Home | History | Annotate | Download | only in src
      1 // Copyright 2011 the V8 project authors. All rights reserved.
      2 // Redistribution and use in source and binary forms, with or without
      3 // modification, are permitted provided that the following conditions are
      4 // met:
      5 //
      6 //     * Redistributions of source code must retain the above copyright
      7 //       notice, this list of conditions and the following disclaimer.
      8 //     * Redistributions in binary form must reproduce the above
      9 //       copyright notice, this list of conditions and the following
     10 //       disclaimer in the documentation and/or other materials provided
     11 //       with the distribution.
     12 //     * Neither the name of Google Inc. nor the names of its
     13 //       contributors may be used to endorse or promote products derived
     14 //       from this software without specific prior written permission.
     15 //
     16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     27 
     28 #ifndef V8_DOUBLE_H_
     29 #define V8_DOUBLE_H_
     30 
     31 #include "diy-fp.h"
     32 
     33 namespace v8 {
     34 namespace internal {
     35 
     36 // We assume that doubles and uint64_t have the same endianness.
     37 inline uint64_t double_to_uint64(double d) { return BitCast<uint64_t>(d); }
     38 inline double uint64_to_double(uint64_t d64) { return BitCast<double>(d64); }
     39 
     40 // Helper functions for doubles.
     41 class Double {
     42  public:
     43   static const uint64_t kSignMask = V8_2PART_UINT64_C(0x80000000, 00000000);
     44   static const uint64_t kExponentMask = V8_2PART_UINT64_C(0x7FF00000, 00000000);
     45   static const uint64_t kSignificandMask =
     46       V8_2PART_UINT64_C(0x000FFFFF, FFFFFFFF);
     47   static const uint64_t kHiddenBit = V8_2PART_UINT64_C(0x00100000, 00000000);
     48   static const int kPhysicalSignificandSize = 52;  // Excludes the hidden bit.
     49   static const int kSignificandSize = 53;
     50 
     51   Double() : d64_(0) {}
     52   explicit Double(double d) : d64_(double_to_uint64(d)) {}
     53   explicit Double(uint64_t d64) : d64_(d64) {}
     54   explicit Double(DiyFp diy_fp)
     55     : d64_(DiyFpToUint64(diy_fp)) {}
     56 
     57   // The value encoded by this Double must be greater or equal to +0.0.
     58   // It must not be special (infinity, or NaN).
     59   DiyFp AsDiyFp() const {
     60     ASSERT(Sign() > 0);
     61     ASSERT(!IsSpecial());
     62     return DiyFp(Significand(), Exponent());
     63   }
     64 
     65   // The value encoded by this Double must be strictly greater than 0.
     66   DiyFp AsNormalizedDiyFp() const {
     67     ASSERT(value() > 0.0);
     68     uint64_t f = Significand();
     69     int e = Exponent();
     70 
     71     // The current double could be a denormal.
     72     while ((f & kHiddenBit) == 0) {
     73       f <<= 1;
     74       e--;
     75     }
     76     // Do the final shifts in one go.
     77     f <<= DiyFp::kSignificandSize - kSignificandSize;
     78     e -= DiyFp::kSignificandSize - kSignificandSize;
     79     return DiyFp(f, e);
     80   }
     81 
     82   // Returns the double's bit as uint64.
     83   uint64_t AsUint64() const {
     84     return d64_;
     85   }
     86 
     87   // Returns the next greater double. Returns +infinity on input +infinity.
     88   double NextDouble() const {
     89     if (d64_ == kInfinity) return Double(kInfinity).value();
     90     if (Sign() < 0 && Significand() == 0) {
     91       // -0.0
     92       return 0.0;
     93     }
     94     if (Sign() < 0) {
     95       return Double(d64_ - 1).value();
     96     } else {
     97       return Double(d64_ + 1).value();
     98     }
     99   }
    100 
    101   int Exponent() const {
    102     if (IsDenormal()) return kDenormalExponent;
    103 
    104     uint64_t d64 = AsUint64();
    105     int biased_e =
    106         static_cast<int>((d64 & kExponentMask) >> kPhysicalSignificandSize);
    107     return biased_e - kExponentBias;
    108   }
    109 
    110   uint64_t Significand() const {
    111     uint64_t d64 = AsUint64();
    112     uint64_t significand = d64 & kSignificandMask;
    113     if (!IsDenormal()) {
    114       return significand + kHiddenBit;
    115     } else {
    116       return significand;
    117     }
    118   }
    119 
    120   // Returns true if the double is a denormal.
    121   bool IsDenormal() const {
    122     uint64_t d64 = AsUint64();
    123     return (d64 & kExponentMask) == 0;
    124   }
    125 
    126   // We consider denormals not to be special.
    127   // Hence only Infinity and NaN are special.
    128   bool IsSpecial() const {
    129     uint64_t d64 = AsUint64();
    130     return (d64 & kExponentMask) == kExponentMask;
    131   }
    132 
    133   bool IsNan() const {
    134     uint64_t d64 = AsUint64();
    135     return ((d64 & kExponentMask) == kExponentMask) &&
    136         ((d64 & kSignificandMask) != 0);
    137   }
    138 
    139   bool IsInfinite() const {
    140     uint64_t d64 = AsUint64();
    141     return ((d64 & kExponentMask) == kExponentMask) &&
    142         ((d64 & kSignificandMask) == 0);
    143   }
    144 
    145   int Sign() const {
    146     uint64_t d64 = AsUint64();
    147     return (d64 & kSignMask) == 0? 1: -1;
    148   }
    149 
    150   // Precondition: the value encoded by this Double must be greater or equal
    151   // than +0.0.
    152   DiyFp UpperBoundary() const {
    153     ASSERT(Sign() > 0);
    154     return DiyFp(Significand() * 2 + 1, Exponent() - 1);
    155   }
    156 
    157   // Returns the two boundaries of this.
    158   // The bigger boundary (m_plus) is normalized. The lower boundary has the same
    159   // exponent as m_plus.
    160   // Precondition: the value encoded by this Double must be greater than 0.
    161   void NormalizedBoundaries(DiyFp* out_m_minus, DiyFp* out_m_plus) const {
    162     ASSERT(value() > 0.0);
    163     DiyFp v = this->AsDiyFp();
    164     bool significand_is_zero = (v.f() == kHiddenBit);
    165     DiyFp m_plus = DiyFp::Normalize(DiyFp((v.f() << 1) + 1, v.e() - 1));
    166     DiyFp m_minus;
    167     if (significand_is_zero && v.e() != kDenormalExponent) {
    168       // The boundary is closer. Think of v = 1000e10 and v- = 9999e9.
    169       // Then the boundary (== (v - v-)/2) is not just at a distance of 1e9 but
    170       // at a distance of 1e8.
    171       // The only exception is for the smallest normal: the largest denormal is
    172       // at the same distance as its successor.
    173       // Note: denormals have the same exponent as the smallest normals.
    174       m_minus = DiyFp((v.f() << 2) - 1, v.e() - 2);
    175     } else {
    176       m_minus = DiyFp((v.f() << 1) - 1, v.e() - 1);
    177     }
    178     m_minus.set_f(m_minus.f() << (m_minus.e() - m_plus.e()));
    179     m_minus.set_e(m_plus.e());
    180     *out_m_plus = m_plus;
    181     *out_m_minus = m_minus;
    182   }
    183 
    184   double value() const { return uint64_to_double(d64_); }
    185 
    186   // Returns the significand size for a given order of magnitude.
    187   // If v = f*2^e with 2^p-1 <= f <= 2^p then p+e is v's order of magnitude.
    188   // This function returns the number of significant binary digits v will have
    189   // once its encoded into a double. In almost all cases this is equal to
    190   // kSignificandSize. The only exception are denormals. They start with leading
    191   // zeroes and their effective significand-size is hence smaller.
    192   static int SignificandSizeForOrderOfMagnitude(int order) {
    193     if (order >= (kDenormalExponent + kSignificandSize)) {
    194       return kSignificandSize;
    195     }
    196     if (order <= kDenormalExponent) return 0;
    197     return order - kDenormalExponent;
    198   }
    199 
    200  private:
    201   static const int kExponentBias = 0x3FF + kPhysicalSignificandSize;
    202   static const int kDenormalExponent = -kExponentBias + 1;
    203   static const int kMaxExponent = 0x7FF - kExponentBias;
    204   static const uint64_t kInfinity = V8_2PART_UINT64_C(0x7FF00000, 00000000);
    205 
    206   const uint64_t d64_;
    207 
    208   static uint64_t DiyFpToUint64(DiyFp diy_fp) {
    209     uint64_t significand = diy_fp.f();
    210     int exponent = diy_fp.e();
    211     while (significand > kHiddenBit + kSignificandMask) {
    212       significand >>= 1;
    213       exponent++;
    214     }
    215     if (exponent >= kMaxExponent) {
    216       return kInfinity;
    217     }
    218     if (exponent < kDenormalExponent) {
    219       return 0;
    220     }
    221     while (exponent > kDenormalExponent && (significand & kHiddenBit) == 0) {
    222       significand <<= 1;
    223       exponent--;
    224     }
    225     uint64_t biased_exponent;
    226     if (exponent == kDenormalExponent && (significand & kHiddenBit) == 0) {
    227       biased_exponent = 0;
    228     } else {
    229       biased_exponent = static_cast<uint64_t>(exponent + kExponentBias);
    230     }
    231     return (significand & kSignificandMask) |
    232         (biased_exponent << kPhysicalSignificandSize);
    233   }
    234 };
    235 
    236 } }  // namespace v8::internal
    237 
    238 #endif  // V8_DOUBLE_H_
    239