Home | History | Annotate | Download | only in llvm
      1 //===-- llvm/Value.h - Definition of the Value class ------------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file declares the Value class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #ifndef LLVM_VALUE_H
     15 #define LLVM_VALUE_H
     16 
     17 #include "llvm/Use.h"
     18 #include "llvm/Support/Casting.h"
     19 
     20 namespace llvm {
     21 
     22 class Constant;
     23 class Argument;
     24 class Instruction;
     25 class BasicBlock;
     26 class GlobalValue;
     27 class Function;
     28 class GlobalVariable;
     29 class GlobalAlias;
     30 class InlineAsm;
     31 class ValueSymbolTable;
     32 template<typename ValueTy> class StringMapEntry;
     33 typedef StringMapEntry<Value*> ValueName;
     34 class raw_ostream;
     35 class AssemblyAnnotationWriter;
     36 class ValueHandleBase;
     37 class LLVMContext;
     38 class Twine;
     39 class MDNode;
     40 class Type;
     41 class StringRef;
     42 
     43 //===----------------------------------------------------------------------===//
     44 //                                 Value Class
     45 //===----------------------------------------------------------------------===//
     46 
     47 /// This is a very important LLVM class. It is the base class of all values
     48 /// computed by a program that may be used as operands to other values. Value is
     49 /// the super class of other important classes such as Instruction and Function.
     50 /// All Values have a Type. Type is not a subclass of Value. Some values can
     51 /// have a name and they belong to some Module.  Setting the name on the Value
     52 /// automatically updates the module's symbol table.
     53 ///
     54 /// Every value has a "use list" that keeps track of which other Values are
     55 /// using this Value.  A Value can also have an arbitrary number of ValueHandle
     56 /// objects that watch it and listen to RAUW and Destroy events.  See
     57 /// llvm/Support/ValueHandle.h for details.
     58 ///
     59 /// @brief LLVM Value Representation
     60 class Value {
     61   const unsigned char SubclassID;   // Subclass identifier (for isa/dyn_cast)
     62   unsigned char HasValueHandle : 1; // Has a ValueHandle pointing to this?
     63 protected:
     64   /// SubclassOptionalData - This member is similar to SubclassData, however it
     65   /// is for holding information which may be used to aid optimization, but
     66   /// which may be cleared to zero without affecting conservative
     67   /// interpretation.
     68   unsigned char SubclassOptionalData : 7;
     69 
     70 private:
     71   /// SubclassData - This member is defined by this class, but is not used for
     72   /// anything.  Subclasses can use it to hold whatever state they find useful.
     73   /// This field is initialized to zero by the ctor.
     74   unsigned short SubclassData;
     75 
     76   Type *VTy;
     77   Use *UseList;
     78 
     79   friend class ValueSymbolTable; // Allow ValueSymbolTable to directly mod Name.
     80   friend class ValueHandleBase;
     81   ValueName *Name;
     82 
     83   void operator=(const Value &);     // Do not implement
     84   Value(const Value &);              // Do not implement
     85 
     86 protected:
     87   /// printCustom - Value subclasses can override this to implement custom
     88   /// printing behavior.
     89   virtual void printCustom(raw_ostream &O) const;
     90 
     91   Value(Type *Ty, unsigned scid);
     92 public:
     93   virtual ~Value();
     94 
     95   /// dump - Support for debugging, callable in GDB: V->dump()
     96   //
     97   void dump() const;
     98 
     99   /// print - Implement operator<< on Value.
    100   ///
    101   void print(raw_ostream &O, AssemblyAnnotationWriter *AAW = 0) const;
    102 
    103   /// All values are typed, get the type of this value.
    104   ///
    105   Type *getType() const { return VTy; }
    106 
    107   /// All values hold a context through their type.
    108   LLVMContext &getContext() const;
    109 
    110   // All values can potentially be named.
    111   bool hasName() const { return Name != 0 && SubclassID != MDStringVal; }
    112   ValueName *getValueName() const { return Name; }
    113   void setValueName(ValueName *VN) { Name = VN; }
    114 
    115   /// getName() - Return a constant reference to the value's name. This is cheap
    116   /// and guaranteed to return the same reference as long as the value is not
    117   /// modified.
    118   StringRef getName() const;
    119 
    120   /// setName() - Change the name of the value, choosing a new unique name if
    121   /// the provided name is taken.
    122   ///
    123   /// \arg Name - The new name; or "" if the value's name should be removed.
    124   void setName(const Twine &Name);
    125 
    126 
    127   /// takeName - transfer the name from V to this value, setting V's name to
    128   /// empty.  It is an error to call V->takeName(V).
    129   void takeName(Value *V);
    130 
    131   /// replaceAllUsesWith - Go through the uses list for this definition and make
    132   /// each use point to "V" instead of "this".  After this completes, 'this's
    133   /// use list is guaranteed to be empty.
    134   ///
    135   void replaceAllUsesWith(Value *V);
    136 
    137   //----------------------------------------------------------------------
    138   // Methods for handling the chain of uses of this Value.
    139   //
    140   typedef value_use_iterator<User>       use_iterator;
    141   typedef value_use_iterator<const User> const_use_iterator;
    142 
    143   bool               use_empty() const { return UseList == 0; }
    144   use_iterator       use_begin()       { return use_iterator(UseList); }
    145   const_use_iterator use_begin() const { return const_use_iterator(UseList); }
    146   use_iterator       use_end()         { return use_iterator(0);   }
    147   const_use_iterator use_end()   const { return const_use_iterator(0);   }
    148   User              *use_back()        { return *use_begin(); }
    149   const User        *use_back()  const { return *use_begin(); }
    150 
    151   /// hasOneUse - Return true if there is exactly one user of this value.  This
    152   /// is specialized because it is a common request and does not require
    153   /// traversing the whole use list.
    154   ///
    155   bool hasOneUse() const {
    156     const_use_iterator I = use_begin(), E = use_end();
    157     if (I == E) return false;
    158     return ++I == E;
    159   }
    160 
    161   /// hasNUses - Return true if this Value has exactly N users.
    162   ///
    163   bool hasNUses(unsigned N) const;
    164 
    165   /// hasNUsesOrMore - Return true if this value has N users or more.  This is
    166   /// logically equivalent to getNumUses() >= N.
    167   ///
    168   bool hasNUsesOrMore(unsigned N) const;
    169 
    170   bool isUsedInBasicBlock(const BasicBlock *BB) const;
    171 
    172   /// getNumUses - This method computes the number of uses of this Value.  This
    173   /// is a linear time operation.  Use hasOneUse, hasNUses, or hasNUsesOrMore
    174   /// to check for specific values.
    175   unsigned getNumUses() const;
    176 
    177   /// addUse - This method should only be used by the Use class.
    178   ///
    179   void addUse(Use &U) { U.addToList(&UseList); }
    180 
    181   /// An enumeration for keeping track of the concrete subclass of Value that
    182   /// is actually instantiated. Values of this enumeration are kept in the
    183   /// Value classes SubclassID field. They are used for concrete type
    184   /// identification.
    185   enum ValueTy {
    186     ArgumentVal,              // This is an instance of Argument
    187     BasicBlockVal,            // This is an instance of BasicBlock
    188     FunctionVal,              // This is an instance of Function
    189     GlobalAliasVal,           // This is an instance of GlobalAlias
    190     GlobalVariableVal,        // This is an instance of GlobalVariable
    191     UndefValueVal,            // This is an instance of UndefValue
    192     BlockAddressVal,          // This is an instance of BlockAddress
    193     ConstantExprVal,          // This is an instance of ConstantExpr
    194     ConstantAggregateZeroVal, // This is an instance of ConstantAggregateZero
    195     ConstantDataArrayVal,     // This is an instance of ConstantDataArray
    196     ConstantDataVectorVal,    // This is an instance of ConstantDataVector
    197     ConstantIntVal,           // This is an instance of ConstantInt
    198     ConstantFPVal,            // This is an instance of ConstantFP
    199     ConstantArrayVal,         // This is an instance of ConstantArray
    200     ConstantStructVal,        // This is an instance of ConstantStruct
    201     ConstantVectorVal,        // This is an instance of ConstantVector
    202     ConstantPointerNullVal,   // This is an instance of ConstantPointerNull
    203     MDNodeVal,                // This is an instance of MDNode
    204     MDStringVal,              // This is an instance of MDString
    205     InlineAsmVal,             // This is an instance of InlineAsm
    206     PseudoSourceValueVal,     // This is an instance of PseudoSourceValue
    207     FixedStackPseudoSourceValueVal, // This is an instance of
    208                                     // FixedStackPseudoSourceValue
    209     InstructionVal,           // This is an instance of Instruction
    210     // Enum values starting at InstructionVal are used for Instructions;
    211     // don't add new values here!
    212 
    213     // Markers:
    214     ConstantFirstVal = FunctionVal,
    215     ConstantLastVal  = ConstantPointerNullVal
    216   };
    217 
    218   /// getValueID - Return an ID for the concrete type of this object.  This is
    219   /// used to implement the classof checks.  This should not be used for any
    220   /// other purpose, as the values may change as LLVM evolves.  Also, note that
    221   /// for instructions, the Instruction's opcode is added to InstructionVal. So
    222   /// this means three things:
    223   /// # there is no value with code InstructionVal (no opcode==0).
    224   /// # there are more possible values for the value type than in ValueTy enum.
    225   /// # the InstructionVal enumerator must be the highest valued enumerator in
    226   ///   the ValueTy enum.
    227   unsigned getValueID() const {
    228     return SubclassID;
    229   }
    230 
    231   /// getRawSubclassOptionalData - Return the raw optional flags value
    232   /// contained in this value. This should only be used when testing two
    233   /// Values for equivalence.
    234   unsigned getRawSubclassOptionalData() const {
    235     return SubclassOptionalData;
    236   }
    237 
    238   /// clearSubclassOptionalData - Clear the optional flags contained in
    239   /// this value.
    240   void clearSubclassOptionalData() {
    241     SubclassOptionalData = 0;
    242   }
    243 
    244   /// hasSameSubclassOptionalData - Test whether the optional flags contained
    245   /// in this value are equal to the optional flags in the given value.
    246   bool hasSameSubclassOptionalData(const Value *V) const {
    247     return SubclassOptionalData == V->SubclassOptionalData;
    248   }
    249 
    250   /// intersectOptionalDataWith - Clear any optional flags in this value
    251   /// that are not also set in the given value.
    252   void intersectOptionalDataWith(const Value *V) {
    253     SubclassOptionalData &= V->SubclassOptionalData;
    254   }
    255 
    256   /// hasValueHandle - Return true if there is a value handle associated with
    257   /// this value.
    258   bool hasValueHandle() const { return HasValueHandle; }
    259 
    260   // Methods for support type inquiry through isa, cast, and dyn_cast:
    261   static inline bool classof(const Value *) {
    262     return true; // Values are always values.
    263   }
    264 
    265   /// stripPointerCasts - This method strips off any unneeded pointer casts and
    266   /// all-zero GEPs from the specified value, returning the original uncasted
    267   /// value. If this is called on a non-pointer value, it returns 'this'.
    268   Value *stripPointerCasts();
    269   const Value *stripPointerCasts() const {
    270     return const_cast<Value*>(this)->stripPointerCasts();
    271   }
    272 
    273   /// stripInBoundsConstantOffsets - This method strips off unneeded pointer casts and
    274   /// all-constant GEPs from the specified value, returning the original
    275   /// pointer value. If this is called on a non-pointer value, it returns
    276   /// 'this'.
    277   Value *stripInBoundsConstantOffsets();
    278   const Value *stripInBoundsConstantOffsets() const {
    279     return const_cast<Value*>(this)->stripInBoundsConstantOffsets();
    280   }
    281 
    282   /// stripInBoundsOffsets - This method strips off unneeded pointer casts and
    283   /// any in-bounds Offsets from the specified value, returning the original
    284   /// pointer value. If this is called on a non-pointer value, it returns
    285   /// 'this'.
    286   Value *stripInBoundsOffsets();
    287   const Value *stripInBoundsOffsets() const {
    288     return const_cast<Value*>(this)->stripInBoundsOffsets();
    289   }
    290 
    291   /// isDereferenceablePointer - Test if this value is always a pointer to
    292   /// allocated and suitably aligned memory for a simple load or store.
    293   bool isDereferenceablePointer() const;
    294 
    295   /// DoPHITranslation - If this value is a PHI node with CurBB as its parent,
    296   /// return the value in the PHI node corresponding to PredBB.  If not, return
    297   /// ourself.  This is useful if you want to know the value something has in a
    298   /// predecessor block.
    299   Value *DoPHITranslation(const BasicBlock *CurBB, const BasicBlock *PredBB);
    300 
    301   const Value *DoPHITranslation(const BasicBlock *CurBB,
    302                                 const BasicBlock *PredBB) const{
    303     return const_cast<Value*>(this)->DoPHITranslation(CurBB, PredBB);
    304   }
    305 
    306   /// MaximumAlignment - This is the greatest alignment value supported by
    307   /// load, store, and alloca instructions, and global values.
    308   static const unsigned MaximumAlignment = 1u << 29;
    309 
    310   /// mutateType - Mutate the type of this Value to be of the specified type.
    311   /// Note that this is an extremely dangerous operation which can create
    312   /// completely invalid IR very easily.  It is strongly recommended that you
    313   /// recreate IR objects with the right types instead of mutating them in
    314   /// place.
    315   void mutateType(Type *Ty) {
    316     VTy = Ty;
    317   }
    318 
    319 protected:
    320   unsigned short getSubclassDataFromValue() const { return SubclassData; }
    321   void setValueSubclassData(unsigned short D) { SubclassData = D; }
    322 };
    323 
    324 inline raw_ostream &operator<<(raw_ostream &OS, const Value &V) {
    325   V.print(OS);
    326   return OS;
    327 }
    328 
    329 void Use::set(Value *V) {
    330   if (Val) removeFromList();
    331   Val = V;
    332   if (V) V->addUse(*this);
    333 }
    334 
    335 
    336 // isa - Provide some specializations of isa so that we don't have to include
    337 // the subtype header files to test to see if the value is a subclass...
    338 //
    339 template <> struct isa_impl<Constant, Value> {
    340   static inline bool doit(const Value &Val) {
    341     return Val.getValueID() >= Value::ConstantFirstVal &&
    342       Val.getValueID() <= Value::ConstantLastVal;
    343   }
    344 };
    345 
    346 template <> struct isa_impl<Argument, Value> {
    347   static inline bool doit (const Value &Val) {
    348     return Val.getValueID() == Value::ArgumentVal;
    349   }
    350 };
    351 
    352 template <> struct isa_impl<InlineAsm, Value> {
    353   static inline bool doit(const Value &Val) {
    354     return Val.getValueID() == Value::InlineAsmVal;
    355   }
    356 };
    357 
    358 template <> struct isa_impl<Instruction, Value> {
    359   static inline bool doit(const Value &Val) {
    360     return Val.getValueID() >= Value::InstructionVal;
    361   }
    362 };
    363 
    364 template <> struct isa_impl<BasicBlock, Value> {
    365   static inline bool doit(const Value &Val) {
    366     return Val.getValueID() == Value::BasicBlockVal;
    367   }
    368 };
    369 
    370 template <> struct isa_impl<Function, Value> {
    371   static inline bool doit(const Value &Val) {
    372     return Val.getValueID() == Value::FunctionVal;
    373   }
    374 };
    375 
    376 template <> struct isa_impl<GlobalVariable, Value> {
    377   static inline bool doit(const Value &Val) {
    378     return Val.getValueID() == Value::GlobalVariableVal;
    379   }
    380 };
    381 
    382 template <> struct isa_impl<GlobalAlias, Value> {
    383   static inline bool doit(const Value &Val) {
    384     return Val.getValueID() == Value::GlobalAliasVal;
    385   }
    386 };
    387 
    388 template <> struct isa_impl<GlobalValue, Value> {
    389   static inline bool doit(const Value &Val) {
    390     return isa<GlobalVariable>(Val) || isa<Function>(Val) ||
    391       isa<GlobalAlias>(Val);
    392   }
    393 };
    394 
    395 template <> struct isa_impl<MDNode, Value> {
    396   static inline bool doit(const Value &Val) {
    397     return Val.getValueID() == Value::MDNodeVal;
    398   }
    399 };
    400 
    401 // Value* is only 4-byte aligned.
    402 template<>
    403 class PointerLikeTypeTraits<Value*> {
    404   typedef Value* PT;
    405 public:
    406   static inline void *getAsVoidPointer(PT P) { return P; }
    407   static inline PT getFromVoidPointer(void *P) {
    408     return static_cast<PT>(P);
    409   }
    410   enum { NumLowBitsAvailable = 2 };
    411 };
    412 
    413 } // End llvm namespace
    414 
    415 #endif
    416