1 .explicit 2 .text 3 .ident "ia64.S, Version 2.1" 4 .ident "IA-64 ISA artwork by Andy Polyakov <appro (at) fy.chalmers.se>" 5 6 // 7 // ==================================================================== 8 // Written by Andy Polyakov <appro (at) fy.chalmers.se> for the OpenSSL 9 // project. 10 // 11 // Rights for redistribution and usage in source and binary forms are 12 // granted according to the OpenSSL license. Warranty of any kind is 13 // disclaimed. 14 // ==================================================================== 15 // 16 // Version 2.x is Itanium2 re-tune. Few words about how Itanum2 is 17 // different from Itanium to this module viewpoint. Most notably, is it 18 // "wider" than Itanium? Can you experience loop scalability as 19 // discussed in commentary sections? Not really:-( Itanium2 has 6 20 // integer ALU ports, i.e. it's 2 ports wider, but it's not enough to 21 // spin twice as fast, as I need 8 IALU ports. Amount of floating point 22 // ports is the same, i.e. 2, while I need 4. In other words, to this 23 // module Itanium2 remains effectively as "wide" as Itanium. Yet it's 24 // essentially different in respect to this module, and a re-tune was 25 // required. Well, because some intruction latencies has changed. Most 26 // noticeably those intensively used: 27 // 28 // Itanium Itanium2 29 // ldf8 9 6 L2 hit 30 // ld8 2 1 L1 hit 31 // getf 2 5 32 // xma[->getf] 7[+1] 4[+0] 33 // add[->st8] 1[+1] 1[+0] 34 // 35 // What does it mean? You might ratiocinate that the original code 36 // should run just faster... Because sum of latencies is smaller... 37 // Wrong! Note that getf latency increased. This means that if a loop is 38 // scheduled for lower latency (as they were), then it will suffer from 39 // stall condition and the code will therefore turn anti-scalable, e.g. 40 // original bn_mul_words spun at 5*n or 2.5 times slower than expected 41 // on Itanium2! What to do? Reschedule loops for Itanium2? But then 42 // Itanium would exhibit anti-scalability. So I've chosen to reschedule 43 // for worst latency for every instruction aiming for best *all-round* 44 // performance. 45 46 // Q. How much faster does it get? 47 // A. Here is the output from 'openssl speed rsa dsa' for vanilla 48 // 0.9.6a compiled with gcc version 2.96 20000731 (Red Hat 49 // Linux 7.1 2.96-81): 50 // 51 // sign verify sign/s verify/s 52 // rsa 512 bits 0.0036s 0.0003s 275.3 2999.2 53 // rsa 1024 bits 0.0203s 0.0011s 49.3 894.1 54 // rsa 2048 bits 0.1331s 0.0040s 7.5 250.9 55 // rsa 4096 bits 0.9270s 0.0147s 1.1 68.1 56 // sign verify sign/s verify/s 57 // dsa 512 bits 0.0035s 0.0043s 288.3 234.8 58 // dsa 1024 bits 0.0111s 0.0135s 90.0 74.2 59 // 60 // And here is similar output but for this assembler 61 // implementation:-) 62 // 63 // sign verify sign/s verify/s 64 // rsa 512 bits 0.0021s 0.0001s 549.4 9638.5 65 // rsa 1024 bits 0.0055s 0.0002s 183.8 4481.1 66 // rsa 2048 bits 0.0244s 0.0006s 41.4 1726.3 67 // rsa 4096 bits 0.1295s 0.0018s 7.7 561.5 68 // sign verify sign/s verify/s 69 // dsa 512 bits 0.0012s 0.0013s 891.9 756.6 70 // dsa 1024 bits 0.0023s 0.0028s 440.4 376.2 71 // 72 // Yes, you may argue that it's not fair comparison as it's 73 // possible to craft the C implementation with BN_UMULT_HIGH 74 // inline assembler macro. But of course! Here is the output 75 // with the macro: 76 // 77 // sign verify sign/s verify/s 78 // rsa 512 bits 0.0020s 0.0002s 495.0 6561.0 79 // rsa 1024 bits 0.0086s 0.0004s 116.2 2235.7 80 // rsa 2048 bits 0.0519s 0.0015s 19.3 667.3 81 // rsa 4096 bits 0.3464s 0.0053s 2.9 187.7 82 // sign verify sign/s verify/s 83 // dsa 512 bits 0.0016s 0.0020s 613.1 510.5 84 // dsa 1024 bits 0.0045s 0.0054s 221.0 183.9 85 // 86 // My code is still way faster, huh:-) And I believe that even 87 // higher performance can be achieved. Note that as keys get 88 // longer, performance gain is larger. Why? According to the 89 // profiler there is another player in the field, namely 90 // BN_from_montgomery consuming larger and larger portion of CPU 91 // time as keysize decreases. I therefore consider putting effort 92 // to assembler implementation of the following routine: 93 // 94 // void bn_mul_add_mont (BN_ULONG *rp,BN_ULONG *np,int nl,BN_ULONG n0) 95 // { 96 // int i,j; 97 // BN_ULONG v; 98 // 99 // for (i=0; i<nl; i++) 100 // { 101 // v=bn_mul_add_words(rp,np,nl,(rp[0]*n0)&BN_MASK2); 102 // nrp++; 103 // rp++; 104 // if (((nrp[-1]+=v)&BN_MASK2) < v) 105 // for (j=0; ((++nrp[j])&BN_MASK2) == 0; j++) ; 106 // } 107 // } 108 // 109 // It might as well be beneficial to implement even combaX 110 // variants, as it appears as it can literally unleash the 111 // performance (see comment section to bn_mul_comba8 below). 112 // 113 // And finally for your reference the output for 0.9.6a compiled 114 // with SGIcc version 0.01.0-12 (keep in mind that for the moment 115 // of this writing it's not possible to convince SGIcc to use 116 // BN_UMULT_HIGH inline assembler macro, yet the code is fast, 117 // i.e. for a compiler generated one:-): 118 // 119 // sign verify sign/s verify/s 120 // rsa 512 bits 0.0022s 0.0002s 452.7 5894.3 121 // rsa 1024 bits 0.0097s 0.0005s 102.7 2002.9 122 // rsa 2048 bits 0.0578s 0.0017s 17.3 600.2 123 // rsa 4096 bits 0.3838s 0.0061s 2.6 164.5 124 // sign verify sign/s verify/s 125 // dsa 512 bits 0.0018s 0.0022s 547.3 459.6 126 // dsa 1024 bits 0.0051s 0.0062s 196.6 161.3 127 // 128 // Oh! Benchmarks were performed on 733MHz Lion-class Itanium 129 // system running Redhat Linux 7.1 (very special thanks to Ray 130 // McCaffity of Williams Communications for providing an account). 131 // 132 // Q. What's the heck with 'rum 1<<5' at the end of every function? 133 // A. Well, by clearing the "upper FP registers written" bit of the 134 // User Mask I want to excuse the kernel from preserving upper 135 // (f32-f128) FP register bank over process context switch, thus 136 // minimizing bus bandwidth consumption during the switch (i.e. 137 // after PKI opration completes and the program is off doing 138 // something else like bulk symmetric encryption). Having said 139 // this, I also want to point out that it might be good idea 140 // to compile the whole toolkit (as well as majority of the 141 // programs for that matter) with -mfixed-range=f32-f127 command 142 // line option. No, it doesn't prevent the compiler from writing 143 // to upper bank, but at least discourages to do so. If you don't 144 // like the idea you have the option to compile the module with 145 // -Drum=nop.m in command line. 146 // 147 148 #if defined(_HPUX_SOURCE) && !defined(_LP64) 149 #define ADDP addp4 150 #else 151 #define ADDP add 152 #endif 153 154 #if 1 155 // 156 // bn_[add|sub]_words routines. 157 // 158 // Loops are spinning in 2*(n+5) ticks on Itanuim (provided that the 159 // data reside in L1 cache, i.e. 2 ticks away). It's possible to 160 // compress the epilogue and get down to 2*n+6, but at the cost of 161 // scalability (the neat feature of this implementation is that it 162 // shall automagically spin in n+5 on "wider" IA-64 implementations:-) 163 // I consider that the epilogue is short enough as it is to trade tiny 164 // performance loss on Itanium for scalability. 165 // 166 // BN_ULONG bn_add_words(BN_ULONG *rp, BN_ULONG *ap, BN_ULONG *bp,int num) 167 // 168 .global bn_add_words# 169 .proc bn_add_words# 170 .align 64 171 .skip 32 // makes the loop body aligned at 64-byte boundary 172 bn_add_words: 173 .prologue 174 .save ar.pfs,r2 175 { .mii; alloc r2=ar.pfs,4,12,0,16 176 cmp4.le p6,p0=r35,r0 };; 177 { .mfb; mov r8=r0 // return value 178 (p6) br.ret.spnt.many b0 };; 179 180 { .mib; sub r10=r35,r0,1 181 .save ar.lc,r3 182 mov r3=ar.lc 183 brp.loop.imp .L_bn_add_words_ctop,.L_bn_add_words_cend-16 184 } 185 { .mib; ADDP r14=0,r32 // rp 186 .save pr,r9 187 mov r9=pr };; 188 .body 189 { .mii; ADDP r15=0,r33 // ap 190 mov ar.lc=r10 191 mov ar.ec=6 } 192 { .mib; ADDP r16=0,r34 // bp 193 mov pr.rot=1<<16 };; 194 195 .L_bn_add_words_ctop: 196 { .mii; (p16) ld8 r32=[r16],8 // b=*(bp++) 197 (p18) add r39=r37,r34 198 (p19) cmp.ltu.unc p56,p0=r40,r38 } 199 { .mfb; (p0) nop.m 0x0 200 (p0) nop.f 0x0 201 (p0) nop.b 0x0 } 202 { .mii; (p16) ld8 r35=[r15],8 // a=*(ap++) 203 (p58) cmp.eq.or p57,p0=-1,r41 // (p20) 204 (p58) add r41=1,r41 } // (p20) 205 { .mfb; (p21) st8 [r14]=r42,8 // *(rp++)=r 206 (p0) nop.f 0x0 207 br.ctop.sptk .L_bn_add_words_ctop };; 208 .L_bn_add_words_cend: 209 210 { .mii; 211 (p59) add r8=1,r8 // return value 212 mov pr=r9,0x1ffff 213 mov ar.lc=r3 } 214 { .mbb; nop.b 0x0 215 br.ret.sptk.many b0 };; 216 .endp bn_add_words# 217 218 // 219 // BN_ULONG bn_sub_words(BN_ULONG *rp, BN_ULONG *ap, BN_ULONG *bp,int num) 220 // 221 .global bn_sub_words# 222 .proc bn_sub_words# 223 .align 64 224 .skip 32 // makes the loop body aligned at 64-byte boundary 225 bn_sub_words: 226 .prologue 227 .save ar.pfs,r2 228 { .mii; alloc r2=ar.pfs,4,12,0,16 229 cmp4.le p6,p0=r35,r0 };; 230 { .mfb; mov r8=r0 // return value 231 (p6) br.ret.spnt.many b0 };; 232 233 { .mib; sub r10=r35,r0,1 234 .save ar.lc,r3 235 mov r3=ar.lc 236 brp.loop.imp .L_bn_sub_words_ctop,.L_bn_sub_words_cend-16 237 } 238 { .mib; ADDP r14=0,r32 // rp 239 .save pr,r9 240 mov r9=pr };; 241 .body 242 { .mii; ADDP r15=0,r33 // ap 243 mov ar.lc=r10 244 mov ar.ec=6 } 245 { .mib; ADDP r16=0,r34 // bp 246 mov pr.rot=1<<16 };; 247 248 .L_bn_sub_words_ctop: 249 { .mii; (p16) ld8 r32=[r16],8 // b=*(bp++) 250 (p18) sub r39=r37,r34 251 (p19) cmp.gtu.unc p56,p0=r40,r38 } 252 { .mfb; (p0) nop.m 0x0 253 (p0) nop.f 0x0 254 (p0) nop.b 0x0 } 255 { .mii; (p16) ld8 r35=[r15],8 // a=*(ap++) 256 (p58) cmp.eq.or p57,p0=0,r41 // (p20) 257 (p58) add r41=-1,r41 } // (p20) 258 { .mbb; (p21) st8 [r14]=r42,8 // *(rp++)=r 259 (p0) nop.b 0x0 260 br.ctop.sptk .L_bn_sub_words_ctop };; 261 .L_bn_sub_words_cend: 262 263 { .mii; 264 (p59) add r8=1,r8 // return value 265 mov pr=r9,0x1ffff 266 mov ar.lc=r3 } 267 { .mbb; nop.b 0x0 268 br.ret.sptk.many b0 };; 269 .endp bn_sub_words# 270 #endif 271 272 #if 0 273 #define XMA_TEMPTATION 274 #endif 275 276 #if 1 277 // 278 // BN_ULONG bn_mul_words(BN_ULONG *rp, BN_ULONG *ap, int num, BN_ULONG w) 279 // 280 .global bn_mul_words# 281 .proc bn_mul_words# 282 .align 64 283 .skip 32 // makes the loop body aligned at 64-byte boundary 284 bn_mul_words: 285 .prologue 286 .save ar.pfs,r2 287 #ifdef XMA_TEMPTATION 288 { .mfi; alloc r2=ar.pfs,4,0,0,0 };; 289 #else 290 { .mfi; alloc r2=ar.pfs,4,12,0,16 };; 291 #endif 292 { .mib; mov r8=r0 // return value 293 cmp4.le p6,p0=r34,r0 294 (p6) br.ret.spnt.many b0 };; 295 296 { .mii; sub r10=r34,r0,1 297 .save ar.lc,r3 298 mov r3=ar.lc 299 .save pr,r9 300 mov r9=pr };; 301 302 .body 303 { .mib; setf.sig f8=r35 // w 304 mov pr.rot=0x800001<<16 305 // ------^----- serves as (p50) at first (p27) 306 brp.loop.imp .L_bn_mul_words_ctop,.L_bn_mul_words_cend-16 307 } 308 309 #ifndef XMA_TEMPTATION 310 311 { .mmi; ADDP r14=0,r32 // rp 312 ADDP r15=0,r33 // ap 313 mov ar.lc=r10 } 314 { .mmi; mov r40=0 // serves as r35 at first (p27) 315 mov ar.ec=13 };; 316 317 // This loop spins in 2*(n+12) ticks. It's scheduled for data in Itanium 318 // L2 cache (i.e. 9 ticks away) as floating point load/store instructions 319 // bypass L1 cache and L2 latency is actually best-case scenario for 320 // ldf8. The loop is not scalable and shall run in 2*(n+12) even on 321 // "wider" IA-64 implementations. It's a trade-off here. n+24 loop 322 // would give us ~5% in *overall* performance improvement on "wider" 323 // IA-64, but would hurt Itanium for about same because of longer 324 // epilogue. As it's a matter of few percents in either case I've 325 // chosen to trade the scalability for development time (you can see 326 // this very instruction sequence in bn_mul_add_words loop which in 327 // turn is scalable). 328 .L_bn_mul_words_ctop: 329 { .mfi; (p25) getf.sig r36=f52 // low 330 (p21) xmpy.lu f48=f37,f8 331 (p28) cmp.ltu p54,p50=r41,r39 } 332 { .mfi; (p16) ldf8 f32=[r15],8 333 (p21) xmpy.hu f40=f37,f8 334 (p0) nop.i 0x0 };; 335 { .mii; (p25) getf.sig r32=f44 // high 336 .pred.rel "mutex",p50,p54 337 (p50) add r40=r38,r35 // (p27) 338 (p54) add r40=r38,r35,1 } // (p27) 339 { .mfb; (p28) st8 [r14]=r41,8 340 (p0) nop.f 0x0 341 br.ctop.sptk .L_bn_mul_words_ctop };; 342 .L_bn_mul_words_cend: 343 344 { .mii; nop.m 0x0 345 .pred.rel "mutex",p51,p55 346 (p51) add r8=r36,r0 347 (p55) add r8=r36,r0,1 } 348 { .mfb; nop.m 0x0 349 nop.f 0x0 350 nop.b 0x0 } 351 352 #else // XMA_TEMPTATION 353 354 setf.sig f37=r0 // serves as carry at (p18) tick 355 mov ar.lc=r10 356 mov ar.ec=5;; 357 358 // Most of you examining this code very likely wonder why in the name 359 // of Intel the following loop is commented out? Indeed, it looks so 360 // neat that you find it hard to believe that it's something wrong 361 // with it, right? The catch is that every iteration depends on the 362 // result from previous one and the latter isn't available instantly. 363 // The loop therefore spins at the latency of xma minus 1, or in other 364 // words at 6*(n+4) ticks:-( Compare to the "production" loop above 365 // that runs in 2*(n+11) where the low latency problem is worked around 366 // by moving the dependency to one-tick latent interger ALU. Note that 367 // "distance" between ldf8 and xma is not latency of ldf8, but the 368 // *difference* between xma and ldf8 latencies. 369 .L_bn_mul_words_ctop: 370 { .mfi; (p16) ldf8 f32=[r33],8 371 (p18) xma.hu f38=f34,f8,f39 } 372 { .mfb; (p20) stf8 [r32]=f37,8 373 (p18) xma.lu f35=f34,f8,f39 374 br.ctop.sptk .L_bn_mul_words_ctop };; 375 .L_bn_mul_words_cend: 376 377 getf.sig r8=f41 // the return value 378 379 #endif // XMA_TEMPTATION 380 381 { .mii; nop.m 0x0 382 mov pr=r9,0x1ffff 383 mov ar.lc=r3 } 384 { .mfb; rum 1<<5 // clear um.mfh 385 nop.f 0x0 386 br.ret.sptk.many b0 };; 387 .endp bn_mul_words# 388 #endif 389 390 #if 1 391 // 392 // BN_ULONG bn_mul_add_words(BN_ULONG *rp, BN_ULONG *ap, int num, BN_ULONG w) 393 // 394 .global bn_mul_add_words# 395 .proc bn_mul_add_words# 396 .align 64 397 .skip 48 // makes the loop body aligned at 64-byte boundary 398 bn_mul_add_words: 399 .prologue 400 .save ar.pfs,r2 401 { .mmi; alloc r2=ar.pfs,4,4,0,8 402 cmp4.le p6,p0=r34,r0 403 .save ar.lc,r3 404 mov r3=ar.lc };; 405 { .mib; mov r8=r0 // return value 406 sub r10=r34,r0,1 407 (p6) br.ret.spnt.many b0 };; 408 409 { .mib; setf.sig f8=r35 // w 410 .save pr,r9 411 mov r9=pr 412 brp.loop.imp .L_bn_mul_add_words_ctop,.L_bn_mul_add_words_cend-16 413 } 414 .body 415 { .mmi; ADDP r14=0,r32 // rp 416 ADDP r15=0,r33 // ap 417 mov ar.lc=r10 } 418 { .mii; ADDP r16=0,r32 // rp copy 419 mov pr.rot=0x2001<<16 420 // ------^----- serves as (p40) at first (p27) 421 mov ar.ec=11 };; 422 423 // This loop spins in 3*(n+10) ticks on Itanium and in 2*(n+10) on 424 // Itanium 2. Yes, unlike previous versions it scales:-) Previous 425 // version was peforming *all* additions in IALU and was starving 426 // for those even on Itanium 2. In this version one addition is 427 // moved to FPU and is folded with multiplication. This is at cost 428 // of propogating the result from previous call to this subroutine 429 // to L2 cache... In other words negligible even for shorter keys. 430 // *Overall* performance improvement [over previous version] varies 431 // from 11 to 22 percent depending on key length. 432 .L_bn_mul_add_words_ctop: 433 .pred.rel "mutex",p40,p42 434 { .mfi; (p23) getf.sig r36=f45 // low 435 (p20) xma.lu f42=f36,f8,f50 // low 436 (p40) add r39=r39,r35 } // (p27) 437 { .mfi; (p16) ldf8 f32=[r15],8 // *(ap++) 438 (p20) xma.hu f36=f36,f8,f50 // high 439 (p42) add r39=r39,r35,1 };; // (p27) 440 { .mmi; (p24) getf.sig r32=f40 // high 441 (p16) ldf8 f46=[r16],8 // *(rp1++) 442 (p40) cmp.ltu p41,p39=r39,r35 } // (p27) 443 { .mib; (p26) st8 [r14]=r39,8 // *(rp2++) 444 (p42) cmp.leu p41,p39=r39,r35 // (p27) 445 br.ctop.sptk .L_bn_mul_add_words_ctop};; 446 .L_bn_mul_add_words_cend: 447 448 { .mmi; .pred.rel "mutex",p40,p42 449 (p40) add r8=r35,r0 450 (p42) add r8=r35,r0,1 451 mov pr=r9,0x1ffff } 452 { .mib; rum 1<<5 // clear um.mfh 453 mov ar.lc=r3 454 br.ret.sptk.many b0 };; 455 .endp bn_mul_add_words# 456 #endif 457 458 #if 1 459 // 460 // void bn_sqr_words(BN_ULONG *rp, BN_ULONG *ap, int num) 461 // 462 .global bn_sqr_words# 463 .proc bn_sqr_words# 464 .align 64 465 .skip 32 // makes the loop body aligned at 64-byte boundary 466 bn_sqr_words: 467 .prologue 468 .save ar.pfs,r2 469 { .mii; alloc r2=ar.pfs,3,0,0,0 470 sxt4 r34=r34 };; 471 { .mii; cmp.le p6,p0=r34,r0 472 mov r8=r0 } // return value 473 { .mfb; ADDP r32=0,r32 474 nop.f 0x0 475 (p6) br.ret.spnt.many b0 };; 476 477 { .mii; sub r10=r34,r0,1 478 .save ar.lc,r3 479 mov r3=ar.lc 480 .save pr,r9 481 mov r9=pr };; 482 483 .body 484 { .mib; ADDP r33=0,r33 485 mov pr.rot=1<<16 486 brp.loop.imp .L_bn_sqr_words_ctop,.L_bn_sqr_words_cend-16 487 } 488 { .mii; add r34=8,r32 489 mov ar.lc=r10 490 mov ar.ec=18 };; 491 492 // 2*(n+17) on Itanium, (n+17) on "wider" IA-64 implementations. It's 493 // possible to compress the epilogue (I'm getting tired to write this 494 // comment over and over) and get down to 2*n+16 at the cost of 495 // scalability. The decision will very likely be reconsidered after the 496 // benchmark program is profiled. I.e. if perfomance gain on Itanium 497 // will appear larger than loss on "wider" IA-64, then the loop should 498 // be explicitely split and the epilogue compressed. 499 .L_bn_sqr_words_ctop: 500 { .mfi; (p16) ldf8 f32=[r33],8 501 (p25) xmpy.lu f42=f41,f41 502 (p0) nop.i 0x0 } 503 { .mib; (p33) stf8 [r32]=f50,16 504 (p0) nop.i 0x0 505 (p0) nop.b 0x0 } 506 { .mfi; (p0) nop.m 0x0 507 (p25) xmpy.hu f52=f41,f41 508 (p0) nop.i 0x0 } 509 { .mib; (p33) stf8 [r34]=f60,16 510 (p0) nop.i 0x0 511 br.ctop.sptk .L_bn_sqr_words_ctop };; 512 .L_bn_sqr_words_cend: 513 514 { .mii; nop.m 0x0 515 mov pr=r9,0x1ffff 516 mov ar.lc=r3 } 517 { .mfb; rum 1<<5 // clear um.mfh 518 nop.f 0x0 519 br.ret.sptk.many b0 };; 520 .endp bn_sqr_words# 521 #endif 522 523 #if 1 524 // Apparently we win nothing by implementing special bn_sqr_comba8. 525 // Yes, it is possible to reduce the number of multiplications by 526 // almost factor of two, but then the amount of additions would 527 // increase by factor of two (as we would have to perform those 528 // otherwise performed by xma ourselves). Normally we would trade 529 // anyway as multiplications are way more expensive, but not this 530 // time... Multiplication kernel is fully pipelined and as we drain 531 // one 128-bit multiplication result per clock cycle multiplications 532 // are effectively as inexpensive as additions. Special implementation 533 // might become of interest for "wider" IA-64 implementation as you'll 534 // be able to get through the multiplication phase faster (there won't 535 // be any stall issues as discussed in the commentary section below and 536 // you therefore will be able to employ all 4 FP units)... But these 537 // Itanium days it's simply too hard to justify the effort so I just 538 // drop down to bn_mul_comba8 code:-) 539 // 540 // void bn_sqr_comba8(BN_ULONG *r, BN_ULONG *a) 541 // 542 .global bn_sqr_comba8# 543 .proc bn_sqr_comba8# 544 .align 64 545 bn_sqr_comba8: 546 .prologue 547 .save ar.pfs,r2 548 #if defined(_HPUX_SOURCE) && !defined(_LP64) 549 { .mii; alloc r2=ar.pfs,2,1,0,0 550 addp4 r33=0,r33 551 addp4 r32=0,r32 };; 552 { .mii; 553 #else 554 { .mii; alloc r2=ar.pfs,2,1,0,0 555 #endif 556 mov r34=r33 557 add r14=8,r33 };; 558 .body 559 { .mii; add r17=8,r34 560 add r15=16,r33 561 add r18=16,r34 } 562 { .mfb; add r16=24,r33 563 br .L_cheat_entry_point8 };; 564 .endp bn_sqr_comba8# 565 #endif 566 567 #if 1 568 // I've estimated this routine to run in ~120 ticks, but in reality 569 // (i.e. according to ar.itc) it takes ~160 ticks. Are those extra 570 // cycles consumed for instructions fetch? Or did I misinterpret some 571 // clause in Itanium -architecture manual? Comments are welcomed and 572 // highly appreciated. 573 // 574 // On Itanium 2 it takes ~190 ticks. This is because of stalls on 575 // result from getf.sig. I do nothing about it at this point for 576 // reasons depicted below. 577 // 578 // However! It should be noted that even 160 ticks is darn good result 579 // as it's over 10 (yes, ten, spelled as t-e-n) times faster than the 580 // C version (compiled with gcc with inline assembler). I really 581 // kicked compiler's butt here, didn't I? Yeah! This brings us to the 582 // following statement. It's damn shame that this routine isn't called 583 // very often nowadays! According to the profiler most CPU time is 584 // consumed by bn_mul_add_words called from BN_from_montgomery. In 585 // order to estimate what we're missing, I've compared the performance 586 // of this routine against "traditional" implementation, i.e. against 587 // following routine: 588 // 589 // void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b) 590 // { r[ 8]=bn_mul_words( &(r[0]),a,8,b[0]); 591 // r[ 9]=bn_mul_add_words(&(r[1]),a,8,b[1]); 592 // r[10]=bn_mul_add_words(&(r[2]),a,8,b[2]); 593 // r[11]=bn_mul_add_words(&(r[3]),a,8,b[3]); 594 // r[12]=bn_mul_add_words(&(r[4]),a,8,b[4]); 595 // r[13]=bn_mul_add_words(&(r[5]),a,8,b[5]); 596 // r[14]=bn_mul_add_words(&(r[6]),a,8,b[6]); 597 // r[15]=bn_mul_add_words(&(r[7]),a,8,b[7]); 598 // } 599 // 600 // The one below is over 8 times faster than the one above:-( Even 601 // more reasons to "combafy" bn_mul_add_mont... 602 // 603 // And yes, this routine really made me wish there were an optimizing 604 // assembler! It also feels like it deserves a dedication. 605 // 606 // To my wife for being there and to my kids... 607 // 608 // void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b) 609 // 610 #define carry1 r14 611 #define carry2 r15 612 #define carry3 r34 613 .global bn_mul_comba8# 614 .proc bn_mul_comba8# 615 .align 64 616 bn_mul_comba8: 617 .prologue 618 .save ar.pfs,r2 619 #if defined(_HPUX_SOURCE) && !defined(_LP64) 620 { .mii; alloc r2=ar.pfs,3,0,0,0 621 addp4 r33=0,r33 622 addp4 r34=0,r34 };; 623 { .mii; addp4 r32=0,r32 624 #else 625 { .mii; alloc r2=ar.pfs,3,0,0,0 626 #endif 627 add r14=8,r33 628 add r17=8,r34 } 629 .body 630 { .mii; add r15=16,r33 631 add r18=16,r34 632 add r16=24,r33 } 633 .L_cheat_entry_point8: 634 { .mmi; add r19=24,r34 635 636 ldf8 f32=[r33],32 };; 637 638 { .mmi; ldf8 f120=[r34],32 639 ldf8 f121=[r17],32 } 640 { .mmi; ldf8 f122=[r18],32 641 ldf8 f123=[r19],32 };; 642 { .mmi; ldf8 f124=[r34] 643 ldf8 f125=[r17] } 644 { .mmi; ldf8 f126=[r18] 645 ldf8 f127=[r19] } 646 647 { .mmi; ldf8 f33=[r14],32 648 ldf8 f34=[r15],32 } 649 { .mmi; ldf8 f35=[r16],32;; 650 ldf8 f36=[r33] } 651 { .mmi; ldf8 f37=[r14] 652 ldf8 f38=[r15] } 653 { .mfi; ldf8 f39=[r16] 654 // -------\ Entering multiplier's heaven /------- 655 // ------------\ /------------ 656 // -----------------\ /----------------- 657 // ----------------------\/---------------------- 658 xma.hu f41=f32,f120,f0 } 659 { .mfi; xma.lu f40=f32,f120,f0 };; // (*) 660 { .mfi; xma.hu f51=f32,f121,f0 } 661 { .mfi; xma.lu f50=f32,f121,f0 };; 662 { .mfi; xma.hu f61=f32,f122,f0 } 663 { .mfi; xma.lu f60=f32,f122,f0 };; 664 { .mfi; xma.hu f71=f32,f123,f0 } 665 { .mfi; xma.lu f70=f32,f123,f0 };; 666 { .mfi; xma.hu f81=f32,f124,f0 } 667 { .mfi; xma.lu f80=f32,f124,f0 };; 668 { .mfi; xma.hu f91=f32,f125,f0 } 669 { .mfi; xma.lu f90=f32,f125,f0 };; 670 { .mfi; xma.hu f101=f32,f126,f0 } 671 { .mfi; xma.lu f100=f32,f126,f0 };; 672 { .mfi; xma.hu f111=f32,f127,f0 } 673 { .mfi; xma.lu f110=f32,f127,f0 };;// 674 // (*) You can argue that splitting at every second bundle would 675 // prevent "wider" IA-64 implementations from achieving the peak 676 // performance. Well, not really... The catch is that if you 677 // intend to keep 4 FP units busy by splitting at every fourth 678 // bundle and thus perform these 16 multiplications in 4 ticks, 679 // the first bundle *below* would stall because the result from 680 // the first xma bundle *above* won't be available for another 3 681 // ticks (if not more, being an optimist, I assume that "wider" 682 // implementation will have same latency:-). This stall will hold 683 // you back and the performance would be as if every second bundle 684 // were split *anyway*... 685 { .mfi; getf.sig r16=f40 686 xma.hu f42=f33,f120,f41 687 add r33=8,r32 } 688 { .mfi; xma.lu f41=f33,f120,f41 };; 689 { .mfi; getf.sig r24=f50 690 xma.hu f52=f33,f121,f51 } 691 { .mfi; xma.lu f51=f33,f121,f51 };; 692 { .mfi; st8 [r32]=r16,16 693 xma.hu f62=f33,f122,f61 } 694 { .mfi; xma.lu f61=f33,f122,f61 };; 695 { .mfi; xma.hu f72=f33,f123,f71 } 696 { .mfi; xma.lu f71=f33,f123,f71 };; 697 { .mfi; xma.hu f82=f33,f124,f81 } 698 { .mfi; xma.lu f81=f33,f124,f81 };; 699 { .mfi; xma.hu f92=f33,f125,f91 } 700 { .mfi; xma.lu f91=f33,f125,f91 };; 701 { .mfi; xma.hu f102=f33,f126,f101 } 702 { .mfi; xma.lu f101=f33,f126,f101 };; 703 { .mfi; xma.hu f112=f33,f127,f111 } 704 { .mfi; xma.lu f111=f33,f127,f111 };;// 705 //-------------------------------------------------// 706 { .mfi; getf.sig r25=f41 707 xma.hu f43=f34,f120,f42 } 708 { .mfi; xma.lu f42=f34,f120,f42 };; 709 { .mfi; getf.sig r16=f60 710 xma.hu f53=f34,f121,f52 } 711 { .mfi; xma.lu f52=f34,f121,f52 };; 712 { .mfi; getf.sig r17=f51 713 xma.hu f63=f34,f122,f62 714 add r25=r25,r24 } 715 { .mfi; xma.lu f62=f34,f122,f62 716 mov carry1=0 };; 717 { .mfi; cmp.ltu p6,p0=r25,r24 718 xma.hu f73=f34,f123,f72 } 719 { .mfi; xma.lu f72=f34,f123,f72 };; 720 { .mfi; st8 [r33]=r25,16 721 xma.hu f83=f34,f124,f82 722 (p6) add carry1=1,carry1 } 723 { .mfi; xma.lu f82=f34,f124,f82 };; 724 { .mfi; xma.hu f93=f34,f125,f92 } 725 { .mfi; xma.lu f92=f34,f125,f92 };; 726 { .mfi; xma.hu f103=f34,f126,f102 } 727 { .mfi; xma.lu f102=f34,f126,f102 };; 728 { .mfi; xma.hu f113=f34,f127,f112 } 729 { .mfi; xma.lu f112=f34,f127,f112 };;// 730 //-------------------------------------------------// 731 { .mfi; getf.sig r18=f42 732 xma.hu f44=f35,f120,f43 733 add r17=r17,r16 } 734 { .mfi; xma.lu f43=f35,f120,f43 };; 735 { .mfi; getf.sig r24=f70 736 xma.hu f54=f35,f121,f53 } 737 { .mfi; mov carry2=0 738 xma.lu f53=f35,f121,f53 };; 739 { .mfi; getf.sig r25=f61 740 xma.hu f64=f35,f122,f63 741 cmp.ltu p7,p0=r17,r16 } 742 { .mfi; add r18=r18,r17 743 xma.lu f63=f35,f122,f63 };; 744 { .mfi; getf.sig r26=f52 745 xma.hu f74=f35,f123,f73 746 (p7) add carry2=1,carry2 } 747 { .mfi; cmp.ltu p7,p0=r18,r17 748 xma.lu f73=f35,f123,f73 749 add r18=r18,carry1 };; 750 { .mfi; 751 xma.hu f84=f35,f124,f83 752 (p7) add carry2=1,carry2 } 753 { .mfi; cmp.ltu p7,p0=r18,carry1 754 xma.lu f83=f35,f124,f83 };; 755 { .mfi; st8 [r32]=r18,16 756 xma.hu f94=f35,f125,f93 757 (p7) add carry2=1,carry2 } 758 { .mfi; xma.lu f93=f35,f125,f93 };; 759 { .mfi; xma.hu f104=f35,f126,f103 } 760 { .mfi; xma.lu f103=f35,f126,f103 };; 761 { .mfi; xma.hu f114=f35,f127,f113 } 762 { .mfi; mov carry1=0 763 xma.lu f113=f35,f127,f113 764 add r25=r25,r24 };;// 765 //-------------------------------------------------// 766 { .mfi; getf.sig r27=f43 767 xma.hu f45=f36,f120,f44 768 cmp.ltu p6,p0=r25,r24 } 769 { .mfi; xma.lu f44=f36,f120,f44 770 add r26=r26,r25 };; 771 { .mfi; getf.sig r16=f80 772 xma.hu f55=f36,f121,f54 773 (p6) add carry1=1,carry1 } 774 { .mfi; xma.lu f54=f36,f121,f54 };; 775 { .mfi; getf.sig r17=f71 776 xma.hu f65=f36,f122,f64 777 cmp.ltu p6,p0=r26,r25 } 778 { .mfi; xma.lu f64=f36,f122,f64 779 add r27=r27,r26 };; 780 { .mfi; getf.sig r18=f62 781 xma.hu f75=f36,f123,f74 782 (p6) add carry1=1,carry1 } 783 { .mfi; cmp.ltu p6,p0=r27,r26 784 xma.lu f74=f36,f123,f74 785 add r27=r27,carry2 };; 786 { .mfi; getf.sig r19=f53 787 xma.hu f85=f36,f124,f84 788 (p6) add carry1=1,carry1 } 789 { .mfi; xma.lu f84=f36,f124,f84 790 cmp.ltu p6,p0=r27,carry2 };; 791 { .mfi; st8 [r33]=r27,16 792 xma.hu f95=f36,f125,f94 793 (p6) add carry1=1,carry1 } 794 { .mfi; xma.lu f94=f36,f125,f94 };; 795 { .mfi; xma.hu f105=f36,f126,f104 } 796 { .mfi; mov carry2=0 797 xma.lu f104=f36,f126,f104 798 add r17=r17,r16 };; 799 { .mfi; xma.hu f115=f36,f127,f114 800 cmp.ltu p7,p0=r17,r16 } 801 { .mfi; xma.lu f114=f36,f127,f114 802 add r18=r18,r17 };;// 803 //-------------------------------------------------// 804 { .mfi; getf.sig r20=f44 805 xma.hu f46=f37,f120,f45 806 (p7) add carry2=1,carry2 } 807 { .mfi; cmp.ltu p7,p0=r18,r17 808 xma.lu f45=f37,f120,f45 809 add r19=r19,r18 };; 810 { .mfi; getf.sig r24=f90 811 xma.hu f56=f37,f121,f55 } 812 { .mfi; xma.lu f55=f37,f121,f55 };; 813 { .mfi; getf.sig r25=f81 814 xma.hu f66=f37,f122,f65 815 (p7) add carry2=1,carry2 } 816 { .mfi; cmp.ltu p7,p0=r19,r18 817 xma.lu f65=f37,f122,f65 818 add r20=r20,r19 };; 819 { .mfi; getf.sig r26=f72 820 xma.hu f76=f37,f123,f75 821 (p7) add carry2=1,carry2 } 822 { .mfi; cmp.ltu p7,p0=r20,r19 823 xma.lu f75=f37,f123,f75 824 add r20=r20,carry1 };; 825 { .mfi; getf.sig r27=f63 826 xma.hu f86=f37,f124,f85 827 (p7) add carry2=1,carry2 } 828 { .mfi; xma.lu f85=f37,f124,f85 829 cmp.ltu p7,p0=r20,carry1 };; 830 { .mfi; getf.sig r28=f54 831 xma.hu f96=f37,f125,f95 832 (p7) add carry2=1,carry2 } 833 { .mfi; st8 [r32]=r20,16 834 xma.lu f95=f37,f125,f95 };; 835 { .mfi; xma.hu f106=f37,f126,f105 } 836 { .mfi; mov carry1=0 837 xma.lu f105=f37,f126,f105 838 add r25=r25,r24 };; 839 { .mfi; xma.hu f116=f37,f127,f115 840 cmp.ltu p6,p0=r25,r24 } 841 { .mfi; xma.lu f115=f37,f127,f115 842 add r26=r26,r25 };;// 843 //-------------------------------------------------// 844 { .mfi; getf.sig r29=f45 845 xma.hu f47=f38,f120,f46 846 (p6) add carry1=1,carry1 } 847 { .mfi; cmp.ltu p6,p0=r26,r25 848 xma.lu f46=f38,f120,f46 849 add r27=r27,r26 };; 850 { .mfi; getf.sig r16=f100 851 xma.hu f57=f38,f121,f56 852 (p6) add carry1=1,carry1 } 853 { .mfi; cmp.ltu p6,p0=r27,r26 854 xma.lu f56=f38,f121,f56 855 add r28=r28,r27 };; 856 { .mfi; getf.sig r17=f91 857 xma.hu f67=f38,f122,f66 858 (p6) add carry1=1,carry1 } 859 { .mfi; cmp.ltu p6,p0=r28,r27 860 xma.lu f66=f38,f122,f66 861 add r29=r29,r28 };; 862 { .mfi; getf.sig r18=f82 863 xma.hu f77=f38,f123,f76 864 (p6) add carry1=1,carry1 } 865 { .mfi; cmp.ltu p6,p0=r29,r28 866 xma.lu f76=f38,f123,f76 867 add r29=r29,carry2 };; 868 { .mfi; getf.sig r19=f73 869 xma.hu f87=f38,f124,f86 870 (p6) add carry1=1,carry1 } 871 { .mfi; xma.lu f86=f38,f124,f86 872 cmp.ltu p6,p0=r29,carry2 };; 873 { .mfi; getf.sig r20=f64 874 xma.hu f97=f38,f125,f96 875 (p6) add carry1=1,carry1 } 876 { .mfi; st8 [r33]=r29,16 877 xma.lu f96=f38,f125,f96 };; 878 { .mfi; getf.sig r21=f55 879 xma.hu f107=f38,f126,f106 } 880 { .mfi; mov carry2=0 881 xma.lu f106=f38,f126,f106 882 add r17=r17,r16 };; 883 { .mfi; xma.hu f117=f38,f127,f116 884 cmp.ltu p7,p0=r17,r16 } 885 { .mfi; xma.lu f116=f38,f127,f116 886 add r18=r18,r17 };;// 887 //-------------------------------------------------// 888 { .mfi; getf.sig r22=f46 889 xma.hu f48=f39,f120,f47 890 (p7) add carry2=1,carry2 } 891 { .mfi; cmp.ltu p7,p0=r18,r17 892 xma.lu f47=f39,f120,f47 893 add r19=r19,r18 };; 894 { .mfi; getf.sig r24=f110 895 xma.hu f58=f39,f121,f57 896 (p7) add carry2=1,carry2 } 897 { .mfi; cmp.ltu p7,p0=r19,r18 898 xma.lu f57=f39,f121,f57 899 add r20=r20,r19 };; 900 { .mfi; getf.sig r25=f101 901 xma.hu f68=f39,f122,f67 902 (p7) add carry2=1,carry2 } 903 { .mfi; cmp.ltu p7,p0=r20,r19 904 xma.lu f67=f39,f122,f67 905 add r21=r21,r20 };; 906 { .mfi; getf.sig r26=f92 907 xma.hu f78=f39,f123,f77 908 (p7) add carry2=1,carry2 } 909 { .mfi; cmp.ltu p7,p0=r21,r20 910 xma.lu f77=f39,f123,f77 911 add r22=r22,r21 };; 912 { .mfi; getf.sig r27=f83 913 xma.hu f88=f39,f124,f87 914 (p7) add carry2=1,carry2 } 915 { .mfi; cmp.ltu p7,p0=r22,r21 916 xma.lu f87=f39,f124,f87 917 add r22=r22,carry1 };; 918 { .mfi; getf.sig r28=f74 919 xma.hu f98=f39,f125,f97 920 (p7) add carry2=1,carry2 } 921 { .mfi; xma.lu f97=f39,f125,f97 922 cmp.ltu p7,p0=r22,carry1 };; 923 { .mfi; getf.sig r29=f65 924 xma.hu f108=f39,f126,f107 925 (p7) add carry2=1,carry2 } 926 { .mfi; st8 [r32]=r22,16 927 xma.lu f107=f39,f126,f107 };; 928 { .mfi; getf.sig r30=f56 929 xma.hu f118=f39,f127,f117 } 930 { .mfi; xma.lu f117=f39,f127,f117 };;// 931 //-------------------------------------------------// 932 // Leaving muliplier's heaven... Quite a ride, huh? 933 934 { .mii; getf.sig r31=f47 935 add r25=r25,r24 936 mov carry1=0 };; 937 { .mii; getf.sig r16=f111 938 cmp.ltu p6,p0=r25,r24 939 add r26=r26,r25 };; 940 { .mfb; getf.sig r17=f102 } 941 { .mii; 942 (p6) add carry1=1,carry1 943 cmp.ltu p6,p0=r26,r25 944 add r27=r27,r26 };; 945 { .mfb; nop.m 0x0 } 946 { .mii; 947 (p6) add carry1=1,carry1 948 cmp.ltu p6,p0=r27,r26 949 add r28=r28,r27 };; 950 { .mii; getf.sig r18=f93 951 add r17=r17,r16 952 mov carry3=0 } 953 { .mii; 954 (p6) add carry1=1,carry1 955 cmp.ltu p6,p0=r28,r27 956 add r29=r29,r28 };; 957 { .mii; getf.sig r19=f84 958 cmp.ltu p7,p0=r17,r16 } 959 { .mii; 960 (p6) add carry1=1,carry1 961 cmp.ltu p6,p0=r29,r28 962 add r30=r30,r29 };; 963 { .mii; getf.sig r20=f75 964 add r18=r18,r17 } 965 { .mii; 966 (p6) add carry1=1,carry1 967 cmp.ltu p6,p0=r30,r29 968 add r31=r31,r30 };; 969 { .mfb; getf.sig r21=f66 } 970 { .mii; (p7) add carry3=1,carry3 971 cmp.ltu p7,p0=r18,r17 972 add r19=r19,r18 } 973 { .mfb; nop.m 0x0 } 974 { .mii; 975 (p6) add carry1=1,carry1 976 cmp.ltu p6,p0=r31,r30 977 add r31=r31,carry2 };; 978 { .mfb; getf.sig r22=f57 } 979 { .mii; (p7) add carry3=1,carry3 980 cmp.ltu p7,p0=r19,r18 981 add r20=r20,r19 } 982 { .mfb; nop.m 0x0 } 983 { .mii; 984 (p6) add carry1=1,carry1 985 cmp.ltu p6,p0=r31,carry2 };; 986 { .mfb; getf.sig r23=f48 } 987 { .mii; (p7) add carry3=1,carry3 988 cmp.ltu p7,p0=r20,r19 989 add r21=r21,r20 } 990 { .mii; 991 (p6) add carry1=1,carry1 } 992 { .mfb; st8 [r33]=r31,16 };; 993 994 { .mfb; getf.sig r24=f112 } 995 { .mii; (p7) add carry3=1,carry3 996 cmp.ltu p7,p0=r21,r20 997 add r22=r22,r21 };; 998 { .mfb; getf.sig r25=f103 } 999 { .mii; (p7) add carry3=1,carry3 1000 cmp.ltu p7,p0=r22,r21 1001 add r23=r23,r22 };; 1002 { .mfb; getf.sig r26=f94 } 1003 { .mii; (p7) add carry3=1,carry3 1004 cmp.ltu p7,p0=r23,r22 1005 add r23=r23,carry1 };; 1006 { .mfb; getf.sig r27=f85 } 1007 { .mii; (p7) add carry3=1,carry3 1008 cmp.ltu p7,p8=r23,carry1};; 1009 { .mii; getf.sig r28=f76 1010 add r25=r25,r24 1011 mov carry1=0 } 1012 { .mii; st8 [r32]=r23,16 1013 (p7) add carry2=1,carry3 1014 (p8) add carry2=0,carry3 };; 1015 1016 { .mfb; nop.m 0x0 } 1017 { .mii; getf.sig r29=f67 1018 cmp.ltu p6,p0=r25,r24 1019 add r26=r26,r25 };; 1020 { .mfb; getf.sig r30=f58 } 1021 { .mii; 1022 (p6) add carry1=1,carry1 1023 cmp.ltu p6,p0=r26,r25 1024 add r27=r27,r26 };; 1025 { .mfb; getf.sig r16=f113 } 1026 { .mii; 1027 (p6) add carry1=1,carry1 1028 cmp.ltu p6,p0=r27,r26 1029 add r28=r28,r27 };; 1030 { .mfb; getf.sig r17=f104 } 1031 { .mii; 1032 (p6) add carry1=1,carry1 1033 cmp.ltu p6,p0=r28,r27 1034 add r29=r29,r28 };; 1035 { .mfb; getf.sig r18=f95 } 1036 { .mii; 1037 (p6) add carry1=1,carry1 1038 cmp.ltu p6,p0=r29,r28 1039 add r30=r30,r29 };; 1040 { .mii; getf.sig r19=f86 1041 add r17=r17,r16 1042 mov carry3=0 } 1043 { .mii; 1044 (p6) add carry1=1,carry1 1045 cmp.ltu p6,p0=r30,r29 1046 add r30=r30,carry2 };; 1047 { .mii; getf.sig r20=f77 1048 cmp.ltu p7,p0=r17,r16 1049 add r18=r18,r17 } 1050 { .mii; 1051 (p6) add carry1=1,carry1 1052 cmp.ltu p6,p0=r30,carry2 };; 1053 { .mfb; getf.sig r21=f68 } 1054 { .mii; st8 [r33]=r30,16 1055 (p6) add carry1=1,carry1 };; 1056 1057 { .mfb; getf.sig r24=f114 } 1058 { .mii; (p7) add carry3=1,carry3 1059 cmp.ltu p7,p0=r18,r17 1060 add r19=r19,r18 };; 1061 { .mfb; getf.sig r25=f105 } 1062 { .mii; (p7) add carry3=1,carry3 1063 cmp.ltu p7,p0=r19,r18 1064 add r20=r20,r19 };; 1065 { .mfb; getf.sig r26=f96 } 1066 { .mii; (p7) add carry3=1,carry3 1067 cmp.ltu p7,p0=r20,r19 1068 add r21=r21,r20 };; 1069 { .mfb; getf.sig r27=f87 } 1070 { .mii; (p7) add carry3=1,carry3 1071 cmp.ltu p7,p0=r21,r20 1072 add r21=r21,carry1 };; 1073 { .mib; getf.sig r28=f78 1074 add r25=r25,r24 } 1075 { .mib; (p7) add carry3=1,carry3 1076 cmp.ltu p7,p8=r21,carry1};; 1077 { .mii; st8 [r32]=r21,16 1078 (p7) add carry2=1,carry3 1079 (p8) add carry2=0,carry3 } 1080 1081 { .mii; mov carry1=0 1082 cmp.ltu p6,p0=r25,r24 1083 add r26=r26,r25 };; 1084 { .mfb; getf.sig r16=f115 } 1085 { .mii; 1086 (p6) add carry1=1,carry1 1087 cmp.ltu p6,p0=r26,r25 1088 add r27=r27,r26 };; 1089 { .mfb; getf.sig r17=f106 } 1090 { .mii; 1091 (p6) add carry1=1,carry1 1092 cmp.ltu p6,p0=r27,r26 1093 add r28=r28,r27 };; 1094 { .mfb; getf.sig r18=f97 } 1095 { .mii; 1096 (p6) add carry1=1,carry1 1097 cmp.ltu p6,p0=r28,r27 1098 add r28=r28,carry2 };; 1099 { .mib; getf.sig r19=f88 1100 add r17=r17,r16 } 1101 { .mib; 1102 (p6) add carry1=1,carry1 1103 cmp.ltu p6,p0=r28,carry2 };; 1104 { .mii; st8 [r33]=r28,16 1105 (p6) add carry1=1,carry1 } 1106 1107 { .mii; mov carry2=0 1108 cmp.ltu p7,p0=r17,r16 1109 add r18=r18,r17 };; 1110 { .mfb; getf.sig r24=f116 } 1111 { .mii; (p7) add carry2=1,carry2 1112 cmp.ltu p7,p0=r18,r17 1113 add r19=r19,r18 };; 1114 { .mfb; getf.sig r25=f107 } 1115 { .mii; (p7) add carry2=1,carry2 1116 cmp.ltu p7,p0=r19,r18 1117 add r19=r19,carry1 };; 1118 { .mfb; getf.sig r26=f98 } 1119 { .mii; (p7) add carry2=1,carry2 1120 cmp.ltu p7,p0=r19,carry1};; 1121 { .mii; st8 [r32]=r19,16 1122 (p7) add carry2=1,carry2 } 1123 1124 { .mfb; add r25=r25,r24 };; 1125 1126 { .mfb; getf.sig r16=f117 } 1127 { .mii; mov carry1=0 1128 cmp.ltu p6,p0=r25,r24 1129 add r26=r26,r25 };; 1130 { .mfb; getf.sig r17=f108 } 1131 { .mii; 1132 (p6) add carry1=1,carry1 1133 cmp.ltu p6,p0=r26,r25 1134 add r26=r26,carry2 };; 1135 { .mfb; nop.m 0x0 } 1136 { .mii; 1137 (p6) add carry1=1,carry1 1138 cmp.ltu p6,p0=r26,carry2 };; 1139 { .mii; st8 [r33]=r26,16 1140 (p6) add carry1=1,carry1 } 1141 1142 { .mfb; add r17=r17,r16 };; 1143 { .mfb; getf.sig r24=f118 } 1144 { .mii; mov carry2=0 1145 cmp.ltu p7,p0=r17,r16 1146 add r17=r17,carry1 };; 1147 { .mii; (p7) add carry2=1,carry2 1148 cmp.ltu p7,p0=r17,carry1};; 1149 { .mii; st8 [r32]=r17 1150 (p7) add carry2=1,carry2 };; 1151 { .mfb; add r24=r24,carry2 };; 1152 { .mib; st8 [r33]=r24 } 1153 1154 { .mib; rum 1<<5 // clear um.mfh 1155 br.ret.sptk.many b0 };; 1156 .endp bn_mul_comba8# 1157 #undef carry3 1158 #undef carry2 1159 #undef carry1 1160 #endif 1161 1162 #if 1 1163 // It's possible to make it faster (see comment to bn_sqr_comba8), but 1164 // I reckon it doesn't worth the effort. Basically because the routine 1165 // (actually both of them) practically never called... So I just play 1166 // same trick as with bn_sqr_comba8. 1167 // 1168 // void bn_sqr_comba4(BN_ULONG *r, BN_ULONG *a) 1169 // 1170 .global bn_sqr_comba4# 1171 .proc bn_sqr_comba4# 1172 .align 64 1173 bn_sqr_comba4: 1174 .prologue 1175 .save ar.pfs,r2 1176 #if defined(_HPUX_SOURCE) && !defined(_LP64) 1177 { .mii; alloc r2=ar.pfs,2,1,0,0 1178 addp4 r32=0,r32 1179 addp4 r33=0,r33 };; 1180 { .mii; 1181 #else 1182 { .mii; alloc r2=ar.pfs,2,1,0,0 1183 #endif 1184 mov r34=r33 1185 add r14=8,r33 };; 1186 .body 1187 { .mii; add r17=8,r34 1188 add r15=16,r33 1189 add r18=16,r34 } 1190 { .mfb; add r16=24,r33 1191 br .L_cheat_entry_point4 };; 1192 .endp bn_sqr_comba4# 1193 #endif 1194 1195 #if 1 1196 // Runs in ~115 cycles and ~4.5 times faster than C. Well, whatever... 1197 // 1198 // void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b) 1199 // 1200 #define carry1 r14 1201 #define carry2 r15 1202 .global bn_mul_comba4# 1203 .proc bn_mul_comba4# 1204 .align 64 1205 bn_mul_comba4: 1206 .prologue 1207 .save ar.pfs,r2 1208 #if defined(_HPUX_SOURCE) && !defined(_LP64) 1209 { .mii; alloc r2=ar.pfs,3,0,0,0 1210 addp4 r33=0,r33 1211 addp4 r34=0,r34 };; 1212 { .mii; addp4 r32=0,r32 1213 #else 1214 { .mii; alloc r2=ar.pfs,3,0,0,0 1215 #endif 1216 add r14=8,r33 1217 add r17=8,r34 } 1218 .body 1219 { .mii; add r15=16,r33 1220 add r18=16,r34 1221 add r16=24,r33 };; 1222 .L_cheat_entry_point4: 1223 { .mmi; add r19=24,r34 1224 1225 ldf8 f32=[r33] } 1226 1227 { .mmi; ldf8 f120=[r34] 1228 ldf8 f121=[r17] };; 1229 { .mmi; ldf8 f122=[r18] 1230 ldf8 f123=[r19] } 1231 1232 { .mmi; ldf8 f33=[r14] 1233 ldf8 f34=[r15] } 1234 { .mfi; ldf8 f35=[r16] 1235 1236 xma.hu f41=f32,f120,f0 } 1237 { .mfi; xma.lu f40=f32,f120,f0 };; 1238 { .mfi; xma.hu f51=f32,f121,f0 } 1239 { .mfi; xma.lu f50=f32,f121,f0 };; 1240 { .mfi; xma.hu f61=f32,f122,f0 } 1241 { .mfi; xma.lu f60=f32,f122,f0 };; 1242 { .mfi; xma.hu f71=f32,f123,f0 } 1243 { .mfi; xma.lu f70=f32,f123,f0 };;// 1244 // Major stall takes place here, and 3 more places below. Result from 1245 // first xma is not available for another 3 ticks. 1246 { .mfi; getf.sig r16=f40 1247 xma.hu f42=f33,f120,f41 1248 add r33=8,r32 } 1249 { .mfi; xma.lu f41=f33,f120,f41 };; 1250 { .mfi; getf.sig r24=f50 1251 xma.hu f52=f33,f121,f51 } 1252 { .mfi; xma.lu f51=f33,f121,f51 };; 1253 { .mfi; st8 [r32]=r16,16 1254 xma.hu f62=f33,f122,f61 } 1255 { .mfi; xma.lu f61=f33,f122,f61 };; 1256 { .mfi; xma.hu f72=f33,f123,f71 } 1257 { .mfi; xma.lu f71=f33,f123,f71 };;// 1258 //-------------------------------------------------// 1259 { .mfi; getf.sig r25=f41 1260 xma.hu f43=f34,f120,f42 } 1261 { .mfi; xma.lu f42=f34,f120,f42 };; 1262 { .mfi; getf.sig r16=f60 1263 xma.hu f53=f34,f121,f52 } 1264 { .mfi; xma.lu f52=f34,f121,f52 };; 1265 { .mfi; getf.sig r17=f51 1266 xma.hu f63=f34,f122,f62 1267 add r25=r25,r24 } 1268 { .mfi; mov carry1=0 1269 xma.lu f62=f34,f122,f62 };; 1270 { .mfi; st8 [r33]=r25,16 1271 xma.hu f73=f34,f123,f72 1272 cmp.ltu p6,p0=r25,r24 } 1273 { .mfi; xma.lu f72=f34,f123,f72 };;// 1274 //-------------------------------------------------// 1275 { .mfi; getf.sig r18=f42 1276 xma.hu f44=f35,f120,f43 1277 (p6) add carry1=1,carry1 } 1278 { .mfi; add r17=r17,r16 1279 xma.lu f43=f35,f120,f43 1280 mov carry2=0 };; 1281 { .mfi; getf.sig r24=f70 1282 xma.hu f54=f35,f121,f53 1283 cmp.ltu p7,p0=r17,r16 } 1284 { .mfi; xma.lu f53=f35,f121,f53 };; 1285 { .mfi; getf.sig r25=f61 1286 xma.hu f64=f35,f122,f63 1287 add r18=r18,r17 } 1288 { .mfi; xma.lu f63=f35,f122,f63 1289 (p7) add carry2=1,carry2 };; 1290 { .mfi; getf.sig r26=f52 1291 xma.hu f74=f35,f123,f73 1292 cmp.ltu p7,p0=r18,r17 } 1293 { .mfi; xma.lu f73=f35,f123,f73 1294 add r18=r18,carry1 };; 1295 //-------------------------------------------------// 1296 { .mii; st8 [r32]=r18,16 1297 (p7) add carry2=1,carry2 1298 cmp.ltu p7,p0=r18,carry1 };; 1299 1300 { .mfi; getf.sig r27=f43 // last major stall 1301 (p7) add carry2=1,carry2 };; 1302 { .mii; getf.sig r16=f71 1303 add r25=r25,r24 1304 mov carry1=0 };; 1305 { .mii; getf.sig r17=f62 1306 cmp.ltu p6,p0=r25,r24 1307 add r26=r26,r25 };; 1308 { .mii; 1309 (p6) add carry1=1,carry1 1310 cmp.ltu p6,p0=r26,r25 1311 add r27=r27,r26 };; 1312 { .mii; 1313 (p6) add carry1=1,carry1 1314 cmp.ltu p6,p0=r27,r26 1315 add r27=r27,carry2 };; 1316 { .mii; getf.sig r18=f53 1317 (p6) add carry1=1,carry1 1318 cmp.ltu p6,p0=r27,carry2 };; 1319 { .mfi; st8 [r33]=r27,16 1320 (p6) add carry1=1,carry1 } 1321 1322 { .mii; getf.sig r19=f44 1323 add r17=r17,r16 1324 mov carry2=0 };; 1325 { .mii; getf.sig r24=f72 1326 cmp.ltu p7,p0=r17,r16 1327 add r18=r18,r17 };; 1328 { .mii; (p7) add carry2=1,carry2 1329 cmp.ltu p7,p0=r18,r17 1330 add r19=r19,r18 };; 1331 { .mii; (p7) add carry2=1,carry2 1332 cmp.ltu p7,p0=r19,r18 1333 add r19=r19,carry1 };; 1334 { .mii; getf.sig r25=f63 1335 (p7) add carry2=1,carry2 1336 cmp.ltu p7,p0=r19,carry1};; 1337 { .mii; st8 [r32]=r19,16 1338 (p7) add carry2=1,carry2 } 1339 1340 { .mii; getf.sig r26=f54 1341 add r25=r25,r24 1342 mov carry1=0 };; 1343 { .mii; getf.sig r16=f73 1344 cmp.ltu p6,p0=r25,r24 1345 add r26=r26,r25 };; 1346 { .mii; 1347 (p6) add carry1=1,carry1 1348 cmp.ltu p6,p0=r26,r25 1349 add r26=r26,carry2 };; 1350 { .mii; getf.sig r17=f64 1351 (p6) add carry1=1,carry1 1352 cmp.ltu p6,p0=r26,carry2 };; 1353 { .mii; st8 [r33]=r26,16 1354 (p6) add carry1=1,carry1 } 1355 1356 { .mii; getf.sig r24=f74 1357 add r17=r17,r16 1358 mov carry2=0 };; 1359 { .mii; cmp.ltu p7,p0=r17,r16 1360 add r17=r17,carry1 };; 1361 1362 { .mii; (p7) add carry2=1,carry2 1363 cmp.ltu p7,p0=r17,carry1};; 1364 { .mii; st8 [r32]=r17,16 1365 (p7) add carry2=1,carry2 };; 1366 1367 { .mii; add r24=r24,carry2 };; 1368 { .mii; st8 [r33]=r24 } 1369 1370 { .mib; rum 1<<5 // clear um.mfh 1371 br.ret.sptk.many b0 };; 1372 .endp bn_mul_comba4# 1373 #undef carry2 1374 #undef carry1 1375 #endif 1376 1377 #if 1 1378 // 1379 // BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d) 1380 // 1381 // In the nutshell it's a port of my MIPS III/IV implementation. 1382 // 1383 #define AT r14 1384 #define H r16 1385 #define HH r20 1386 #define L r17 1387 #define D r18 1388 #define DH r22 1389 #define I r21 1390 1391 #if 0 1392 // Some preprocessors (most notably HP-UX) appear to be allergic to 1393 // macros enclosed to parenthesis [as these three were]. 1394 #define cont p16 1395 #define break p0 // p20 1396 #define equ p24 1397 #else 1398 cont=p16 1399 break=p0 1400 equ=p24 1401 #endif 1402 1403 .global abort# 1404 .global bn_div_words# 1405 .proc bn_div_words# 1406 .align 64 1407 bn_div_words: 1408 .prologue 1409 .save ar.pfs,r2 1410 { .mii; alloc r2=ar.pfs,3,5,0,8 1411 .save b0,r3 1412 mov r3=b0 1413 .save pr,r10 1414 mov r10=pr };; 1415 { .mmb; cmp.eq p6,p0=r34,r0 1416 mov r8=-1 1417 (p6) br.ret.spnt.many b0 };; 1418 1419 .body 1420 { .mii; mov H=r32 // save h 1421 mov ar.ec=0 // don't rotate at exit 1422 mov pr.rot=0 } 1423 { .mii; mov L=r33 // save l 1424 mov r36=r0 };; 1425 1426 .L_divw_shift: // -vv- note signed comparison 1427 { .mfi; (p0) cmp.lt p16,p0=r0,r34 // d 1428 (p0) shladd r33=r34,1,r0 } 1429 { .mfb; (p0) add r35=1,r36 1430 (p0) nop.f 0x0 1431 (p16) br.wtop.dpnt .L_divw_shift };; 1432 1433 { .mii; mov D=r34 1434 shr.u DH=r34,32 1435 sub r35=64,r36 };; 1436 { .mii; setf.sig f7=DH 1437 shr.u AT=H,r35 1438 mov I=r36 };; 1439 { .mib; cmp.ne p6,p0=r0,AT 1440 shl H=H,r36 1441 (p6) br.call.spnt.clr b0=abort };; // overflow, die... 1442 1443 { .mfi; fcvt.xuf.s1 f7=f7 1444 shr.u AT=L,r35 };; 1445 { .mii; shl L=L,r36 1446 or H=H,AT };; 1447 1448 { .mii; nop.m 0x0 1449 cmp.leu p6,p0=D,H;; 1450 (p6) sub H=H,D } 1451 1452 { .mlx; setf.sig f14=D 1453 movl AT=0xffffffff };; 1454 /////////////////////////////////////////////////////////// 1455 { .mii; setf.sig f6=H 1456 shr.u HH=H,32;; 1457 cmp.eq p6,p7=HH,DH };; 1458 { .mfb; 1459 (p6) setf.sig f8=AT 1460 (p7) fcvt.xuf.s1 f6=f6 1461 (p7) br.call.sptk b6=.L_udiv64_32_b6 };; 1462 1463 { .mfi; getf.sig r33=f8 // q 1464 xmpy.lu f9=f8,f14 } 1465 { .mfi; xmpy.hu f10=f8,f14 1466 shrp H=H,L,32 };; 1467 1468 { .mmi; getf.sig r35=f9 // tl 1469 getf.sig r31=f10 };; // th 1470 1471 .L_divw_1st_iter: 1472 { .mii; (p0) add r32=-1,r33 1473 (p0) cmp.eq equ,cont=HH,r31 };; 1474 { .mii; (p0) cmp.ltu p8,p0=r35,D 1475 (p0) sub r34=r35,D 1476 (equ) cmp.leu break,cont=r35,H };; 1477 { .mib; (cont) cmp.leu cont,break=HH,r31 1478 (p8) add r31=-1,r31 1479 (cont) br.wtop.spnt .L_divw_1st_iter };; 1480 /////////////////////////////////////////////////////////// 1481 { .mii; sub H=H,r35 1482 shl r8=r33,32 1483 shl L=L,32 };; 1484 /////////////////////////////////////////////////////////// 1485 { .mii; setf.sig f6=H 1486 shr.u HH=H,32;; 1487 cmp.eq p6,p7=HH,DH };; 1488 { .mfb; 1489 (p6) setf.sig f8=AT 1490 (p7) fcvt.xuf.s1 f6=f6 1491 (p7) br.call.sptk b6=.L_udiv64_32_b6 };; 1492 1493 { .mfi; getf.sig r33=f8 // q 1494 xmpy.lu f9=f8,f14 } 1495 { .mfi; xmpy.hu f10=f8,f14 1496 shrp H=H,L,32 };; 1497 1498 { .mmi; getf.sig r35=f9 // tl 1499 getf.sig r31=f10 };; // th 1500 1501 .L_divw_2nd_iter: 1502 { .mii; (p0) add r32=-1,r33 1503 (p0) cmp.eq equ,cont=HH,r31 };; 1504 { .mii; (p0) cmp.ltu p8,p0=r35,D 1505 (p0) sub r34=r35,D 1506 (equ) cmp.leu break,cont=r35,H };; 1507 { .mib; (cont) cmp.leu cont,break=HH,r31 1508 (p8) add r31=-1,r31 1509 (cont) br.wtop.spnt .L_divw_2nd_iter };; 1510 /////////////////////////////////////////////////////////// 1511 { .mii; sub H=H,r35 1512 or r8=r8,r33 1513 mov ar.pfs=r2 };; 1514 { .mii; shr.u r9=H,I // remainder if anybody wants it 1515 mov pr=r10,0x1ffff } 1516 { .mfb; br.ret.sptk.many b0 };; 1517 1518 // Unsigned 64 by 32 (well, by 64 for the moment) bit integer division 1519 // procedure. 1520 // 1521 // inputs: f6 = (double)a, f7 = (double)b 1522 // output: f8 = (int)(a/b) 1523 // clobbered: f8,f9,f10,f11,pred 1524 pred=p15 1525 // One can argue that this snippet is copyrighted to Intel 1526 // Corporation, as it's essentially identical to one of those 1527 // found in "Divide, Square Root and Remainder" section at 1528 // http://www.intel.com/software/products/opensource/libraries/num.htm. 1529 // Yes, I admit that the referred code was used as template, 1530 // but after I realized that there hardly is any other instruction 1531 // sequence which would perform this operation. I mean I figure that 1532 // any independent attempt to implement high-performance division 1533 // will result in code virtually identical to the Intel code. It 1534 // should be noted though that below division kernel is 1 cycle 1535 // faster than Intel one (note commented splits:-), not to mention 1536 // original prologue (rather lack of one) and epilogue. 1537 .align 32 1538 .skip 16 1539 .L_udiv64_32_b6: 1540 frcpa.s1 f8,pred=f6,f7;; // [0] y0 = 1 / b 1541 1542 (pred) fnma.s1 f9=f7,f8,f1 // [5] e0 = 1 - b * y0 1543 (pred) fmpy.s1 f10=f6,f8;; // [5] q0 = a * y0 1544 (pred) fmpy.s1 f11=f9,f9 // [10] e1 = e0 * e0 1545 (pred) fma.s1 f10=f9,f10,f10;; // [10] q1 = q0 + e0 * q0 1546 (pred) fma.s1 f8=f9,f8,f8 //;; // [15] y1 = y0 + e0 * y0 1547 (pred) fma.s1 f9=f11,f10,f10;; // [15] q2 = q1 + e1 * q1 1548 (pred) fma.s1 f8=f11,f8,f8 //;; // [20] y2 = y1 + e1 * y1 1549 (pred) fnma.s1 f10=f7,f9,f6;; // [20] r2 = a - b * q2 1550 (pred) fma.s1 f8=f10,f8,f9;; // [25] q3 = q2 + r2 * y2 1551 1552 fcvt.fxu.trunc.s1 f8=f8 // [30] q = trunc(q3) 1553 br.ret.sptk.many b6;; 1554 .endp bn_div_words# 1555 #endif 1556