Home | History | Annotate | Download | only in vm
      1 /*
      2  * Copyright (C) 2008 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 /*
     18  * Android's method call profiling goodies.
     19  */
     20 #include "Dalvik.h"
     21 #include <interp/InterpDefs.h>
     22 
     23 #include <stdlib.h>
     24 #include <stddef.h>
     25 #include <string.h>
     26 #include <sys/time.h>
     27 #include <time.h>
     28 #include <sys/mman.h>
     29 #include <sched.h>
     30 #include <errno.h>
     31 #include <fcntl.h>
     32 
     33 #include <cutils/open_memstream.h>
     34 
     35 #ifdef HAVE_ANDROID_OS
     36 # define UPDATE_MAGIC_PAGE      1
     37 #endif
     38 
     39 /*
     40  * File format:
     41  *  header
     42  *  record 0
     43  *  record 1
     44  *  ...
     45  *
     46  * Header format:
     47  *  u4  magic ('SLOW')
     48  *  u2  version
     49  *  u2  offset to data
     50  *  u8  start date/time in usec
     51  *  u2  record size in bytes (version >= 2 only)
     52  *  ... padding to 32 bytes
     53  *
     54  * Record format v1:
     55  *  u1  thread ID
     56  *  u4  method ID | method action
     57  *  u4  time delta since start, in usec
     58  *
     59  * Record format v2:
     60  *  u2  thread ID
     61  *  u4  method ID | method action
     62  *  u4  time delta since start, in usec
     63  *
     64  * Record format v3:
     65  *  u2  thread ID
     66  *  u4  method ID | method action
     67  *  u4  time delta since start, in usec
     68  *  u4  wall time since start, in usec (when clock == "dual" only)
     69  *
     70  * 32 bits of microseconds is 70 minutes.
     71  *
     72  * All values are stored in little-endian order.
     73  */
     74 #define TRACE_REC_SIZE_SINGLE_CLOCK  10 // using v2
     75 #define TRACE_REC_SIZE_DUAL_CLOCK    14 // using v3 with two timestamps
     76 #define TRACE_MAGIC         0x574f4c53
     77 #define TRACE_HEADER_LEN    32
     78 
     79 #define FILL_PATTERN        0xeeeeeeee
     80 
     81 
     82 /*
     83  * Returns true if the thread CPU clock should be used.
     84  */
     85 static inline bool useThreadCpuClock() {
     86 #if defined(HAVE_POSIX_CLOCKS)
     87     return gDvm.profilerClockSource != kProfilerClockSourceWall;
     88 #else
     89     return false;
     90 #endif
     91 }
     92 
     93 /*
     94  * Returns true if the wall clock should be used.
     95  */
     96 static inline bool useWallClock() {
     97 #if defined(HAVE_POSIX_CLOCKS)
     98     return gDvm.profilerClockSource != kProfilerClockSourceThreadCpu;
     99 #else
    100     return true;
    101 #endif
    102 }
    103 
    104 /*
    105  * Get the wall-clock date/time, in usec.
    106  */
    107 static inline u8 getWallTimeInUsec()
    108 {
    109     struct timeval tv;
    110 
    111     gettimeofday(&tv, NULL);
    112     return tv.tv_sec * 1000000LL + tv.tv_usec;
    113 }
    114 
    115 #if defined(HAVE_POSIX_CLOCKS)
    116 /*
    117  * Get the thread-cpu time, in usec.
    118  * We use this clock when we can because it enables us to track the time that
    119  * a thread spends running and not blocked.
    120  */
    121 static inline u8 getThreadCpuTimeInUsec()
    122 {
    123     struct timespec tm;
    124 
    125     clock_gettime(CLOCK_THREAD_CPUTIME_ID, &tm);
    126     if (!(tm.tv_nsec >= 0 && tm.tv_nsec < 1*1000*1000*1000)) {
    127         LOGE("bad nsec: %ld", tm.tv_nsec);
    128         dvmAbort();
    129     }
    130     return tm.tv_sec * 1000000LL + tm.tv_nsec / 1000;
    131 }
    132 #endif
    133 
    134 /*
    135  * Get the clock used for stopwatch-like timing measurements on a single thread.
    136  */
    137 static inline u8 getStopwatchClock()
    138 {
    139 #if defined(HAVE_POSIX_CLOCKS)
    140     return getThreadCpuTimeInUsec();
    141 #else
    142     return getWallTimeInUsec();
    143 #endif
    144 }
    145 
    146 /*
    147  * Write little-endian data.
    148  */
    149 static inline void storeShortLE(u1* buf, u2 val)
    150 {
    151     *buf++ = (u1) val;
    152     *buf++ = (u1) (val >> 8);
    153 }
    154 static inline void storeIntLE(u1* buf, u4 val)
    155 {
    156     *buf++ = (u1) val;
    157     *buf++ = (u1) (val >> 8);
    158     *buf++ = (u1) (val >> 16);
    159     *buf++ = (u1) (val >> 24);
    160 }
    161 static inline void storeLongLE(u1* buf, u8 val)
    162 {
    163     *buf++ = (u1) val;
    164     *buf++ = (u1) (val >> 8);
    165     *buf++ = (u1) (val >> 16);
    166     *buf++ = (u1) (val >> 24);
    167     *buf++ = (u1) (val >> 32);
    168     *buf++ = (u1) (val >> 40);
    169     *buf++ = (u1) (val >> 48);
    170     *buf++ = (u1) (val >> 56);
    171 }
    172 
    173 /*
    174  * Boot-time init.
    175  */
    176 bool dvmProfilingStartup()
    177 {
    178     /*
    179      * Initialize "dmtrace" method profiling.
    180      */
    181     memset(&gDvm.methodTrace, 0, sizeof(gDvm.methodTrace));
    182     dvmInitMutex(&gDvm.methodTrace.startStopLock);
    183     pthread_cond_init(&gDvm.methodTrace.threadExitCond, NULL);
    184 
    185     assert(!dvmCheckException(dvmThreadSelf()));
    186 
    187     /*
    188      * Allocate storage for instruction counters.
    189      */
    190     gDvm.executedInstrCounts = (int*) malloc(kNumPackedOpcodes * sizeof(int));
    191     if (gDvm.executedInstrCounts == NULL)
    192         return false;
    193     memset(gDvm.executedInstrCounts, 0, kNumPackedOpcodes * sizeof(int));
    194 
    195 #ifdef UPDATE_MAGIC_PAGE
    196     /*
    197      * If we're running on the emulator, there's a magic page into which
    198      * we can put interpreted method information.  This allows interpreted
    199      * methods to show up in the emulator's code traces.
    200      *
    201      * We could key this off of the "ro.kernel.qemu" property, but there's
    202      * no real harm in doing this on a real device.
    203      */
    204     int fd = open("/dev/qemu_trace", O_RDWR);
    205     if (fd < 0) {
    206         LOGV("Unable to open /dev/qemu_trace");
    207     } else {
    208         gDvm.emulatorTracePage = mmap(0, SYSTEM_PAGE_SIZE, PROT_READ|PROT_WRITE,
    209                                       MAP_SHARED, fd, 0);
    210         close(fd);
    211         if (gDvm.emulatorTracePage == MAP_FAILED) {
    212             LOGE("Unable to mmap /dev/qemu_trace");
    213             gDvm.emulatorTracePage = NULL;
    214         } else {
    215             *(u4*) gDvm.emulatorTracePage = 0;
    216         }
    217     }
    218 #else
    219     assert(gDvm.emulatorTracePage == NULL);
    220 #endif
    221 
    222     return true;
    223 }
    224 
    225 /*
    226  * Free up profiling resources.
    227  */
    228 void dvmProfilingShutdown()
    229 {
    230 #ifdef UPDATE_MAGIC_PAGE
    231     if (gDvm.emulatorTracePage != NULL)
    232         munmap(gDvm.emulatorTracePage, SYSTEM_PAGE_SIZE);
    233 #endif
    234     free(gDvm.executedInstrCounts);
    235 }
    236 
    237 /*
    238  * Update the set of active profilers
    239  */
    240 static void updateActiveProfilers(ExecutionSubModes newMode, bool enable)
    241 {
    242     int oldValue, newValue;
    243 
    244     // Update global count
    245     do {
    246         oldValue = gDvm.activeProfilers;
    247         newValue = oldValue + (enable ? 1 : -1);
    248         if (newValue < 0) {
    249             LOGE("Can't have %d active profilers", newValue);
    250             dvmAbort();
    251         }
    252     } while (android_atomic_release_cas(oldValue, newValue,
    253             &gDvm.activeProfilers) != 0);
    254 
    255     // Tell the threads
    256     if (enable) {
    257         dvmEnableAllSubMode(newMode);
    258     } else {
    259         dvmDisableAllSubMode(newMode);
    260     }
    261 
    262 #if defined(WITH_JIT)
    263     dvmCompilerUpdateGlobalState();
    264 #endif
    265 
    266     LOGD("+++ active profiler count now %d", newValue);
    267 }
    268 
    269 
    270 /*
    271  * Reset the "cpuClockBase" field in all threads.
    272  */
    273 static void resetCpuClockBase()
    274 {
    275     Thread* thread;
    276 
    277     dvmLockThreadList(NULL);
    278     for (thread = gDvm.threadList; thread != NULL; thread = thread->next) {
    279         thread->cpuClockBaseSet = false;
    280         thread->cpuClockBase = 0;
    281     }
    282     dvmUnlockThreadList();
    283 }
    284 
    285 /*
    286  * Dump the thread list to the specified file.
    287  */
    288 static void dumpThreadList(FILE* fp) {
    289     dvmLockThreadList(NULL);
    290     for (Thread* thread = gDvm.threadList; thread != NULL; thread = thread->next) {
    291         std::string threadName(dvmGetThreadName(thread));
    292         fprintf(fp, "%d\t%s\n", thread->threadId, threadName.c_str());
    293     }
    294     dvmUnlockThreadList();
    295 }
    296 
    297 /*
    298  * This is a dvmHashForeach callback.
    299  */
    300 static int dumpMarkedMethods(void* vclazz, void* vfp)
    301 {
    302     DexStringCache stringCache;
    303     ClassObject* clazz = (ClassObject*) vclazz;
    304     FILE* fp = (FILE*) vfp;
    305     Method* meth;
    306     char* name;
    307     int i;
    308 
    309     dexStringCacheInit(&stringCache);
    310 
    311     for (i = 0; i < clazz->virtualMethodCount; i++) {
    312         meth = &clazz->virtualMethods[i];
    313         if (meth->inProfile) {
    314             name = dvmDescriptorToName(meth->clazz->descriptor);
    315             fprintf(fp, "0x%08x\t%s\t%s\t%s\t%s\t%d\n", (int) meth,
    316                 name, meth->name,
    317                 dexProtoGetMethodDescriptor(&meth->prototype, &stringCache),
    318                 dvmGetMethodSourceFile(meth), dvmLineNumFromPC(meth, 0));
    319             meth->inProfile = false;
    320             free(name);
    321         }
    322     }
    323 
    324     for (i = 0; i < clazz->directMethodCount; i++) {
    325         meth = &clazz->directMethods[i];
    326         if (meth->inProfile) {
    327             name = dvmDescriptorToName(meth->clazz->descriptor);
    328             fprintf(fp, "0x%08x\t%s\t%s\t%s\t%s\t%d\n", (int) meth,
    329                 name, meth->name,
    330                 dexProtoGetMethodDescriptor(&meth->prototype, &stringCache),
    331                 dvmGetMethodSourceFile(meth), dvmLineNumFromPC(meth, 0));
    332             meth->inProfile = false;
    333             free(name);
    334         }
    335     }
    336 
    337     dexStringCacheRelease(&stringCache);
    338 
    339     return 0;
    340 }
    341 
    342 /*
    343  * Dump the list of "marked" methods to the specified file.
    344  */
    345 static void dumpMethodList(FILE* fp)
    346 {
    347     dvmHashTableLock(gDvm.loadedClasses);
    348     dvmHashForeach(gDvm.loadedClasses, dumpMarkedMethods, (void*) fp);
    349     dvmHashTableUnlock(gDvm.loadedClasses);
    350 }
    351 
    352 /*
    353  * Start method tracing.  Method tracing is global to the VM (i.e. we
    354  * trace all threads).
    355  *
    356  * This opens the output file (if an already open fd has not been supplied,
    357  * and we're not going direct to DDMS) and allocates the data buffer.  This
    358  * takes ownership of the file descriptor, closing it on completion.
    359  *
    360  * On failure, we throw an exception and return.
    361  */
    362 void dvmMethodTraceStart(const char* traceFileName, int traceFd, int bufferSize,
    363     int flags, bool directToDdms)
    364 {
    365     MethodTraceState* state = &gDvm.methodTrace;
    366 
    367     assert(bufferSize > 0);
    368 
    369     dvmLockMutex(&state->startStopLock);
    370     while (state->traceEnabled != 0) {
    371         LOGI("TRACE start requested, but already in progress; stopping");
    372         dvmUnlockMutex(&state->startStopLock);
    373         dvmMethodTraceStop();
    374         dvmLockMutex(&state->startStopLock);
    375     }
    376     LOGI("TRACE STARTED: '%s' %dKB", traceFileName, bufferSize / 1024);
    377 
    378     /*
    379      * Allocate storage and open files.
    380      *
    381      * We don't need to initialize the buffer, but doing so might remove
    382      * some fault overhead if the pages aren't mapped until touched.
    383      */
    384     state->buf = (u1*) malloc(bufferSize);
    385     if (state->buf == NULL) {
    386         dvmThrowInternalError("buffer alloc failed");
    387         goto fail;
    388     }
    389     if (!directToDdms) {
    390         if (traceFd < 0) {
    391             state->traceFile = fopen(traceFileName, "w");
    392         } else {
    393             state->traceFile = fdopen(traceFd, "w");
    394         }
    395         if (state->traceFile == NULL) {
    396             int err = errno;
    397             LOGE("Unable to open trace file '%s': %s",
    398                 traceFileName, strerror(err));
    399             dvmThrowExceptionFmt(gDvm.exRuntimeException,
    400                 "Unable to open trace file '%s': %s",
    401                 traceFileName, strerror(err));
    402             goto fail;
    403         }
    404     }
    405     traceFd = -1;
    406     memset(state->buf, (char)FILL_PATTERN, bufferSize);
    407 
    408     state->directToDdms = directToDdms;
    409     state->bufferSize = bufferSize;
    410     state->overflow = false;
    411 
    412     /*
    413      * Enable alloc counts if we've been requested to do so.
    414      */
    415     state->flags = flags;
    416     if ((flags & TRACE_ALLOC_COUNTS) != 0)
    417         dvmStartAllocCounting();
    418 
    419     /* reset our notion of the start time for all CPU threads */
    420     resetCpuClockBase();
    421 
    422     state->startWhen = getWallTimeInUsec();
    423 
    424     if (useThreadCpuClock() && useWallClock()) {
    425         state->traceVersion = 3;
    426         state->recordSize = TRACE_REC_SIZE_DUAL_CLOCK;
    427     } else {
    428         state->traceVersion = 2;
    429         state->recordSize = TRACE_REC_SIZE_SINGLE_CLOCK;
    430     }
    431 
    432     /*
    433      * Output the header.
    434      */
    435     memset(state->buf, 0, TRACE_HEADER_LEN);
    436     storeIntLE(state->buf + 0, TRACE_MAGIC);
    437     storeShortLE(state->buf + 4, state->traceVersion);
    438     storeShortLE(state->buf + 6, TRACE_HEADER_LEN);
    439     storeLongLE(state->buf + 8, state->startWhen);
    440     if (state->traceVersion >= 3) {
    441         storeShortLE(state->buf + 16, state->recordSize);
    442     }
    443     state->curOffset = TRACE_HEADER_LEN;
    444 
    445     /*
    446      * Set the "enabled" flag.  Once we do this, threads will wait to be
    447      * signaled before exiting, so we have to make sure we wake them up.
    448      */
    449     android_atomic_release_store(true, &state->traceEnabled);
    450 
    451     /*
    452      * ENHANCEMENT: To trace just a single thread, modify the
    453      * following to take a Thread* argument, and set the appropriate
    454      * interpBreak flags only on the target thread.
    455      */
    456     updateActiveProfilers(kSubModeMethodTrace, true);
    457 
    458     dvmUnlockMutex(&state->startStopLock);
    459     return;
    460 
    461 fail:
    462     if (state->traceFile != NULL) {
    463         fclose(state->traceFile);
    464         state->traceFile = NULL;
    465     }
    466     if (state->buf != NULL) {
    467         free(state->buf);
    468         state->buf = NULL;
    469     }
    470     if (traceFd >= 0)
    471         close(traceFd);
    472     dvmUnlockMutex(&state->startStopLock);
    473 }
    474 
    475 /*
    476  * Run through the data buffer and pull out the methods that were visited.
    477  * Set a mark so that we know which ones to output.
    478  */
    479 static void markTouchedMethods(int endOffset)
    480 {
    481     u1* ptr = gDvm.methodTrace.buf + TRACE_HEADER_LEN;
    482     u1* end = gDvm.methodTrace.buf + endOffset;
    483     size_t recordSize = gDvm.methodTrace.recordSize;
    484     unsigned int methodVal;
    485     Method* method;
    486 
    487     while (ptr < end) {
    488         methodVal = ptr[2] | (ptr[3] << 8) | (ptr[4] << 16)
    489                     | (ptr[5] << 24);
    490         method = (Method*) METHOD_ID(methodVal);
    491 
    492         method->inProfile = true;
    493         ptr += recordSize;
    494     }
    495 }
    496 
    497 /*
    498  * Exercises the clocks in the same way they will be during profiling.
    499  */
    500 static inline void measureClockOverhead()
    501 {
    502 #if defined(HAVE_POSIX_CLOCKS)
    503     if (useThreadCpuClock()) {
    504         getThreadCpuTimeInUsec();
    505     }
    506 #endif
    507     if (useWallClock()) {
    508         getWallTimeInUsec();
    509     }
    510 }
    511 
    512 /*
    513  * Compute the amount of overhead in a clock call, in nsec.
    514  *
    515  * This value is going to vary depending on what else is going on in the
    516  * system.  When examined across several runs a pattern should emerge.
    517  */
    518 static u4 getClockOverhead()
    519 {
    520     u8 calStart, calElapsed;
    521     int i;
    522 
    523     calStart = getStopwatchClock();
    524     for (i = 1000 * 4; i > 0; i--) {
    525         measureClockOverhead();
    526         measureClockOverhead();
    527         measureClockOverhead();
    528         measureClockOverhead();
    529         measureClockOverhead();
    530         measureClockOverhead();
    531         measureClockOverhead();
    532         measureClockOverhead();
    533     }
    534 
    535     calElapsed = getStopwatchClock() - calStart;
    536     return (int) (calElapsed / (8*4));
    537 }
    538 
    539 /*
    540  * Returns "true" if method tracing is currently active.
    541  */
    542 bool dvmIsMethodTraceActive()
    543 {
    544     const MethodTraceState* state = &gDvm.methodTrace;
    545     return state->traceEnabled;
    546 }
    547 
    548 /*
    549  * Stop method tracing.  We write the buffer to disk and generate a key
    550  * file so we can interpret it.
    551  */
    552 void dvmMethodTraceStop()
    553 {
    554     MethodTraceState* state = &gDvm.methodTrace;
    555     u8 elapsed;
    556 
    557     /*
    558      * We need this to prevent somebody from starting a new trace while
    559      * we're in the process of stopping the old.
    560      */
    561     dvmLockMutex(&state->startStopLock);
    562 
    563     if (!state->traceEnabled) {
    564         /* somebody already stopped it, or it was never started */
    565         LOGD("TRACE stop requested, but not running");
    566         dvmUnlockMutex(&state->startStopLock);
    567         return;
    568     } else {
    569         updateActiveProfilers(kSubModeMethodTrace, false);
    570     }
    571 
    572     /* compute elapsed time */
    573     elapsed = getWallTimeInUsec() - state->startWhen;
    574 
    575     /*
    576      * Globally disable it, and allow other threads to notice.  We want
    577      * to stall here for at least as long as dvmMethodTraceAdd needs
    578      * to finish.  There's no real risk though -- it will take a while to
    579      * write the data to disk, and we don't clear the buffer pointer until
    580      * after that completes.
    581      */
    582     state->traceEnabled = false;
    583     ANDROID_MEMBAR_FULL();
    584     sched_yield();
    585     usleep(250 * 1000);
    586 
    587     if ((state->flags & TRACE_ALLOC_COUNTS) != 0)
    588         dvmStopAllocCounting();
    589 
    590     /*
    591      * It's possible under some circumstances for a thread to have advanced
    592      * the data pointer but not written the method value.  It's possible
    593      * (though less likely) for the data pointer to be advanced, or partial
    594      * data written, while we're doing work here.
    595      *
    596      * To avoid seeing partially-written data, we grab state->curOffset here,
    597      * and use our local copy from here on.  We then scan through what's
    598      * already written.  If we see the fill pattern in what should be the
    599      * method pointer, we cut things off early.  (If we don't, we'll fail
    600      * when we dereference the pointer.)
    601      *
    602      * There's a theoretical possibility of interrupting another thread
    603      * after it has partially written the method pointer, in which case
    604      * we'll likely crash when we dereference it.  The possibility of
    605      * this actually happening should be at or near zero.  Fixing it
    606      * completely could be done by writing the thread number last and
    607      * using a sentinel value to indicate a partially-written record,
    608      * but that requires memory barriers.
    609      */
    610     int finalCurOffset = state->curOffset;
    611 
    612     size_t recordSize = state->recordSize;
    613     if (finalCurOffset > TRACE_HEADER_LEN) {
    614         u4 fillVal = METHOD_ID(FILL_PATTERN);
    615         u1* scanPtr = state->buf + TRACE_HEADER_LEN;
    616 
    617         while (scanPtr < state->buf + finalCurOffset) {
    618             u4 methodVal = scanPtr[2] | (scanPtr[3] << 8) | (scanPtr[4] << 16)
    619                         | (scanPtr[5] << 24);
    620             if (METHOD_ID(methodVal) == fillVal) {
    621                 u1* scanBase = state->buf + TRACE_HEADER_LEN;
    622                 LOGW("Found unfilled record at %d (of %d)",
    623                     (scanPtr - scanBase) / recordSize,
    624                     (finalCurOffset - TRACE_HEADER_LEN) / recordSize);
    625                 finalCurOffset = scanPtr - state->buf;
    626                 break;
    627             }
    628 
    629             scanPtr += recordSize;
    630         }
    631     }
    632 
    633     LOGI("TRACE STOPPED%s: writing %d records",
    634         state->overflow ? " (NOTE: overflowed buffer)" : "",
    635         (finalCurOffset - TRACE_HEADER_LEN) / recordSize);
    636     if (gDvm.debuggerActive) {
    637         LOGW("WARNING: a debugger is active; method-tracing results "
    638              "will be skewed");
    639     }
    640 
    641     /*
    642      * Do a quick calibration test to see how expensive our clock call is.
    643      */
    644     u4 clockNsec = getClockOverhead();
    645 
    646     markTouchedMethods(finalCurOffset);
    647 
    648     char* memStreamPtr;
    649     size_t memStreamSize;
    650     if (state->directToDdms) {
    651         assert(state->traceFile == NULL);
    652         state->traceFile = open_memstream(&memStreamPtr, &memStreamSize);
    653         if (state->traceFile == NULL) {
    654             /* not expected */
    655             LOGE("Unable to open memstream");
    656             dvmAbort();
    657         }
    658     }
    659     assert(state->traceFile != NULL);
    660 
    661     fprintf(state->traceFile, "%cversion\n", TOKEN_CHAR);
    662     fprintf(state->traceFile, "%d\n", state->traceVersion);
    663     fprintf(state->traceFile, "data-file-overflow=%s\n",
    664         state->overflow ? "true" : "false");
    665     if (useThreadCpuClock()) {
    666         if (useWallClock()) {
    667             fprintf(state->traceFile, "clock=dual\n");
    668         } else {
    669             fprintf(state->traceFile, "clock=thread-cpu\n");
    670         }
    671     } else {
    672         fprintf(state->traceFile, "clock=wall\n");
    673     }
    674     fprintf(state->traceFile, "elapsed-time-usec=%llu\n", elapsed);
    675     fprintf(state->traceFile, "num-method-calls=%d\n",
    676         (finalCurOffset - TRACE_HEADER_LEN) / state->recordSize);
    677     fprintf(state->traceFile, "clock-call-overhead-nsec=%d\n", clockNsec);
    678     fprintf(state->traceFile, "vm=dalvik\n");
    679     if ((state->flags & TRACE_ALLOC_COUNTS) != 0) {
    680         fprintf(state->traceFile, "alloc-count=%d\n",
    681             gDvm.allocProf.allocCount);
    682         fprintf(state->traceFile, "alloc-size=%d\n",
    683             gDvm.allocProf.allocSize);
    684         fprintf(state->traceFile, "gc-count=%d\n",
    685             gDvm.allocProf.gcCount);
    686     }
    687     fprintf(state->traceFile, "%cthreads\n", TOKEN_CHAR);
    688     dumpThreadList(state->traceFile);
    689     fprintf(state->traceFile, "%cmethods\n", TOKEN_CHAR);
    690     dumpMethodList(state->traceFile);
    691     fprintf(state->traceFile, "%cend\n", TOKEN_CHAR);
    692 
    693     if (state->directToDdms) {
    694         /*
    695          * Data is in two places: memStreamPtr and state->buf.  Send
    696          * the whole thing to DDMS, wrapped in an MPSE packet.
    697          */
    698         fflush(state->traceFile);
    699 
    700         struct iovec iov[2];
    701         iov[0].iov_base = memStreamPtr;
    702         iov[0].iov_len = memStreamSize;
    703         iov[1].iov_base = state->buf;
    704         iov[1].iov_len = finalCurOffset;
    705         dvmDbgDdmSendChunkV(CHUNK_TYPE("MPSE"), iov, 2);
    706     } else {
    707         /* append the profiling data */
    708         if (fwrite(state->buf, finalCurOffset, 1, state->traceFile) != 1) {
    709             int err = errno;
    710             LOGE("trace fwrite(%d) failed: %s",
    711                 finalCurOffset, strerror(err));
    712             dvmThrowExceptionFmt(gDvm.exRuntimeException,
    713                 "Trace data write failed: %s", strerror(err));
    714         }
    715     }
    716 
    717     /* done! */
    718     free(state->buf);
    719     state->buf = NULL;
    720     fclose(state->traceFile);
    721     state->traceFile = NULL;
    722 
    723     /* wake any threads that were waiting for profiling to complete */
    724     dvmBroadcastCond(&state->threadExitCond);
    725     dvmUnlockMutex(&state->startStopLock);
    726 }
    727 
    728 /*
    729  * We just did something with a method.  Emit a record.
    730  *
    731  * Multiple threads may be banging on this all at once.  We use atomic ops
    732  * rather than mutexes for speed.
    733  */
    734 void dvmMethodTraceAdd(Thread* self, const Method* method, int action)
    735 {
    736     MethodTraceState* state = &gDvm.methodTrace;
    737     u4 methodVal;
    738     int oldOffset, newOffset;
    739     u1* ptr;
    740 
    741     assert(method != NULL);
    742 
    743 #if defined(HAVE_POSIX_CLOCKS)
    744     /*
    745      * We can only access the per-thread CPU clock from within the
    746      * thread, so we have to initialize the base time on the first use.
    747      * (Looks like pthread_getcpuclockid(thread, &id) will do what we
    748      * want, but it doesn't appear to be defined on the device.)
    749      */
    750     if (!self->cpuClockBaseSet) {
    751         self->cpuClockBase = getThreadCpuTimeInUsec();
    752         self->cpuClockBaseSet = true;
    753         //LOGI("thread base id=%d 0x%llx",
    754         //    self->threadId, self->cpuClockBase);
    755     }
    756 #endif
    757 
    758     /*
    759      * Advance "curOffset" atomically.
    760      */
    761     do {
    762         oldOffset = state->curOffset;
    763         newOffset = oldOffset + state->recordSize;
    764         if (newOffset > state->bufferSize) {
    765             state->overflow = true;
    766             return;
    767         }
    768     } while (android_atomic_release_cas(oldOffset, newOffset,
    769             &state->curOffset) != 0);
    770 
    771     //assert(METHOD_ACTION((u4) method) == 0);
    772 
    773     methodVal = METHOD_COMBINE((u4) method, action);
    774 
    775     /*
    776      * Write data into "oldOffset".
    777      */
    778     ptr = state->buf + oldOffset;
    779     *ptr++ = (u1) self->threadId;
    780     *ptr++ = (u1) (self->threadId >> 8);
    781     *ptr++ = (u1) methodVal;
    782     *ptr++ = (u1) (methodVal >> 8);
    783     *ptr++ = (u1) (methodVal >> 16);
    784     *ptr++ = (u1) (methodVal >> 24);
    785 
    786 #if defined(HAVE_POSIX_CLOCKS)
    787     if (useThreadCpuClock()) {
    788         u4 cpuClockDiff = (u4) (getThreadCpuTimeInUsec() - self->cpuClockBase);
    789         *ptr++ = (u1) cpuClockDiff;
    790         *ptr++ = (u1) (cpuClockDiff >> 8);
    791         *ptr++ = (u1) (cpuClockDiff >> 16);
    792         *ptr++ = (u1) (cpuClockDiff >> 24);
    793     }
    794 #endif
    795 
    796     if (useWallClock()) {
    797         u4 wallClockDiff = (u4) (getWallTimeInUsec() - state->startWhen);
    798         *ptr++ = (u1) wallClockDiff;
    799         *ptr++ = (u1) (wallClockDiff >> 8);
    800         *ptr++ = (u1) (wallClockDiff >> 16);
    801         *ptr++ = (u1) (wallClockDiff >> 24);
    802     }
    803 }
    804 
    805 
    806 /*
    807  * Register the METHOD_TRACE_ENTER action for the fast interpreter and
    808  * JIT'ed code.
    809  */
    810 void dvmFastMethodTraceEnter(const Method* method, Thread* self)
    811 {
    812     if (self->interpBreak.ctl.subMode & kSubModeMethodTrace) {
    813         dvmMethodTraceAdd(self, method, METHOD_TRACE_ENTER);
    814     }
    815 }
    816 
    817 /*
    818  * Register the METHOD_TRACE_EXIT action for the fast interpreter and
    819  * JIT'ed code for methods. The about-to-return callee method can be
    820  * retrieved from self->interpSave.method.
    821  */
    822 void dvmFastMethodTraceExit(Thread* self)
    823 {
    824     if (self->interpBreak.ctl.subMode & kSubModeMethodTrace) {
    825         dvmMethodTraceAdd(self, self->interpSave.method,
    826                           METHOD_TRACE_EXIT);
    827     }
    828 }
    829 
    830 /*
    831  * Register the METHOD_TRACE_EXIT action for the fast interpreter and
    832  * JIT'ed code for JNI methods. The about-to-return JNI callee method is passed
    833  * in explicitly.  Also used for inline-execute.
    834  */
    835 void dvmFastNativeMethodTraceExit(const Method* method, Thread* self)
    836 {
    837     if (self->interpBreak.ctl.subMode & kSubModeMethodTrace) {
    838         dvmMethodTraceAdd(self, method, METHOD_TRACE_EXIT);
    839     }
    840 }
    841 
    842 /*
    843  * We just did something with a method.  Emit a record by setting a value
    844  * in a magic memory location.
    845  */
    846 void dvmEmitEmulatorTrace(const Method* method, int action)
    847 {
    848 #ifdef UPDATE_MAGIC_PAGE
    849     /*
    850      * We store the address of the Dalvik bytecodes to the memory-mapped
    851      * trace page for normal methods.  We also trace calls to native
    852      * functions by storing the address of the native function to the
    853      * trace page.
    854      * Abstract methods don't have any bytecodes, so we don't trace them.
    855      * (Abstract methods are never called, but in Dalvik they can be
    856      * because we do a "late trap" to a native method to generate the
    857      * abstract method exception.)
    858      */
    859     if (dvmIsAbstractMethod(method))
    860         return;
    861 
    862     u4* pMagic = (u4*) gDvm.emulatorTracePage;
    863     u4 addr;
    864 
    865     if (dvmIsNativeMethod(method)) {
    866         /*
    867          * The "action" parameter is one of:
    868          *   0 = ENTER
    869          *   1 = EXIT
    870          *   2 = UNROLL
    871          * To help the trace tools reconstruct the runtime stack containing
    872          * a mix of normal plus native methods, we add 4 to the action if this
    873          * is a native method.
    874          */
    875         action += 4;
    876 
    877         /*
    878          * Get the address of the native function.
    879          * This isn't the right address -- how do I get it?
    880          * Fortunately, the trace tools can get by without the address, but
    881          * it would be nice to fix this.
    882          */
    883          addr = (u4) method->nativeFunc;
    884     } else {
    885         /*
    886          * The dexlist output shows the &DexCode.insns offset value, which
    887          * is offset from the start of the base DEX header. Method.insns
    888          * is the absolute address, effectively offset from the start of
    889          * the optimized DEX header. We either need to return the
    890          * optimized DEX base file address offset by the right amount, or
    891          * take the "real" address and subtract off the size of the
    892          * optimized DEX header.
    893          *
    894          * Would be nice to factor this out at dexlist time, but we can't count
    895          * on having access to the correct optimized DEX file.
    896          */
    897         assert(method->insns != NULL);
    898         const DexOptHeader* pOptHdr = method->clazz->pDvmDex->pDexFile->pOptHeader;
    899         addr = (u4) method->insns - pOptHdr->dexOffset;
    900     }
    901 
    902     *(pMagic+action) = addr;
    903     LOGVV("Set %p = 0x%08x (%s.%s)",
    904         pMagic+action, addr, method->clazz->descriptor, method->name);
    905 #endif
    906 }
    907 
    908 /*
    909  * The GC calls this when it's about to start.  We add a marker to the
    910  * trace output so the tool can exclude the GC cost from the results.
    911  */
    912 void dvmMethodTraceGCBegin()
    913 {
    914     TRACE_METHOD_ENTER(dvmThreadSelf(), gDvm.methodTraceGcMethod);
    915 }
    916 void dvmMethodTraceGCEnd()
    917 {
    918     TRACE_METHOD_EXIT(dvmThreadSelf(), gDvm.methodTraceGcMethod);
    919 }
    920 
    921 /*
    922  * The class loader calls this when it's loading or initializing a class.
    923  */
    924 void dvmMethodTraceClassPrepBegin()
    925 {
    926     TRACE_METHOD_ENTER(dvmThreadSelf(), gDvm.methodTraceClassPrepMethod);
    927 }
    928 void dvmMethodTraceClassPrepEnd()
    929 {
    930     TRACE_METHOD_EXIT(dvmThreadSelf(), gDvm.methodTraceClassPrepMethod);
    931 }
    932 
    933 
    934 /*
    935  * Enable emulator trace info.
    936  */
    937 void dvmEmulatorTraceStart()
    938 {
    939     /* If we could not map the emulator trace page, then do not enable tracing */
    940     if (gDvm.emulatorTracePage == NULL)
    941         return;
    942 
    943     /* in theory we should make this an atomic inc; in practice not important */
    944     gDvm.emulatorTraceEnableCount++;
    945     if (gDvm.emulatorTraceEnableCount == 1)
    946         LOGD("--- emulator method traces enabled");
    947     updateActiveProfilers(kSubModeEmulatorTrace, true);
    948 }
    949 
    950 /*
    951  * Disable emulator trace info.
    952  */
    953 void dvmEmulatorTraceStop()
    954 {
    955     if (gDvm.emulatorTraceEnableCount == 0) {
    956         LOGE("ERROR: emulator tracing not enabled");
    957         return;
    958     }
    959     /* in theory we should make this an atomic inc; in practice not important */
    960     gDvm.emulatorTraceEnableCount--;
    961     if (gDvm.emulatorTraceEnableCount == 0)
    962         LOGD("--- emulator method traces disabled");
    963     updateActiveProfilers(kSubModeEmulatorTrace,
    964                           (gDvm.emulatorTraceEnableCount != 0));
    965 }
    966 
    967 
    968 /*
    969  * Start instruction counting.
    970  */
    971 void dvmStartInstructionCounting()
    972 {
    973     /* in theory we should make this an atomic inc; in practice not important */
    974     gDvm.instructionCountEnableCount++;
    975     updateActiveProfilers(kSubModeInstCounting, true);
    976 }
    977 
    978 /*
    979  * Stop instruction counting.
    980  */
    981 void dvmStopInstructionCounting()
    982 {
    983     if (gDvm.instructionCountEnableCount == 0) {
    984         LOGE("ERROR: instruction counting not enabled");
    985         dvmAbort();
    986     }
    987     gDvm.instructionCountEnableCount--;
    988     updateActiveProfilers(kSubModeInstCounting,
    989                           (gDvm.instructionCountEnableCount != 0));
    990 }
    991 
    992 
    993 /*
    994  * Start alloc counting.  Note this doesn't affect the "active profilers"
    995  * count, since the interpreter loop is not involved.
    996  */
    997 void dvmStartAllocCounting()
    998 {
    999     gDvm.allocProf.enabled = true;
   1000 }
   1001 
   1002 /*
   1003  * Stop alloc counting.
   1004  */
   1005 void dvmStopAllocCounting()
   1006 {
   1007     gDvm.allocProf.enabled = false;
   1008 }
   1009