1 /* 2 ********************************************************************** 3 * Copyright (C) 1999-2010, International Business Machines 4 * Corporation and others. All Rights Reserved. 5 ********************************************************************** 6 * Date Name Description 7 * 11/17/99 aliu Creation. 8 ********************************************************************** 9 */ 10 11 #include <typeinfo> // for 'typeid' to work 12 13 #include "unicode/utypes.h" 14 15 #if !UCONFIG_NO_TRANSLITERATION 16 17 #include "unicode/putil.h" 18 #include "unicode/translit.h" 19 #include "unicode/locid.h" 20 #include "unicode/msgfmt.h" 21 #include "unicode/rep.h" 22 #include "unicode/resbund.h" 23 #include "unicode/unifilt.h" 24 #include "unicode/uniset.h" 25 #include "unicode/uscript.h" 26 #include "unicode/strenum.h" 27 #include "cpdtrans.h" 28 #include "nultrans.h" 29 #include "rbt_data.h" 30 #include "rbt_pars.h" 31 #include "rbt.h" 32 #include "transreg.h" 33 #include "name2uni.h" 34 #include "nortrans.h" 35 #include "remtrans.h" 36 #include "titletrn.h" 37 #include "tolowtrn.h" 38 #include "toupptrn.h" 39 #include "uni2name.h" 40 #include "brktrans.h" 41 #include "esctrn.h" 42 #include "unesctrn.h" 43 #include "tridpars.h" 44 #include "anytrans.h" 45 #include "util.h" 46 #include "hash.h" 47 #include "mutex.h" 48 #include "ucln_in.h" 49 #include "uassert.h" 50 #include "cmemory.h" 51 #include "cstring.h" 52 #include "uinvchar.h" 53 54 static const UChar TARGET_SEP = 0x002D; /*-*/ 55 static const UChar ID_DELIM = 0x003B; /*;*/ 56 static const UChar VARIANT_SEP = 0x002F; // '/' 57 58 /** 59 * Prefix for resource bundle key for the display name for a 60 * transliterator. The ID is appended to this to form the key. 61 * The resource bundle value should be a String. 62 */ 63 static const char RB_DISPLAY_NAME_PREFIX[] = "%Translit%%"; 64 65 /** 66 * Prefix for resource bundle key for the display name for a 67 * transliterator SCRIPT. The ID is appended to this to form the key. 68 * The resource bundle value should be a String. 69 */ 70 static const char RB_SCRIPT_DISPLAY_NAME_PREFIX[] = "%Translit%"; 71 72 /** 73 * Resource bundle key for display name pattern. 74 * The resource bundle value should be a String forming a 75 * MessageFormat pattern, e.g.: 76 * "{0,choice,0#|1#{1} Transliterator|2#{1} to {2} Transliterator}". 77 */ 78 static const char RB_DISPLAY_NAME_PATTERN[] = "TransliteratorNamePattern"; 79 80 /** 81 * Resource bundle key for the list of RuleBasedTransliterator IDs. 82 * The resource bundle value should be a String[] with each element 83 * being a valid ID. The ID will be appended to RB_RULE_BASED_PREFIX 84 * to obtain the class name in which the RB_RULE key will be sought. 85 */ 86 static const char RB_RULE_BASED_IDS[] = "RuleBasedTransliteratorIDs"; 87 88 /** 89 * The mutex controlling access to registry object. 90 */ 91 static UMTX registryMutex = 0; 92 93 /** 94 * System transliterator registry; non-null when initialized. 95 */ 96 static U_NAMESPACE_QUALIFIER TransliteratorRegistry* registry = 0; 97 98 // Macro to check/initialize the registry. ONLY USE WITHIN 99 // MUTEX. Avoids function call when registry is initialized. 100 #define HAVE_REGISTRY(status) (registry!=0 || initializeRegistry(status)) 101 102 // Empty string 103 static const UChar EMPTY[] = {0}; //"" 104 105 U_NAMESPACE_BEGIN 106 107 UOBJECT_DEFINE_ABSTRACT_RTTI_IMPLEMENTATION(Transliterator) 108 109 /** 110 * Return TRUE if the given UTransPosition is valid for text of 111 * the given length. 112 */ 113 static inline UBool positionIsValid(UTransPosition& index, int32_t len) { 114 return !(index.contextStart < 0 || 115 index.start < index.contextStart || 116 index.limit < index.start || 117 index.contextLimit < index.limit || 118 len < index.contextLimit); 119 } 120 121 /** 122 * Default constructor. 123 * @param theID the string identifier for this transliterator 124 * @param theFilter the filter. Any character for which 125 * <tt>filter.contains()</tt> returns <tt>FALSE</tt> will not be 126 * altered by this transliterator. If <tt>filter</tt> is 127 * <tt>null</tt> then no filtering is applied. 128 */ 129 Transliterator::Transliterator(const UnicodeString& theID, 130 UnicodeFilter* adoptedFilter) : 131 UObject(), ID(theID), filter(adoptedFilter), 132 maximumContextLength(0) 133 { 134 // NUL-terminate the ID string, which is a non-aliased copy. 135 ID.append((UChar)0); 136 ID.truncate(ID.length()-1); 137 } 138 139 /** 140 * Destructor. 141 */ 142 Transliterator::~Transliterator() { 143 if (filter) { 144 delete filter; 145 } 146 } 147 148 /** 149 * Copy constructor. 150 */ 151 Transliterator::Transliterator(const Transliterator& other) : 152 UObject(other), ID(other.ID), filter(0), 153 maximumContextLength(other.maximumContextLength) 154 { 155 // NUL-terminate the ID string, which is a non-aliased copy. 156 ID.append((UChar)0); 157 ID.truncate(ID.length()-1); 158 159 if (other.filter != 0) { 160 // We own the filter, so we must have our own copy 161 filter = (UnicodeFilter*) other.filter->clone(); 162 } 163 } 164 165 Transliterator* Transliterator::clone() const { 166 return NULL; 167 } 168 169 /** 170 * Assignment operator. 171 */ 172 Transliterator& Transliterator::operator=(const Transliterator& other) { 173 ID = other.ID; 174 // NUL-terminate the ID string 175 ID.getTerminatedBuffer(); 176 177 maximumContextLength = other.maximumContextLength; 178 adoptFilter((other.filter == 0) ? 0 : (UnicodeFilter*) other.filter->clone()); 179 return *this; 180 } 181 182 /** 183 * Transliterates a segment of a string. <code>Transliterator</code> API. 184 * @param text the string to be transliterated 185 * @param start the beginning index, inclusive; <code>0 <= start 186 * <= limit</code>. 187 * @param limit the ending index, exclusive; <code>start <= limit 188 * <= text.length()</code>. 189 * @return the new limit index, or -1 190 */ 191 int32_t Transliterator::transliterate(Replaceable& text, 192 int32_t start, int32_t limit) const { 193 if (start < 0 || 194 limit < start || 195 text.length() < limit) { 196 return -1; 197 } 198 199 UTransPosition offsets; 200 offsets.contextStart= start; 201 offsets.contextLimit = limit; 202 offsets.start = start; 203 offsets.limit = limit; 204 filteredTransliterate(text, offsets, FALSE, TRUE); 205 return offsets.limit; 206 } 207 208 /** 209 * Transliterates an entire string in place. Convenience method. 210 * @param text the string to be transliterated 211 */ 212 void Transliterator::transliterate(Replaceable& text) const { 213 transliterate(text, 0, text.length()); 214 } 215 216 /** 217 * Transliterates the portion of the text buffer that can be 218 * transliterated unambiguosly after new text has been inserted, 219 * typically as a result of a keyboard event. The new text in 220 * <code>insertion</code> will be inserted into <code>text</code> 221 * at <code>index.contextLimit</code>, advancing 222 * <code>index.contextLimit</code> by <code>insertion.length()</code>. 223 * Then the transliterator will try to transliterate characters of 224 * <code>text</code> between <code>index.start</code> and 225 * <code>index.contextLimit</code>. Characters before 226 * <code>index.start</code> will not be changed. 227 * 228 * <p>Upon return, values in <code>index</code> will be updated. 229 * <code>index.contextStart</code> will be advanced to the first 230 * character that future calls to this method will read. 231 * <code>index.start</code> and <code>index.contextLimit</code> will 232 * be adjusted to delimit the range of text that future calls to 233 * this method may change. 234 * 235 * <p>Typical usage of this method begins with an initial call 236 * with <code>index.contextStart</code> and <code>index.contextLimit</code> 237 * set to indicate the portion of <code>text</code> to be 238 * transliterated, and <code>index.start == index.contextStart</code>. 239 * Thereafter, <code>index</code> can be used without 240 * modification in future calls, provided that all changes to 241 * <code>text</code> are made via this method. 242 * 243 * <p>This method assumes that future calls may be made that will 244 * insert new text into the buffer. As a result, it only performs 245 * unambiguous transliterations. After the last call to this 246 * method, there may be untransliterated text that is waiting for 247 * more input to resolve an ambiguity. In order to perform these 248 * pending transliterations, clients should call {@link 249 * #finishKeyboardTransliteration} after the last call to this 250 * method has been made. 251 * 252 * @param text the buffer holding transliterated and untransliterated text 253 * @param index an array of three integers. 254 * 255 * <ul><li><code>index.contextStart</code>: the beginning index, 256 * inclusive; <code>0 <= index.contextStart <= index.contextLimit</code>. 257 * 258 * <li><code>index.contextLimit</code>: the ending index, exclusive; 259 * <code>index.contextStart <= index.contextLimit <= text.length()</code>. 260 * <code>insertion</code> is inserted at 261 * <code>index.contextLimit</code>. 262 * 263 * <li><code>index.start</code>: the next character to be 264 * considered for transliteration; <code>index.contextStart <= 265 * index.start <= index.contextLimit</code>. Characters before 266 * <code>index.start</code> will not be changed by future calls 267 * to this method.</ul> 268 * 269 * @param insertion text to be inserted and possibly 270 * transliterated into the translation buffer at 271 * <code>index.contextLimit</code>. If <code>null</code> then no text 272 * is inserted. 273 * @see #START 274 * @see #LIMIT 275 * @see #CURSOR 276 * @see #handleTransliterate 277 * @exception IllegalArgumentException if <code>index</code> 278 * is invalid 279 */ 280 void Transliterator::transliterate(Replaceable& text, 281 UTransPosition& index, 282 const UnicodeString& insertion, 283 UErrorCode &status) const { 284 _transliterate(text, index, &insertion, status); 285 } 286 287 /** 288 * Transliterates the portion of the text buffer that can be 289 * transliterated unambiguosly after a new character has been 290 * inserted, typically as a result of a keyboard event. This is a 291 * convenience method; see {@link 292 * #transliterate(Replaceable, int[], String)} for details. 293 * @param text the buffer holding transliterated and 294 * untransliterated text 295 * @param index an array of three integers. See {@link 296 * #transliterate(Replaceable, int[], String)}. 297 * @param insertion text to be inserted and possibly 298 * transliterated into the translation buffer at 299 * <code>index.contextLimit</code>. 300 * @see #transliterate(Replaceable, int[], String) 301 */ 302 void Transliterator::transliterate(Replaceable& text, 303 UTransPosition& index, 304 UChar32 insertion, 305 UErrorCode& status) const { 306 UnicodeString str(insertion); 307 _transliterate(text, index, &str, status); 308 } 309 310 /** 311 * Transliterates the portion of the text buffer that can be 312 * transliterated unambiguosly. This is a convenience method; see 313 * {@link #transliterate(Replaceable, int[], String)} for 314 * details. 315 * @param text the buffer holding transliterated and 316 * untransliterated text 317 * @param index an array of three integers. See {@link 318 * #transliterate(Replaceable, int[], String)}. 319 * @see #transliterate(Replaceable, int[], String) 320 */ 321 void Transliterator::transliterate(Replaceable& text, 322 UTransPosition& index, 323 UErrorCode& status) const { 324 _transliterate(text, index, 0, status); 325 } 326 327 /** 328 * Finishes any pending transliterations that were waiting for 329 * more characters. Clients should call this method as the last 330 * call after a sequence of one or more calls to 331 * <code>transliterate()</code>. 332 * @param text the buffer holding transliterated and 333 * untransliterated text. 334 * @param index the array of indices previously passed to {@link 335 * #transliterate} 336 */ 337 void Transliterator::finishTransliteration(Replaceable& text, 338 UTransPosition& index) const { 339 if (!positionIsValid(index, text.length())) { 340 return; 341 } 342 343 filteredTransliterate(text, index, FALSE, TRUE); 344 } 345 346 /** 347 * This internal method does keyboard transliteration. If the 348 * 'insertion' is non-null then we append it to 'text' before 349 * proceeding. This method calls through to the pure virtual 350 * framework method handleTransliterate() to do the actual 351 * work. 352 */ 353 void Transliterator::_transliterate(Replaceable& text, 354 UTransPosition& index, 355 const UnicodeString* insertion, 356 UErrorCode &status) const { 357 if (U_FAILURE(status)) { 358 return; 359 } 360 361 if (!positionIsValid(index, text.length())) { 362 status = U_ILLEGAL_ARGUMENT_ERROR; 363 return; 364 } 365 366 // int32_t originalStart = index.contextStart; 367 if (insertion != 0) { 368 text.handleReplaceBetween(index.limit, index.limit, *insertion); 369 index.limit += insertion->length(); 370 index.contextLimit += insertion->length(); 371 } 372 373 if (index.limit > 0 && 374 UTF_IS_LEAD(text.charAt(index.limit - 1))) { 375 // Oops, there is a dangling lead surrogate in the buffer. 376 // This will break most transliterators, since they will 377 // assume it is part of a pair. Don't transliterate until 378 // more text comes in. 379 return; 380 } 381 382 filteredTransliterate(text, index, TRUE, TRUE); 383 384 #if 0 385 // TODO 386 // I CAN'T DO what I'm attempting below now that the Kleene star 387 // operator is supported. For example, in the rule 388 389 // ([:Lu:]+) { x } > $1; 390 391 // what is the maximum context length? getMaximumContextLength() 392 // will return 1, but this is just the length of the ante context 393 // part of the pattern string -- 1 character, which is a standin 394 // for a Quantifier, which contains a StringMatcher, which 395 // contains a UnicodeSet. 396 397 // There is a complicated way to make this work again, and that's 398 // to add a "maximum left context" protocol into the 399 // UnicodeMatcher hierarchy. At present I'm not convinced this is 400 // worth it. 401 402 // --- 403 404 // The purpose of the code below is to keep the context small 405 // while doing incremental transliteration. When part of the left 406 // context (between contextStart and start) is no longer needed, 407 // we try to advance contextStart past that portion. We use the 408 // maximum context length to do so. 409 int32_t newCS = index.start; 410 int32_t n = getMaximumContextLength(); 411 while (newCS > originalStart && n-- > 0) { 412 --newCS; 413 newCS -= UTF_CHAR_LENGTH(text.char32At(newCS)) - 1; 414 } 415 index.contextStart = uprv_max(newCS, originalStart); 416 #endif 417 } 418 419 /** 420 * This method breaks up the input text into runs of unfiltered 421 * characters. It passes each such run to 422 * <subclass>.handleTransliterate(). Subclasses that can handle the 423 * filter logic more efficiently themselves may override this method. 424 * 425 * All transliteration calls in this class go through this method. 426 */ 427 void Transliterator::filteredTransliterate(Replaceable& text, 428 UTransPosition& index, 429 UBool incremental, 430 UBool rollback) const { 431 // Short circuit path for transliterators with no filter in 432 // non-incremental mode. 433 if (filter == 0 && !rollback) { 434 handleTransliterate(text, index, incremental); 435 return; 436 } 437 438 //---------------------------------------------------------------------- 439 // This method processes text in two groupings: 440 // 441 // RUNS -- A run is a contiguous group of characters which are contained 442 // in the filter for this transliterator (filter.contains(ch) == TRUE). 443 // Text outside of runs may appear as context but it is not modified. 444 // The start and limit Position values are narrowed to each run. 445 // 446 // PASSES (incremental only) -- To make incremental mode work correctly, 447 // each run is broken up into n passes, where n is the length (in code 448 // points) of the run. Each pass contains the first n characters. If a 449 // pass is completely transliterated, it is committed, and further passes 450 // include characters after the committed text. If a pass is blocked, 451 // and does not transliterate completely, then this method rolls back 452 // the changes made during the pass, extends the pass by one code point, 453 // and tries again. 454 //---------------------------------------------------------------------- 455 456 // globalLimit is the limit value for the entire operation. We 457 // set index.limit to the end of each unfiltered run before 458 // calling handleTransliterate(), so we need to maintain the real 459 // value of index.limit here. After each transliteration, we 460 // update globalLimit for insertions or deletions that have 461 // happened. 462 int32_t globalLimit = index.limit; 463 464 // If there is a non-null filter, then break the input text up. Say the 465 // input text has the form: 466 // xxxabcxxdefxx 467 // where 'x' represents a filtered character (filter.contains('x') == 468 // false). Then we break this up into: 469 // xxxabc xxdef xx 470 // Each pass through the loop consumes a run of filtered 471 // characters (which are ignored) and a subsequent run of 472 // unfiltered characters (which are transliterated). 473 474 for (;;) { 475 476 if (filter != NULL) { 477 // Narrow the range to be transliterated to the first segment 478 // of unfiltered characters at or after index.start. 479 480 // Advance past filtered chars 481 UChar32 c; 482 while (index.start < globalLimit && 483 !filter->contains(c=text.char32At(index.start))) { 484 index.start += UTF_CHAR_LENGTH(c); 485 } 486 487 // Find the end of this run of unfiltered chars 488 index.limit = index.start; 489 while (index.limit < globalLimit && 490 filter->contains(c=text.char32At(index.limit))) { 491 index.limit += UTF_CHAR_LENGTH(c); 492 } 493 } 494 495 // Check to see if the unfiltered run is empty. This only 496 // happens at the end of the string when all the remaining 497 // characters are filtered. 498 if (index.limit == index.start) { 499 // assert(index.start == globalLimit); 500 break; 501 } 502 503 // Is this run incremental? If there is additional 504 // filtered text (if limit < globalLimit) then we pass in 505 // an incremental value of FALSE to force the subclass to 506 // complete the transliteration for this run. 507 UBool isIncrementalRun = 508 (index.limit < globalLimit ? FALSE : incremental); 509 510 int32_t delta; 511 512 // Implement rollback. To understand the need for rollback, 513 // consider the following transliterator: 514 // 515 // "t" is "a > A;" 516 // "u" is "A > b;" 517 // "v" is a compound of "t; NFD; u" with a filter [:Ll:] 518 // 519 // Now apply "c" to the input text "a". The result is "b". But if 520 // the transliteration is done incrementally, then the NFD holds 521 // things up after "t" has already transformed "a" to "A". When 522 // finishTransliterate() is called, "A" is _not_ processed because 523 // it gets excluded by the [:Ll:] filter, and the end result is "A" 524 // -- incorrect. The problem is that the filter is applied to a 525 // partially-transliterated result, when we only want it to apply to 526 // input text. Although this example hinges on a compound 527 // transliterator containing NFD and a specific filter, it can 528 // actually happen with any transliterator which may do a partial 529 // transformation in incremental mode into characters outside its 530 // filter. 531 // 532 // To handle this, when in incremental mode we supply characters to 533 // handleTransliterate() in several passes. Each pass adds one more 534 // input character to the input text. That is, for input "ABCD", we 535 // first try "A", then "AB", then "ABC", and finally "ABCD". If at 536 // any point we block (upon return, start < limit) then we roll 537 // back. If at any point we complete the run (upon return start == 538 // limit) then we commit that run. 539 540 if (rollback && isIncrementalRun) { 541 542 int32_t runStart = index.start; 543 int32_t runLimit = index.limit; 544 int32_t runLength = runLimit - runStart; 545 546 // Make a rollback copy at the end of the string 547 int32_t rollbackOrigin = text.length(); 548 text.copy(runStart, runLimit, rollbackOrigin); 549 550 // Variables reflecting the commitment of completely 551 // transliterated text. passStart is the runStart, advanced 552 // past committed text. rollbackStart is the rollbackOrigin, 553 // advanced past rollback text that corresponds to committed 554 // text. 555 int32_t passStart = runStart; 556 int32_t rollbackStart = rollbackOrigin; 557 558 // The limit for each pass; we advance by one code point with 559 // each iteration. 560 int32_t passLimit = index.start; 561 562 // Total length, in 16-bit code units, of uncommitted text. 563 // This is the length to be rolled back. 564 int32_t uncommittedLength = 0; 565 566 // Total delta (change in length) for all passes 567 int32_t totalDelta = 0; 568 569 // PASS MAIN LOOP -- Start with a single character, and extend 570 // the text by one character at a time. Roll back partial 571 // transliterations and commit complete transliterations. 572 for (;;) { 573 // Length of additional code point, either one or two 574 int32_t charLength = 575 UTF_CHAR_LENGTH(text.char32At(passLimit)); 576 passLimit += charLength; 577 if (passLimit > runLimit) { 578 break; 579 } 580 uncommittedLength += charLength; 581 582 index.limit = passLimit; 583 584 // Delegate to subclass for actual transliteration. Upon 585 // return, start will be updated to point after the 586 // transliterated text, and limit and contextLimit will be 587 // adjusted for length changes. 588 handleTransliterate(text, index, TRUE); 589 590 delta = index.limit - passLimit; // change in length 591 592 // We failed to completely transliterate this pass. 593 // Roll back the text. Indices remain unchanged; reset 594 // them where necessary. 595 if (index.start != index.limit) { 596 // Find the rollbackStart, adjusted for length changes 597 // and the deletion of partially transliterated text. 598 int32_t rs = rollbackStart + delta - (index.limit - passStart); 599 600 // Delete the partially transliterated text 601 text.handleReplaceBetween(passStart, index.limit, EMPTY); 602 603 // Copy the rollback text back 604 text.copy(rs, rs + uncommittedLength, passStart); 605 606 // Restore indices to their original values 607 index.start = passStart; 608 index.limit = passLimit; 609 index.contextLimit -= delta; 610 } 611 612 // We did completely transliterate this pass. Update the 613 // commit indices to record how far we got. Adjust indices 614 // for length change. 615 else { 616 // Move the pass indices past the committed text. 617 passStart = passLimit = index.start; 618 619 // Adjust the rollbackStart for length changes and move 620 // it past the committed text. All characters we've 621 // processed to this point are committed now, so zero 622 // out the uncommittedLength. 623 rollbackStart += delta + uncommittedLength; 624 uncommittedLength = 0; 625 626 // Adjust indices for length changes. 627 runLimit += delta; 628 totalDelta += delta; 629 } 630 } 631 632 // Adjust overall limit and rollbackOrigin for insertions and 633 // deletions. Don't need to worry about contextLimit because 634 // handleTransliterate() maintains that. 635 rollbackOrigin += totalDelta; 636 globalLimit += totalDelta; 637 638 // Delete the rollback copy 639 text.handleReplaceBetween(rollbackOrigin, rollbackOrigin + runLength, EMPTY); 640 641 // Move start past committed text 642 index.start = passStart; 643 } 644 645 else { 646 // Delegate to subclass for actual transliteration. 647 int32_t limit = index.limit; 648 handleTransliterate(text, index, isIncrementalRun); 649 delta = index.limit - limit; // change in length 650 651 // In a properly written transliterator, start == limit after 652 // handleTransliterate() returns when incremental is false. 653 // Catch cases where the subclass doesn't do this, and throw 654 // an exception. (Just pinning start to limit is a bad idea, 655 // because what's probably happening is that the subclass 656 // isn't transliterating all the way to the end, and it should 657 // in non-incremental mode.) 658 if (!incremental && index.start != index.limit) { 659 // We can't throw an exception, so just fudge things 660 index.start = index.limit; 661 } 662 663 // Adjust overall limit for insertions/deletions. Don't need 664 // to worry about contextLimit because handleTransliterate() 665 // maintains that. 666 globalLimit += delta; 667 } 668 669 if (filter == NULL || isIncrementalRun) { 670 break; 671 } 672 673 // If we did completely transliterate this 674 // run, then repeat with the next unfiltered run. 675 } 676 677 // Start is valid where it is. Limit needs to be put back where 678 // it was, modulo adjustments for deletions/insertions. 679 index.limit = globalLimit; 680 } 681 682 void Transliterator::filteredTransliterate(Replaceable& text, 683 UTransPosition& index, 684 UBool incremental) const { 685 filteredTransliterate(text, index, incremental, FALSE); 686 } 687 688 /** 689 * Method for subclasses to use to set the maximum context length. 690 * @see #getMaximumContextLength 691 */ 692 void Transliterator::setMaximumContextLength(int32_t maxContextLength) { 693 maximumContextLength = maxContextLength; 694 } 695 696 /** 697 * Returns a programmatic identifier for this transliterator. 698 * If this identifier is passed to <code>getInstance()</code>, it 699 * will return this object, if it has been registered. 700 * @see #registerInstance 701 * @see #getAvailableIDs 702 */ 703 const UnicodeString& Transliterator::getID(void) const { 704 return ID; 705 } 706 707 /** 708 * Returns a name for this transliterator that is appropriate for 709 * display to the user in the default locale. See {@link 710 * #getDisplayName(Locale)} for details. 711 */ 712 UnicodeString& U_EXPORT2 Transliterator::getDisplayName(const UnicodeString& ID, 713 UnicodeString& result) { 714 return getDisplayName(ID, Locale::getDefault(), result); 715 } 716 717 /** 718 * Returns a name for this transliterator that is appropriate for 719 * display to the user in the given locale. This name is taken 720 * from the locale resource data in the standard manner of the 721 * <code>java.text</code> package. 722 * 723 * <p>If no localized names exist in the system resource bundles, 724 * a name is synthesized using a localized 725 * <code>MessageFormat</code> pattern from the resource data. The 726 * arguments to this pattern are an integer followed by one or two 727 * strings. The integer is the number of strings, either 1 or 2. 728 * The strings are formed by splitting the ID for this 729 * transliterator at the first TARGET_SEP. If there is no TARGET_SEP, then the 730 * entire ID forms the only string. 731 * @param inLocale the Locale in which the display name should be 732 * localized. 733 * @see java.text.MessageFormat 734 */ 735 UnicodeString& U_EXPORT2 Transliterator::getDisplayName(const UnicodeString& id, 736 const Locale& inLocale, 737 UnicodeString& result) { 738 UErrorCode status = U_ZERO_ERROR; 739 740 ResourceBundle bundle(U_ICUDATA_TRANSLIT, inLocale, status); 741 742 // Suspend checking status until later... 743 744 result.truncate(0); 745 746 // Normalize the ID 747 UnicodeString source, target, variant; 748 UBool sawSource; 749 TransliteratorIDParser::IDtoSTV(id, source, target, variant, sawSource); 750 if (target.length() < 1) { 751 // No target; malformed id 752 return result; 753 } 754 if (variant.length() > 0) { // Change "Foo" to "/Foo" 755 variant.insert(0, VARIANT_SEP); 756 } 757 UnicodeString ID(source); 758 ID.append(TARGET_SEP).append(target).append(variant); 759 760 // build the char* key 761 if (uprv_isInvariantUString(ID.getBuffer(), ID.length())) { 762 char key[200]; 763 uprv_strcpy(key, RB_DISPLAY_NAME_PREFIX); 764 int32_t length=(int32_t)uprv_strlen(RB_DISPLAY_NAME_PREFIX); 765 ID.extract(0, (int32_t)(sizeof(key)-length), key+length, (int32_t)(sizeof(key)-length), US_INV); 766 767 // Try to retrieve a UnicodeString from the bundle. 768 UnicodeString resString = bundle.getStringEx(key, status); 769 770 if (U_SUCCESS(status) && resString.length() != 0) { 771 return result = resString; // [sic] assign & return 772 } 773 774 #if !UCONFIG_NO_FORMATTING 775 // We have failed to get a name from the locale data. This is 776 // typical, since most transliterators will not have localized 777 // name data. The next step is to retrieve the MessageFormat 778 // pattern from the locale data and to use it to synthesize the 779 // name from the ID. 780 781 status = U_ZERO_ERROR; 782 resString = bundle.getStringEx(RB_DISPLAY_NAME_PATTERN, status); 783 784 if (U_SUCCESS(status) && resString.length() != 0) { 785 MessageFormat msg(resString, inLocale, status); 786 // Suspend checking status until later... 787 788 // We pass either 2 or 3 Formattable objects to msg. 789 Formattable args[3]; 790 int32_t nargs; 791 args[0].setLong(2); // # of args to follow 792 args[1].setString(source); 793 args[2].setString(target); 794 nargs = 3; 795 796 // Use display names for the scripts, if they exist 797 UnicodeString s; 798 length=(int32_t)uprv_strlen(RB_SCRIPT_DISPLAY_NAME_PREFIX); 799 for (int j=1; j<=2; ++j) { 800 status = U_ZERO_ERROR; 801 uprv_strcpy(key, RB_SCRIPT_DISPLAY_NAME_PREFIX); 802 args[j].getString(s); 803 if (uprv_isInvariantUString(s.getBuffer(), s.length())) { 804 s.extract(0, sizeof(key)-length-1, key+length, (int32_t)sizeof(key)-length-1, US_INV); 805 806 resString = bundle.getStringEx(key, status); 807 808 if (U_SUCCESS(status)) { 809 args[j] = resString; 810 } 811 } 812 } 813 814 status = U_ZERO_ERROR; 815 FieldPosition pos; // ignored by msg 816 msg.format(args, nargs, result, pos, status); 817 if (U_SUCCESS(status)) { 818 result.append(variant); 819 return result; 820 } 821 } 822 #endif 823 } 824 825 // We should not reach this point unless there is something 826 // wrong with the build or the RB_DISPLAY_NAME_PATTERN has 827 // been deleted from the root RB_LOCALE_ELEMENTS resource. 828 result = ID; 829 return result; 830 } 831 832 /** 833 * Returns the filter used by this transliterator, or <tt>null</tt> 834 * if this transliterator uses no filter. Caller musn't delete 835 * the result! 836 */ 837 const UnicodeFilter* Transliterator::getFilter(void) const { 838 return filter; 839 } 840 841 /** 842 * Returns the filter used by this transliterator, or 843 * <tt>NULL</tt> if this transliterator uses no filter. The 844 * caller must eventually delete the result. After this call, 845 * this transliterator's filter is set to <tt>NULL</tt>. 846 */ 847 UnicodeFilter* Transliterator::orphanFilter(void) { 848 UnicodeFilter *result = filter; 849 filter = NULL; 850 return result; 851 } 852 853 /** 854 * Changes the filter used by this transliterator. If the filter 855 * is set to <tt>null</tt> then no filtering will occur. 856 * 857 * <p>Callers must take care if a transliterator is in use by 858 * multiple threads. The filter should not be changed by one 859 * thread while another thread may be transliterating. 860 */ 861 void Transliterator::adoptFilter(UnicodeFilter* filterToAdopt) { 862 delete filter; 863 filter = filterToAdopt; 864 } 865 866 /** 867 * Returns this transliterator's inverse. See the class 868 * documentation for details. This implementation simply inverts 869 * the two entities in the ID and attempts to retrieve the 870 * resulting transliterator. That is, if <code>getID()</code> 871 * returns "A-B", then this method will return the result of 872 * <code>getInstance("B-A")</code>, or <code>null</code> if that 873 * call fails. 874 * 875 * <p>This method does not take filtering into account. The 876 * returned transliterator will have no filter. 877 * 878 * <p>Subclasses with knowledge of their inverse may wish to 879 * override this method. 880 * 881 * @return a transliterator that is an inverse, not necessarily 882 * exact, of this transliterator, or <code>null</code> if no such 883 * transliterator is registered. 884 * @see #registerInstance 885 */ 886 Transliterator* Transliterator::createInverse(UErrorCode& status) const { 887 UParseError parseError; 888 return Transliterator::createInstance(ID, UTRANS_REVERSE,parseError,status); 889 } 890 891 Transliterator* U_EXPORT2 892 Transliterator::createInstance(const UnicodeString& ID, 893 UTransDirection dir, 894 UErrorCode& status) 895 { 896 UParseError parseError; 897 return createInstance(ID, dir, parseError, status); 898 } 899 900 /** 901 * Returns a <code>Transliterator</code> object given its ID. 902 * The ID must be either a system transliterator ID or a ID registered 903 * using <code>registerInstance()</code>. 904 * 905 * @param ID a valid ID, as enumerated by <code>getAvailableIDs()</code> 906 * @return A <code>Transliterator</code> object with the given ID 907 * @see #registerInstance 908 * @see #getAvailableIDs 909 * @see #getID 910 */ 911 Transliterator* U_EXPORT2 912 Transliterator::createInstance(const UnicodeString& ID, 913 UTransDirection dir, 914 UParseError& parseError, 915 UErrorCode& status) 916 { 917 if (U_FAILURE(status)) { 918 return 0; 919 } 920 921 UnicodeString canonID; 922 UVector list(status); 923 if (U_FAILURE(status)) { 924 return NULL; 925 } 926 927 UnicodeSet* globalFilter; 928 // TODO add code for parseError...currently unused, but 929 // later may be used by parsing code... 930 if (!TransliteratorIDParser::parseCompoundID(ID, dir, canonID, list, globalFilter)) { 931 status = U_INVALID_ID; 932 return NULL; 933 } 934 935 TransliteratorIDParser::instantiateList(list, status); 936 if (U_FAILURE(status)) { 937 return NULL; 938 } 939 940 U_ASSERT(list.size() > 0); 941 Transliterator* t = NULL; 942 943 if (list.size() > 1 || canonID.indexOf(ID_DELIM) >= 0) { 944 // [NOTE: If it's a compoundID, we instantiate a CompoundTransliterator even if it only 945 // has one child transliterator. This is so that toRules() will return the right thing 946 // (without any inactive ID), but our main ID still comes out correct. That is, if we 947 // instantiate "(Lower);Latin-Greek;", we want the rules to come out as "::Latin-Greek;" 948 // even though the ID is "(Lower);Latin-Greek;". 949 t = new CompoundTransliterator(list, parseError, status); 950 } 951 else { 952 t = (Transliterator*)list.elementAt(0); 953 } 954 // Check null pointer 955 if (t != NULL) { 956 t->setID(canonID); 957 if (globalFilter != NULL) { 958 t->adoptFilter(globalFilter); 959 } 960 } 961 else if (U_SUCCESS(status)) { 962 status = U_MEMORY_ALLOCATION_ERROR; 963 } 964 return t; 965 } 966 967 /** 968 * Create a transliterator from a basic ID. This is an ID 969 * containing only the forward direction source, target, and 970 * variant. 971 * @param id a basic ID of the form S-T or S-T/V. 972 * @return a newly created Transliterator or null if the ID is 973 * invalid. 974 */ 975 Transliterator* Transliterator::createBasicInstance(const UnicodeString& id, 976 const UnicodeString* canon) { 977 UParseError pe; 978 UErrorCode ec = U_ZERO_ERROR; 979 TransliteratorAlias* alias = 0; 980 Transliterator* t = 0; 981 982 umtx_lock(®istryMutex); 983 if (HAVE_REGISTRY(ec)) { 984 t = registry->get(id, alias, ec); 985 } 986 umtx_unlock(®istryMutex); 987 988 if (U_FAILURE(ec)) { 989 delete t; 990 delete alias; 991 return 0; 992 } 993 994 // We may have not gotten a transliterator: Because we can't 995 // instantiate a transliterator from inside TransliteratorRegistry:: 996 // get() (that would deadlock), we sometimes pass back an alias. This 997 // contains the data we need to finish the instantiation outside the 998 // registry mutex. The alias may, in turn, generate another alias, so 999 // we handle aliases in a loop. The max times through the loop is two. 1000 // [alan] 1001 while (alias != 0) { 1002 U_ASSERT(t==0); 1003 // Rule-based aliases are handled with TransliteratorAlias:: 1004 // parse(), followed by TransliteratorRegistry::reget(). 1005 // Other aliases are handled with TransliteratorAlias::create(). 1006 if (alias->isRuleBased()) { 1007 // Step 1. parse 1008 TransliteratorParser parser(ec); 1009 alias->parse(parser, pe, ec); 1010 delete alias; 1011 alias = 0; 1012 1013 // Step 2. reget 1014 umtx_lock(®istryMutex); 1015 if (HAVE_REGISTRY(ec)) { 1016 t = registry->reget(id, parser, alias, ec); 1017 } 1018 umtx_unlock(®istryMutex); 1019 1020 // Step 3. Loop back around! 1021 } else { 1022 t = alias->create(pe, ec); 1023 delete alias; 1024 alias = 0; 1025 break; 1026 } 1027 if (U_FAILURE(ec)) { 1028 delete t; 1029 delete alias; 1030 t = NULL; 1031 break; 1032 } 1033 } 1034 1035 if (t != NULL && canon != NULL) { 1036 t->setID(*canon); 1037 } 1038 1039 return t; 1040 } 1041 1042 /** 1043 * Returns a <code>Transliterator</code> object constructed from 1044 * the given rule string. This will be a RuleBasedTransliterator, 1045 * if the rule string contains only rules, or a 1046 * CompoundTransliterator, if it contains ID blocks, or a 1047 * NullTransliterator, if it contains ID blocks which parse as 1048 * empty for the given direction. 1049 */ 1050 Transliterator* U_EXPORT2 1051 Transliterator::createFromRules(const UnicodeString& ID, 1052 const UnicodeString& rules, 1053 UTransDirection dir, 1054 UParseError& parseError, 1055 UErrorCode& status) 1056 { 1057 Transliterator* t = NULL; 1058 1059 TransliteratorParser parser(status); 1060 parser.parse(rules, dir, parseError, status); 1061 1062 if (U_FAILURE(status)) { 1063 return 0; 1064 } 1065 1066 // NOTE: The logic here matches that in TransliteratorRegistry. 1067 if (parser.idBlockVector.size() == 0 && parser.dataVector.size() == 0) { 1068 t = new NullTransliterator(); 1069 } 1070 else if (parser.idBlockVector.size() == 0 && parser.dataVector.size() == 1) { 1071 t = new RuleBasedTransliterator(ID, (TransliterationRuleData*)parser.dataVector.orphanElementAt(0), TRUE); 1072 } 1073 else if (parser.idBlockVector.size() == 1 && parser.dataVector.size() == 0) { 1074 // idBlock, no data -- this is an alias. The ID has 1075 // been munged from reverse into forward mode, if 1076 // necessary, so instantiate the ID in the forward 1077 // direction. 1078 if (parser.compoundFilter != NULL) { 1079 UnicodeString filterPattern; 1080 parser.compoundFilter->toPattern(filterPattern, FALSE); 1081 t = createInstance(filterPattern + UnicodeString(ID_DELIM) 1082 + *((UnicodeString*)parser.idBlockVector.elementAt(0)), UTRANS_FORWARD, parseError, status); 1083 } 1084 else 1085 t = createInstance(*((UnicodeString*)parser.idBlockVector.elementAt(0)), UTRANS_FORWARD, parseError, status); 1086 1087 1088 if (t != NULL) { 1089 t->setID(ID); 1090 } 1091 } 1092 else { 1093 UVector transliterators(status); 1094 int32_t passNumber = 1; 1095 1096 int32_t limit = parser.idBlockVector.size(); 1097 if (parser.dataVector.size() > limit) 1098 limit = parser.dataVector.size(); 1099 1100 for (int32_t i = 0; i < limit; i++) { 1101 if (i < parser.idBlockVector.size()) { 1102 UnicodeString* idBlock = (UnicodeString*)parser.idBlockVector.elementAt(i); 1103 if (!idBlock->isEmpty()) { 1104 Transliterator* temp = createInstance(*idBlock, UTRANS_FORWARD, parseError, status); 1105 if (temp != NULL && typeid(*temp) != typeid(NullTransliterator)) 1106 transliterators.addElement(temp, status); 1107 else 1108 delete temp; 1109 } 1110 } 1111 if (!parser.dataVector.isEmpty()) { 1112 TransliterationRuleData* data = (TransliterationRuleData*)parser.dataVector.orphanElementAt(0); 1113 RuleBasedTransliterator* temprbt = new RuleBasedTransliterator(UnicodeString(CompoundTransliterator::PASS_STRING) + (passNumber++), 1114 data, TRUE); 1115 // Check if NULL before adding it to transliterators to avoid future usage of NULL pointer. 1116 if (temprbt == NULL) { 1117 status = U_MEMORY_ALLOCATION_ERROR; 1118 return t; 1119 } 1120 transliterators.addElement(temprbt, status); 1121 } 1122 } 1123 1124 t = new CompoundTransliterator(transliterators, passNumber - 1, parseError, status); 1125 // Null pointer check 1126 if (t != NULL) { 1127 t->setID(ID); 1128 t->adoptFilter(parser.orphanCompoundFilter()); 1129 } 1130 } 1131 if (U_SUCCESS(status) && t == NULL) { 1132 status = U_MEMORY_ALLOCATION_ERROR; 1133 } 1134 return t; 1135 } 1136 1137 UnicodeString& Transliterator::toRules(UnicodeString& rulesSource, 1138 UBool escapeUnprintable) const { 1139 // The base class implementation of toRules munges the ID into 1140 // the correct format. That is: foo => ::foo 1141 if (escapeUnprintable) { 1142 rulesSource.truncate(0); 1143 UnicodeString id = getID(); 1144 for (int32_t i=0; i<id.length();) { 1145 UChar32 c = id.char32At(i); 1146 if (!ICU_Utility::escapeUnprintable(rulesSource, c)) { 1147 rulesSource.append(c); 1148 } 1149 i += UTF_CHAR_LENGTH(c); 1150 } 1151 } else { 1152 rulesSource = getID(); 1153 } 1154 // KEEP in sync with rbt_pars 1155 rulesSource.insert(0, UNICODE_STRING_SIMPLE("::")); 1156 rulesSource.append(ID_DELIM); 1157 return rulesSource; 1158 } 1159 1160 int32_t Transliterator::countElements() const { 1161 const CompoundTransliterator* ct = dynamic_cast<const CompoundTransliterator*>(this); 1162 return ct != NULL ? ct->getCount() : 0; 1163 } 1164 1165 const Transliterator& Transliterator::getElement(int32_t index, UErrorCode& ec) const { 1166 if (U_FAILURE(ec)) { 1167 return *this; 1168 } 1169 const CompoundTransliterator* cpd = dynamic_cast<const CompoundTransliterator*>(this); 1170 int32_t n = (cpd == NULL) ? 1 : cpd->getCount(); 1171 if (index < 0 || index >= n) { 1172 ec = U_INDEX_OUTOFBOUNDS_ERROR; 1173 return *this; 1174 } else { 1175 return (n == 1) ? *this : cpd->getTransliterator(index); 1176 } 1177 } 1178 1179 UnicodeSet& Transliterator::getSourceSet(UnicodeSet& result) const { 1180 handleGetSourceSet(result); 1181 if (filter != NULL) { 1182 UnicodeSet* filterSet = dynamic_cast<UnicodeSet*>(filter); 1183 UBool deleteFilterSet = FALSE; 1184 // Most, but not all filters will be UnicodeSets. Optimize for 1185 // the high-runner case. 1186 if (filterSet == NULL) { 1187 filterSet = new UnicodeSet(); 1188 // Check null pointer 1189 if (filterSet == NULL) { 1190 return result; 1191 } 1192 deleteFilterSet = TRUE; 1193 filter->addMatchSetTo(*filterSet); 1194 } 1195 result.retainAll(*filterSet); 1196 if (deleteFilterSet) { 1197 delete filterSet; 1198 } 1199 } 1200 return result; 1201 } 1202 1203 void Transliterator::handleGetSourceSet(UnicodeSet& result) const { 1204 result.clear(); 1205 } 1206 1207 UnicodeSet& Transliterator::getTargetSet(UnicodeSet& result) const { 1208 return result.clear(); 1209 } 1210 1211 // For public consumption 1212 void U_EXPORT2 Transliterator::registerFactory(const UnicodeString& id, 1213 Transliterator::Factory factory, 1214 Transliterator::Token context) { 1215 Mutex lock(®istryMutex); 1216 UErrorCode ec = U_ZERO_ERROR; 1217 if (HAVE_REGISTRY(ec)) { 1218 _registerFactory(id, factory, context); 1219 } 1220 } 1221 1222 // To be called only by Transliterator subclasses that are called 1223 // to register themselves by initializeRegistry(). 1224 void Transliterator::_registerFactory(const UnicodeString& id, 1225 Transliterator::Factory factory, 1226 Transliterator::Token context) { 1227 UErrorCode ec = U_ZERO_ERROR; 1228 registry->put(id, factory, context, TRUE, ec); 1229 } 1230 1231 // To be called only by Transliterator subclasses that are called 1232 // to register themselves by initializeRegistry(). 1233 void Transliterator::_registerSpecialInverse(const UnicodeString& target, 1234 const UnicodeString& inverseTarget, 1235 UBool bidirectional) { 1236 UErrorCode status = U_ZERO_ERROR; 1237 TransliteratorIDParser::registerSpecialInverse(target, inverseTarget, bidirectional, status); 1238 } 1239 1240 /** 1241 * Registers a instance <tt>obj</tt> of a subclass of 1242 * <code>Transliterator</code> with the system. This object must 1243 * implement the <tt>clone()</tt> method. When 1244 * <tt>getInstance()</tt> is called with an ID string that is 1245 * equal to <tt>obj.getID()</tt>, then <tt>obj.clone()</tt> is 1246 * returned. 1247 * 1248 * @param obj an instance of subclass of 1249 * <code>Transliterator</code> that defines <tt>clone()</tt> 1250 * @see #getInstance 1251 * @see #unregister 1252 */ 1253 void U_EXPORT2 Transliterator::registerInstance(Transliterator* adoptedPrototype) { 1254 Mutex lock(®istryMutex); 1255 UErrorCode ec = U_ZERO_ERROR; 1256 if (HAVE_REGISTRY(ec)) { 1257 _registerInstance(adoptedPrototype); 1258 } 1259 } 1260 1261 void Transliterator::_registerInstance(Transliterator* adoptedPrototype) { 1262 UErrorCode ec = U_ZERO_ERROR; 1263 registry->put(adoptedPrototype, TRUE, ec); 1264 } 1265 1266 void U_EXPORT2 Transliterator::registerAlias(const UnicodeString& aliasID, 1267 const UnicodeString& realID) { 1268 Mutex lock(®istryMutex); 1269 UErrorCode ec = U_ZERO_ERROR; 1270 if (HAVE_REGISTRY(ec)) { 1271 _registerAlias(aliasID, realID); 1272 } 1273 } 1274 1275 void Transliterator::_registerAlias(const UnicodeString& aliasID, 1276 const UnicodeString& realID) { 1277 UErrorCode ec = U_ZERO_ERROR; 1278 registry->put(aliasID, realID, FALSE, TRUE, ec); 1279 } 1280 1281 /** 1282 * Unregisters a transliterator or class. This may be either 1283 * a system transliterator or a user transliterator or class. 1284 * 1285 * @param ID the ID of the transliterator or class 1286 * @see #registerInstance 1287 1288 */ 1289 void U_EXPORT2 Transliterator::unregister(const UnicodeString& ID) { 1290 Mutex lock(®istryMutex); 1291 UErrorCode ec = U_ZERO_ERROR; 1292 if (HAVE_REGISTRY(ec)) { 1293 registry->remove(ID); 1294 } 1295 } 1296 1297 /** 1298 * == OBSOLETE - remove in ICU 3.4 == 1299 * Return the number of IDs currently registered with the system. 1300 * To retrieve the actual IDs, call getAvailableID(i) with 1301 * i from 0 to countAvailableIDs() - 1. 1302 */ 1303 int32_t U_EXPORT2 Transliterator::countAvailableIDs(void) { 1304 int32_t retVal = 0; 1305 Mutex lock(®istryMutex); 1306 UErrorCode ec = U_ZERO_ERROR; 1307 if (HAVE_REGISTRY(ec)) { 1308 retVal = registry->countAvailableIDs(); 1309 } 1310 return retVal; 1311 } 1312 1313 /** 1314 * == OBSOLETE - remove in ICU 3.4 == 1315 * Return the index-th available ID. index must be between 0 1316 * and countAvailableIDs() - 1, inclusive. If index is out of 1317 * range, the result of getAvailableID(0) is returned. 1318 */ 1319 const UnicodeString& U_EXPORT2 Transliterator::getAvailableID(int32_t index) { 1320 const UnicodeString* result = NULL; 1321 umtx_lock(®istryMutex); 1322 UErrorCode ec = U_ZERO_ERROR; 1323 if (HAVE_REGISTRY(ec)) { 1324 result = ®istry->getAvailableID(index); 1325 } 1326 umtx_unlock(®istryMutex); 1327 U_ASSERT(result != NULL); // fail if no registry 1328 return *result; 1329 } 1330 1331 StringEnumeration* U_EXPORT2 Transliterator::getAvailableIDs(UErrorCode& ec) { 1332 if (U_FAILURE(ec)) return NULL; 1333 StringEnumeration* result = NULL; 1334 umtx_lock(®istryMutex); 1335 if (HAVE_REGISTRY(ec)) { 1336 result = registry->getAvailableIDs(); 1337 } 1338 umtx_unlock(®istryMutex); 1339 if (result == NULL) { 1340 ec = U_INTERNAL_TRANSLITERATOR_ERROR; 1341 } 1342 return result; 1343 } 1344 1345 int32_t U_EXPORT2 Transliterator::countAvailableSources(void) { 1346 Mutex lock(®istryMutex); 1347 UErrorCode ec = U_ZERO_ERROR; 1348 return HAVE_REGISTRY(ec) ? _countAvailableSources() : 0; 1349 } 1350 1351 UnicodeString& U_EXPORT2 Transliterator::getAvailableSource(int32_t index, 1352 UnicodeString& result) { 1353 Mutex lock(®istryMutex); 1354 UErrorCode ec = U_ZERO_ERROR; 1355 if (HAVE_REGISTRY(ec)) { 1356 _getAvailableSource(index, result); 1357 } 1358 return result; 1359 } 1360 1361 int32_t U_EXPORT2 Transliterator::countAvailableTargets(const UnicodeString& source) { 1362 Mutex lock(®istryMutex); 1363 UErrorCode ec = U_ZERO_ERROR; 1364 return HAVE_REGISTRY(ec) ? _countAvailableTargets(source) : 0; 1365 } 1366 1367 UnicodeString& U_EXPORT2 Transliterator::getAvailableTarget(int32_t index, 1368 const UnicodeString& source, 1369 UnicodeString& result) { 1370 Mutex lock(®istryMutex); 1371 UErrorCode ec = U_ZERO_ERROR; 1372 if (HAVE_REGISTRY(ec)) { 1373 _getAvailableTarget(index, source, result); 1374 } 1375 return result; 1376 } 1377 1378 int32_t U_EXPORT2 Transliterator::countAvailableVariants(const UnicodeString& source, 1379 const UnicodeString& target) { 1380 Mutex lock(®istryMutex); 1381 UErrorCode ec = U_ZERO_ERROR; 1382 return HAVE_REGISTRY(ec) ? _countAvailableVariants(source, target) : 0; 1383 } 1384 1385 UnicodeString& U_EXPORT2 Transliterator::getAvailableVariant(int32_t index, 1386 const UnicodeString& source, 1387 const UnicodeString& target, 1388 UnicodeString& result) { 1389 Mutex lock(®istryMutex); 1390 UErrorCode ec = U_ZERO_ERROR; 1391 if (HAVE_REGISTRY(ec)) { 1392 _getAvailableVariant(index, source, target, result); 1393 } 1394 return result; 1395 } 1396 1397 int32_t Transliterator::_countAvailableSources(void) { 1398 return registry->countAvailableSources(); 1399 } 1400 1401 UnicodeString& Transliterator::_getAvailableSource(int32_t index, 1402 UnicodeString& result) { 1403 return registry->getAvailableSource(index, result); 1404 } 1405 1406 int32_t Transliterator::_countAvailableTargets(const UnicodeString& source) { 1407 return registry->countAvailableTargets(source); 1408 } 1409 1410 UnicodeString& Transliterator::_getAvailableTarget(int32_t index, 1411 const UnicodeString& source, 1412 UnicodeString& result) { 1413 return registry->getAvailableTarget(index, source, result); 1414 } 1415 1416 int32_t Transliterator::_countAvailableVariants(const UnicodeString& source, 1417 const UnicodeString& target) { 1418 return registry->countAvailableVariants(source, target); 1419 } 1420 1421 UnicodeString& Transliterator::_getAvailableVariant(int32_t index, 1422 const UnicodeString& source, 1423 const UnicodeString& target, 1424 UnicodeString& result) { 1425 return registry->getAvailableVariant(index, source, target, result); 1426 } 1427 1428 #ifdef U_USE_DEPRECATED_TRANSLITERATOR_API 1429 1430 /** 1431 * Method for subclasses to use to obtain a character in the given 1432 * string, with filtering. 1433 * @deprecated the new architecture provides filtering at the top 1434 * level. This method will be removed Dec 31 2001. 1435 */ 1436 UChar Transliterator::filteredCharAt(const Replaceable& text, int32_t i) const { 1437 UChar c; 1438 const UnicodeFilter* localFilter = getFilter(); 1439 return (localFilter == 0) ? text.charAt(i) : 1440 (localFilter->contains(c = text.charAt(i)) ? c : (UChar)0xFFFE); 1441 } 1442 1443 #endif 1444 1445 /** 1446 * If the registry is initialized, return TRUE. If not, initialize it 1447 * and return TRUE. If the registry cannot be initialized, return 1448 * FALSE (rare). 1449 * 1450 * IMPORTANT: Upon entry, registryMutex must be LOCKED. The entire 1451 * initialization is done with the lock held. There is NO REASON to 1452 * unlock, since no other thread that is waiting on the registryMutex 1453 * cannot itself proceed until the registry is initialized. 1454 */ 1455 UBool Transliterator::initializeRegistry(UErrorCode &status) { 1456 if (registry != 0) { 1457 return TRUE; 1458 } 1459 1460 registry = new TransliteratorRegistry(status); 1461 if (registry == 0 || U_FAILURE(status)) { 1462 delete registry; 1463 registry = 0; 1464 return FALSE; // can't create registry, no recovery 1465 } 1466 1467 /* The following code parses the index table located in 1468 * icu/data/translit/root.txt. The index is an n x 4 table 1469 * that follows this format: 1470 * <id>{ 1471 * file{ 1472 * resource{"<resource>"} 1473 * direction{"<direction>"} 1474 * } 1475 * } 1476 * <id>{ 1477 * internal{ 1478 * resource{"<resource>"} 1479 * direction{"<direction"} 1480 * } 1481 * } 1482 * <id>{ 1483 * alias{"<getInstanceArg"} 1484 * } 1485 * <id> is the ID of the system transliterator being defined. These 1486 * are public IDs enumerated by Transliterator.getAvailableIDs(), 1487 * unless the second field is "internal". 1488 * 1489 * <resource> is a ResourceReader resource name. Currently these refer 1490 * to file names under com/ibm/text/resources. This string is passed 1491 * directly to ResourceReader, together with <encoding>. 1492 * 1493 * <direction> is either "FORWARD" or "REVERSE". 1494 * 1495 * <getInstanceArg> is a string to be passed directly to 1496 * Transliterator.getInstance(). The returned Transliterator object 1497 * then has its ID changed to <id> and is returned. 1498 * 1499 * The extra blank field on "alias" lines is to make the array square. 1500 */ 1501 //static const char translit_index[] = "translit_index"; 1502 1503 UResourceBundle *bundle, *transIDs, *colBund; 1504 bundle = ures_open(U_ICUDATA_TRANSLIT, NULL/*open default locale*/, &status); 1505 transIDs = ures_getByKey(bundle, RB_RULE_BASED_IDS, 0, &status); 1506 1507 int32_t row, maxRows; 1508 if (U_SUCCESS(status)) { 1509 maxRows = ures_getSize(transIDs); 1510 for (row = 0; row < maxRows; row++) { 1511 colBund = ures_getByIndex(transIDs, row, 0, &status); 1512 if (U_SUCCESS(status)) { 1513 UnicodeString id(ures_getKey(colBund), -1, US_INV); 1514 UResourceBundle* res = ures_getNextResource(colBund, NULL, &status); 1515 const char* typeStr = ures_getKey(res); 1516 UChar type; 1517 u_charsToUChars(typeStr, &type, 1); 1518 1519 if (U_SUCCESS(status)) { 1520 int32_t len = 0; 1521 const UChar *resString; 1522 switch (type) { 1523 case 0x66: // 'f' 1524 case 0x69: // 'i' 1525 // 'file' or 'internal'; 1526 // row[2]=resource, row[3]=direction 1527 { 1528 1529 resString = ures_getStringByKey(res, "resource", &len, &status); 1530 UBool visible = (type == 0x0066 /*f*/); 1531 UTransDirection dir = 1532 (ures_getUnicodeStringByKey(res, "direction", &status).charAt(0) == 1533 0x0046 /*F*/) ? 1534 UTRANS_FORWARD : UTRANS_REVERSE; 1535 registry->put(id, UnicodeString(TRUE, resString, len), dir, TRUE, visible, status); 1536 } 1537 break; 1538 case 0x61: // 'a' 1539 // 'alias'; row[2]=createInstance argument 1540 resString = ures_getString(res, &len, &status); 1541 registry->put(id, UnicodeString(TRUE, resString, len), TRUE, TRUE, status); 1542 break; 1543 } 1544 } 1545 ures_close(res); 1546 } 1547 ures_close(colBund); 1548 } 1549 } 1550 1551 ures_close(transIDs); 1552 ures_close(bundle); 1553 1554 // Manually add prototypes that the system knows about to the 1555 // cache. This is how new non-rule-based transliterators are 1556 // added to the system. 1557 1558 // This is to allow for null pointer check 1559 NullTransliterator* tempNullTranslit = new NullTransliterator(); 1560 LowercaseTransliterator* tempLowercaseTranslit = new LowercaseTransliterator(); 1561 UppercaseTransliterator* tempUppercaseTranslit = new UppercaseTransliterator(); 1562 TitlecaseTransliterator* tempTitlecaseTranslit = new TitlecaseTransliterator(); 1563 UnicodeNameTransliterator* tempUnicodeTranslit = new UnicodeNameTransliterator(); 1564 NameUnicodeTransliterator* tempNameUnicodeTranslit = new NameUnicodeTransliterator(); 1565 #if !UCONFIG_NO_BREAK_ITERATION 1566 // TODO: could or should these transliterators be referenced polymorphically once constructed? 1567 BreakTransliterator* tempBreakTranslit = new BreakTransliterator(); 1568 #endif 1569 // Check for null pointers 1570 if (tempNullTranslit == NULL || tempLowercaseTranslit == NULL || tempUppercaseTranslit == NULL || 1571 tempTitlecaseTranslit == NULL || tempUnicodeTranslit == NULL || 1572 #if !UCONFIG_NO_BREAK_ITERATION 1573 tempBreakTranslit == NULL || 1574 #endif 1575 tempNameUnicodeTranslit == NULL ) 1576 { 1577 delete tempNullTranslit; 1578 delete tempLowercaseTranslit; 1579 delete tempUppercaseTranslit; 1580 delete tempTitlecaseTranslit; 1581 delete tempUnicodeTranslit; 1582 delete tempNameUnicodeTranslit; 1583 #if !UCONFIG_NO_BREAK_ITERATION 1584 delete tempBreakTranslit; 1585 #endif 1586 // Since there was an error, remove registry 1587 delete registry; 1588 registry = NULL; 1589 1590 status = U_MEMORY_ALLOCATION_ERROR; 1591 return 0; 1592 } 1593 1594 registry->put(tempNullTranslit, TRUE, status); 1595 registry->put(tempLowercaseTranslit, TRUE, status); 1596 registry->put(tempUppercaseTranslit, TRUE, status); 1597 registry->put(tempTitlecaseTranslit, TRUE, status); 1598 registry->put(tempUnicodeTranslit, TRUE, status); 1599 registry->put(tempNameUnicodeTranslit, TRUE, status); 1600 #if !UCONFIG_NO_BREAK_ITERATION 1601 registry->put(tempBreakTranslit, FALSE, status); // FALSE means invisible. 1602 #endif 1603 1604 RemoveTransliterator::registerIDs(); // Must be within mutex 1605 EscapeTransliterator::registerIDs(); 1606 UnescapeTransliterator::registerIDs(); 1607 NormalizationTransliterator::registerIDs(); 1608 AnyTransliterator::registerIDs(); 1609 1610 _registerSpecialInverse(UNICODE_STRING_SIMPLE("Null"), 1611 UNICODE_STRING_SIMPLE("Null"), FALSE); 1612 _registerSpecialInverse(UNICODE_STRING_SIMPLE("Upper"), 1613 UNICODE_STRING_SIMPLE("Lower"), TRUE); 1614 _registerSpecialInverse(UNICODE_STRING_SIMPLE("Title"), 1615 UNICODE_STRING_SIMPLE("Lower"), FALSE); 1616 1617 ucln_i18n_registerCleanup(UCLN_I18N_TRANSLITERATOR, utrans_transliterator_cleanup); 1618 1619 return TRUE; 1620 } 1621 1622 U_NAMESPACE_END 1623 1624 // Defined in ucln_in.h: 1625 1626 /** 1627 * Release all static memory held by transliterator. This will 1628 * necessarily invalidate any rule-based transliterators held by the 1629 * user, because RBTs hold pointers to common data objects. 1630 */ 1631 U_CFUNC UBool utrans_transliterator_cleanup(void) { 1632 U_NAMESPACE_USE 1633 TransliteratorIDParser::cleanup(); 1634 if (registry) { 1635 delete registry; 1636 registry = NULL; 1637 } 1638 umtx_destroy(®istryMutex); 1639 return TRUE; 1640 } 1641 1642 #endif /* #if !UCONFIG_NO_TRANSLITERATION */ 1643 1644 //eof 1645