1 /* LibTomCrypt, modular cryptographic library -- Tom St Denis 2 * 3 * LibTomCrypt is a library that provides various cryptographic 4 * algorithms in a highly modular and flexible manner. 5 * 6 * The library is free for all purposes without any express 7 * guarantee it works. 8 * 9 * Tom St Denis, tomstdenis (at) gmail.com, http://libtomcrypt.com 10 */ 11 #include "tomcrypt.h" 12 13 /** 14 @param rmd256.c 15 RMD256 Hash function 16 */ 17 18 #ifdef RIPEMD256 19 20 const struct ltc_hash_descriptor rmd256_desc = 21 { 22 "rmd256", 23 8, 24 16, 25 64, 26 27 /* OID */ 28 { 1, 3, 36, 3, 2, 3 }, 29 6, 30 31 &rmd256_init, 32 &rmd256_process, 33 &rmd256_done, 34 &rmd256_test, 35 NULL 36 }; 37 38 /* the four basic functions F(), G() and H() */ 39 #define F(x, y, z) ((x) ^ (y) ^ (z)) 40 #define G(x, y, z) (((x) & (y)) | (~(x) & (z))) 41 #define H(x, y, z) (((x) | ~(y)) ^ (z)) 42 #define I(x, y, z) (((x) & (z)) | ((y) & ~(z))) 43 44 /* the eight basic operations FF() through III() */ 45 #define FF(a, b, c, d, x, s) \ 46 (a) += F((b), (c), (d)) + (x);\ 47 (a) = ROLc((a), (s)); 48 49 #define GG(a, b, c, d, x, s) \ 50 (a) += G((b), (c), (d)) + (x) + 0x5a827999UL;\ 51 (a) = ROLc((a), (s)); 52 53 #define HH(a, b, c, d, x, s) \ 54 (a) += H((b), (c), (d)) + (x) + 0x6ed9eba1UL;\ 55 (a) = ROLc((a), (s)); 56 57 #define II(a, b, c, d, x, s) \ 58 (a) += I((b), (c), (d)) + (x) + 0x8f1bbcdcUL;\ 59 (a) = ROLc((a), (s)); 60 61 #define FFF(a, b, c, d, x, s) \ 62 (a) += F((b), (c), (d)) + (x);\ 63 (a) = ROLc((a), (s)); 64 65 #define GGG(a, b, c, d, x, s) \ 66 (a) += G((b), (c), (d)) + (x) + 0x6d703ef3UL;\ 67 (a) = ROLc((a), (s)); 68 69 #define HHH(a, b, c, d, x, s) \ 70 (a) += H((b), (c), (d)) + (x) + 0x5c4dd124UL;\ 71 (a) = ROLc((a), (s)); 72 73 #define III(a, b, c, d, x, s) \ 74 (a) += I((b), (c), (d)) + (x) + 0x50a28be6UL;\ 75 (a) = ROLc((a), (s)); 76 77 #ifdef LTC_CLEAN_STACK 78 static int _rmd256_compress(hash_state *md, unsigned char *buf) 79 #else 80 static int rmd256_compress(hash_state *md, unsigned char *buf) 81 #endif 82 { 83 ulong32 aa,bb,cc,dd,aaa,bbb,ccc,ddd,tmp,X[16]; 84 int i; 85 86 /* load words X */ 87 for (i = 0; i < 16; i++){ 88 LOAD32L(X[i], buf + (4 * i)); 89 } 90 91 /* load state */ 92 aa = md->rmd256.state[0]; 93 bb = md->rmd256.state[1]; 94 cc = md->rmd256.state[2]; 95 dd = md->rmd256.state[3]; 96 aaa = md->rmd256.state[4]; 97 bbb = md->rmd256.state[5]; 98 ccc = md->rmd256.state[6]; 99 ddd = md->rmd256.state[7]; 100 101 /* round 1 */ 102 FF(aa, bb, cc, dd, X[ 0], 11); 103 FF(dd, aa, bb, cc, X[ 1], 14); 104 FF(cc, dd, aa, bb, X[ 2], 15); 105 FF(bb, cc, dd, aa, X[ 3], 12); 106 FF(aa, bb, cc, dd, X[ 4], 5); 107 FF(dd, aa, bb, cc, X[ 5], 8); 108 FF(cc, dd, aa, bb, X[ 6], 7); 109 FF(bb, cc, dd, aa, X[ 7], 9); 110 FF(aa, bb, cc, dd, X[ 8], 11); 111 FF(dd, aa, bb, cc, X[ 9], 13); 112 FF(cc, dd, aa, bb, X[10], 14); 113 FF(bb, cc, dd, aa, X[11], 15); 114 FF(aa, bb, cc, dd, X[12], 6); 115 FF(dd, aa, bb, cc, X[13], 7); 116 FF(cc, dd, aa, bb, X[14], 9); 117 FF(bb, cc, dd, aa, X[15], 8); 118 119 /* parallel round 1 */ 120 III(aaa, bbb, ccc, ddd, X[ 5], 8); 121 III(ddd, aaa, bbb, ccc, X[14], 9); 122 III(ccc, ddd, aaa, bbb, X[ 7], 9); 123 III(bbb, ccc, ddd, aaa, X[ 0], 11); 124 III(aaa, bbb, ccc, ddd, X[ 9], 13); 125 III(ddd, aaa, bbb, ccc, X[ 2], 15); 126 III(ccc, ddd, aaa, bbb, X[11], 15); 127 III(bbb, ccc, ddd, aaa, X[ 4], 5); 128 III(aaa, bbb, ccc, ddd, X[13], 7); 129 III(ddd, aaa, bbb, ccc, X[ 6], 7); 130 III(ccc, ddd, aaa, bbb, X[15], 8); 131 III(bbb, ccc, ddd, aaa, X[ 8], 11); 132 III(aaa, bbb, ccc, ddd, X[ 1], 14); 133 III(ddd, aaa, bbb, ccc, X[10], 14); 134 III(ccc, ddd, aaa, bbb, X[ 3], 12); 135 III(bbb, ccc, ddd, aaa, X[12], 6); 136 137 tmp = aa; aa = aaa; aaa = tmp; 138 139 /* round 2 */ 140 GG(aa, bb, cc, dd, X[ 7], 7); 141 GG(dd, aa, bb, cc, X[ 4], 6); 142 GG(cc, dd, aa, bb, X[13], 8); 143 GG(bb, cc, dd, aa, X[ 1], 13); 144 GG(aa, bb, cc, dd, X[10], 11); 145 GG(dd, aa, bb, cc, X[ 6], 9); 146 GG(cc, dd, aa, bb, X[15], 7); 147 GG(bb, cc, dd, aa, X[ 3], 15); 148 GG(aa, bb, cc, dd, X[12], 7); 149 GG(dd, aa, bb, cc, X[ 0], 12); 150 GG(cc, dd, aa, bb, X[ 9], 15); 151 GG(bb, cc, dd, aa, X[ 5], 9); 152 GG(aa, bb, cc, dd, X[ 2], 11); 153 GG(dd, aa, bb, cc, X[14], 7); 154 GG(cc, dd, aa, bb, X[11], 13); 155 GG(bb, cc, dd, aa, X[ 8], 12); 156 157 /* parallel round 2 */ 158 HHH(aaa, bbb, ccc, ddd, X[ 6], 9); 159 HHH(ddd, aaa, bbb, ccc, X[11], 13); 160 HHH(ccc, ddd, aaa, bbb, X[ 3], 15); 161 HHH(bbb, ccc, ddd, aaa, X[ 7], 7); 162 HHH(aaa, bbb, ccc, ddd, X[ 0], 12); 163 HHH(ddd, aaa, bbb, ccc, X[13], 8); 164 HHH(ccc, ddd, aaa, bbb, X[ 5], 9); 165 HHH(bbb, ccc, ddd, aaa, X[10], 11); 166 HHH(aaa, bbb, ccc, ddd, X[14], 7); 167 HHH(ddd, aaa, bbb, ccc, X[15], 7); 168 HHH(ccc, ddd, aaa, bbb, X[ 8], 12); 169 HHH(bbb, ccc, ddd, aaa, X[12], 7); 170 HHH(aaa, bbb, ccc, ddd, X[ 4], 6); 171 HHH(ddd, aaa, bbb, ccc, X[ 9], 15); 172 HHH(ccc, ddd, aaa, bbb, X[ 1], 13); 173 HHH(bbb, ccc, ddd, aaa, X[ 2], 11); 174 175 tmp = bb; bb = bbb; bbb = tmp; 176 177 /* round 3 */ 178 HH(aa, bb, cc, dd, X[ 3], 11); 179 HH(dd, aa, bb, cc, X[10], 13); 180 HH(cc, dd, aa, bb, X[14], 6); 181 HH(bb, cc, dd, aa, X[ 4], 7); 182 HH(aa, bb, cc, dd, X[ 9], 14); 183 HH(dd, aa, bb, cc, X[15], 9); 184 HH(cc, dd, aa, bb, X[ 8], 13); 185 HH(bb, cc, dd, aa, X[ 1], 15); 186 HH(aa, bb, cc, dd, X[ 2], 14); 187 HH(dd, aa, bb, cc, X[ 7], 8); 188 HH(cc, dd, aa, bb, X[ 0], 13); 189 HH(bb, cc, dd, aa, X[ 6], 6); 190 HH(aa, bb, cc, dd, X[13], 5); 191 HH(dd, aa, bb, cc, X[11], 12); 192 HH(cc, dd, aa, bb, X[ 5], 7); 193 HH(bb, cc, dd, aa, X[12], 5); 194 195 /* parallel round 3 */ 196 GGG(aaa, bbb, ccc, ddd, X[15], 9); 197 GGG(ddd, aaa, bbb, ccc, X[ 5], 7); 198 GGG(ccc, ddd, aaa, bbb, X[ 1], 15); 199 GGG(bbb, ccc, ddd, aaa, X[ 3], 11); 200 GGG(aaa, bbb, ccc, ddd, X[ 7], 8); 201 GGG(ddd, aaa, bbb, ccc, X[14], 6); 202 GGG(ccc, ddd, aaa, bbb, X[ 6], 6); 203 GGG(bbb, ccc, ddd, aaa, X[ 9], 14); 204 GGG(aaa, bbb, ccc, ddd, X[11], 12); 205 GGG(ddd, aaa, bbb, ccc, X[ 8], 13); 206 GGG(ccc, ddd, aaa, bbb, X[12], 5); 207 GGG(bbb, ccc, ddd, aaa, X[ 2], 14); 208 GGG(aaa, bbb, ccc, ddd, X[10], 13); 209 GGG(ddd, aaa, bbb, ccc, X[ 0], 13); 210 GGG(ccc, ddd, aaa, bbb, X[ 4], 7); 211 GGG(bbb, ccc, ddd, aaa, X[13], 5); 212 213 tmp = cc; cc = ccc; ccc = tmp; 214 215 /* round 4 */ 216 II(aa, bb, cc, dd, X[ 1], 11); 217 II(dd, aa, bb, cc, X[ 9], 12); 218 II(cc, dd, aa, bb, X[11], 14); 219 II(bb, cc, dd, aa, X[10], 15); 220 II(aa, bb, cc, dd, X[ 0], 14); 221 II(dd, aa, bb, cc, X[ 8], 15); 222 II(cc, dd, aa, bb, X[12], 9); 223 II(bb, cc, dd, aa, X[ 4], 8); 224 II(aa, bb, cc, dd, X[13], 9); 225 II(dd, aa, bb, cc, X[ 3], 14); 226 II(cc, dd, aa, bb, X[ 7], 5); 227 II(bb, cc, dd, aa, X[15], 6); 228 II(aa, bb, cc, dd, X[14], 8); 229 II(dd, aa, bb, cc, X[ 5], 6); 230 II(cc, dd, aa, bb, X[ 6], 5); 231 II(bb, cc, dd, aa, X[ 2], 12); 232 233 /* parallel round 4 */ 234 FFF(aaa, bbb, ccc, ddd, X[ 8], 15); 235 FFF(ddd, aaa, bbb, ccc, X[ 6], 5); 236 FFF(ccc, ddd, aaa, bbb, X[ 4], 8); 237 FFF(bbb, ccc, ddd, aaa, X[ 1], 11); 238 FFF(aaa, bbb, ccc, ddd, X[ 3], 14); 239 FFF(ddd, aaa, bbb, ccc, X[11], 14); 240 FFF(ccc, ddd, aaa, bbb, X[15], 6); 241 FFF(bbb, ccc, ddd, aaa, X[ 0], 14); 242 FFF(aaa, bbb, ccc, ddd, X[ 5], 6); 243 FFF(ddd, aaa, bbb, ccc, X[12], 9); 244 FFF(ccc, ddd, aaa, bbb, X[ 2], 12); 245 FFF(bbb, ccc, ddd, aaa, X[13], 9); 246 FFF(aaa, bbb, ccc, ddd, X[ 9], 12); 247 FFF(ddd, aaa, bbb, ccc, X[ 7], 5); 248 FFF(ccc, ddd, aaa, bbb, X[10], 15); 249 FFF(bbb, ccc, ddd, aaa, X[14], 8); 250 251 tmp = dd; dd = ddd; ddd = tmp; 252 253 /* combine results */ 254 md->rmd256.state[0] += aa; 255 md->rmd256.state[1] += bb; 256 md->rmd256.state[2] += cc; 257 md->rmd256.state[3] += dd; 258 md->rmd256.state[4] += aaa; 259 md->rmd256.state[5] += bbb; 260 md->rmd256.state[6] += ccc; 261 md->rmd256.state[7] += ddd; 262 263 return CRYPT_OK; 264 } 265 266 #ifdef LTC_CLEAN_STACK 267 static int rmd256_compress(hash_state *md, unsigned char *buf) 268 { 269 int err; 270 err = _rmd256_compress(md, buf); 271 burn_stack(sizeof(ulong32) * 25 + sizeof(int)); 272 return err; 273 } 274 #endif 275 276 /** 277 Initialize the hash state 278 @param md The hash state you wish to initialize 279 @return CRYPT_OK if successful 280 */ 281 int rmd256_init(hash_state * md) 282 { 283 LTC_ARGCHK(md != NULL); 284 md->rmd256.state[0] = 0x67452301UL; 285 md->rmd256.state[1] = 0xefcdab89UL; 286 md->rmd256.state[2] = 0x98badcfeUL; 287 md->rmd256.state[3] = 0x10325476UL; 288 md->rmd256.state[4] = 0x76543210UL; 289 md->rmd256.state[5] = 0xfedcba98UL; 290 md->rmd256.state[6] = 0x89abcdefUL; 291 md->rmd256.state[7] = 0x01234567UL; 292 md->rmd256.curlen = 0; 293 md->rmd256.length = 0; 294 return CRYPT_OK; 295 } 296 297 /** 298 Process a block of memory though the hash 299 @param md The hash state 300 @param in The data to hash 301 @param inlen The length of the data (octets) 302 @return CRYPT_OK if successful 303 */ 304 HASH_PROCESS(rmd256_process, rmd256_compress, rmd256, 64) 305 306 /** 307 Terminate the hash to get the digest 308 @param md The hash state 309 @param out [out] The destination of the hash (16 bytes) 310 @return CRYPT_OK if successful 311 */ 312 int rmd256_done(hash_state * md, unsigned char *out) 313 { 314 int i; 315 316 LTC_ARGCHK(md != NULL); 317 LTC_ARGCHK(out != NULL); 318 319 if (md->rmd256.curlen >= sizeof(md->rmd256.buf)) { 320 return CRYPT_INVALID_ARG; 321 } 322 323 324 /* increase the length of the message */ 325 md->rmd256.length += md->rmd256.curlen * 8; 326 327 /* append the '1' bit */ 328 md->rmd256.buf[md->rmd256.curlen++] = (unsigned char)0x80; 329 330 /* if the length is currently above 56 bytes we append zeros 331 * then compress. Then we can fall back to padding zeros and length 332 * encoding like normal. 333 */ 334 if (md->rmd256.curlen > 56) { 335 while (md->rmd256.curlen < 64) { 336 md->rmd256.buf[md->rmd256.curlen++] = (unsigned char)0; 337 } 338 rmd256_compress(md, md->rmd256.buf); 339 md->rmd256.curlen = 0; 340 } 341 342 /* pad upto 56 bytes of zeroes */ 343 while (md->rmd256.curlen < 56) { 344 md->rmd256.buf[md->rmd256.curlen++] = (unsigned char)0; 345 } 346 347 /* store length */ 348 STORE64L(md->rmd256.length, md->rmd256.buf+56); 349 rmd256_compress(md, md->rmd256.buf); 350 351 /* copy output */ 352 for (i = 0; i < 8; i++) { 353 STORE32L(md->rmd256.state[i], out+(4*i)); 354 } 355 #ifdef LTC_CLEAN_STACK 356 zeromem(md, sizeof(hash_state)); 357 #endif 358 return CRYPT_OK; 359 } 360 361 /** 362 Self-test the hash 363 @return CRYPT_OK if successful, CRYPT_NOP if self-tests have been disabled 364 */ 365 int rmd256_test(void) 366 { 367 #ifndef LTC_TEST 368 return CRYPT_NOP; 369 #else 370 static const struct { 371 char *msg; 372 unsigned char md[32]; 373 } tests[] = { 374 { "", 375 { 0x02, 0xba, 0x4c, 0x4e, 0x5f, 0x8e, 0xcd, 0x18, 376 0x77, 0xfc, 0x52, 0xd6, 0x4d, 0x30, 0xe3, 0x7a, 377 0x2d, 0x97, 0x74, 0xfb, 0x1e, 0x5d, 0x02, 0x63, 378 0x80, 0xae, 0x01, 0x68, 0xe3, 0xc5, 0x52, 0x2d } 379 }, 380 { "a", 381 { 0xf9, 0x33, 0x3e, 0x45, 0xd8, 0x57, 0xf5, 0xd9, 382 0x0a, 0x91, 0xba, 0xb7, 0x0a, 0x1e, 0xba, 0x0c, 383 0xfb, 0x1b, 0xe4, 0xb0, 0x78, 0x3c, 0x9a, 0xcf, 384 0xcd, 0x88, 0x3a, 0x91, 0x34, 0x69, 0x29, 0x25 } 385 }, 386 { "abc", 387 { 0xaf, 0xbd, 0x6e, 0x22, 0x8b, 0x9d, 0x8c, 0xbb, 388 0xce, 0xf5, 0xca, 0x2d, 0x03, 0xe6, 0xdb, 0xa1, 389 0x0a, 0xc0, 0xbc, 0x7d, 0xcb, 0xe4, 0x68, 0x0e, 390 0x1e, 0x42, 0xd2, 0xe9, 0x75, 0x45, 0x9b, 0x65 } 391 }, 392 { "message digest", 393 { 0x87, 0xe9, 0x71, 0x75, 0x9a, 0x1c, 0xe4, 0x7a, 394 0x51, 0x4d, 0x5c, 0x91, 0x4c, 0x39, 0x2c, 0x90, 395 0x18, 0xc7, 0xc4, 0x6b, 0xc1, 0x44, 0x65, 0x55, 396 0x4a, 0xfc, 0xdf, 0x54, 0xa5, 0x07, 0x0c, 0x0e } 397 }, 398 { "abcdefghijklmnopqrstuvwxyz", 399 { 0x64, 0x9d, 0x30, 0x34, 0x75, 0x1e, 0xa2, 0x16, 400 0x77, 0x6b, 0xf9, 0xa1, 0x8a, 0xcc, 0x81, 0xbc, 401 0x78, 0x96, 0x11, 0x8a, 0x51, 0x97, 0x96, 0x87, 402 0x82, 0xdd, 0x1f, 0xd9, 0x7d, 0x8d, 0x51, 0x33 } 403 }, 404 { "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789", 405 { 0x57, 0x40, 0xa4, 0x08, 0xac, 0x16, 0xb7, 0x20, 406 0xb8, 0x44, 0x24, 0xae, 0x93, 0x1c, 0xbb, 0x1f, 407 0xe3, 0x63, 0xd1, 0xd0, 0xbf, 0x40, 0x17, 0xf1, 408 0xa8, 0x9f, 0x7e, 0xa6, 0xde, 0x77, 0xa0, 0xb8 } 409 } 410 }; 411 int x; 412 unsigned char buf[32]; 413 hash_state md; 414 415 for (x = 0; x < (int)(sizeof(tests)/sizeof(tests[0])); x++) { 416 rmd256_init(&md); 417 rmd256_process(&md, (unsigned char *)tests[x].msg, strlen(tests[x].msg)); 418 rmd256_done(&md, buf); 419 if (XMEMCMP(buf, tests[x].md, 32) != 0) { 420 #if 0 421 printf("Failed test %d\n", x); 422 #endif 423 return CRYPT_FAIL_TESTVECTOR; 424 } 425 } 426 return CRYPT_OK; 427 #endif 428 } 429 430 #endif 431 432