Home | History | Annotate | Download | only in VMCore
      1 //===-- Instruction.cpp - Implement the Instruction class -----------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the Instruction class for the VMCore library.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "llvm/Instruction.h"
     15 #include "llvm/Type.h"
     16 #include "llvm/Instructions.h"
     17 #include "llvm/Constants.h"
     18 #include "llvm/Module.h"
     19 #include "llvm/Support/CallSite.h"
     20 #include "llvm/Support/LeakDetector.h"
     21 using namespace llvm;
     22 
     23 Instruction::Instruction(Type *ty, unsigned it, Use *Ops, unsigned NumOps,
     24                          Instruction *InsertBefore)
     25   : User(ty, Value::InstructionVal + it, Ops, NumOps), Parent(0) {
     26   // Make sure that we get added to a basicblock
     27   LeakDetector::addGarbageObject(this);
     28 
     29   // If requested, insert this instruction into a basic block...
     30   if (InsertBefore) {
     31     assert(InsertBefore->getParent() &&
     32            "Instruction to insert before is not in a basic block!");
     33     InsertBefore->getParent()->getInstList().insert(InsertBefore, this);
     34   }
     35 }
     36 
     37 Instruction::Instruction(Type *ty, unsigned it, Use *Ops, unsigned NumOps,
     38                          BasicBlock *InsertAtEnd)
     39   : User(ty, Value::InstructionVal + it, Ops, NumOps), Parent(0) {
     40   // Make sure that we get added to a basicblock
     41   LeakDetector::addGarbageObject(this);
     42 
     43   // append this instruction into the basic block
     44   assert(InsertAtEnd && "Basic block to append to may not be NULL!");
     45   InsertAtEnd->getInstList().push_back(this);
     46 }
     47 
     48 
     49 // Out of line virtual method, so the vtable, etc has a home.
     50 Instruction::~Instruction() {
     51   assert(Parent == 0 && "Instruction still linked in the program!");
     52   if (hasMetadataHashEntry())
     53     clearMetadataHashEntries();
     54 }
     55 
     56 
     57 void Instruction::setParent(BasicBlock *P) {
     58   if (getParent()) {
     59     if (!P) LeakDetector::addGarbageObject(this);
     60   } else {
     61     if (P) LeakDetector::removeGarbageObject(this);
     62   }
     63 
     64   Parent = P;
     65 }
     66 
     67 void Instruction::removeFromParent() {
     68   getParent()->getInstList().remove(this);
     69 }
     70 
     71 void Instruction::eraseFromParent() {
     72   getParent()->getInstList().erase(this);
     73 }
     74 
     75 /// insertBefore - Insert an unlinked instructions into a basic block
     76 /// immediately before the specified instruction.
     77 void Instruction::insertBefore(Instruction *InsertPos) {
     78   InsertPos->getParent()->getInstList().insert(InsertPos, this);
     79 }
     80 
     81 /// insertAfter - Insert an unlinked instructions into a basic block
     82 /// immediately after the specified instruction.
     83 void Instruction::insertAfter(Instruction *InsertPos) {
     84   InsertPos->getParent()->getInstList().insertAfter(InsertPos, this);
     85 }
     86 
     87 /// moveBefore - Unlink this instruction from its current basic block and
     88 /// insert it into the basic block that MovePos lives in, right before
     89 /// MovePos.
     90 void Instruction::moveBefore(Instruction *MovePos) {
     91   MovePos->getParent()->getInstList().splice(MovePos,getParent()->getInstList(),
     92                                              this);
     93 }
     94 
     95 
     96 const char *Instruction::getOpcodeName(unsigned OpCode) {
     97   switch (OpCode) {
     98   // Terminators
     99   case Ret:    return "ret";
    100   case Br:     return "br";
    101   case Switch: return "switch";
    102   case IndirectBr: return "indirectbr";
    103   case Invoke: return "invoke";
    104   case Resume: return "resume";
    105   case Unwind: return "unwind";
    106   case Unreachable: return "unreachable";
    107 
    108   // Standard binary operators...
    109   case Add: return "add";
    110   case FAdd: return "fadd";
    111   case Sub: return "sub";
    112   case FSub: return "fsub";
    113   case Mul: return "mul";
    114   case FMul: return "fmul";
    115   case UDiv: return "udiv";
    116   case SDiv: return "sdiv";
    117   case FDiv: return "fdiv";
    118   case URem: return "urem";
    119   case SRem: return "srem";
    120   case FRem: return "frem";
    121 
    122   // Logical operators...
    123   case And: return "and";
    124   case Or : return "or";
    125   case Xor: return "xor";
    126 
    127   // Memory instructions...
    128   case Alloca:        return "alloca";
    129   case Load:          return "load";
    130   case Store:         return "store";
    131   case AtomicCmpXchg: return "cmpxchg";
    132   case AtomicRMW:     return "atomicrmw";
    133   case Fence:         return "fence";
    134   case GetElementPtr: return "getelementptr";
    135 
    136   // Convert instructions...
    137   case Trunc:     return "trunc";
    138   case ZExt:      return "zext";
    139   case SExt:      return "sext";
    140   case FPTrunc:   return "fptrunc";
    141   case FPExt:     return "fpext";
    142   case FPToUI:    return "fptoui";
    143   case FPToSI:    return "fptosi";
    144   case UIToFP:    return "uitofp";
    145   case SIToFP:    return "sitofp";
    146   case IntToPtr:  return "inttoptr";
    147   case PtrToInt:  return "ptrtoint";
    148   case BitCast:   return "bitcast";
    149 
    150   // Other instructions...
    151   case ICmp:           return "icmp";
    152   case FCmp:           return "fcmp";
    153   case PHI:            return "phi";
    154   case Select:         return "select";
    155   case Call:           return "call";
    156   case Shl:            return "shl";
    157   case LShr:           return "lshr";
    158   case AShr:           return "ashr";
    159   case VAArg:          return "va_arg";
    160   case ExtractElement: return "extractelement";
    161   case InsertElement:  return "insertelement";
    162   case ShuffleVector:  return "shufflevector";
    163   case ExtractValue:   return "extractvalue";
    164   case InsertValue:    return "insertvalue";
    165   case LandingPad:     return "landingpad";
    166 
    167   default: return "<Invalid operator> ";
    168   }
    169 
    170   return 0;
    171 }
    172 
    173 /// isIdenticalTo - Return true if the specified instruction is exactly
    174 /// identical to the current one.  This means that all operands match and any
    175 /// extra information (e.g. load is volatile) agree.
    176 bool Instruction::isIdenticalTo(const Instruction *I) const {
    177   return isIdenticalToWhenDefined(I) &&
    178          SubclassOptionalData == I->SubclassOptionalData;
    179 }
    180 
    181 /// isIdenticalToWhenDefined - This is like isIdenticalTo, except that it
    182 /// ignores the SubclassOptionalData flags, which specify conditions
    183 /// under which the instruction's result is undefined.
    184 bool Instruction::isIdenticalToWhenDefined(const Instruction *I) const {
    185   if (getOpcode() != I->getOpcode() ||
    186       getNumOperands() != I->getNumOperands() ||
    187       getType() != I->getType())
    188     return false;
    189 
    190   // We have two instructions of identical opcode and #operands.  Check to see
    191   // if all operands are the same.
    192   for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
    193     if (getOperand(i) != I->getOperand(i))
    194       return false;
    195 
    196   // Check special state that is a part of some instructions.
    197   if (const LoadInst *LI = dyn_cast<LoadInst>(this))
    198     return LI->isVolatile() == cast<LoadInst>(I)->isVolatile() &&
    199            LI->getAlignment() == cast<LoadInst>(I)->getAlignment() &&
    200            LI->getOrdering() == cast<LoadInst>(I)->getOrdering() &&
    201            LI->getSynchScope() == cast<LoadInst>(I)->getSynchScope();
    202   if (const StoreInst *SI = dyn_cast<StoreInst>(this))
    203     return SI->isVolatile() == cast<StoreInst>(I)->isVolatile() &&
    204            SI->getAlignment() == cast<StoreInst>(I)->getAlignment() &&
    205            SI->getOrdering() == cast<StoreInst>(I)->getOrdering() &&
    206            SI->getSynchScope() == cast<StoreInst>(I)->getSynchScope();
    207   if (const CmpInst *CI = dyn_cast<CmpInst>(this))
    208     return CI->getPredicate() == cast<CmpInst>(I)->getPredicate();
    209   if (const CallInst *CI = dyn_cast<CallInst>(this))
    210     return CI->isTailCall() == cast<CallInst>(I)->isTailCall() &&
    211            CI->getCallingConv() == cast<CallInst>(I)->getCallingConv() &&
    212            CI->getAttributes() == cast<CallInst>(I)->getAttributes();
    213   if (const InvokeInst *CI = dyn_cast<InvokeInst>(this))
    214     return CI->getCallingConv() == cast<InvokeInst>(I)->getCallingConv() &&
    215            CI->getAttributes() == cast<InvokeInst>(I)->getAttributes();
    216   if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(this))
    217     return IVI->getIndices() == cast<InsertValueInst>(I)->getIndices();
    218   if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(this))
    219     return EVI->getIndices() == cast<ExtractValueInst>(I)->getIndices();
    220   if (const FenceInst *FI = dyn_cast<FenceInst>(this))
    221     return FI->getOrdering() == cast<FenceInst>(FI)->getOrdering() &&
    222            FI->getSynchScope() == cast<FenceInst>(FI)->getSynchScope();
    223   if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(this))
    224     return CXI->isVolatile() == cast<AtomicCmpXchgInst>(I)->isVolatile() &&
    225            CXI->getOrdering() == cast<AtomicCmpXchgInst>(I)->getOrdering() &&
    226            CXI->getSynchScope() == cast<AtomicCmpXchgInst>(I)->getSynchScope();
    227   if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(this))
    228     return RMWI->getOperation() == cast<AtomicRMWInst>(I)->getOperation() &&
    229            RMWI->isVolatile() == cast<AtomicRMWInst>(I)->isVolatile() &&
    230            RMWI->getOrdering() == cast<AtomicRMWInst>(I)->getOrdering() &&
    231            RMWI->getSynchScope() == cast<AtomicRMWInst>(I)->getSynchScope();
    232 
    233   return true;
    234 }
    235 
    236 // isSameOperationAs
    237 // This should be kept in sync with isEquivalentOperation in
    238 // lib/Transforms/IPO/MergeFunctions.cpp.
    239 bool Instruction::isSameOperationAs(const Instruction *I) const {
    240   if (getOpcode() != I->getOpcode() ||
    241       getNumOperands() != I->getNumOperands() ||
    242       getType() != I->getType())
    243     return false;
    244 
    245   // We have two instructions of identical opcode and #operands.  Check to see
    246   // if all operands are the same type
    247   for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
    248     if (getOperand(i)->getType() != I->getOperand(i)->getType())
    249       return false;
    250 
    251   // Check special state that is a part of some instructions.
    252   if (const LoadInst *LI = dyn_cast<LoadInst>(this))
    253     return LI->isVolatile() == cast<LoadInst>(I)->isVolatile() &&
    254            LI->getAlignment() == cast<LoadInst>(I)->getAlignment() &&
    255            LI->getOrdering() == cast<LoadInst>(I)->getOrdering() &&
    256            LI->getSynchScope() == cast<LoadInst>(I)->getSynchScope();
    257   if (const StoreInst *SI = dyn_cast<StoreInst>(this))
    258     return SI->isVolatile() == cast<StoreInst>(I)->isVolatile() &&
    259            SI->getAlignment() == cast<StoreInst>(I)->getAlignment() &&
    260            SI->getOrdering() == cast<StoreInst>(I)->getOrdering() &&
    261            SI->getSynchScope() == cast<StoreInst>(I)->getSynchScope();
    262   if (const CmpInst *CI = dyn_cast<CmpInst>(this))
    263     return CI->getPredicate() == cast<CmpInst>(I)->getPredicate();
    264   if (const CallInst *CI = dyn_cast<CallInst>(this))
    265     return CI->isTailCall() == cast<CallInst>(I)->isTailCall() &&
    266            CI->getCallingConv() == cast<CallInst>(I)->getCallingConv() &&
    267            CI->getAttributes() == cast<CallInst>(I)->getAttributes();
    268   if (const InvokeInst *CI = dyn_cast<InvokeInst>(this))
    269     return CI->getCallingConv() == cast<InvokeInst>(I)->getCallingConv() &&
    270            CI->getAttributes() ==
    271              cast<InvokeInst>(I)->getAttributes();
    272   if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(this))
    273     return IVI->getIndices() == cast<InsertValueInst>(I)->getIndices();
    274   if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(this))
    275     return EVI->getIndices() == cast<ExtractValueInst>(I)->getIndices();
    276   if (const FenceInst *FI = dyn_cast<FenceInst>(this))
    277     return FI->getOrdering() == cast<FenceInst>(I)->getOrdering() &&
    278            FI->getSynchScope() == cast<FenceInst>(I)->getSynchScope();
    279   if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(this))
    280     return CXI->isVolatile() == cast<AtomicCmpXchgInst>(I)->isVolatile() &&
    281            CXI->getOrdering() == cast<AtomicCmpXchgInst>(I)->getOrdering() &&
    282            CXI->getSynchScope() == cast<AtomicCmpXchgInst>(I)->getSynchScope();
    283   if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(this))
    284     return RMWI->getOperation() == cast<AtomicRMWInst>(I)->getOperation() &&
    285            RMWI->isVolatile() == cast<AtomicRMWInst>(I)->isVolatile() &&
    286            RMWI->getOrdering() == cast<AtomicRMWInst>(I)->getOrdering() &&
    287            RMWI->getSynchScope() == cast<AtomicRMWInst>(I)->getSynchScope();
    288 
    289   return true;
    290 }
    291 
    292 /// isUsedOutsideOfBlock - Return true if there are any uses of I outside of the
    293 /// specified block.  Note that PHI nodes are considered to evaluate their
    294 /// operands in the corresponding predecessor block.
    295 bool Instruction::isUsedOutsideOfBlock(const BasicBlock *BB) const {
    296   for (const_use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
    297     // PHI nodes uses values in the corresponding predecessor block.  For other
    298     // instructions, just check to see whether the parent of the use matches up.
    299     const User *U = *UI;
    300     const PHINode *PN = dyn_cast<PHINode>(U);
    301     if (PN == 0) {
    302       if (cast<Instruction>(U)->getParent() != BB)
    303         return true;
    304       continue;
    305     }
    306 
    307     if (PN->getIncomingBlock(UI) != BB)
    308       return true;
    309   }
    310   return false;
    311 }
    312 
    313 /// mayReadFromMemory - Return true if this instruction may read memory.
    314 ///
    315 bool Instruction::mayReadFromMemory() const {
    316   switch (getOpcode()) {
    317   default: return false;
    318   case Instruction::VAArg:
    319   case Instruction::Load:
    320   case Instruction::Fence: // FIXME: refine definition of mayReadFromMemory
    321   case Instruction::AtomicCmpXchg:
    322   case Instruction::AtomicRMW:
    323     return true;
    324   case Instruction::Call:
    325     return !cast<CallInst>(this)->doesNotAccessMemory();
    326   case Instruction::Invoke:
    327     return !cast<InvokeInst>(this)->doesNotAccessMemory();
    328   case Instruction::Store:
    329     return !cast<StoreInst>(this)->isUnordered();
    330   }
    331 }
    332 
    333 /// mayWriteToMemory - Return true if this instruction may modify memory.
    334 ///
    335 bool Instruction::mayWriteToMemory() const {
    336   switch (getOpcode()) {
    337   default: return false;
    338   case Instruction::Fence: // FIXME: refine definition of mayWriteToMemory
    339   case Instruction::Store:
    340   case Instruction::VAArg:
    341   case Instruction::AtomicCmpXchg:
    342   case Instruction::AtomicRMW:
    343     return true;
    344   case Instruction::Call:
    345     return !cast<CallInst>(this)->onlyReadsMemory();
    346   case Instruction::Invoke:
    347     return !cast<InvokeInst>(this)->onlyReadsMemory();
    348   case Instruction::Load:
    349     return !cast<LoadInst>(this)->isUnordered();
    350   }
    351 }
    352 
    353 /// mayThrow - Return true if this instruction may throw an exception.
    354 ///
    355 bool Instruction::mayThrow() const {
    356   if (const CallInst *CI = dyn_cast<CallInst>(this))
    357     return !CI->doesNotThrow();
    358   return isa<ResumeInst>(this);
    359 }
    360 
    361 /// isAssociative - Return true if the instruction is associative:
    362 ///
    363 ///   Associative operators satisfy:  x op (y op z) === (x op y) op z
    364 ///
    365 /// In LLVM, the Add, Mul, And, Or, and Xor operators are associative.
    366 ///
    367 bool Instruction::isAssociative(unsigned Opcode) {
    368   return Opcode == And || Opcode == Or || Opcode == Xor ||
    369          Opcode == Add || Opcode == Mul;
    370 }
    371 
    372 /// isCommutative - Return true if the instruction is commutative:
    373 ///
    374 ///   Commutative operators satisfy: (x op y) === (y op x)
    375 ///
    376 /// In LLVM, these are the associative operators, plus SetEQ and SetNE, when
    377 /// applied to any type.
    378 ///
    379 bool Instruction::isCommutative(unsigned op) {
    380   switch (op) {
    381   case Add:
    382   case FAdd:
    383   case Mul:
    384   case FMul:
    385   case And:
    386   case Or:
    387   case Xor:
    388     return true;
    389   default:
    390     return false;
    391   }
    392 }
    393 
    394 bool Instruction::isSafeToSpeculativelyExecute() const {
    395   for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
    396     if (Constant *C = dyn_cast<Constant>(getOperand(i)))
    397       if (C->canTrap())
    398         return false;
    399 
    400   switch (getOpcode()) {
    401   default:
    402     return true;
    403   case UDiv:
    404   case URem: {
    405     // x / y is undefined if y == 0, but calcuations like x / 3 are safe.
    406     ConstantInt *Op = dyn_cast<ConstantInt>(getOperand(1));
    407     return Op && !Op->isNullValue();
    408   }
    409   case SDiv:
    410   case SRem: {
    411     // x / y is undefined if y == 0, and might be undefined if y == -1,
    412     // but calcuations like x / 3 are safe.
    413     ConstantInt *Op = dyn_cast<ConstantInt>(getOperand(1));
    414     return Op && !Op->isNullValue() && !Op->isAllOnesValue();
    415   }
    416   case Load: {
    417     const LoadInst *LI = cast<LoadInst>(this);
    418     if (!LI->isUnordered())
    419       return false;
    420     return LI->getPointerOperand()->isDereferenceablePointer();
    421   }
    422   case Call:
    423     return false; // The called function could have undefined behavior or
    424                   // side-effects.
    425                   // FIXME: We should special-case some intrinsics (bswap,
    426                   // overflow-checking arithmetic, etc.)
    427   case VAArg:
    428   case Alloca:
    429   case Invoke:
    430   case PHI:
    431   case Store:
    432   case Ret:
    433   case Br:
    434   case IndirectBr:
    435   case Switch:
    436   case Unwind:
    437   case Unreachable:
    438   case Fence:
    439   case LandingPad:
    440   case AtomicRMW:
    441   case AtomicCmpXchg:
    442   case Resume:
    443     return false; // Misc instructions which have effects
    444   }
    445 }
    446 
    447 Instruction *Instruction::clone() const {
    448   Instruction *New = clone_impl();
    449   New->SubclassOptionalData = SubclassOptionalData;
    450   if (!hasMetadata())
    451     return New;
    452 
    453   // Otherwise, enumerate and copy over metadata from the old instruction to the
    454   // new one.
    455   SmallVector<std::pair<unsigned, MDNode*>, 4> TheMDs;
    456   getAllMetadataOtherThanDebugLoc(TheMDs);
    457   for (unsigned i = 0, e = TheMDs.size(); i != e; ++i)
    458     New->setMetadata(TheMDs[i].first, TheMDs[i].second);
    459 
    460   New->setDebugLoc(getDebugLoc());
    461   return New;
    462 }
    463