1 /* LibTomCrypt, modular cryptographic library -- Tom St Denis 2 * 3 * LibTomCrypt is a library that provides various cryptographic 4 * algorithms in a highly modular and flexible manner. 5 * 6 * The library is free for all purposes without any express 7 * guarantee it works. 8 * 9 * Tom St Denis, tomstdenis (at) gmail.com, http://libtomcrypt.com 10 */ 11 /**********************************************************************\ 12 * To commemorate the 1996 RSA Data Security Conference, the following * 13 * code is released into the public domain by its author. Prost! * 14 * * 15 * This cipher uses 16-bit words and little-endian byte ordering. * 16 * I wonder which processor it was optimized for? * 17 * * 18 * Thanks to CodeView, SoftIce, and D86 for helping bring this code to * 19 * the public. * 20 \**********************************************************************/ 21 #include <tomcrypt.h> 22 23 /** 24 @file rc2.c 25 Implementation of RC2 26 */ 27 28 #ifdef RC2 29 30 const struct ltc_cipher_descriptor rc2_desc = { 31 "rc2", 32 12, 8, 128, 8, 16, 33 &rc2_setup, 34 &rc2_ecb_encrypt, 35 &rc2_ecb_decrypt, 36 &rc2_test, 37 &rc2_done, 38 &rc2_keysize, 39 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL 40 }; 41 42 /* 256-entry permutation table, probably derived somehow from pi */ 43 static const unsigned char permute[256] = { 44 217,120,249,196, 25,221,181,237, 40,233,253,121, 74,160,216,157, 45 198,126, 55,131, 43,118, 83,142, 98, 76,100,136, 68,139,251,162, 46 23,154, 89,245,135,179, 79, 19, 97, 69,109,141, 9,129,125, 50, 47 189,143, 64,235,134,183,123, 11,240,149, 33, 34, 92,107, 78,130, 48 84,214,101,147,206, 96,178, 28,115, 86,192, 20,167,140,241,220, 49 18,117,202, 31, 59,190,228,209, 66, 61,212, 48,163, 60,182, 38, 50 111,191, 14,218, 70,105, 7, 87, 39,242, 29,155,188,148, 67, 3, 51 248, 17,199,246,144,239, 62,231, 6,195,213, 47,200,102, 30,215, 52 8,232,234,222,128, 82,238,247,132,170,114,172, 53, 77,106, 42, 53 150, 26,210,113, 90, 21, 73,116, 75,159,208, 94, 4, 24,164,236, 54 194,224, 65,110, 15, 81,203,204, 36,145,175, 80,161,244,112, 57, 55 153,124, 58,133, 35,184,180,122,252, 2, 54, 91, 37, 85,151, 49, 56 45, 93,250,152,227,138,146,174, 5,223, 41, 16,103,108,186,201, 57 211, 0,230,207,225,158,168, 44, 99, 22, 1, 63, 88,226,137,169, 58 13, 56, 52, 27,171, 51,255,176,187, 72, 12, 95,185,177,205, 46, 59 197,243,219, 71,229,165,156,119, 10,166, 32,104,254,127,193,173 60 }; 61 62 /** 63 Initialize the RC2 block cipher 64 @param key The symmetric key you wish to pass 65 @param keylen The key length in bytes 66 @param num_rounds The number of rounds desired (0 for default) 67 @param skey The key in as scheduled by this function. 68 @return CRYPT_OK if successful 69 */ 70 int rc2_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey) 71 { 72 unsigned *xkey = skey->rc2.xkey; 73 unsigned char tmp[128]; 74 unsigned T8, TM; 75 int i, bits; 76 77 LTC_ARGCHK(key != NULL); 78 LTC_ARGCHK(skey != NULL); 79 80 if (keylen < 8 || keylen > 128) { 81 return CRYPT_INVALID_KEYSIZE; 82 } 83 84 if (num_rounds != 0 && num_rounds != 16) { 85 return CRYPT_INVALID_ROUNDS; 86 } 87 88 for (i = 0; i < keylen; i++) { 89 tmp[i] = key[i] & 255; 90 } 91 92 /* Phase 1: Expand input key to 128 bytes */ 93 if (keylen < 128) { 94 for (i = keylen; i < 128; i++) { 95 tmp[i] = permute[(tmp[i - 1] + tmp[i - keylen]) & 255]; 96 } 97 } 98 99 /* Phase 2 - reduce effective key size to "bits" */ 100 bits = keylen<<3; 101 T8 = (unsigned)(bits+7)>>3; 102 TM = (255 >> (unsigned)(7 & -bits)); 103 tmp[128 - T8] = permute[tmp[128 - T8] & TM]; 104 for (i = 127 - T8; i >= 0; i--) { 105 tmp[i] = permute[tmp[i + 1] ^ tmp[i + T8]]; 106 } 107 108 /* Phase 3 - copy to xkey in little-endian order */ 109 for (i = 0; i < 64; i++) { 110 xkey[i] = (unsigned)tmp[2*i] + ((unsigned)tmp[2*i+1] << 8); 111 } 112 113 #ifdef LTC_CLEAN_STACK 114 zeromem(tmp, sizeof(tmp)); 115 #endif 116 117 return CRYPT_OK; 118 } 119 120 /**********************************************************************\ 121 * Encrypt an 8-byte block of plaintext using the given key. * 122 \**********************************************************************/ 123 /** 124 Encrypts a block of text with RC2 125 @param pt The input plaintext (8 bytes) 126 @param ct The output ciphertext (8 bytes) 127 @param skey The key as scheduled 128 @return CRYPT_OK if successful 129 */ 130 #ifdef LTC_CLEAN_STACK 131 static int _rc2_ecb_encrypt( const unsigned char *pt, 132 unsigned char *ct, 133 symmetric_key *skey) 134 #else 135 int rc2_ecb_encrypt( const unsigned char *pt, 136 unsigned char *ct, 137 symmetric_key *skey) 138 #endif 139 { 140 unsigned *xkey; 141 unsigned x76, x54, x32, x10, i; 142 143 LTC_ARGCHK(pt != NULL); 144 LTC_ARGCHK(ct != NULL); 145 LTC_ARGCHK(skey != NULL); 146 147 xkey = skey->rc2.xkey; 148 149 x76 = ((unsigned)pt[7] << 8) + (unsigned)pt[6]; 150 x54 = ((unsigned)pt[5] << 8) + (unsigned)pt[4]; 151 x32 = ((unsigned)pt[3] << 8) + (unsigned)pt[2]; 152 x10 = ((unsigned)pt[1] << 8) + (unsigned)pt[0]; 153 154 for (i = 0; i < 16; i++) { 155 x10 = (x10 + (x32 & ~x76) + (x54 & x76) + xkey[4*i+0]) & 0xFFFF; 156 x10 = ((x10 << 1) | (x10 >> 15)); 157 158 x32 = (x32 + (x54 & ~x10) + (x76 & x10) + xkey[4*i+1]) & 0xFFFF; 159 x32 = ((x32 << 2) | (x32 >> 14)); 160 161 x54 = (x54 + (x76 & ~x32) + (x10 & x32) + xkey[4*i+2]) & 0xFFFF; 162 x54 = ((x54 << 3) | (x54 >> 13)); 163 164 x76 = (x76 + (x10 & ~x54) + (x32 & x54) + xkey[4*i+3]) & 0xFFFF; 165 x76 = ((x76 << 5) | (x76 >> 11)); 166 167 if (i == 4 || i == 10) { 168 x10 = (x10 + xkey[x76 & 63]) & 0xFFFF; 169 x32 = (x32 + xkey[x10 & 63]) & 0xFFFF; 170 x54 = (x54 + xkey[x32 & 63]) & 0xFFFF; 171 x76 = (x76 + xkey[x54 & 63]) & 0xFFFF; 172 } 173 } 174 175 ct[0] = (unsigned char)x10; 176 ct[1] = (unsigned char)(x10 >> 8); 177 ct[2] = (unsigned char)x32; 178 ct[3] = (unsigned char)(x32 >> 8); 179 ct[4] = (unsigned char)x54; 180 ct[5] = (unsigned char)(x54 >> 8); 181 ct[6] = (unsigned char)x76; 182 ct[7] = (unsigned char)(x76 >> 8); 183 184 return CRYPT_OK; 185 } 186 187 #ifdef LTC_CLEAN_STACK 188 int rc2_ecb_encrypt( const unsigned char *pt, 189 unsigned char *ct, 190 symmetric_key *skey) 191 { 192 int err = _rc2_ecb_encrypt(pt, ct, skey); 193 burn_stack(sizeof(unsigned *) + sizeof(unsigned) * 5); 194 return err; 195 } 196 #endif 197 198 /**********************************************************************\ 199 * Decrypt an 8-byte block of ciphertext using the given key. * 200 \**********************************************************************/ 201 /** 202 Decrypts a block of text with RC2 203 @param ct The input ciphertext (8 bytes) 204 @param pt The output plaintext (8 bytes) 205 @param skey The key as scheduled 206 @return CRYPT_OK if successful 207 */ 208 #ifdef LTC_CLEAN_STACK 209 static int _rc2_ecb_decrypt( const unsigned char *ct, 210 unsigned char *pt, 211 symmetric_key *skey) 212 #else 213 int rc2_ecb_decrypt( const unsigned char *ct, 214 unsigned char *pt, 215 symmetric_key *skey) 216 #endif 217 { 218 unsigned x76, x54, x32, x10; 219 unsigned *xkey; 220 int i; 221 222 LTC_ARGCHK(pt != NULL); 223 LTC_ARGCHK(ct != NULL); 224 LTC_ARGCHK(skey != NULL); 225 226 xkey = skey->rc2.xkey; 227 228 x76 = ((unsigned)ct[7] << 8) + (unsigned)ct[6]; 229 x54 = ((unsigned)ct[5] << 8) + (unsigned)ct[4]; 230 x32 = ((unsigned)ct[3] << 8) + (unsigned)ct[2]; 231 x10 = ((unsigned)ct[1] << 8) + (unsigned)ct[0]; 232 233 for (i = 15; i >= 0; i--) { 234 if (i == 4 || i == 10) { 235 x76 = (x76 - xkey[x54 & 63]) & 0xFFFF; 236 x54 = (x54 - xkey[x32 & 63]) & 0xFFFF; 237 x32 = (x32 - xkey[x10 & 63]) & 0xFFFF; 238 x10 = (x10 - xkey[x76 & 63]) & 0xFFFF; 239 } 240 241 x76 = ((x76 << 11) | (x76 >> 5)); 242 x76 = (x76 - ((x10 & ~x54) + (x32 & x54) + xkey[4*i+3])) & 0xFFFF; 243 244 x54 = ((x54 << 13) | (x54 >> 3)); 245 x54 = (x54 - ((x76 & ~x32) + (x10 & x32) + xkey[4*i+2])) & 0xFFFF; 246 247 x32 = ((x32 << 14) | (x32 >> 2)); 248 x32 = (x32 - ((x54 & ~x10) + (x76 & x10) + xkey[4*i+1])) & 0xFFFF; 249 250 x10 = ((x10 << 15) | (x10 >> 1)); 251 x10 = (x10 - ((x32 & ~x76) + (x54 & x76) + xkey[4*i+0])) & 0xFFFF; 252 } 253 254 pt[0] = (unsigned char)x10; 255 pt[1] = (unsigned char)(x10 >> 8); 256 pt[2] = (unsigned char)x32; 257 pt[3] = (unsigned char)(x32 >> 8); 258 pt[4] = (unsigned char)x54; 259 pt[5] = (unsigned char)(x54 >> 8); 260 pt[6] = (unsigned char)x76; 261 pt[7] = (unsigned char)(x76 >> 8); 262 263 return CRYPT_OK; 264 } 265 266 #ifdef LTC_CLEAN_STACK 267 int rc2_ecb_decrypt( const unsigned char *ct, 268 unsigned char *pt, 269 symmetric_key *skey) 270 { 271 int err = _rc2_ecb_decrypt(ct, pt, skey); 272 burn_stack(sizeof(unsigned *) + sizeof(unsigned) * 4 + sizeof(int)); 273 return err; 274 } 275 #endif 276 277 /** 278 Performs a self-test of the RC2 block cipher 279 @return CRYPT_OK if functional, CRYPT_NOP if self-test has been disabled 280 */ 281 int rc2_test(void) 282 { 283 #ifndef LTC_TEST 284 return CRYPT_NOP; 285 #else 286 static const struct { 287 int keylen; 288 unsigned char key[16], pt[8], ct[8]; 289 } tests[] = { 290 291 { 8, 292 { 0x30, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 293 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, 294 { 0x10, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01 }, 295 { 0x30, 0x64, 0x9e, 0xdf, 0x9b, 0xe7, 0xd2, 0xc2 } 296 297 }, 298 { 16, 299 { 0x88, 0xbc, 0xa9, 0x0e, 0x90, 0x87, 0x5a, 0x7f, 300 0x0f, 0x79, 0xc3, 0x84, 0x62, 0x7b, 0xaf, 0xb2 }, 301 { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, 302 { 0x22, 0x69, 0x55, 0x2a, 0xb0, 0xf8, 0x5c, 0xa6 } 303 } 304 }; 305 int x, y, err; 306 symmetric_key skey; 307 unsigned char tmp[2][8]; 308 309 for (x = 0; x < (int)(sizeof(tests) / sizeof(tests[0])); x++) { 310 zeromem(tmp, sizeof(tmp)); 311 if ((err = rc2_setup(tests[x].key, tests[x].keylen, 0, &skey)) != CRYPT_OK) { 312 return err; 313 } 314 315 rc2_ecb_encrypt(tests[x].pt, tmp[0], &skey); 316 rc2_ecb_decrypt(tmp[0], tmp[1], &skey); 317 318 if (XMEMCMP(tmp[0], tests[x].ct, 8) != 0 || XMEMCMP(tmp[1], tests[x].pt, 8) != 0) { 319 return CRYPT_FAIL_TESTVECTOR; 320 } 321 322 /* now see if we can encrypt all zero bytes 1000 times, decrypt and come back where we started */ 323 for (y = 0; y < 8; y++) tmp[0][y] = 0; 324 for (y = 0; y < 1000; y++) rc2_ecb_encrypt(tmp[0], tmp[0], &skey); 325 for (y = 0; y < 1000; y++) rc2_ecb_decrypt(tmp[0], tmp[0], &skey); 326 for (y = 0; y < 8; y++) if (tmp[0][y] != 0) return CRYPT_FAIL_TESTVECTOR; 327 } 328 return CRYPT_OK; 329 #endif 330 } 331 332 /** Terminate the context 333 @param skey The scheduled key 334 */ 335 void rc2_done(symmetric_key *skey) 336 { 337 } 338 339 /** 340 Gets suitable key size 341 @param keysize [in/out] The length of the recommended key (in bytes). This function will store the suitable size back in this variable. 342 @return CRYPT_OK if the input key size is acceptable. 343 */ 344 int rc2_keysize(int *keysize) 345 { 346 LTC_ARGCHK(keysize != NULL); 347 if (*keysize < 8) { 348 return CRYPT_INVALID_KEYSIZE; 349 } else if (*keysize > 128) { 350 *keysize = 128; 351 } 352 return CRYPT_OK; 353 } 354 355 #endif 356 357 358 359 360 /* $Source: /cvs/libtom/libtomcrypt/src/ciphers/rc2.c,v $ */ 361 /* $Revision: 1.12 $ */ 362 /* $Date: 2006/11/08 23:01:06 $ */ 363