 1469 VERB_snapshot(2, what, next_snapshot_i); 1470 n_skipped_snapshots_since_last_snapshot = 0; 1471 1472 // Cull the entries, if our snapshot table is full. 1473 next_snapshot_i++; 1474 if (clo_max_snapshots == next_snapshot_i) { 1475 min_time_interval = cull_snapshots(); 1476 } 1477 1478 // Work out the earliest time when the next snapshot can happen. 1479 earliest_possible_time_of_next_snapshot = my_time + min_time_interval; 1480 } 1481 1482 1483 //------------------------------------------------------------// 1484 //--- Sanity checking ---// 1485 //------------------------------------------------------------// 1486 1487 static Bool ms_cheap_sanity_check ( void ) 1488 { 1489 return True; // Nothing useful we can cheaply check. 1490 } 1491 1492 static Bool ms_expensive_sanity_check ( void ) 1493 { 1494 sanity_check_XTree(alloc_xpt, /*parent*/NULL); 1495 sanity_check_snapshots_array(); 1496 return True; 1497 } 1498 1499 1500 //------------------------------------------------------------// 1501 //--- Heap management ---// 1502 //------------------------------------------------------------// 1503 1504 // Metadata for heap blocks. Each one contains a pointer to a bottom-XPt, 1505 // which is a foothold into the XCon at which it was allocated. From 1506 // HP_Chunks, XPt 'space' fields are incremented (at allocation) and 1507 // decremented (at deallocation). 1508 // 1509 // Nb: first two fields must match core's VgHashNode. 1510 typedef 1511 struct _HP_Chunk { 1512 struct _HP_Chunk* next; 1513 Addr data; // Ptr to actual block 1514 SizeT req_szB; // Size requested 1515 SizeT slop_szB; // Extra bytes given above those requested 1516 XPt* where; // Where allocated; bottom-XPt 1517 } 1518 HP_Chunk; 1519 1520 static VgHashTable malloc_list = NULL; // HP_Chunks 1521 1522 static void update_alloc_stats(SSizeT szB_delta) 1523 { 1524 // Update total_allocs_deallocs_szB. 1525 if (szB_delta < 0) szB_delta = -szB_delta; 1526 total_allocs_deallocs_szB += szB_delta; 1527 } 1528 1529 static void update_heap_stats(SSizeT heap_szB_delta, Int heap_extra_szB_delta) 1530 { 1531 if (heap_szB_delta < 0) 1532 tl_assert(heap_szB >= -heap_szB_delta); 1533 if (heap_extra_szB_delta < 0) 1534 tl_assert(heap_extra_szB >= -heap_extra_szB_delta); 1535 1536 heap_extra_szB += heap_extra_szB_delta; 1537 heap_szB += heap_szB_delta; 1538 1539 update_alloc_stats(heap_szB_delta + heap_extra_szB_delta); 1540 } 1541 1542 static 1543 void* record_block( ThreadId tid, void* p, SizeT req_szB, SizeT slop_szB, 1544 Bool exclude_first_entry, Bool maybe_snapshot ) 1545 { 1546 // Make new HP_Chunk node, add to malloc_list 1547 HP_Chunk* hc = VG_(malloc)("ms.main.rb.1", sizeof(HP_Chunk)); 1548 hc->req_szB = req_szB; 1549 hc->slop_szB = slop_szB; 1550 hc->data = (Addr)p; 1551 hc->where = NULL; 1552 VG_(HT_add_node)(malloc_list, hc); 1553 1554 if (clo_heap) { 1555 VERB(3, "<<< record_block (%lu, %lu)\n", req_szB, slop_szB); 1556 1557 hc->where = get_XCon( tid, exclude_first_entry ); 1558 1559 if (hc->where) { 1560 // Update statistics. 1561 n_heap_allocs++; 1562 1563 // Update heap stats. 1564 update_heap_stats(req_szB, clo_heap_admin + slop_szB); 1565 1566 // Update XTree. 1567 update_XCon(hc->where, req_szB); 1568 1569 // Maybe take a snapshot. 1570 if (maybe_snapshot) { 1571 maybe_take_snapshot(Normal, " alloc"); 1572 } 1573 1574 } else { 1575 // Ignored allocation. 1576 n_ignored_heap_allocs++; 1577 1578 VERB(3, "(ignored)\n"); 1579 } 1580 1581 VERB(3, ">>>\n"); 1582 } 1583 1584 return p; 1585 } 1586 1587 static __inline__ 1588 void* alloc_and_record_block ( ThreadId tid, SizeT req_szB, SizeT req_alignB, 1589 Bool is_zeroed ) 1590 { 1591 SizeT actual_szB, slop_szB; 1592 void* p; 1593 1594 if ((SSizeT)req_szB < 0) return NULL; 1595 1596 // Allocate and zero if necessary. 1597 p = VG_(cli_malloc)( req_alignB, req_szB ); 1598 if (!p) { 1599 return NULL; 1600 } 1601 if (is_zeroed) VG_(memset)(p, 0, req_szB); 1602 actual_szB = VG_(malloc_usable_size)(p); 1603 tl_assert(actual_szB >= req_szB); 1604 slop_szB = actual_szB - req_szB; 1605 1606 // Record block. 1607 record_block(tid, p, req_szB, slop_szB, /*exclude_first_entry*/True, 1608 /*maybe_snapshot*/True); 1609 1610 return p; 1611 } 1612 1613 static __inline__ 1614 void unrecord_block ( void* p, Bool maybe_snapshot ) 1615 { 1616 // Remove HP_Chunk from malloc_list 1617 HP_Chunk* hc = VG_(HT_remove)(malloc_list, (UWord)p); 1618 if (NULL == hc) { 1619 return; // must have been a bogus free() 1620 } 1621 1622 if (clo_heap) { 1623 VERB(3, "<<< unrecord_block\n"); 1624 1625 if (hc->where) { 1626 // Update statistics. 1627 n_heap_frees++; 1628 1629 // Maybe take a peak snapshot, since it's a deallocation. 1630 if (maybe_snapshot) { 1631 maybe_take_snapshot(Peak, "de-PEAK"); 1632 } 1633 1634 // Update heap stats. 1635 update_heap_stats(-hc->req_szB, -clo_heap_admin - hc->slop_szB); 1636 1637 // Update XTree. 1638 update_XCon(hc->where, -hc->req_szB); 1639 1640 // Maybe take a snapshot. 1641 if (maybe_snapshot) { 1642 maybe_take_snapshot(Normal, "dealloc"); 1643 } 1644 1645 } else { 1646 n_ignored_heap_frees++; 1647 1648 VERB(3, "(ignored)\n"); 1649 } 1650 1651 VERB(3, ">>> (-%lu, -%lu)\n", hc->req_szB, hc->slop_szB); 1652 } 1653 1654 // Actually free the chunk, and the heap block (if necessary) 1655 VG_(free)( hc ); hc = NULL; 1656 } 1657 1658 // Nb: --ignore-fn is tricky for realloc. If the block's original alloc was 1659 // ignored, but the realloc is not requested to be ignored, and we are 1660 // shrinking the block, then we have to ignore the realloc -- otherwise we 1661 // could end up with negative heap sizes. This isn't a danger if we are 1662 // growing such a block, but for consistency (it also simplifies things) we 1663 // ignore such reallocs as well. 1664 static __inline__ 1665 void* realloc_block ( ThreadId tid, void* p_old, SizeT new_req_szB ) 1666 { 1667 HP_Chunk* hc; 1668 void* p_new; 1669 SizeT old_req_szB, old_slop_szB, new_slop_szB, new_actual_szB; 1670 XPt *old_where, *new_where; 1671 Bool is_ignored = False; 1672 1673 // Remove the old block 1674 hc = VG_(HT_remove)(malloc_list, (UWord)p_old); 1675 if (hc == NULL) { 1676 return NULL; // must have been a bogus realloc() 1677 } 1678 1679 old_req_szB = hc->req_szB; 1680 old_slop_szB = hc->slop_szB; 1681 1682 tl_assert(!clo_pages_as_heap); // Shouldn't be here if --pages-as-heap=yes. 1683 if (clo_heap) { 1684 VERB(3, "<<< realloc_block (%lu)\n", new_req_szB); 1685 1686 if (hc->where) { 1687 // Update statistics. 1688 n_heap_reallocs++; 1689 1690 // Maybe take a peak snapshot, if it's (effectively) a deallocation. 1691 if (new_req_szB < old_req_szB) { 1692 maybe_take_snapshot(Peak, "re-PEAK"); 1693 } 1694 } else { 1695 // The original malloc was ignored, so we have to ignore the 1696 // realloc as well. 1697 is_ignored = True; 1698 } 1699 } 1700 1701 // Actually do the allocation, if necessary. 1702 if (new_req_szB <= old_req_szB + old_slop_szB) { 1703 // New size is smaller or same; block not moved. 1704 p_new = p_old; 1705 new_slop_szB = old_slop_szB + (old_req_szB - new_req_szB); 1706 1707 } else { 1708 // New size is bigger; make new block, copy shared contents, free old. 1709 p_new = VG_(cli_malloc)(VG_(clo_alignment), new_req_szB); 1710 if (!p_new) { 1711 // Nb: if realloc fails, NULL is returned but the old block is not 1712 // touched. What an awful function. 1713 return NULL; 1714 } 1715 VG_(memcpy)(p_new, p_old, old_req_szB); 1716 VG_(cli_free)(p_old); 1717 new_actual_szB = VG_(malloc_usable_size)(p_new); 1718 tl_assert(new_actual_szB >= new_req_szB); 1719 new_slop_szB = new_actual_szB - new_req_szB; 1720 } 1721 1722 if (p_new) { 1723 // Update HP_Chunk. 1724 hc->data = (Addr)p_new; 1725 hc->req_szB = new_req_szB; 1726 hc->slop_szB = new_slop_szB; 1727 old_where = hc->where; 1728 hc->where = NULL; 1729 1730 // Update XTree. 1731 if (clo_heap) { 1732 new_where = get_XCon( tid, /*exclude_first_entry*/True); 1733 if (!is_ignored && new_where) { 1734 hc->where = new_where; 1735 update_XCon(old_where, -old_req_szB); 1736 update_XCon(new_where, new_req_szB); 1737 } else { 1738 // The realloc itself is ignored. 1739 is_ignored = True; 1740 1741 // Update statistics. 1742 n_ignored_heap_reallocs++; 1743 } 1744 } 1745 } 1746 1747 // Now insert the new hc (with a possibly new 'data' field) into 1748 // malloc_list. If this realloc() did not increase the memory size, we 1749 // will have removed and then re-added hc unnecessarily. But that's ok 1750 // because shrinking a block with realloc() is (presumably) much rarer 1751 // than growing it, and this way simplifies the growing case. 1752 VG_(HT_add_node)(malloc_list, hc); 1753 1754 if (clo_heap) { 1755 if (!is_ignored) { 1756 // Update heap stats. 1757 update_heap_stats(new_req_szB - old_req_szB, 1758 new_slop_szB - old_slop_szB); 1759 1760 // Maybe take a snapshot. 1761 maybe_take_snapshot(Normal, "realloc"); 1762 } else { 1763 1764 VERB(3, "(ignored)\n"); 1765 } 1766 1767 VERB(3, ">>> (%ld, %ld)\n", 1768 new_req_szB - old_req_szB, new_slop_szB - old_slop_szB); 1769 } 1770 1771 return p_new; 1772 } 1773 1774 1775 //------------------------------------------------------------// 1776 //--- malloc() et al replacement wrappers ---// 1777 //------------------------------------------------------------// 1778 1779 static void* ms_malloc ( ThreadId tid, SizeT szB ) 1780 { 1781 return alloc_and_record_block( tid, szB, VG_(clo_alignment), /*is_zeroed*/False ); 1782 } 1783 1784 static void* ms___builtin_new ( ThreadId tid, SizeT szB ) 1785 { 1786 return alloc_and_record_block( tid, szB, VG_(clo_alignment), /*is_zeroed*/False ); 1787 } 1788 1789 static void* ms___builtin_vec_new ( ThreadId tid, SizeT szB ) 1790 { 1791 return alloc_and_record_block( tid, szB, VG_(clo_alignment), /*is_zeroed*/False ); 1792 } 1793 1794 static void* ms_calloc ( ThreadId tid, SizeT m, SizeT szB ) 1795 { 1796 return alloc_and_record_block( tid, m*szB, VG_(clo_alignment), /*is_zeroed*/True ); 1797 } 1798 1799 static void *ms_memalign ( ThreadId tid, SizeT alignB, SizeT szB ) 1800 { 1801 return alloc_and_record_block( tid, szB, alignB, False ); 1802 } 1803 1804 static void ms_free ( ThreadId tid __attribute__((unused)), void* p ) 1805 { 1806 unrecord_block(p, /*maybe_snapshot*/True); 1807 VG_(cli_free)(p); 1808 } 1809 1810 static void ms___builtin_delete ( ThreadId tid, void* p ) 1811 { 1812 unrecord_block(p, /*maybe_snapshot*/True); 1813 VG_(cli_free)(p); 1814 } 1815 1816 static void ms___builtin_vec_delete ( ThreadId tid, void* p ) 1817 { 1818 unrecord_block(p, /*maybe_snapshot*/True); 1819 VG_(cli_free)(p); 1820 } 1821 1822 static void* ms_realloc ( ThreadId tid, void* p_old, SizeT new_szB ) 1823 { 1824 return realloc_block(tid, p_old, new_szB); 1825 } 1826 1827 static SizeT ms_malloc_usable_size ( ThreadId tid, void* p ) 1828 { 1829 HP_Chunk* hc = VG_(HT_lookup)( malloc_list, (UWord)p ); 1830 1831 return ( hc ? hc->req_szB + hc->slop_szB : 0 ); 1832 } 1833 1834 //------------------------------------------------------------// 1835 //--- Page handling ---// 1836 //------------------------------------------------------------// 1837 1838 static 1839 void ms_record_page_mem ( Addr a, SizeT len ) 1840 { 1841 ThreadId tid = VG_(get_running_tid)(); 1842 Addr end; 1843 tl_assert(VG_IS_PAGE_ALIGNED(len)); 1844 tl_assert(len >= VKI_PAGE_SIZE); 1845 // Record the first N-1 pages as blocks, but don't do any snapshots. 1846 for (end = a + len - VKI_PAGE_SIZE; a < end; a += VKI_PAGE_SIZE) { 1847 record_block( tid, (void*)a, VKI_PAGE_SIZE, /*slop_szB*/0, 1848 /*exclude_first_entry*/False, /*maybe_snapshot*/False ); 1849 } 1850 // Record the last page as a block, and maybe do a snapshot afterwards. 1851 record_block( tid, (void*)a, VKI_PAGE_SIZE, /*slop_szB*/0, 1852 /*exclude_first_entry*/False, /*maybe_snapshot*/True ); 1853 } 1854 1855 static 1856 void ms_unrecord_page_mem( Addr a, SizeT len ) 1857 { 1858 Addr end; 1859 tl_assert(VG_IS_PAGE_ALIGNED(len)); 1860 tl_assert(len >= VKI_PAGE_SIZE); 1861 for (end = a + len - VKI_PAGE_SIZE; a < end; a += VKI_PAGE_SIZE) { 1862 unrecord_block((void*)a, /*maybe_snapshot*/False); 1863 } 1864 unrecord_block((void*)a, /*maybe_snapshot*/True); 1865 } 1866 1867 //------------------------------------------------------------// 1868 1869 static 1870 void ms_new_mem_mmap ( Addr a, SizeT len, 1871 Bool rr, Bool ww, Bool xx, ULong di_handle ) 1872 { 1873 tl_assert(VG_IS_PAGE_ALIGNED(len)); 1874 ms_record_page_mem(a, len); 1875 } 1876 1877 static 1878 void ms_new_mem_startup( Addr a, SizeT len, 1879 Bool rr, Bool ww, Bool xx, ULong di_handle ) 1880 { 1881 // startup maps are always be page-sized, except the trampoline page is 1882 // marked by the core as only being the size of the trampoline itself, 1883 // which is something like 57 bytes. Round it up to page size. 1884 len = VG_PGROUNDUP(len); 1885 ms_record_page_mem(a, len); 1886 } 1887 1888 static 1889 void ms_new_mem_brk ( Addr a, SizeT len, ThreadId tid ) 1890 { 1891 tl_assert(VG_IS_PAGE_ALIGNED(len)); 1892 ms_record_page_mem(a, len); 1893 } 1894 1895 static 1896 void ms_copy_mem_remap( Addr from, Addr to, SizeT len) 1897 { 1898 tl_assert(VG_IS_PAGE_ALIGNED(len)); 1899 ms_unrecord_page_mem(from, len); 1900 ms_record_page_mem(to, len); 1901 } 1902 1903 static 1904 void ms_die_mem_munmap( Addr a, SizeT len ) 1905 { 1906 tl_assert(VG_IS_PAGE_ALIGNED(len)); 1907 ms_unrecord_page_mem(a, len); 1908 } 1909 1910 static 1911 void ms_die_mem_brk( Addr a, SizeT len ) 1912 { 1913 tl_assert(VG_IS_PAGE_ALIGNED(len)); 1914 ms_unrecord_page_mem(a, len); 1915 } 1916 1917 //------------------------------------------------------------// 1918 //--- Stacks ---// 1919 //------------------------------------------------------------// 1920 1921 // We really want the inlining to occur... 1922 #define INLINE inline __attribute__((always_inline)) 1923 1924 static void update_stack_stats(SSizeT stack_szB_delta) 1925 { 1926 if (stack_szB_delta < 0) tl_assert(stacks_szB >= -stack_szB_delta); 1927 stacks_szB += stack_szB_delta; 1928 1929 update_alloc_stats(stack_szB_delta); 1930 } 1931 1932 static INLINE void new_mem_stack_2(SizeT len, Char* what) 1933 { 1934 if (have_started_executing_code) { 1935 VERB(3, "<<< new_mem_stack (%ld)\n", len); 1936 n_stack_allocs++; 1937 update_stack_stats(len); 1938 maybe_take_snapshot(Normal, what); 1939 VERB(3, ">>>\n"); 1940 } 1941 } 1942 1943 static INLINE void die_mem_stack_2(SizeT len, Char* what) 1944 { 1945 if (have_started_executing_code) { 1946 VERB(3, "<<< die_mem_stack (%ld)\n", -len); 1947 n_stack_frees++; 1948 maybe_take_snapshot(Peak, "stkPEAK"); 1949 update_stack_stats(-len); 1950 maybe_take_snapshot(Normal, what); 1951 VERB(3, ">>>\n"); 1952 } 1953 } 1954 1955 static void new_mem_stack(Addr a, SizeT len) 1956 { 1957 new_mem_stack_2(len, "stk-new"); 1958 } 1959 1960 static void die_mem_stack(Addr a, SizeT len) 1961 { 1962 die_mem_stack_2(len, "stk-die"); 1963 } 1964 1965 static void new_mem_stack_signal(Addr a, SizeT len, ThreadId tid) 1966 { 1967 new_mem_stack_2(len, "sig-new"); 1968 } 1969 1970 static void die_mem_stack_signal(Addr a, SizeT len) 1971 { 1972 die_mem_stack_2(len, "sig-die"); 1973 } 1974 1975 1976 //------------------------------------------------------------// 1977 //--- Client Requests ---// 1978 //------------------------------------------------------------// 1979 1980 static Bool ms_handle_client_request ( ThreadId tid, UWord* argv, UWord* ret ) 1981 { 1982 switch (argv[0]) { 1983 case VG_USERREQ__MALLOCLIKE_BLOCK: { 1984 void* p = (void*)argv[1]; 1985 SizeT szB = argv[2]; 1986 record_block( tid, p, szB, /*slop_szB*/0, /*exclude_first_entry*/False, 1987 /*maybe_snapshot*/True ); 1988 *ret = 0; 1989 return True; 1990 } 1991 case VG_USERREQ__FREELIKE_BLOCK: { 1992 void* p = (void*)argv[1]; 1993 unrecord_block(p, /*maybe_snapshot*/True); 1994 *ret = 0; 1995 return True; 1996 } 1997 default: 1998 *ret = 0; 1999 return False; 2000 } 2001 } 2002 2003 //------------------------------------------------------------// 2004 //--- Instrumentation ---// 2005 //------------------------------------------------------------// 2006 2007 static void add_counter_update(IRSB* sbOut, Int n) 2008 { 2009 #if defined(VG_BIGENDIAN) 2010 # define END Iend_BE 2011 #elif defined(VG_LITTLEENDIAN) 2012 # define END Iend_LE 2013 #else 2014 # error "Unknown endianness" 2015 #endif 2016 // Add code to increment 'guest_instrs_executed' by 'n', like this: 2017 // WrTmp(t1, Load64(&guest_instrs_executed)) 2018 // WrTmp(t2, Add64(RdTmp(t1), Const(n))) 2019 // Store(&guest_instrs_executed, t2) 2020 IRTemp t1 = newIRTemp(sbOut->tyenv, Ity_I64); 2021 IRTemp t2 = newIRTemp(sbOut->tyenv, Ity_I64); 2022 IRExpr* counter_addr = mkIRExpr_HWord( (HWord)&guest_instrs_executed ); 2023 2024 IRStmt* st1 = IRStmt_WrTmp(t1, IRExpr_Load(END, Ity_I64, counter_addr)); 2025 IRStmt* st2 = 2026 IRStmt_WrTmp(t2, 2027 IRExpr_Binop(Iop_Add64, IRExpr_RdTmp(t1), 2028 IRExpr_Const(IRConst_U64(n)))); 2029 IRStmt* st3 = IRStmt_Store(END, counter_addr, IRExpr_RdTmp(t2)); 2030 2031 addStmtToIRSB( sbOut, st1 ); 2032 addStmtToIRSB( sbOut, st2 ); 2033 addStmtToIRSB( sbOut, st3 ); 2034 } 2035 2036 static IRSB* ms_instrument2( IRSB* sbIn ) 2037 { 2038 Int i, n = 0; 2039 IRSB* sbOut; 2040 2041 // We increment the instruction count in two places: 2042 // - just before any Ist_Exit statements; 2043 // - just before the IRSB's end. 2044 // In the former case, we zero 'n' and then continue instrumenting. 2045 2046 sbOut = deepCopyIRSBExceptStmts(sbIn); 2047 2048 for (i = 0; i < sbIn->stmts_used; i++) { 2049 IRStmt* st = sbIn->stmts[i]; 2050 2051 if (!st || st->tag == Ist_NoOp) continue; 2052 2053 if (st->tag == Ist_IMark) { 2054 n++; 2055 } else if (st->tag == Ist_Exit) { 2056 if (n > 0) { 2057 // Add an increment before the Exit statement, then reset 'n'. 2058 add_counter_update(sbOut, n); 2059 n = 0; 2060 } 2061 } 2062 addStmtToIRSB( sbOut, st ); 2063 } 2064 2065 if (n > 0) { 2066 // Add an increment before the SB end. 2067 add_counter_update(sbOut, n); 2068 } 2069 return sbOut; 2070 } 2071 2072 static 2073 IRSB* ms_instrument ( VgCallbackClosure* closure, 2074 IRSB* sbIn, 2075 VexGuestLayout* layout, 2076 VexGuestExtents* vge, 2077 IRType gWordTy, IRType hWordTy ) 2078 { 2079 if (! have_started_executing_code) { 2080 // Do an initial sample to guarantee that we have at least one. 2081 // We use 'maybe_take_snapshot' instead of 'take_snapshot' to ensure 2082 // 'maybe_take_snapshot's internal static variables are initialised. 2083 have_started_executing_code = True; 2084 maybe_take_snapshot(Normal, "startup"); 2085 } 2086 2087 if (clo_time_unit == TimeI) { return ms_instrument2(sbIn); } 2088 else if (clo_time_unit == TimeMS) { return sbIn; } 2089 else if (clo_time_unit == TimeB) { return sbIn; } 2090 else { tl_assert2(0, "bad --time-unit value"); } 2091 } 2092 2093 2094 //------------------------------------------------------------// 2095 //--- Writing snapshots ---// 2096 //------------------------------------------------------------// 2097 2098 Char FP_buf[BUF_LEN]; 2099 2100 // XXX: implement f{,n}printf in m_libcprint.c eventually, and use it here. 2101 // Then change Cachegrind to use it too. 2102 #define FP(format, args...) ({ \ 2103 VG_(snprintf)(FP_buf, BUF_LEN, format, ##args); \ 2104 FP_buf[BUF_LEN-1] = '\0'; /* Make sure the string is terminated. */ \ 2105 VG_(write)(fd, (void*)FP_buf, VG_(strlen)(FP_buf)); \ 2106 }) 2107 2108 // Nb: uses a static buffer, each call trashes the last string returned. 2109 static Char* make_perc(double x) 2110 { 2111 static Char mbuf[32]; 2112 2113 VG_(percentify)((ULong)(x * 100), 10000, 2, 6, mbuf); 2114 // XXX: this is bogus if the denominator was zero -- resulting string is 2115 // something like "0 --%") 2116 if (' ' == mbuf[0]) mbuf[0] = '0'; 2117 return mbuf; 2118 } 2119 2120 static void pp_snapshot_SXPt(Int fd, SXPt* sxpt, Int depth, Char* depth_str, 2121 Int depth_str_len, 2122 SizeT snapshot_heap_szB, SizeT snapshot_total_szB) 2123 { 2124 Int i, j, n_insig_children_sxpts; 2125 SXPt* child = NULL; 2126 2127 // Used for printing function names. Is made static to keep it out 2128 // of the stack frame -- this function is recursive. Obviously this 2129 // now means its contents are trashed across the recursive call. 2130 static Char ip_desc_array[BUF_LEN]; 2131 Char* ip_desc = ip_desc_array; 2132 2133 switch (sxpt->tag) { 2134 case SigSXPt: 2135 // Print the SXPt itself. 2136 if (0 == depth) { 2137 if (clo_heap) { 2138 ip_desc = 2139 ( clo_pages_as_heap 2140 ? "(page allocation syscalls) mmap/mremap/brk, --alloc-fns, etc." 2141 : "(heap allocation functions) malloc/new/new[], --alloc-fns, etc." 2142 ); 2143 } else { 2144 // XXX: --alloc-fns? 2145 } 2146 } else { 2147 // If it's main-or-below-main, we (if appropriate) ignore everything 2148 // below it by pretending it has no children. 2149 if ( ! VG_(clo_show_below_main) ) { 2150 Vg_FnNameKind kind = VG_(get_fnname_kind_from_IP)(sxpt->Sig.ip); 2151 if (Vg_FnNameMain == kind || Vg_FnNameBelowMain == kind) { 2152 sxpt->Sig.n_children = 0; 2153 } 2154 } 2155 2156 // We need the -1 to get the line number right, But I'm not sure why. 2157 ip_desc = VG_(describe_IP)(sxpt->Sig.ip-1, ip_desc, BUF_LEN); 2158 } 2159 2160 // Do the non-ip_desc part first... 2161 FP("%sn%d: %lu ", depth_str, sxpt->Sig.n_children, sxpt->szB); 2162 2163 // For ip_descs beginning with "0xABCD...:" addresses, we first 2164 // measure the length of the "0xabcd: " address at the start of the 2165 // ip_desc. 2166 j = 0; 2167 if ('0' == ip_desc[0] && 'x' == ip_desc[1]) { 2168 j = 2; 2169 while (True) { 2170 if (ip_desc[j]) { 2171 if (':' == ip_desc[j]) break; 2172 j++; 2173 } else { 2174 tl_assert2(0, "ip_desc has unexpected form: %s\n", ip_desc); 2175 } 2176 } 2177 } 2178 // Nb: We treat this specially (ie. we don't use FP) so that if the 2179 // ip_desc is too long (eg. due to a long C++ function name), it'll 2180 // get truncated, but the '\n' is still there so its a valid file. 2181 // (At one point we were truncating without adding the '\n', which 2182 // caused bug #155929.) 2183 // 2184 // Also, we account for the length of the address in ip_desc when 2185 // truncating. (The longest address we could have is 18 chars: "0x" 2186 // plus 16 address digits.) This ensures that the truncated function 2187 // name always has the same length, which makes truncation 2188 // deterministic and thus makes testing easier. 2189 tl_assert(j <= 18); 2190 VG_(snprintf)(FP_buf, BUF_LEN, "%s\n", ip_desc); 2191 FP_buf[BUF_LEN-18+j-5] = '.'; // "..." at the end make the 2192 FP_buf[BUF_LEN-18+j-4] = '.'; // truncation more obvious. 2193 FP_buf[BUF_LEN-18+j-3] = '.'; 2194 FP_buf[BUF_LEN-18+j-2] = '\n'; // The last char is '\n'. 2195 FP_buf[BUF_LEN-18+j-1] = '\0'; // The string is terminated. 2196 VG_(write)(fd, (void*)FP_buf, VG_(strlen)(FP_buf)); 2197 2198 // Indent. 2199 tl_assert(depth+1 < depth_str_len-1); // -1 for end NUL char 2200 depth_str[depth+0] = ' '; 2201 depth_str[depth+1] = '\0'; 2202 2203 // Sort SXPt's children by szB (reverse order: biggest to smallest). 2204 // Nb: we sort them here, rather than earlier (eg. in dup_XTree), for 2205 // two reasons. First, if we do it during dup_XTree, it can get 2206 // expensive (eg. 15% of execution time for konqueror 2207 // startup/shutdown). Second, this way we get the Insig SXPt (if one 2208 // is present) in its sorted position, not at the end. 2209 VG_(ssort)(sxpt->Sig.children, sxpt->Sig.n_children, sizeof(SXPt*), 2210 SXPt_revcmp_szB); 2211 2212 // Print the SXPt's children. They should already be in sorted order. 2213 n_insig_children_sxpts = 0; 2214 for (i = 0; i < sxpt->Sig.n_children; i++) { 2215 child = sxpt->Sig.children[i]; 2216 2217 if (InsigSXPt == child->tag) 2218 n_insig_children_sxpts++; 2219 2220 // Ok, print the child. NB: contents of ip_desc_array will be 2221 // trashed by this recursive call. Doesn't matter currently, 2222 // but worth noting. 2223 pp_snapshot_SXPt(fd, child, depth+1, depth_str, depth_str_len, 2224 snapshot_heap_szB, snapshot_total_szB); 2225 } 2226 2227 // Unindent. 2228 depth_str[depth+0] = '\0'; 2229 depth_str[depth+1] = '\0'; 2230 2231 // There should be 0 or 1 Insig children SXPts. 2232 tl_assert(n_insig_children_sxpts <= 1); 2233 break; 2234 2235 case InsigSXPt: { 2236 Char* s = ( 1 == sxpt->Insig.n_xpts ? "," : "s, all" ); 2237 FP("%sn0: %lu in %d place%s below massif's threshold (%s)\n", 2238 depth_str, sxpt->szB, sxpt->Insig.n_xpts, s, 2239 make_perc(clo_threshold)); 2240 break; 2241 } 2242 2243 default: 2244 tl_assert2(0, "pp_snapshot_SXPt: unrecognised SXPt tag"); 2245 } 2246 } 2247 2248 static void pp_snapshot(Int fd, Snapshot* snapshot, Int snapshot_n) 2249 { 2250 sanity_check_snapshot(snapshot); 2251 2252 FP("#-----------\n"); 2253 FP("snapshot=%d\n", snapshot_n); 2254 FP("#-----------\n"); 2255 FP("time=%lld\n", snapshot->time); 2256 FP("mem_heap_B=%lu\n", snapshot->heap_szB); 2257 FP("mem_heap_extra_B=%lu\n", snapshot->heap_extra_szB); 2258 FP("mem_stacks_B=%lu\n", snapshot->stacks_szB); 2259 2260 if (is_detailed_snapshot(snapshot)) { 2261 // Detailed snapshot -- print heap tree. 2262 Int depth_str_len = clo_depth + 3; 2263 Char* depth_str = VG_(malloc)("ms.main.pps.1", 2264 sizeof(Char) * depth_str_len); 2265 SizeT snapshot_total_szB = 2266 snapshot->heap_szB + snapshot->heap_extra_szB + snapshot->stacks_szB; 2267 depth_str[0] = '\0'; // Initialise depth_str to "". 2268 2269 FP("heap_tree=%s\n", ( Peak == snapshot->kind ? "peak" : "detailed" )); 2270 pp_snapshot_SXPt(fd, snapshot->alloc_sxpt, 0, depth_str, 2271 depth_str_len, snapshot->heap_szB, 2272 snapshot_total_szB); 2273 2274 VG_(free)(depth_str); 2275 2276 } else { 2277 FP("heap_tree=empty\n"); 2278 } 2279 } 2280 2281 static void write_snapshots_to_file(void) 2282 { 2283 Int i, fd; 2284 SysRes sres; 2285 2286 // Setup output filename. Nb: it's important to do this now, ie. as late 2287 // as possible. If we do it at start-up and the program forks and the 2288 // output file format string contains a %p (pid) specifier, both the 2289 // parent and child will incorrectly write to the same file; this 2290 // happened in 3.3.0. 2291 Char* massif_out_file = 2292 VG_(expand_file_name)("--massif-out-file", clo_massif_out_file); 2293 2294 sres = VG_(open)(massif_out_file, VKI_O_CREAT|VKI_O_TRUNC|VKI_O_WRONLY, 2295 VKI_S_IRUSR|VKI_S_IWUSR); 2296 if (sr_isError(sres)) { 2297 // If the file can't be opened for whatever reason (conflict 2298 // between multiple cachegrinded processes?), give up now. 2299 VG_(umsg)("error: can't open output file '%s'\n", massif_out_file ); 2300 VG_(umsg)(" ... so profiling results will be missing.\n"); 2301 VG_(free)(massif_out_file); 2302 return; 2303 } else { 2304 fd = sr_Res(sres); 2305 VG_(free)(massif_out_file); 2306 } 2307 2308 // Print massif-specific options that were used. 2309 // XXX: is it worth having a "desc:" line? Could just call it "options:" 2310 // -- this file format isn't as generic as Cachegrind's, so the 2311 // implied genericity of "desc:" is bogus. 2312 FP("desc:"); 2313 for (i = 0; i < VG_(sizeXA)(args_for_massif); i++) { 2314 Char* arg = *(Char**)VG_(indexXA)(args_for_massif, i); 2315 FP(" %s", arg); 2316 } 2317 if (0 == i) FP(" (none)"); 2318 FP("\n"); 2319 2320 // Print "cmd:" line. 2321 FP("cmd: "); 2322 if (VG_(args_the_exename)) { 2323 FP("%s", VG_(args_the_exename)); 2324 for (i = 0; i < VG_(sizeXA)( VG_(args_for_client) ); i++) { 2325 HChar* arg = * (HChar**) VG_(indexXA)( VG_(args_for_client), i ); 2326 if (arg) 2327 FP(" %s", arg); 2328 } 2329 } else { 2330 FP(" ???"); 2331 } 2332 FP("\n"); 2333 2334 FP("time_unit: %s\n", TimeUnit_to_string(clo_time_unit)); 2335 2336 for (i = 0; i < next_snapshot_i; i++) { 2337 Snapshot* snapshot = & snapshots[i]; 2338 pp_snapshot(fd, snapshot, i); // Detailed snapshot! 2339 } 2340 } 2341 2342 2343 //------------------------------------------------------------// 2344 //--- Finalisation ---// 2345 //------------------------------------------------------------// 2346 2347 static void ms_fini(Int exit_status) 2348 { 2349 // Output. 2350 write_snapshots_to_file(); 2351 2352 // Stats 2353 tl_assert(n_xpts > 0); // always have alloc_xpt 2354 STATS("heap allocs: %u\n", n_heap_allocs); 2355 STATS("heap reallocs: %u\n", n_heap_reallocs); 2356 STATS("heap frees: %u\n", n_heap_frees); 2357 STATS("ignored heap allocs: %u\n", n_ignored_heap_allocs); 2358 STATS("ignored heap frees: %u\n", n_ignored_heap_frees); 2359 STATS("ignored heap reallocs: %u\n", n_ignored_heap_reallocs); 2360 STATS("stack allocs: %u\n", n_stack_allocs); 2361 STATS("stack frees: %u\n", n_stack_frees); 2362 STATS("XPts: %u\n", n_xpts); 2363 STATS("top-XPts: %u (%d%%)\n", 2364 alloc_xpt->n_children, 2365 ( n_xpts ? alloc_xpt->n_children * 100 / n_xpts : 0)); 2366 STATS("XPt init expansions: %u\n", n_xpt_init_expansions); 2367 STATS("XPt later expansions: %u\n", n_xpt_later_expansions); 2368 STATS("SXPt allocs: %u\n", n_sxpt_allocs); 2369 STATS("SXPt frees: %u\n", n_sxpt_frees); 2370 STATS("skipped snapshots: %u\n", n_skipped_snapshots); 2371 STATS("real snapshots: %u\n", n_real_snapshots); 2372 STATS("detailed snapshots: %u\n", n_detailed_snapshots); 2373 STATS("peak snapshots: %u\n", n_peak_snapshots); 2374 STATS("cullings: %u\n", n_cullings); 2375 STATS("XCon redos: %u\n", n_XCon_redos); 2376 } 2377 2378 2379 //------------------------------------------------------------// 2380 //--- Initialisation ---// 2381 //------------------------------------------------------------// 2382 2383 static void ms_post_clo_init(void) 2384 { 2385 Int i; 2386 Char* LD_PRELOAD_val; 2387 Char* s; 2388 Char* s2; 2389 2390 // Check options. 2391 if (clo_pages_as_heap) { 2392 if (clo_stacks) { 2393 VG_(fmsg_bad_option)( 2394 "--pages-as-heap=yes together with --stacks=yes", ""); 2395 } 2396 } 2397 if (!clo_heap) { 2398 clo_pages_as_heap = False; 2399 } 2400 2401 // If --pages-as-heap=yes we don't want malloc replacement to occur. So we 2402 // disable vgpreload_massif-$PLATFORM.so by removing it from LD_PRELOAD (or 2403 // platform-equivalent). We replace it entirely with spaces because then 2404 // the linker doesn't complain (it does complain if we just change the name 2405 // to a bogus file). This is a bit of a hack, but LD_PRELOAD is setup well 2406 // before tool initialisation, so this seems the best way to do it. 2407 if (clo_pages_as_heap) { 2408 clo_heap_admin = 0; // No heap admin on pages. 2409 2410 LD_PRELOAD_val = VG_(getenv)( (Char*)VG_(LD_PRELOAD_var_name) ); 2411 tl_assert(LD_PRELOAD_val); 2412 2413 // Make sure the vgpreload_core-$PLATFORM entry is there, for sanity. 2414 s2 = VG_(strstr)(LD_PRELOAD_val, "vgpreload_core"); 2415 tl_assert(s2); 2416 2417 // Now find the vgpreload_massif-$PLATFORM entry. 2418 s2 = VG_(strstr)(LD_PRELOAD_val, "vgpreload_massif"); 2419 tl_assert(s2); 2420 2421 // Blank out everything to the previous ':', which must be there because 2422 // of the preceding vgpreload_core-$PLATFORM entry. 2423 for (s = s2; *s != ':'; s--) { 2424 *s = ' '; 2425 } 2426 2427 // Blank out everything to the end of the entry, which will be '\0' if 2428 // LD_PRELOAD was empty before Valgrind started, or ':' otherwise. 2429 for (s = s2; *s != ':' && *s != '\0'; s++) { 2430 *s = ' '; 2431 } 2432 } 2433 2434 // Print alloc-fns and ignore-fns, if necessary. 2435 if (VG_(clo_verbosity) > 1) { 2436 VERB(1, "alloc-fns:\n"); 2437 for (i = 0; i < VG_(sizeXA)(alloc_fns); i++) { 2438 Char** fn_ptr = VG_(indexXA)(alloc_fns, i); 2439 VERB(1, " %s\n", *fn_ptr); 2440 } 2441 2442 VERB(1, "ignore-fns:\n"); 2443 if (0 == VG_(sizeXA)(ignore_fns)) { 2444 VERB(1, " <empty>\n"); 2445 } 2446 for (i = 0; i < VG_(sizeXA)(ignore_fns); i++) { 2447 Char** fn_ptr = VG_(indexXA)(ignore_fns, i); 2448 VERB(1, " %d: %s\n", i, *fn_ptr); 2449 } 2450 } 2451 2452 // Events to track. 2453 if (clo_stacks) { 2454 VG_(track_new_mem_stack) ( new_mem_stack ); 2455 VG_(track_die_mem_stack) ( die_mem_stack ); 2456 VG_(track_new_mem_stack_signal) ( new_mem_stack_signal ); 2457 VG_(track_die_mem_stack_signal) ( die_mem_stack_signal ); 2458 } 2459 2460 if (clo_pages_as_heap) { 2461 VG_(track_new_mem_startup) ( ms_new_mem_startup ); 2462 VG_(track_new_mem_brk) ( ms_new_mem_brk ); 2463 VG_(track_new_mem_mmap) ( ms_new_mem_mmap ); 2464 2465 VG_(track_copy_mem_remap) ( ms_copy_mem_remap ); 2466 2467 VG_(track_die_mem_brk) ( ms_die_mem_brk ); 2468 VG_(track_die_mem_munmap) ( ms_die_mem_munmap ); 2469 } 2470 2471 // Initialise snapshot array, and sanity-check it. 2472 snapshots = VG_(malloc)("ms.main.mpoci.1", 2473 sizeof(Snapshot) * clo_max_snapshots); 2474 // We don't want to do snapshot sanity checks here, because they're 2475 // currently uninitialised. 2476 for (i = 0; i < clo_max_snapshots; i++) { 2477 clear_snapshot( & snapshots[i], /*do_sanity_check*/False ); 2478 } 2479 sanity_check_snapshots_array(); 2480 } 2481 2482 static void ms_pre_clo_init(void) 2483 { 2484 VG_(details_name) ("Massif"); 2485 VG_(details_version) (NULL); 2486 VG_(details_description) ("a heap profiler"); 2487 VG_(details_copyright_author)( 2488 "Copyright (C) 2003-2010, and GNU GPL'd, by Nicholas Nethercote"); 2489 VG_(details_bug_reports_to) (VG_BUGS_TO); 2490 2491 // Basic functions. 2492 VG_(basic_tool_funcs) (ms_post_clo_init, 2493 ms_instrument, 2494 ms_fini); 2495 2496 // Needs. 2497 VG_(needs_libc_freeres)(); 2498 VG_(needs_command_line_options)(ms_process_cmd_line_option, 2499 ms_print_usage, 2500 ms_print_debug_usage); 2501 VG_(needs_client_requests) (ms_handle_client_request); 2502 VG_(needs_sanity_checks) (ms_cheap_sanity_check, 2503 ms_expensive_sanity_check); 2504 VG_(needs_malloc_replacement) (ms_malloc, 2505 ms___builtin_new, 2506 ms___builtin_vec_new, 2507 ms_memalign, 2508 ms_calloc, 2509 ms_free, 2510 ms___builtin_delete, 2511 ms___builtin_vec_delete, 2512 ms_realloc, 2513 ms_malloc_usable_size, 2514 0 ); 2515 2516 // HP_Chunks. 2517 malloc_list = VG_(HT_construct)( "Massif's malloc list" ); 2518 2519 // Dummy node at top of the context structure. 2520 alloc_xpt = new_XPt(/*ip*/0, /*parent*/NULL); 2521 2522 // Initialise alloc_fns and ignore_fns. 2523 init_alloc_fns(); 2524 init_ignore_fns(); 2525 2526 // Initialise args_for_massif. 2527 args_for_massif = VG_(newXA)(VG_(malloc), "ms.main.mprci.1", 2528 VG_(free), sizeof(HChar*)); 2529 } 2530 2531 VG_DETERMINE_INTERFACE_VERSION(ms_pre_clo_init) 2532 2533 //--------------------------------------------------------------------// 2534 //--- end ---// 2535 //--------------------------------------------------------------------// 2536