Home | History | Annotate | Download | only in glsl
      1 /*
      2  * Copyright  2010 Intel Corporation
      3  *
      4  * Permission is hereby granted, free of charge, to any person obtaining a
      5  * copy of this software and associated documentation files (the "Software"),
      6  * to deal in the Software without restriction, including without limitation
      7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
      8  * and/or sell copies of the Software, and to permit persons to whom the
      9  * Software is furnished to do so, subject to the following conditions:
     10  *
     11  * The above copyright notice and this permission notice (including the next
     12  * paragraph) shall be included in all copies or substantial portions of the
     13  * Software.
     14  *
     15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
     18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
     20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
     21  * DEALINGS IN THE SOFTWARE.
     22  */
     23 
     24 /**
     25  * \file linker.cpp
     26  * GLSL linker implementation
     27  *
     28  * Given a set of shaders that are to be linked to generate a final program,
     29  * there are three distinct stages.
     30  *
     31  * In the first stage shaders are partitioned into groups based on the shader
     32  * type.  All shaders of a particular type (e.g., vertex shaders) are linked
     33  * together.
     34  *
     35  *   - Undefined references in each shader are resolve to definitions in
     36  *     another shader.
     37  *   - Types and qualifiers of uniforms, outputs, and global variables defined
     38  *     in multiple shaders with the same name are verified to be the same.
     39  *   - Initializers for uniforms and global variables defined
     40  *     in multiple shaders with the same name are verified to be the same.
     41  *
     42  * The result, in the terminology of the GLSL spec, is a set of shader
     43  * executables for each processing unit.
     44  *
     45  * After the first stage is complete, a series of semantic checks are performed
     46  * on each of the shader executables.
     47  *
     48  *   - Each shader executable must define a \c main function.
     49  *   - Each vertex shader executable must write to \c gl_Position.
     50  *   - Each fragment shader executable must write to either \c gl_FragData or
     51  *     \c gl_FragColor.
     52  *
     53  * In the final stage individual shader executables are linked to create a
     54  * complete exectuable.
     55  *
     56  *   - Types of uniforms defined in multiple shader stages with the same name
     57  *     are verified to be the same.
     58  *   - Initializers for uniforms defined in multiple shader stages with the
     59  *     same name are verified to be the same.
     60  *   - Types and qualifiers of outputs defined in one stage are verified to
     61  *     be the same as the types and qualifiers of inputs defined with the same
     62  *     name in a later stage.
     63  *
     64  * \author Ian Romanick <ian.d.romanick (at) intel.com>
     65  */
     66 #include <cstdlib>
     67 #include <cstdio>
     68 #include <cstdarg>
     69 #include <climits>
     70 
     71 #include <pixelflinger2/pixelflinger2_interface.h>
     72 
     73 extern "C" {
     74 #include <hieralloc.h>
     75 }
     76 
     77 #include "main/core.h"
     78 #include "glsl_symbol_table.h"
     79 #include "ir.h"
     80 #include "program.h"
     81 #include "program/hash_table.h"
     82 #include "linker.h"
     83 #include "ir_optimization.h"
     84 
     85 #include "main/shaderobj.h"
     86 
     87 /**
     88  * Visitor that determines whether or not a variable is ever written.
     89  */
     90 class find_assignment_visitor : public ir_hierarchical_visitor {
     91 public:
     92    find_assignment_visitor(const char *name)
     93       : name(name), found(false)
     94    {
     95       /* empty */
     96    }
     97 
     98    virtual ir_visitor_status visit_enter(ir_assignment *ir)
     99    {
    100       ir_variable *const var = ir->lhs->variable_referenced();
    101 
    102       if (strcmp(name, var->name) == 0) {
    103 	 found = true;
    104 	 return visit_stop;
    105       }
    106 
    107       return visit_continue_with_parent;
    108    }
    109 
    110    virtual ir_visitor_status visit_enter(ir_call *ir)
    111    {
    112       exec_list_iterator sig_iter = ir->get_callee()->parameters.iterator();
    113       foreach_iter(exec_list_iterator, iter, *ir) {
    114 	 ir_rvalue *param_rval = (ir_rvalue *)iter.get();
    115 	 ir_variable *sig_param = (ir_variable *)sig_iter.get();
    116 
    117 	 if (sig_param->mode == ir_var_out ||
    118 	     sig_param->mode == ir_var_inout) {
    119 	    ir_variable *var = param_rval->variable_referenced();
    120 	    if (var && strcmp(name, var->name) == 0) {
    121 	       found = true;
    122 	       return visit_stop;
    123 	    }
    124 	 }
    125 	 sig_iter.next();
    126       }
    127 
    128       return visit_continue_with_parent;
    129    }
    130 
    131    bool variable_found()
    132    {
    133       return found;
    134    }
    135 
    136 private:
    137    const char *name;       /**< Find writes to a variable with this name. */
    138    bool found;             /**< Was a write to the variable found? */
    139 };
    140 
    141 
    142 /**
    143  * Visitor that determines whether or not a variable is ever read.
    144  */
    145 class find_deref_visitor : public ir_hierarchical_visitor {
    146 public:
    147    find_deref_visitor(const char *name)
    148       : name(name), found(false)
    149    {
    150       /* empty */
    151    }
    152 
    153    virtual ir_visitor_status visit(ir_dereference_variable *ir)
    154    {
    155       if (strcmp(this->name, ir->var->name) == 0) {
    156 	 this->found = true;
    157 	 return visit_stop;
    158       }
    159 
    160       return visit_continue;
    161    }
    162 
    163    bool variable_found() const
    164    {
    165       return this->found;
    166    }
    167 
    168 private:
    169    const char *name;       /**< Find writes to a variable with this name. */
    170    bool found;             /**< Was a write to the variable found? */
    171 };
    172 
    173 
    174 void
    175 linker_error_printf(gl_shader_program *prog, const char *fmt, ...)
    176 {
    177    va_list ap;
    178 
    179    prog->InfoLog = hieralloc_strdup_append(prog->InfoLog, "error: ");
    180    va_start(ap, fmt);
    181    prog->InfoLog = hieralloc_vasprintf_append(prog->InfoLog, fmt, ap);
    182    va_end(ap);
    183 }
    184 
    185 
    186 void
    187 invalidate_variable_locations(gl_shader *sh, enum ir_variable_mode mode,
    188 			      int generic_base)
    189 {
    190    foreach_list(node, sh->ir) {
    191       ir_variable *const var = ((ir_instruction *) node)->as_variable();
    192 
    193       if ((var == NULL) || (var->mode != (unsigned) mode))
    194 	 continue;
    195 
    196       /* Only assign locations for generic attributes / varyings / etc.
    197        */
    198       if ((var->location >= generic_base) && !var->explicit_location)
    199 	  var->location = -1;
    200    }
    201 }
    202 
    203 
    204 /**
    205  * Determine the number of attribute slots required for a particular type
    206  *
    207  * This code is here because it implements the language rules of a specific
    208  * GLSL version.  Since it's a property of the language and not a property of
    209  * types in general, it doesn't really belong in glsl_type.
    210  */
    211 unsigned
    212 count_attribute_slots(const glsl_type *t)
    213 {
    214    /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
    215     *
    216     *     "A scalar input counts the same amount against this limit as a vec4,
    217     *     so applications may want to consider packing groups of four
    218     *     unrelated float inputs together into a vector to better utilize the
    219     *     capabilities of the underlying hardware. A matrix input will use up
    220     *     multiple locations.  The number of locations used will equal the
    221     *     number of columns in the matrix."
    222     *
    223     * The spec does not explicitly say how arrays are counted.  However, it
    224     * should be safe to assume the total number of slots consumed by an array
    225     * is the number of entries in the array multiplied by the number of slots
    226     * consumed by a single element of the array.
    227     */
    228 
    229    if (t->is_array())
    230       return t->array_size() * count_attribute_slots(t->element_type());
    231 
    232    if (t->is_matrix())
    233       return t->matrix_columns;
    234 
    235    return 1;
    236 }
    237 
    238 
    239 /**
    240  * Verify that a vertex shader executable meets all semantic requirements
    241  *
    242  * \param shader  Vertex shader executable to be verified
    243  */
    244 bool
    245 validate_vertex_shader_executable(struct gl_shader_program *prog,
    246 				  struct gl_shader *shader)
    247 {
    248    if (shader == NULL)
    249       return true;
    250 
    251    find_assignment_visitor find("gl_Position");
    252    find.run(shader->ir);
    253    if (!find.variable_found()) {
    254       linker_error_printf(prog,
    255 			  "vertex shader does not write to `gl_Position'\n");
    256       return false;
    257    }
    258 
    259    return true;
    260 }
    261 
    262 
    263 /**
    264  * Verify that a fragment shader executable meets all semantic requirements
    265  *
    266  * \param shader  Fragment shader executable to be verified
    267  */
    268 bool
    269 validate_fragment_shader_executable(struct gl_shader_program *prog,
    270 				    struct gl_shader *shader)
    271 {
    272    if (shader == NULL)
    273       return true;
    274 
    275    find_assignment_visitor frag_color("gl_FragColor");
    276    find_assignment_visitor frag_data("gl_FragData");
    277 
    278    frag_color.run(shader->ir);
    279    frag_data.run(shader->ir);
    280 
    281    if (frag_color.variable_found() && frag_data.variable_found()) {
    282       linker_error_printf(prog,  "fragment shader writes to both "
    283 			  "`gl_FragColor' and `gl_FragData'\n");
    284       return false;
    285    }
    286 
    287    return true;
    288 }
    289 
    290 
    291 /**
    292  * Generate a string describing the mode of a variable
    293  */
    294 static const char *
    295 mode_string(const ir_variable *var)
    296 {
    297    switch (var->mode) {
    298    case ir_var_auto:
    299       return (var->read_only) ? "global constant" : "global variable";
    300 
    301    case ir_var_uniform: return "uniform";
    302    case ir_var_in:      return "shader input";
    303    case ir_var_out:     return "shader output";
    304    case ir_var_inout:   return "shader inout";
    305 
    306    case ir_var_temporary:
    307    default:
    308       assert(!"Should not get here.");
    309       return "invalid variable";
    310    }
    311 }
    312 
    313 
    314 /**
    315  * Perform validation of global variables used across multiple shaders
    316  */
    317 bool
    318 cross_validate_globals(struct gl_shader_program *prog,
    319 		       struct gl_shader **shader_list,
    320 		       unsigned num_shaders,
    321 		       bool uniforms_only)
    322 {
    323    /* Examine all of the uniforms in all of the shaders and cross validate
    324     * them.
    325     */
    326    glsl_symbol_table variables(prog);
    327    for (unsigned i = 0; i < num_shaders; i++) {
    328       if (shader_list[i] == NULL)
    329 	 continue;
    330 
    331       foreach_list(node, shader_list[i]->ir) {
    332 	 ir_variable *const var = ((ir_instruction *) node)->as_variable();
    333 
    334 	 if (var == NULL)
    335 	    continue;
    336 
    337 	 if (uniforms_only && (var->mode != ir_var_uniform))
    338 	    continue;
    339 
    340 	 /* Don't cross validate temporaries that are at global scope.  These
    341 	  * will eventually get pulled into the shaders 'main'.
    342 	  */
    343 	 if (var->mode == ir_var_temporary)
    344 	    continue;
    345 
    346 	 /* If a global with this name has already been seen, verify that the
    347 	  * new instance has the same type.  In addition, if the globals have
    348 	  * initializers, the values of the initializers must be the same.
    349 	  */
    350 	 ir_variable *const existing = variables.get_variable(var->name);
    351 	 if (existing != NULL) {
    352 	    if (var->type != existing->type) {
    353 	       /* Consider the types to be "the same" if both types are arrays
    354 		* of the same type and one of the arrays is implicitly sized.
    355 		* In addition, set the type of the linked variable to the
    356 		* explicitly sized array.
    357 		*/
    358 	       if (var->type->is_array()
    359 		   && existing->type->is_array()
    360 		   && (var->type->fields.array == existing->type->fields.array)
    361 		   && ((var->type->length == 0)
    362 		       || (existing->type->length == 0))) {
    363 		  if (existing->type->length == 0) {
    364 		     existing->type = var->type;
    365 		     existing->max_array_access =
    366 			MAX2(existing->max_array_access,
    367 			     var->max_array_access);
    368 		  }
    369 	       } else {
    370 		  linker_error_printf(prog, "%s `%s' declared as type "
    371 				      "`%s' and type `%s'\n",
    372 				      mode_string(var),
    373 				      var->name, var->type->name,
    374 				      existing->type->name);
    375 		  return false;
    376 	       }
    377 	    }
    378 
    379 	    if (var->explicit_location) {
    380 	       if (existing->explicit_location
    381 		   && (var->location != existing->location)) {
    382 		     linker_error_printf(prog, "explicit locations for %s "
    383 					 "`%s' have differing values\n",
    384 					 mode_string(var), var->name);
    385 		     return false;
    386 	       }
    387 
    388 	       existing->location = var->location;
    389 	       existing->explicit_location = true;
    390 	    }
    391 
    392 	    /* FINISHME: Handle non-constant initializers.
    393 	     */
    394 	    if (var->constant_value != NULL) {
    395 	       if (existing->constant_value != NULL) {
    396 		  if (!var->constant_value->has_value(existing->constant_value)) {
    397 		     linker_error_printf(prog, "initializers for %s "
    398 					 "`%s' have differing values\n",
    399 					 mode_string(var), var->name);
    400 		     return false;
    401 		  }
    402 	       } else
    403 		  /* If the first-seen instance of a particular uniform did not
    404 		   * have an initializer but a later instance does, copy the
    405 		   * initializer to the version stored in the symbol table.
    406 		   */
    407 		  /* FINISHME: This is wrong.  The constant_value field should
    408 		   * FINISHME: not be modified!  Imagine a case where a shader
    409 		   * FINISHME: without an initializer is linked in two different
    410 		   * FINISHME: programs with shaders that have differing
    411 		   * FINISHME: initializers.  Linking with the first will
    412 		   * FINISHME: modify the shader, and linking with the second
    413 		   * FINISHME: will fail.
    414 		   */
    415 		  existing->constant_value =
    416 		     var->constant_value->clone(hieralloc_parent(existing), NULL);
    417 	    }
    418 
    419 	    if (existing->invariant != var->invariant) {
    420 	       linker_error_printf(prog, "declarations for %s `%s' have "
    421 	                           "mismatching invariant qualifiers\n",
    422 	                           mode_string(var), var->name);
    423 	       return false;
    424 	    }
    425 	 } else
    426 	    variables.add_variable(var);
    427       }
    428    }
    429 
    430    return true;
    431 }
    432 
    433 
    434 /**
    435  * Perform validation of uniforms used across multiple shader stages
    436  */
    437 bool
    438 cross_validate_uniforms(struct gl_shader_program *prog)
    439 {
    440    return cross_validate_globals(prog, prog->_LinkedShaders,
    441 				 MESA_SHADER_TYPES, true);
    442 }
    443 
    444 
    445 /**
    446  * Validate that outputs from one stage match inputs of another
    447  */
    448 bool
    449 cross_validate_outputs_to_inputs(struct gl_shader_program *prog,
    450 				 gl_shader *producer, gl_shader *consumer)
    451 {
    452    glsl_symbol_table parameters(prog);
    453    /* FINISHME: Figure these out dynamically. */
    454    const char *const producer_stage = "vertex";
    455    const char *const consumer_stage = "fragment";
    456 
    457    /* Find all shader outputs in the "producer" stage.
    458     */
    459    foreach_list(node, producer->ir) {
    460       ir_variable *const var = ((ir_instruction *) node)->as_variable();
    461 
    462       /* FINISHME: For geometry shaders, this should also look for inout
    463        * FINISHME: variables.
    464        */
    465       if ((var == NULL) || (var->mode != ir_var_out))
    466 	 continue;
    467 
    468       parameters.add_variable(var);
    469    }
    470 
    471 
    472    /* Find all shader inputs in the "consumer" stage.  Any variables that have
    473     * matching outputs already in the symbol table must have the same type and
    474     * qualifiers.
    475     */
    476    foreach_list(node, consumer->ir) {
    477       ir_variable *const input = ((ir_instruction *) node)->as_variable();
    478 
    479       /* FINISHME: For geometry shaders, this should also look for inout
    480        * FINISHME: variables.
    481        */
    482       if ((input == NULL) || (input->mode != ir_var_in))
    483 	 continue;
    484 
    485       ir_variable *const output = parameters.get_variable(input->name);
    486       if (output != NULL) {
    487 	 /* Check that the types match between stages.
    488 	  */
    489 	 if (input->type != output->type) {
    490 	    /* There is a bit of a special case for gl_TexCoord.  This
    491 	     * built-in is unsized by default.  Appliations that variable
    492 	     * access it must redeclare it with a size.  There is some
    493 	     * language in the GLSL spec that implies the fragment shader
    494 	     * and vertex shader do not have to agree on this size.  Other
    495 	     * driver behave this way, and one or two applications seem to
    496 	     * rely on it.
    497 	     *
    498 	     * Neither declaration needs to be modified here because the array
    499 	     * sizes are fixed later when update_array_sizes is called.
    500 	     *
    501 	     * From page 48 (page 54 of the PDF) of the GLSL 1.10 spec:
    502 	     *
    503 	     *     "Unlike user-defined varying variables, the built-in
    504 	     *     varying variables don't have a strict one-to-one
    505 	     *     correspondence between the vertex language and the
    506 	     *     fragment language."
    507 	     */
    508 	    if (!output->type->is_array()
    509 		|| (strncmp("gl_", output->name, 3) != 0)) {
    510 	       linker_error_printf(prog,
    511 				   "%s shader output `%s' declared as "
    512 				   "type `%s', but %s shader input declared "
    513 				   "as type `%s'\n",
    514 				   producer_stage, output->name,
    515 				   output->type->name,
    516 				   consumer_stage, input->type->name);
    517 	       return false;
    518 	    }
    519 	 }
    520 
    521 	 /* Check that all of the qualifiers match between stages.
    522 	  */
    523 	 if (input->centroid != output->centroid) {
    524 	    linker_error_printf(prog,
    525 				"%s shader output `%s' %s centroid qualifier, "
    526 				"but %s shader input %s centroid qualifier\n",
    527 				producer_stage,
    528 				output->name,
    529 				(output->centroid) ? "has" : "lacks",
    530 				consumer_stage,
    531 				(input->centroid) ? "has" : "lacks");
    532 	    return false;
    533 	 }
    534 
    535 	 if (input->invariant != output->invariant) {
    536 	    linker_error_printf(prog,
    537 				"%s shader output `%s' %s invariant qualifier, "
    538 				"but %s shader input %s invariant qualifier\n",
    539 				producer_stage,
    540 				output->name,
    541 				(output->invariant) ? "has" : "lacks",
    542 				consumer_stage,
    543 				(input->invariant) ? "has" : "lacks");
    544 	    return false;
    545 	 }
    546 
    547 	 if (input->interpolation != output->interpolation) {
    548 	    linker_error_printf(prog,
    549 				"%s shader output `%s' specifies %s "
    550 				"interpolation qualifier, "
    551 				"but %s shader input specifies %s "
    552 				"interpolation qualifier\n",
    553 				producer_stage,
    554 				output->name,
    555 				output->interpolation_string(),
    556 				consumer_stage,
    557 				input->interpolation_string());
    558 	    return false;
    559 	 }
    560       }
    561    }
    562 
    563    return true;
    564 }
    565 
    566 
    567 /**
    568  * Populates a shaders symbol table with all global declarations
    569  */
    570 static void
    571 populate_symbol_table(gl_shader *sh)
    572 {
    573    sh->symbols = new(sh) glsl_symbol_table(sh);
    574 
    575    foreach_list(node, sh->ir) {
    576       ir_instruction *const inst = (ir_instruction *) node;
    577       ir_variable *var;
    578       ir_function *func;
    579 
    580       if ((func = inst->as_function()) != NULL) {
    581 	 sh->symbols->add_function(func);
    582       } else if ((var = inst->as_variable()) != NULL) {
    583 	 sh->symbols->add_variable(var);
    584       }
    585    }
    586 }
    587 
    588 
    589 /**
    590  * Remap variables referenced in an instruction tree
    591  *
    592  * This is used when instruction trees are cloned from one shader and placed in
    593  * another.  These trees will contain references to \c ir_variable nodes that
    594  * do not exist in the target shader.  This function finds these \c ir_variable
    595  * references and replaces the references with matching variables in the target
    596  * shader.
    597  *
    598  * If there is no matching variable in the target shader, a clone of the
    599  * \c ir_variable is made and added to the target shader.  The new variable is
    600  * added to \b both the instruction stream and the symbol table.
    601  *
    602  * \param inst         IR tree that is to be processed.
    603  * \param symbols      Symbol table containing global scope symbols in the
    604  *                     linked shader.
    605  * \param instructions Instruction stream where new variable declarations
    606  *                     should be added.
    607  */
    608 void
    609 remap_variables(ir_instruction *inst, struct gl_shader *target,
    610 		hash_table *temps)
    611 {
    612    class remap_visitor : public ir_hierarchical_visitor {
    613    public:
    614 	 remap_visitor(struct gl_shader *target,
    615 		    hash_table *temps)
    616       {
    617 	 this->target = target;
    618 	 this->symbols = target->symbols;
    619 	 this->instructions = target->ir;
    620 	 this->temps = temps;
    621       }
    622 
    623       virtual ir_visitor_status visit(ir_dereference_variable *ir)
    624       {
    625 	 if (ir->var->mode == ir_var_temporary) {
    626 	    ir_variable *var = (ir_variable *) hash_table_find(temps, ir->var);
    627 
    628 	    assert(var != NULL);
    629 	    ir->var = var;
    630 	    return visit_continue;
    631 	 }
    632 
    633 	 ir_variable *const existing =
    634 	    this->symbols->get_variable(ir->var->name);
    635 	 if (existing != NULL)
    636 	    ir->var = existing;
    637 	 else {
    638 	    ir_variable *copy = ir->var->clone(this->target, NULL);
    639 
    640 	    this->symbols->add_variable(copy);
    641 	    this->instructions->push_head(copy);
    642 	    ir->var = copy;
    643 	 }
    644 
    645 	 return visit_continue;
    646       }
    647 
    648    private:
    649       struct gl_shader *target;
    650       glsl_symbol_table *symbols;
    651       exec_list *instructions;
    652       hash_table *temps;
    653    };
    654 
    655    remap_visitor v(target, temps);
    656 
    657    inst->accept(&v);
    658 }
    659 
    660 
    661 /**
    662  * Move non-declarations from one instruction stream to another
    663  *
    664  * The intended usage pattern of this function is to pass the pointer to the
    665  * head sentinel of a list (i.e., a pointer to the list cast to an \c exec_node
    666  * pointer) for \c last and \c false for \c make_copies on the first
    667  * call.  Successive calls pass the return value of the previous call for
    668  * \c last and \c true for \c make_copies.
    669  *
    670  * \param instructions Source instruction stream
    671  * \param last         Instruction after which new instructions should be
    672  *                     inserted in the target instruction stream
    673  * \param make_copies  Flag selecting whether instructions in \c instructions
    674  *                     should be copied (via \c ir_instruction::clone) into the
    675  *                     target list or moved.
    676  *
    677  * \return
    678  * The new "last" instruction in the target instruction stream.  This pointer
    679  * is suitable for use as the \c last parameter of a later call to this
    680  * function.
    681  */
    682 exec_node *
    683 move_non_declarations(exec_list *instructions, exec_node *last,
    684 		      bool make_copies, gl_shader *target)
    685 {
    686    hash_table *temps = NULL;
    687 
    688    if (make_copies)
    689       temps = hash_table_ctor(0, hash_table_pointer_hash,
    690 			      hash_table_pointer_compare);
    691 
    692    foreach_list_safe(node, instructions) {
    693       ir_instruction *inst = (ir_instruction *) node;
    694 
    695       if (inst->as_function())
    696 	 continue;
    697 
    698       ir_variable *var = inst->as_variable();
    699       if ((var != NULL) && (var->mode != ir_var_temporary))
    700 	 continue;
    701 
    702       assert(inst->as_assignment()
    703 	     || ((var != NULL) && (var->mode == ir_var_temporary)));
    704 
    705       if (make_copies) {
    706 	 inst = inst->clone(target, NULL);
    707 
    708 	 if (var != NULL)
    709 	    hash_table_insert(temps, inst, var);
    710 	 else
    711 	    remap_variables(inst, target, temps);
    712       } else {
    713 	 inst->remove();
    714       }
    715 
    716       last->insert_after(inst);
    717       last = inst;
    718    }
    719 
    720    if (make_copies)
    721       hash_table_dtor(temps);
    722 
    723    return last;
    724 }
    725 
    726 /**
    727  * Get the function signature for main from a shader
    728  */
    729 static ir_function_signature *
    730 get_main_function_signature(gl_shader *sh)
    731 {
    732    ir_function *const f = sh->symbols->get_function("main");
    733    if (f != NULL) {
    734       exec_list void_parameters;
    735 
    736       /* Look for the 'void main()' signature and ensure that it's defined.
    737        * This keeps the linker from accidentally pick a shader that just
    738        * contains a prototype for main.
    739        *
    740        * We don't have to check for multiple definitions of main (in multiple
    741        * shaders) because that would have already been caught above.
    742        */
    743       ir_function_signature *sig = f->matching_signature(&void_parameters);
    744       if ((sig != NULL) && sig->is_defined) {
    745 	 return sig;
    746       }
    747    }
    748 
    749    return NULL;
    750 }
    751 
    752 
    753 /**
    754  * Combine a group of shaders for a single stage to generate a linked shader
    755  *
    756  * \note
    757  * If this function is supplied a single shader, it is cloned, and the new
    758  * shader is returned.
    759  */
    760 static struct gl_shader *
    761 link_intrastage_shaders(void *mem_ctx,
    762 			const struct gl_context *ctx,
    763 			struct gl_shader_program *prog,
    764 			struct gl_shader **shader_list,
    765 			unsigned num_shaders)
    766 {
    767    /* Check that global variables defined in multiple shaders are consistent.
    768     */
    769    if (!cross_validate_globals(prog, shader_list, num_shaders, false))
    770       return NULL;
    771 
    772    /* Check that there is only a single definition of each function signature
    773     * across all shaders.
    774     */
    775    for (unsigned i = 0; i < (num_shaders - 1); i++) {
    776       foreach_list(node, shader_list[i]->ir) {
    777 	 ir_function *const f = ((ir_instruction *) node)->as_function();
    778 
    779 	 if (f == NULL)
    780 	    continue;
    781 
    782 	 for (unsigned j = i + 1; j < num_shaders; j++) {
    783 	    ir_function *const other =
    784 	       shader_list[j]->symbols->get_function(f->name);
    785 
    786 	    /* If the other shader has no function (and therefore no function
    787 	     * signatures) with the same name, skip to the next shader.
    788 	     */
    789 	    if (other == NULL)
    790 	       continue;
    791 
    792 	    foreach_iter (exec_list_iterator, iter, *f) {
    793 	       ir_function_signature *sig =
    794 		  (ir_function_signature *) iter.get();
    795 
    796 	       if (!sig->is_defined || sig->is_builtin)
    797 		  continue;
    798 
    799 	       ir_function_signature *other_sig =
    800 		  other->exact_matching_signature(& sig->parameters);
    801 
    802 	       if ((other_sig != NULL) && other_sig->is_defined
    803 		   && !other_sig->is_builtin) {
    804 		  linker_error_printf(prog,
    805 				      "function `%s' is multiply defined",
    806 				      f->name);
    807 		  return NULL;
    808 	       }
    809 	    }
    810 	 }
    811       }
    812    }
    813 
    814    /* Find the shader that defines main, and make a clone of it.
    815     *
    816     * Starting with the clone, search for undefined references.  If one is
    817     * found, find the shader that defines it.  Clone the reference and add
    818     * it to the shader.  Repeat until there are no undefined references or
    819     * until a reference cannot be resolved.
    820     */
    821    gl_shader *main = NULL;
    822    for (unsigned i = 0; i < num_shaders; i++) {
    823       if (get_main_function_signature(shader_list[i]) != NULL) {
    824 	 main = shader_list[i];
    825 	 break;
    826       }
    827    }
    828 
    829    if (main == NULL) {
    830       linker_error_printf(prog, "%s shader lacks `main'\n",
    831 			  (shader_list[0]->Type == GL_VERTEX_SHADER)
    832 			  ? "vertex" : "fragment");
    833       return NULL;
    834    }
    835 
    836    gl_shader *linked = _mesa_new_shader(prog, 0, main->Type);
    837    linked->ir = new(linked) exec_list;
    838    clone_ir_list(mem_ctx, linked->ir, main->ir);
    839 
    840    populate_symbol_table(linked);
    841 
    842    /* The a pointer to the main function in the final linked shader (i.e., the
    843     * copy of the original shader that contained the main function).
    844     */
    845    ir_function_signature *const main_sig = get_main_function_signature(linked);
    846 
    847    /* Move any instructions other than variable declarations or function
    848     * declarations into main.
    849     */
    850    exec_node *insertion_point =
    851       move_non_declarations(linked->ir, (exec_node *) &main_sig->body, false,
    852 			    linked);
    853 
    854    for (unsigned i = 0; i < num_shaders; i++) {
    855       if (shader_list[i] == main)
    856 	 continue;
    857 
    858       insertion_point = move_non_declarations(shader_list[i]->ir,
    859 					      insertion_point, true, linked);
    860    }
    861 
    862    /* Resolve initializers for global variables in the linked shader.
    863     */
    864    unsigned num_linking_shaders = num_shaders;
    865    for (unsigned i = 0; i < num_shaders; i++)
    866       num_linking_shaders += shader_list[i]->num_builtins_to_link;
    867 
    868    gl_shader **linking_shaders =
    869       (gl_shader **) calloc(num_linking_shaders, sizeof(gl_shader *));
    870 
    871    memcpy(linking_shaders, shader_list,
    872 	  sizeof(linking_shaders[0]) * num_shaders);
    873 
    874    unsigned idx = num_shaders;
    875    for (unsigned i = 0; i < num_shaders; i++) {
    876       memcpy(&linking_shaders[idx], shader_list[i]->builtins_to_link,
    877 	     sizeof(linking_shaders[0]) * shader_list[i]->num_builtins_to_link);
    878       idx += shader_list[i]->num_builtins_to_link;
    879    }
    880 
    881    assert(idx == num_linking_shaders);
    882 
    883    if (!link_function_calls(prog, linked, linking_shaders,
    884 			    num_linking_shaders)) {
    885       _mesa_delete_shader(ctx, linked);
    886       linked = NULL;
    887    }
    888 
    889    free(linking_shaders);
    890 
    891    /* Make a pass over all global variables to ensure that arrays with
    892     * unspecified sizes have a size specified.  The size is inferred from the
    893     * max_array_access field.
    894     */
    895    if (linked != NULL) {
    896       foreach_list(node, linked->ir) {
    897 	 ir_variable *const var = ((ir_instruction *) node)->as_variable();
    898 
    899 	 if (var == NULL)
    900 	    continue;
    901 
    902 	 if ((var->mode != ir_var_auto) && (var->mode != ir_var_temporary))
    903 	    continue;
    904 
    905 	 if (!var->type->is_array() || (var->type->length != 0))
    906 	    continue;
    907 
    908 	 const glsl_type *type =
    909 	    glsl_type::get_array_instance(var->type->fields.array,
    910 					  var->max_array_access);
    911 
    912 	 assert(type != NULL);
    913 	 var->type = type;
    914       }
    915    }
    916 
    917    return linked;
    918 }
    919 
    920 
    921 struct uniform_node {
    922    exec_node link;
    923    struct gl_uniform *u;
    924    unsigned slots;
    925 };
    926 
    927 /**
    928  * Update the sizes of linked shader uniform arrays to the maximum
    929  * array index used.
    930  *
    931  * From page 81 (page 95 of the PDF) of the OpenGL 2.1 spec:
    932  *
    933  *     If one or more elements of an array are active,
    934  *     GetActiveUniform will return the name of the array in name,
    935  *     subject to the restrictions listed above. The type of the array
    936  *     is returned in type. The size parameter contains the highest
    937  *     array element index used, plus one. The compiler or linker
    938  *     determines the highest index used.  There will be only one
    939  *     active uniform reported by the GL per uniform array.
    940 
    941  */
    942 static void
    943 update_array_sizes(struct gl_shader_program *prog)
    944 {
    945    for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
    946 	 if (prog->_LinkedShaders[i] == NULL)
    947 	    continue;
    948 
    949       foreach_list(node, prog->_LinkedShaders[i]->ir) {
    950 	 ir_variable *const var = ((ir_instruction *) node)->as_variable();
    951 
    952 	 if ((var == NULL) || (var->mode != ir_var_uniform &&
    953 			       var->mode != ir_var_in &&
    954 			       var->mode != ir_var_out) ||
    955 	     !var->type->is_array())
    956 	    continue;
    957 
    958 	 unsigned int size = var->max_array_access;
    959 	 for (unsigned j = 0; j < MESA_SHADER_TYPES; j++) {
    960 	       if (prog->_LinkedShaders[j] == NULL)
    961 		  continue;
    962 
    963 	    foreach_list(node2, prog->_LinkedShaders[j]->ir) {
    964 	       ir_variable *other_var = ((ir_instruction *) node2)->as_variable();
    965 	       if (!other_var)
    966 		  continue;
    967 
    968 	       if (strcmp(var->name, other_var->name) == 0 &&
    969 		   other_var->max_array_access > size) {
    970 		  size = other_var->max_array_access;
    971 	       }
    972 	    }
    973 	 }
    974 
    975 	 if (size + 1 != var->type->fields.array->length) {
    976 	    var->type = glsl_type::get_array_instance(var->type->fields.array,
    977 						      size + 1);
    978 	    /* FINISHME: We should update the types of array
    979 	     * dereferences of this variable now.
    980 	     */
    981 	 }
    982       }
    983    }
    984 }
    985 
    986 static int // returns location assigned
    987 add_uniform(void *mem_ctx, exec_list *uniforms, struct hash_table *ht,
    988 	    const char *name, const glsl_type *type, GLenum shader_type,
    989 	    unsigned *next_shader_pos, unsigned *total_uniforms, unsigned *next_sampler_pos, unsigned * samplers_used)
    990 {
    991    int index = -1;
    992    if (type->is_record()) {
    993       for (unsigned int i = 0; i < type->length; i++) {
    994          const glsl_type *field_type = type->fields.structure[i].type;
    995          char *field_name = hieralloc_asprintf(mem_ctx, "%s.%s", name,
    996 					    type->fields.structure[i].name);
    997 
    998          int firstIndex = add_uniform(mem_ctx, uniforms, ht, field_name, field_type,
    999             shader_type, next_shader_pos, total_uniforms, next_sampler_pos, samplers_used);
   1000          if (i == 0)
   1001             index = firstIndex;
   1002       }
   1003    } else {
   1004       uniform_node *n = (uniform_node *) hash_table_find(ht, name);
   1005       unsigned int vec4_slots;
   1006       const glsl_type *array_elem_type = NULL;
   1007 
   1008       if (type->is_array()) {
   1009          array_elem_type = type->fields.array;
   1010          /* Array of structures. */
   1011          if (array_elem_type->is_record()) {
   1012             for (unsigned int i = 0; i < type->length; i++) {
   1013                char *elem_name = hieralloc_asprintf(mem_ctx, "%s[%d]", name, i);
   1014                int firstIndex = add_uniform(mem_ctx, uniforms, ht, elem_name, array_elem_type,
   1015                   shader_type, next_shader_pos, total_uniforms, next_sampler_pos, samplers_used);
   1016                if (i == 0)
   1017                   index = firstIndex;
   1018             }
   1019             return index;
   1020          }
   1021       }
   1022 
   1023       /* Fix the storage size of samplers at 1 vec4 each. Be sure to pad out
   1024        * vectors to vec4 slots.
   1025        */
   1026       if (type->is_array()) {
   1027          if (array_elem_type->is_sampler())
   1028             vec4_slots = type->length;
   1029          else
   1030             vec4_slots = type->length * array_elem_type->matrix_columns;
   1031       } else if (type->is_sampler())
   1032          vec4_slots = 1;
   1033       else
   1034          vec4_slots = type->matrix_columns;
   1035 
   1036       if (n == NULL) {
   1037          n = (uniform_node *) calloc(1, sizeof(struct uniform_node));
   1038          n->u = (gl_uniform *) calloc(1, sizeof(struct gl_uniform));
   1039          n->slots = vec4_slots;
   1040 
   1041          n->u->Name = strdup(name);
   1042          n->u->Type = type;
   1043          n->u->Pos = *next_shader_pos;
   1044          (*total_uniforms)++;
   1045 
   1046          if (type->is_sampler() || (array_elem_type && array_elem_type->is_sampler()))
   1047          {
   1048             n->u->Pos = *next_sampler_pos;
   1049             *next_sampler_pos += vec4_slots;
   1050          }
   1051          else
   1052             (*next_shader_pos) += vec4_slots;
   1053          hash_table_insert(ht, n, name);
   1054          uniforms->push_tail(&n->link);
   1055       }
   1056 
   1057       if (type->is_sampler() || (array_elem_type && array_elem_type->is_sampler()))
   1058          (*samplers_used) |= 1 << n->u->Pos;
   1059       index = n->u->Pos;
   1060    }
   1061    return index;
   1062 }
   1063 
   1064 void
   1065 assign_uniform_locations(struct gl_shader_program *prog)
   1066 {
   1067    /* */
   1068    exec_list uniforms;
   1069    unsigned total_uniforms = 0;
   1070    unsigned next_sampler_pos = 0; // all shaders in prog share same sampler location
   1071    hash_table *ht = hash_table_ctor(32, hash_table_string_hash,
   1072 				    hash_table_string_compare);
   1073    void *mem_ctx = hieralloc_new(prog);
   1074 
   1075    unsigned next_position = 0; // also number of slots for uniforms
   1076 
   1077    for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
   1078       if (prog->_LinkedShaders[i] == NULL)
   1079 	 continue;
   1080 
   1081       prog->_LinkedShaders[i]->SamplersUsed = 0;
   1082       foreach_list(node, prog->_LinkedShaders[i]->ir) {
   1083 	 ir_variable *const var = ((ir_instruction *) node)->as_variable();
   1084 
   1085 	 if ((var == NULL) || (var->mode != ir_var_uniform))
   1086 	    continue;
   1087 
   1088 	 if (strncmp(var->name, "gl_", 3) == 0) {
   1089 	    /* At the moment, we don't allocate uniform locations for
   1090 	     * builtin uniforms.  It's permitted by spec, and we'll
   1091 	     * likely switch to doing that at some point, but not yet.
   1092 	     */
   1093 	    continue;
   1094 	 }
   1095 
   1096 	 var->location = add_uniform(mem_ctx, &uniforms, ht, var->name, var->type,
   1097 		     prog->_LinkedShaders[i]->Type,
   1098 		     &next_position, &total_uniforms, &next_sampler_pos, &prog->_LinkedShaders[i]->SamplersUsed);
   1099       }
   1100    }
   1101 
   1102    gl_uniform_list *ul = hieralloc_zero(prog, gl_uniform_list);
   1103 
   1104    ul->Size = total_uniforms;
   1105    ul->NumUniforms = total_uniforms;
   1106    ul->Uniforms = (gl_uniform *)hieralloc_zero_size(ul, total_uniforms * sizeof(gl_uniform));
   1107 
   1108    unsigned idx = 0;
   1109    uniform_node *next;
   1110    for (uniform_node *node = (uniform_node *) uniforms.head
   1111 	   ; node->link.next != NULL
   1112 	   ; node = next) {
   1113       next = (uniform_node *) node->link.next;
   1114 
   1115       node->link.remove();
   1116       memcpy(&ul->Uniforms[idx], node->u, sizeof(gl_uniform));
   1117       idx++;
   1118 
   1119       free(node->u);
   1120       free(node);
   1121    }
   1122 
   1123    hash_table_dtor(ht);
   1124 
   1125    prog->Uniforms = ul;
   1126    prog->Uniforms->Slots = next_position;
   1127    prog->Uniforms->SamplerSlots = next_sampler_pos;
   1128 
   1129    hieralloc_free(mem_ctx);
   1130 }
   1131 
   1132 
   1133 /**
   1134  * Find a contiguous set of available bits in a bitmask
   1135  *
   1136  * \param used_mask     Bits representing used (1) and unused (0) locations
   1137  * \param needed_count  Number of contiguous bits needed.
   1138  *
   1139  * \return
   1140  * Base location of the available bits on success or -1 on failure.
   1141  */
   1142 int
   1143 find_available_slots(unsigned used_mask, unsigned needed_count)
   1144 {
   1145    unsigned needed_mask = (1 << needed_count) - 1;
   1146    const int max_bit_to_test = (8 * sizeof(used_mask)) - needed_count;
   1147 
   1148    /* The comparison to 32 is redundant, but without it GCC emits "warning:
   1149     * cannot optimize possibly infinite loops" for the loop below.
   1150     */
   1151    if ((needed_count == 0) || (max_bit_to_test < 0) || (max_bit_to_test > 32))
   1152       return -1;
   1153 
   1154    for (int i = 0; i <= max_bit_to_test; i++) {
   1155       if ((needed_mask & ~used_mask) == needed_mask)
   1156 	 return i;
   1157 
   1158       needed_mask <<= 1;
   1159    }
   1160 
   1161    return -1;
   1162 }
   1163 
   1164 
   1165 bool
   1166 assign_attribute_locations(gl_shader_program *prog, unsigned max_attribute_index)
   1167 {
   1168    /* Mark invalid attribute locations as being used.
   1169     */
   1170    unsigned used_locations = (max_attribute_index >= 32)
   1171       ? ~0 : ~((1 << max_attribute_index) - 1);
   1172 
   1173    gl_shader *const sh = prog->_LinkedShaders[0];
   1174    assert(sh->Type == GL_VERTEX_SHADER);
   1175    prog->VaryingSlots = 0;
   1176    /* Operate in a total of four passes.
   1177     *
   1178     * 1. Invalidate the location assignments for all vertex shader inputs,
   1179     *    except for explicit_location and glBindAttribLocation
   1180     *
   1181     * 2. Assign locations for inputs that have user-defined (via
   1182     *    glBindVertexAttribLocation) locatoins.
   1183     *
   1184     * 3. Sort the attributes without assigned locations by number of slots
   1185     *    required in decreasing order.  Fragmentation caused by attribute
   1186     *    locations assigned by the application may prevent large attributes
   1187     *    from having enough contiguous space.
   1188     *
   1189     * 4. Assign locations to any inputs without assigned locations.
   1190     */
   1191    if (prog->Attributes != NULL) {
   1192       // declare attributes if they haven't been already by BindAttribLocation
   1193       gl_program_parameter_list * attributes = prog->Attributes;
   1194          foreach_list(node, sh->ir) {
   1195             ir_variable *const var = ((ir_instruction *) node)->as_variable();
   1196             if ((var == NULL) || (var->mode != ir_var_in))
   1197                continue;
   1198             if (_mesa_get_parameter(attributes, var->name) < 0)
   1199                 _mesa_add_parameter(attributes, var->name);
   1200          }
   1201 
   1202       for (unsigned i = 0; i < attributes->NumParameters; i++) {
   1203          gl_program_parameter * param = attributes->Parameters + i;
   1204          ir_variable * const var = sh->symbols->get_variable(param->Name);
   1205          if (!var || ir_var_in != var->mode)
   1206             continue;
   1207 
   1208          if (param->BindLocation >= 0 && !var->explicit_location)
   1209             var->location = param->Location = param->BindLocation;
   1210          else if (var->explicit_location)
   1211             param->Location = var->location;
   1212          else
   1213             var->location = -1;
   1214          const unsigned slots = count_attribute_slots(var->type);
   1215          param->Slots = slots;
   1216          if (0 > var->location)
   1217             continue;
   1218  	 /* From page 61 of the OpenGL 4.0 spec:
   1219 	  *
   1220 	  *     "LinkProgram will fail if the attribute bindings assigned by
   1221 	  *     BindAttribLocation do not leave not enough space to assign a
   1222 	  *     location for an active matrix attribute or an active attribute
   1223 	  *     array, both of which require multiple contiguous generic
   1224 	  *     attributes."
   1225 	  *
   1226 	  * Previous versions of the spec contain similar language but omit the
   1227 	  * bit about attribute arrays.
   1228 	  *
   1229 	  * Page 61 of the OpenGL 4.0 spec also says:
   1230 	  *
   1231 	  *     "It is possible for an application to bind more than one
   1232 	  *     attribute name to the same location. This is referred to as
   1233 	  *     aliasing. This will only work if only one of the aliased
   1234 	  *     attributes is active in the executable program, or if no path
   1235 	  *     through the shader consumes more than one attribute of a set
   1236 	  *     of attributes aliased to the same location. A link error can
   1237 	  *     occur if the linker determines that every path through the
   1238 	  *     shader consumes multiple aliased attributes, but
   1239 	  *     implementations are not required to generate an error in this
   1240 	  *     case."
   1241 	  *
   1242 	  * These two paragraphs are either somewhat contradictory, or I don't
   1243 	  * fully understand one or both of them.
   1244 	  */
   1245 	 /* FINISHME: The code as currently written does not support attribute
   1246 	  * FINISHME: location aliasing (see comment above).
   1247 	  */
   1248          const int attr = param->Location;
   1249 	 /* Mask representing the contiguous slots that will be used by this
   1250 	  * attribute.
   1251 	  */
   1252 	 const unsigned use_mask = (1 << slots) - 1;
   1253 	 /* Generate a link error if the set of bits requested for this
   1254 	  * attribute overlaps any previously allocated bits.
   1255 	  */
   1256 	 if ((use_mask << attr) & used_locations) {
   1257 	    linker_error_printf(prog,
   1258 				"insufficient contiguous attribute locations "
   1259 				"available for vertex shader input `%s'",
   1260 				var->name);
   1261 	    return false;
   1262 	 }
   1263 
   1264 	 used_locations |= (use_mask << attr);
   1265       }
   1266    }
   1267 
   1268    /* Temporary storage for the set of attributes that need locations assigned.
   1269     */
   1270    struct temp_attr {
   1271       unsigned slots;
   1272       ir_variable *var;
   1273 
   1274       /* Used below in the call to qsort. */
   1275       static int compare(const void *a, const void *b)
   1276       {
   1277 	 const temp_attr *const l = (const temp_attr *) a;
   1278 	 const temp_attr *const r = (const temp_attr *) b;
   1279 
   1280 	 /* Reversed because we want a descending order sort below. */
   1281 	 return r->slots - l->slots;
   1282       }
   1283    } to_assign[16];
   1284 
   1285    unsigned num_attr = 0;
   1286 
   1287    foreach_list(node, sh->ir) {
   1288       ir_variable *const var = ((ir_instruction *) node)->as_variable();
   1289       if ((var == NULL) || (var->mode != ir_var_in))
   1290          continue;
   1291       if (var->explicit_location) {
   1292 	 const unsigned slots = count_attribute_slots(var->type);
   1293 	 const unsigned use_mask = (1 << slots) - 1;
   1294 	 const int attr = var->location/* - VERT_ATTRIB_GENERIC0*/;
   1295 
   1296 	 if ((var->location >= (int)(max_attribute_index/* + VERT_ATTRIB_GENERIC0*/))
   1297 	     || (var->location < 0)) {
   1298 	    linker_error_printf(prog,
   1299 				"invalid explicit location %d specified for "
   1300 				"`%s'\n",
   1301 				(var->location < 0) ? var->location : attr,
   1302 				var->name);
   1303 	    return false;
   1304 	 } else if (var->location >= 0/*VERT_ATTRIB_GENERIC0*/) {
   1305 	    used_locations |= (use_mask << attr);
   1306 	 }
   1307       }
   1308 
   1309       /* The location was explicitly assigned, nothing to do here.
   1310        */
   1311       if (var->location != -1)
   1312 	 continue;
   1313 
   1314       to_assign[num_attr].slots = count_attribute_slots(var->type);
   1315       to_assign[num_attr].var = var;
   1316       num_attr++;
   1317    }
   1318 
   1319    /* If all of the attributes were assigned locations by the application (or
   1320     * are built-in attributes with fixed locations), return early.  This should
   1321     * be the common case.
   1322     */
   1323    if (num_attr == 0)
   1324       return true;
   1325 
   1326    qsort(to_assign, num_attr, sizeof(to_assign[0]), temp_attr::compare);
   1327 
   1328    /* VERT_ATTRIB_GENERIC0 is a psdueo-alias for VERT_ATTRIB_POS.  It can only
   1329     * be explicitly assigned by via glBindAttribLocation.  Mark it as reserved
   1330     * to prevent it from being automatically allocated below.
   1331     */
   1332    find_deref_visitor find("gl_Vertex");
   1333    find.run(sh->ir);
   1334    if (find.variable_found())
   1335       used_locations |= (1 << 0);
   1336 
   1337    for (unsigned i = 0; i < num_attr; i++) {
   1338       /* Mask representing the contiguous slots that will be used by this
   1339        * attribute.
   1340        */
   1341       const unsigned use_mask = (1 << to_assign[i].slots) - 1;
   1342 
   1343       int location = find_available_slots(used_locations, to_assign[i].slots);
   1344 
   1345       if (location < 0) {
   1346 	 linker_error_printf(prog,
   1347 			     "insufficient contiguous attribute locations "
   1348 			     "available for vertex shader input `%s'",
   1349 			     to_assign[i].var->name);
   1350 	 return false;
   1351       }
   1352 
   1353       to_assign[i].var->location = /*VERT_ATTRIB_GENERIC0 +*/ location;
   1354       used_locations |= (use_mask << location);
   1355       int paramIndex = _mesa_get_parameter(prog->Attributes, to_assign[i].var->name);
   1356       if (0 <= paramIndex)
   1357          prog->Attributes->Parameters[paramIndex].Location = location;
   1358    }
   1359 
   1360    return true;
   1361 }
   1362 
   1363 
   1364 /**
   1365  * Demote shader inputs and outputs that are not used in other stages
   1366  */
   1367 void
   1368 demote_shader_inputs_and_outputs(gl_shader *sh, enum ir_variable_mode mode)
   1369 {
   1370    foreach_list(node, sh->ir) {
   1371       ir_variable *const var = ((ir_instruction *) node)->as_variable();
   1372 
   1373       if ((var == NULL) || (var->mode != int(mode)))
   1374 	 continue;
   1375 
   1376       /* A shader 'in' or 'out' variable is only really an input or output if
   1377        * its value is used by other shader stages.  This will cause the variable
   1378        * to have a location assigned.
   1379        */
   1380       if (var->location == -1) {
   1381 	 var->mode = ir_var_auto;
   1382       }
   1383    }
   1384 }
   1385 
   1386 void
   1387 assign_varying_locations(struct gl_shader_program *prog,
   1388 			 gl_shader *producer, gl_shader *consumer)
   1389 {
   1390    prog->VaryingSlots = 0;
   1391    prog->UsesFragCoord = false;
   1392    prog->UsesPointCoord = false;
   1393    /* FINISHME: Set dynamically when geometry shader support is added. */
   1394    unsigned output_index = offsetof(VertexOutput,varyings) / sizeof(Vector4); /*VERT_RESULT_VAR0*/;
   1395    unsigned input_index = offsetof(VertexOutput,varyings) / sizeof(Vector4);
   1396 
   1397    /* Operate in a total of three passes.
   1398     *
   1399     * 1. Assign locations for any matching inputs and outputs.
   1400     *
   1401     * 2. Mark output variables in the producer that do not have locations as
   1402     *    not being outputs.  This lets the optimizer eliminate them.
   1403     *
   1404     * 3. Mark input variables in the consumer that do not have locations as
   1405     *    not being inputs.  This lets the optimizer eliminate them.
   1406     */
   1407    foreach_list(node, producer->ir) {
   1408       ir_variable *const var = ((ir_instruction *) node)->as_variable();
   1409       if (!var || ir_var_out != var->mode)
   1410          continue;
   1411       if (!strcmp("gl_Position", var->name))
   1412          var->location = offsetof(VertexOutput,position) / sizeof(Vector4);
   1413       else if (!strcmp("gl_PointSize", var->name))
   1414          var->location = offsetof(VertexOutput,pointSize) / sizeof(Vector4);
   1415       else
   1416          var->location = -1;
   1417    }
   1418    foreach_list(node, consumer->ir) {
   1419       ir_variable *const var = ((ir_instruction *) node)->as_variable();
   1420       if (!var || ir_var_in != var->mode)
   1421          continue;
   1422       if (!strcmp("gl_FragCoord", var->name))
   1423       {
   1424          var->location = offsetof(VertexOutput,position)/sizeof(Vector4);
   1425          prog->UsesFragCoord = true;
   1426       }
   1427       else if (!strcmp("gl_FrontFacing", var->name))
   1428          var->location = offsetof(VertexOutput,frontFacingPointCoord)/sizeof(Vector4);
   1429       else if (!strcmp("gl_PointCoord", var->name))
   1430       {
   1431          var->location = offsetof(VertexOutput,frontFacingPointCoord)/sizeof(Vector4);
   1432          prog->UsesPointCoord = true;
   1433       }
   1434       else
   1435          var->location = -1;
   1436    }
   1437 
   1438    foreach_list(node, producer->ir) {
   1439       ir_variable *const output_var = ((ir_instruction *) node)->as_variable();
   1440 
   1441       if ((output_var == NULL) || (output_var->mode != ir_var_out))
   1442          continue;
   1443       int paramIndex = _mesa_get_parameter(prog->Varying, output_var->name);
   1444       if (paramIndex < 0)
   1445          paramIndex = _mesa_add_parameter(prog->Varying, output_var->name);
   1446       gl_program_parameter * param = prog->Varying->Parameters + paramIndex;
   1447       if (output_var->location != -1)
   1448       {
   1449          param->BindLocation = output_var->location;
   1450          continue;
   1451       }
   1452 
   1453       ir_variable *const input_var =
   1454 	 consumer->symbols->get_variable(output_var->name);
   1455 
   1456       if ((input_var == NULL) || (input_var->mode != ir_var_in))
   1457 	 continue;
   1458 
   1459       assert(input_var->location == -1);
   1460 
   1461       param->BindLocation = output_var->location = output_index;
   1462       param->Location = input_var->location = input_index;
   1463 
   1464       /* FINISHME: Support for "varying" records in GLSL 1.50. */
   1465       assert(!output_var->type->is_record());
   1466 
   1467       if (output_var->type->is_array()) {
   1468 	 const unsigned slots = output_var->type->length
   1469 	    * output_var->type->fields.array->matrix_columns;
   1470 
   1471 	 output_index += slots;
   1472 	 input_index += slots;
   1473     prog->VaryingSlots += slots;
   1474       } else {
   1475 	 const unsigned slots = output_var->type->matrix_columns;
   1476 
   1477 	 output_index += slots;
   1478 	 input_index += slots;
   1479     prog->VaryingSlots += slots;
   1480       }
   1481    }
   1482 
   1483    foreach_list(node, consumer->ir) {
   1484       ir_variable *const var = ((ir_instruction *) node)->as_variable();
   1485 
   1486       if ((var == NULL) || (var->mode != ir_var_in))
   1487 	 continue;
   1488       int paramIndex = _mesa_get_parameter(prog->Varying, var->name);
   1489       if (paramIndex < 0)
   1490          paramIndex = _mesa_add_parameter(prog->Varying, var->name);
   1491       gl_program_parameter * param = prog->Varying->Parameters + paramIndex;
   1492 
   1493       if (var->location == -1) {
   1494          if (prog->Version <= 120) {
   1495 	    /* On page 25 (page 31 of the PDF) of the GLSL 1.20 spec:
   1496 	     *
   1497 	     *     Only those varying variables used (i.e. read) in
   1498 	     *     the fragment shader executable must be written to
   1499 	     *     by the vertex shader executable; declaring
   1500 	     *     superfluous varying variables in a vertex shader is
   1501 	     *     permissible.
   1502 	     *
   1503 	     * We interpret this text as meaning that the VS must
   1504 	     * write the variable for the FS to read it.  See
   1505 	     * "glsl1-varying read but not written" in piglit.
   1506 	     */
   1507 
   1508             linker_error_printf(prog, "fragment shader varying %s not written "
   1509                "by vertex shader\n.", var->name);
   1510             prog->LinkStatus = false;
   1511          }
   1512 
   1513 	 /* An 'in' variable is only really a shader input if its
   1514 	  * value is written by the previous stage.
   1515 	  */
   1516          var->mode = ir_var_auto;
   1517       }
   1518       else
   1519          param->Location = var->location;
   1520    }
   1521 }
   1522 
   1523 
   1524 void
   1525 link_shaders(const struct gl_context *ctx, struct gl_shader_program *prog)
   1526 {
   1527    //void *mem_ctx = hieralloc_init("temporary linker context");
   1528    void * mem_ctx = prog; // need linked & cloned ir to persist
   1529 
   1530    prog->LinkStatus = false;
   1531    prog->Validated = false;
   1532    prog->_Used = false;
   1533 
   1534    if (prog->InfoLog != NULL)
   1535       hieralloc_free(prog->InfoLog);
   1536 
   1537    prog->InfoLog = hieralloc_strdup(prog, "");
   1538 
   1539    /* Separate the shaders into groups based on their type.
   1540     */
   1541    struct gl_shader **vert_shader_list;
   1542    unsigned num_vert_shaders = 0;
   1543    struct gl_shader **frag_shader_list;
   1544    unsigned num_frag_shaders = 0;
   1545 
   1546    vert_shader_list = (struct gl_shader **)
   1547       calloc(2 * prog->NumShaders, sizeof(struct gl_shader *));
   1548    frag_shader_list =  &vert_shader_list[prog->NumShaders];
   1549 
   1550    unsigned min_version = UINT_MAX;
   1551    unsigned max_version = 0;
   1552    for (unsigned i = 0; i < prog->NumShaders; i++) {
   1553       min_version = MIN2(min_version, prog->Shaders[i]->Version);
   1554       max_version = MAX2(max_version, prog->Shaders[i]->Version);
   1555 
   1556       switch (prog->Shaders[i]->Type) {
   1557       case GL_VERTEX_SHADER:
   1558 	 vert_shader_list[num_vert_shaders] = prog->Shaders[i];
   1559 	 num_vert_shaders++;
   1560 	 break;
   1561       case GL_FRAGMENT_SHADER:
   1562 	 frag_shader_list[num_frag_shaders] = prog->Shaders[i];
   1563 	 num_frag_shaders++;
   1564 	 break;
   1565       case GL_GEOMETRY_SHADER:
   1566 	 /* FINISHME: Support geometry shaders. */
   1567 	 assert(prog->Shaders[i]->Type != GL_GEOMETRY_SHADER);
   1568 	 break;
   1569       }
   1570    }
   1571 
   1572    /* Previous to GLSL version 1.30, different compilation units could mix and
   1573     * match shading language versions.  With GLSL 1.30 and later, the versions
   1574     * of all shaders must match.
   1575     */
   1576    assert(min_version >= 100);
   1577    assert(max_version <= 130);
   1578    if ((max_version >= 130 || min_version == 100)
   1579        && min_version != max_version) {
   1580       linker_error_printf(prog, "all shaders must use same shading "
   1581 			  "language version\n");
   1582       goto done;
   1583    }
   1584 
   1585    prog->Version = max_version;
   1586 
   1587    for (unsigned int i = 0; i < MESA_SHADER_TYPES; i++) {
   1588       if (prog->_LinkedShaders[i] != NULL)
   1589          _mesa_delete_shader(ctx, prog->_LinkedShaders[i]);
   1590 
   1591       prog->_LinkedShaders[i] = NULL;
   1592    }
   1593 
   1594    /* Link all shaders for a particular stage and validate the result.
   1595     */
   1596    if (num_vert_shaders > 0) {
   1597       gl_shader *const sh =
   1598 	 link_intrastage_shaders(mem_ctx, ctx, prog, vert_shader_list,
   1599 				 num_vert_shaders);
   1600 
   1601       if (sh == NULL)
   1602 	 goto done;
   1603 
   1604       if (!validate_vertex_shader_executable(prog, sh))
   1605 	 goto done;
   1606 
   1607       _mesa_reference_shader(ctx, &prog->_LinkedShaders[MESA_SHADER_VERTEX],
   1608 			     sh);
   1609    }
   1610 
   1611    if (num_frag_shaders > 0) {
   1612       gl_shader *const sh =
   1613 	 link_intrastage_shaders(mem_ctx, ctx, prog, frag_shader_list,
   1614 				 num_frag_shaders);
   1615 
   1616       if (sh == NULL)
   1617 	 goto done;
   1618 
   1619       if (!validate_fragment_shader_executable(prog, sh))
   1620 	 goto done;
   1621 
   1622       _mesa_reference_shader(ctx, &prog->_LinkedShaders[MESA_SHADER_FRAGMENT],
   1623 			     sh);
   1624    }
   1625 
   1626    /* Here begins the inter-stage linking phase.  Some initial validation is
   1627     * performed, then locations are assigned for uniforms, attributes, and
   1628     * varyings.
   1629     */
   1630    if (cross_validate_uniforms(prog)) {
   1631       unsigned prev;
   1632 
   1633       for (prev = 0; prev < MESA_SHADER_TYPES; prev++) {
   1634 	 if (prog->_LinkedShaders[prev] != NULL)
   1635 	    break;
   1636       }
   1637 
   1638       /* Validate the inputs of each stage with the output of the preceeding
   1639        * stage.
   1640        */
   1641       for (unsigned i = prev + 1; i < MESA_SHADER_TYPES; i++) {
   1642 	 if (prog->_LinkedShaders[i] == NULL)
   1643 	    continue;
   1644 
   1645 	 if (!cross_validate_outputs_to_inputs(prog,
   1646 					       prog->_LinkedShaders[prev],
   1647 					       prog->_LinkedShaders[i]))
   1648 	    goto done;
   1649 
   1650 	 prev = i;
   1651       }
   1652 
   1653       prog->LinkStatus = true;
   1654    }
   1655 
   1656    /* Do common optimization before assigning storage for attributes,
   1657     * uniforms, and varyings.  Later optimization could possibly make
   1658     * some of that unused.
   1659     */
   1660    for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
   1661       if (prog->_LinkedShaders[i] == NULL)
   1662 	 continue;
   1663 
   1664       while (do_common_optimization(prog->_LinkedShaders[i]->ir, true, 32))
   1665 	 ;
   1666    }
   1667 
   1668    update_array_sizes(prog);
   1669 
   1670    assign_uniform_locations(prog);
   1671 
   1672    if (prog->_LinkedShaders[MESA_SHADER_VERTEX] != NULL) {
   1673       /* FINISHME: The value of the max_attribute_index parameter is
   1674        * FINISHME: implementation dependent based on the value of
   1675        * FINISHME: GL_MAX_VERTEX_ATTRIBS.  GL_MAX_VERTEX_ATTRIBS must be
   1676        * FINISHME: at least 16, so hardcode 16 for now.
   1677        */
   1678       if (!assign_attribute_locations(prog, 16)) {
   1679 	 prog->LinkStatus = false;
   1680 	 goto done;
   1681       }
   1682       prog->AttributeSlots = 0;
   1683       for (unsigned i = 0; i < prog->Attributes->NumParameters; i++)
   1684       {
   1685          const gl_program_parameter & param = prog->Attributes->Parameters[i];
   1686          if (param.Location + param.Slots > prog->AttributeSlots)
   1687             prog->AttributeSlots = param.Location + param.Slots;
   1688       }
   1689    }
   1690 
   1691    unsigned prev;
   1692    for (prev = 0; prev < MESA_SHADER_TYPES; prev++) {
   1693       if (prog->_LinkedShaders[prev] != NULL)
   1694 	 break;
   1695    }
   1696 
   1697    for (unsigned i = prev + 1; i < MESA_SHADER_TYPES; i++) {
   1698       if (prog->_LinkedShaders[i] == NULL)
   1699 	 continue;
   1700 
   1701       assign_varying_locations(prog,
   1702 			       prog->_LinkedShaders[prev],
   1703 			       prog->_LinkedShaders[i]);
   1704       prev = i;
   1705    }
   1706 
   1707    if (prog->_LinkedShaders[MESA_SHADER_VERTEX] != NULL) {
   1708       demote_shader_inputs_and_outputs(prog->_LinkedShaders[MESA_SHADER_VERTEX],
   1709 				       ir_var_out);
   1710    }
   1711 
   1712    if (prog->_LinkedShaders[MESA_SHADER_GEOMETRY] != NULL) {
   1713       gl_shader *const sh = prog->_LinkedShaders[MESA_SHADER_GEOMETRY];
   1714 
   1715       demote_shader_inputs_and_outputs(sh, ir_var_in);
   1716       demote_shader_inputs_and_outputs(sh, ir_var_inout);
   1717       demote_shader_inputs_and_outputs(sh, ir_var_out);
   1718    }
   1719 
   1720    if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] != NULL) {
   1721       gl_shader *const sh = prog->_LinkedShaders[MESA_SHADER_FRAGMENT];
   1722 
   1723       demote_shader_inputs_and_outputs(sh, ir_var_in);
   1724 
   1725       foreach_list(node, sh->ir) {
   1726          ir_variable *const var = ((ir_instruction *) node)->as_variable();
   1727          if (!var || ir_var_out != var->mode)
   1728             continue;
   1729          if (!strcmp("gl_FragColor", var->name) || !strcmp("gl_FragData", var->name))
   1730          {
   1731             int paramIndex = _mesa_get_parameter(prog->Varying, var->name);
   1732             if (0 > paramIndex)
   1733                paramIndex = _mesa_add_parameter(prog->Varying, var->name);
   1734             var->location= offsetof(VertexOutput,fragColor)/sizeof(Vector4);
   1735             prog->Varying->Parameters[paramIndex].Location = var->location;
   1736          }
   1737          else
   1738             assert(0);
   1739       }
   1740    }
   1741 
   1742    //prog->InputOuputBase = malloc(1024 * 8);
   1743    //memset(prog->InputOuputBase, 0xdd, 1024 * 8);
   1744    prog->InputOuputBase = hieralloc_realloc(prog, prog->InputOuputBase, char,
   1745       (prog->Uniforms->Slots + prog->Uniforms->SamplerSlots) * sizeof(float) * 4 + sizeof(VertexInput) + sizeof(VertexOutput) + 16);
   1746    prog->ValuesVertexInput = (float (*)[4])((((unsigned long)prog->InputOuputBase) + 15L) & (~15L));
   1747    prog->ValuesVertexOutput = (float (*)[4])((unsigned long)prog->ValuesVertexInput + sizeof(VertexInput));
   1748    prog->ValuesUniform = (float (*)[4])((unsigned long)prog->ValuesVertexOutput + sizeof(VertexOutput));
   1749 
   1750    // initialize uniforms to zero after link
   1751    memset(prog->ValuesUniform, 0, sizeof(float) * 4 * (prog->Uniforms->Slots + prog->Uniforms->SamplerSlots));
   1752 
   1753 done:
   1754    free(vert_shader_list);
   1755 
   1756    for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
   1757       if (prog->_LinkedShaders[i] == NULL)
   1758 	 continue;
   1759 
   1760       /* Retain any live IR, but trash the rest. */
   1761       reparent_ir(prog->_LinkedShaders[i]->ir, prog->_LinkedShaders[i]->ir);
   1762    }
   1763 
   1764    //hieralloc_free(mem_ctx);
   1765 }