Home | History | Annotate | Download | only in JIT
      1 //===-- JITMemoryManager.cpp - Memory Allocator for JIT'd code ------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the DefaultJITMemoryManager class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #define DEBUG_TYPE "jit"
     15 #include "llvm/ExecutionEngine/JITMemoryManager.h"
     16 #include "llvm/ADT/SmallPtrSet.h"
     17 #include "llvm/ADT/Statistic.h"
     18 #include "llvm/ADT/Twine.h"
     19 #include "llvm/GlobalValue.h"
     20 #include "llvm/Support/Allocator.h"
     21 #include "llvm/Support/Compiler.h"
     22 #include "llvm/Support/Debug.h"
     23 #include "llvm/Support/ErrorHandling.h"
     24 #include "llvm/Support/raw_ostream.h"
     25 #include "llvm/Support/Memory.h"
     26 #include "llvm/Support/ErrorHandling.h"
     27 #include "llvm/Support/DynamicLibrary.h"
     28 #include "llvm/Config/config.h"
     29 #include <vector>
     30 #include <cassert>
     31 #include <climits>
     32 #include <cstring>
     33 
     34 #if defined(__linux__)
     35 #if defined(HAVE_SYS_STAT_H)
     36 #include <sys/stat.h>
     37 #endif
     38 #include <fcntl.h>
     39 #include <unistd.h>
     40 #endif
     41 
     42 using namespace llvm;
     43 
     44 STATISTIC(NumSlabs, "Number of slabs of memory allocated by the JIT");
     45 
     46 JITMemoryManager::~JITMemoryManager() {}
     47 
     48 //===----------------------------------------------------------------------===//
     49 // Memory Block Implementation.
     50 //===----------------------------------------------------------------------===//
     51 
     52 namespace {
     53   /// MemoryRangeHeader - For a range of memory, this is the header that we put
     54   /// on the block of memory.  It is carefully crafted to be one word of memory.
     55   /// Allocated blocks have just this header, free'd blocks have FreeRangeHeader
     56   /// which starts with this.
     57   struct FreeRangeHeader;
     58   struct MemoryRangeHeader {
     59     /// ThisAllocated - This is true if this block is currently allocated.  If
     60     /// not, this can be converted to a FreeRangeHeader.
     61     unsigned ThisAllocated : 1;
     62 
     63     /// PrevAllocated - Keep track of whether the block immediately before us is
     64     /// allocated.  If not, the word immediately before this header is the size
     65     /// of the previous block.
     66     unsigned PrevAllocated : 1;
     67 
     68     /// BlockSize - This is the size in bytes of this memory block,
     69     /// including this header.
     70     uintptr_t BlockSize : (sizeof(intptr_t)*CHAR_BIT - 2);
     71 
     72 
     73     /// getBlockAfter - Return the memory block immediately after this one.
     74     ///
     75     MemoryRangeHeader &getBlockAfter() const {
     76       return *(MemoryRangeHeader*)((char*)this+BlockSize);
     77     }
     78 
     79     /// getFreeBlockBefore - If the block before this one is free, return it,
     80     /// otherwise return null.
     81     FreeRangeHeader *getFreeBlockBefore() const {
     82       if (PrevAllocated) return 0;
     83       intptr_t PrevSize = ((intptr_t *)this)[-1];
     84       return (FreeRangeHeader*)((char*)this-PrevSize);
     85     }
     86 
     87     /// FreeBlock - Turn an allocated block into a free block, adjusting
     88     /// bits in the object headers, and adding an end of region memory block.
     89     FreeRangeHeader *FreeBlock(FreeRangeHeader *FreeList);
     90 
     91     /// TrimAllocationToSize - If this allocated block is significantly larger
     92     /// than NewSize, split it into two pieces (where the former is NewSize
     93     /// bytes, including the header), and add the new block to the free list.
     94     FreeRangeHeader *TrimAllocationToSize(FreeRangeHeader *FreeList,
     95                                           uint64_t NewSize);
     96   };
     97 
     98   /// FreeRangeHeader - For a memory block that isn't already allocated, this
     99   /// keeps track of the current block and has a pointer to the next free block.
    100   /// Free blocks are kept on a circularly linked list.
    101   struct FreeRangeHeader : public MemoryRangeHeader {
    102     FreeRangeHeader *Prev;
    103     FreeRangeHeader *Next;
    104 
    105     /// getMinBlockSize - Get the minimum size for a memory block.  Blocks
    106     /// smaller than this size cannot be created.
    107     static unsigned getMinBlockSize() {
    108       return sizeof(FreeRangeHeader)+sizeof(intptr_t);
    109     }
    110 
    111     /// SetEndOfBlockSizeMarker - The word at the end of every free block is
    112     /// known to be the size of the free block.  Set it for this block.
    113     void SetEndOfBlockSizeMarker() {
    114       void *EndOfBlock = (char*)this + BlockSize;
    115       ((intptr_t *)EndOfBlock)[-1] = BlockSize;
    116     }
    117 
    118     FreeRangeHeader *RemoveFromFreeList() {
    119       assert(Next->Prev == this && Prev->Next == this && "Freelist broken!");
    120       Next->Prev = Prev;
    121       return Prev->Next = Next;
    122     }
    123 
    124     void AddToFreeList(FreeRangeHeader *FreeList) {
    125       Next = FreeList;
    126       Prev = FreeList->Prev;
    127       Prev->Next = this;
    128       Next->Prev = this;
    129     }
    130 
    131     /// GrowBlock - The block after this block just got deallocated.  Merge it
    132     /// into the current block.
    133     void GrowBlock(uintptr_t NewSize);
    134 
    135     /// AllocateBlock - Mark this entire block allocated, updating freelists
    136     /// etc.  This returns a pointer to the circular free-list.
    137     FreeRangeHeader *AllocateBlock();
    138   };
    139 }
    140 
    141 
    142 /// AllocateBlock - Mark this entire block allocated, updating freelists
    143 /// etc.  This returns a pointer to the circular free-list.
    144 FreeRangeHeader *FreeRangeHeader::AllocateBlock() {
    145   assert(!ThisAllocated && !getBlockAfter().PrevAllocated &&
    146          "Cannot allocate an allocated block!");
    147   // Mark this block allocated.
    148   ThisAllocated = 1;
    149   getBlockAfter().PrevAllocated = 1;
    150 
    151   // Remove it from the free list.
    152   return RemoveFromFreeList();
    153 }
    154 
    155 /// FreeBlock - Turn an allocated block into a free block, adjusting
    156 /// bits in the object headers, and adding an end of region memory block.
    157 /// If possible, coalesce this block with neighboring blocks.  Return the
    158 /// FreeRangeHeader to allocate from.
    159 FreeRangeHeader *MemoryRangeHeader::FreeBlock(FreeRangeHeader *FreeList) {
    160   MemoryRangeHeader *FollowingBlock = &getBlockAfter();
    161   assert(ThisAllocated && "This block is already free!");
    162   assert(FollowingBlock->PrevAllocated && "Flags out of sync!");
    163 
    164   FreeRangeHeader *FreeListToReturn = FreeList;
    165 
    166   // If the block after this one is free, merge it into this block.
    167   if (!FollowingBlock->ThisAllocated) {
    168     FreeRangeHeader &FollowingFreeBlock = *(FreeRangeHeader *)FollowingBlock;
    169     // "FreeList" always needs to be a valid free block.  If we're about to
    170     // coalesce with it, update our notion of what the free list is.
    171     if (&FollowingFreeBlock == FreeList) {
    172       FreeList = FollowingFreeBlock.Next;
    173       FreeListToReturn = 0;
    174       assert(&FollowingFreeBlock != FreeList && "No tombstone block?");
    175     }
    176     FollowingFreeBlock.RemoveFromFreeList();
    177 
    178     // Include the following block into this one.
    179     BlockSize += FollowingFreeBlock.BlockSize;
    180     FollowingBlock = &FollowingFreeBlock.getBlockAfter();
    181 
    182     // Tell the block after the block we are coalescing that this block is
    183     // allocated.
    184     FollowingBlock->PrevAllocated = 1;
    185   }
    186 
    187   assert(FollowingBlock->ThisAllocated && "Missed coalescing?");
    188 
    189   if (FreeRangeHeader *PrevFreeBlock = getFreeBlockBefore()) {
    190     PrevFreeBlock->GrowBlock(PrevFreeBlock->BlockSize + BlockSize);
    191     return FreeListToReturn ? FreeListToReturn : PrevFreeBlock;
    192   }
    193 
    194   // Otherwise, mark this block free.
    195   FreeRangeHeader &FreeBlock = *(FreeRangeHeader*)this;
    196   FollowingBlock->PrevAllocated = 0;
    197   FreeBlock.ThisAllocated = 0;
    198 
    199   // Link this into the linked list of free blocks.
    200   FreeBlock.AddToFreeList(FreeList);
    201 
    202   // Add a marker at the end of the block, indicating the size of this free
    203   // block.
    204   FreeBlock.SetEndOfBlockSizeMarker();
    205   return FreeListToReturn ? FreeListToReturn : &FreeBlock;
    206 }
    207 
    208 /// GrowBlock - The block after this block just got deallocated.  Merge it
    209 /// into the current block.
    210 void FreeRangeHeader::GrowBlock(uintptr_t NewSize) {
    211   assert(NewSize > BlockSize && "Not growing block?");
    212   BlockSize = NewSize;
    213   SetEndOfBlockSizeMarker();
    214   getBlockAfter().PrevAllocated = 0;
    215 }
    216 
    217 /// TrimAllocationToSize - If this allocated block is significantly larger
    218 /// than NewSize, split it into two pieces (where the former is NewSize
    219 /// bytes, including the header), and add the new block to the free list.
    220 FreeRangeHeader *MemoryRangeHeader::
    221 TrimAllocationToSize(FreeRangeHeader *FreeList, uint64_t NewSize) {
    222   assert(ThisAllocated && getBlockAfter().PrevAllocated &&
    223          "Cannot deallocate part of an allocated block!");
    224 
    225   // Don't allow blocks to be trimmed below minimum required size
    226   NewSize = std::max<uint64_t>(FreeRangeHeader::getMinBlockSize(), NewSize);
    227 
    228   // Round up size for alignment of header.
    229   unsigned HeaderAlign = __alignof(FreeRangeHeader);
    230   NewSize = (NewSize+ (HeaderAlign-1)) & ~(HeaderAlign-1);
    231 
    232   // Size is now the size of the block we will remove from the start of the
    233   // current block.
    234   assert(NewSize <= BlockSize &&
    235          "Allocating more space from this block than exists!");
    236 
    237   // If splitting this block will cause the remainder to be too small, do not
    238   // split the block.
    239   if (BlockSize <= NewSize+FreeRangeHeader::getMinBlockSize())
    240     return FreeList;
    241 
    242   // Otherwise, we splice the required number of bytes out of this block, form
    243   // a new block immediately after it, then mark this block allocated.
    244   MemoryRangeHeader &FormerNextBlock = getBlockAfter();
    245 
    246   // Change the size of this block.
    247   BlockSize = NewSize;
    248 
    249   // Get the new block we just sliced out and turn it into a free block.
    250   FreeRangeHeader &NewNextBlock = (FreeRangeHeader &)getBlockAfter();
    251   NewNextBlock.BlockSize = (char*)&FormerNextBlock - (char*)&NewNextBlock;
    252   NewNextBlock.ThisAllocated = 0;
    253   NewNextBlock.PrevAllocated = 1;
    254   NewNextBlock.SetEndOfBlockSizeMarker();
    255   FormerNextBlock.PrevAllocated = 0;
    256   NewNextBlock.AddToFreeList(FreeList);
    257   return &NewNextBlock;
    258 }
    259 
    260 //===----------------------------------------------------------------------===//
    261 // Memory Block Implementation.
    262 //===----------------------------------------------------------------------===//
    263 
    264 namespace {
    265 
    266   class DefaultJITMemoryManager;
    267 
    268   class JITSlabAllocator : public SlabAllocator {
    269     DefaultJITMemoryManager &JMM;
    270   public:
    271     JITSlabAllocator(DefaultJITMemoryManager &jmm) : JMM(jmm) { }
    272     virtual ~JITSlabAllocator() { }
    273     virtual MemSlab *Allocate(size_t Size);
    274     virtual void Deallocate(MemSlab *Slab);
    275   };
    276 
    277   /// DefaultJITMemoryManager - Manage memory for the JIT code generation.
    278   /// This splits a large block of MAP_NORESERVE'd memory into two
    279   /// sections, one for function stubs, one for the functions themselves.  We
    280   /// have to do this because we may need to emit a function stub while in the
    281   /// middle of emitting a function, and we don't know how large the function we
    282   /// are emitting is.
    283   class DefaultJITMemoryManager : public JITMemoryManager {
    284 
    285     // Whether to poison freed memory.
    286     bool PoisonMemory;
    287 
    288     /// LastSlab - This points to the last slab allocated and is used as the
    289     /// NearBlock parameter to AllocateRWX so that we can attempt to lay out all
    290     /// stubs, data, and code contiguously in memory.  In general, however, this
    291     /// is not possible because the NearBlock parameter is ignored on Windows
    292     /// platforms and even on Unix it works on a best-effort pasis.
    293     sys::MemoryBlock LastSlab;
    294 
    295     // Memory slabs allocated by the JIT.  We refer to them as slabs so we don't
    296     // confuse them with the blocks of memory described above.
    297     std::vector<sys::MemoryBlock> CodeSlabs;
    298     JITSlabAllocator BumpSlabAllocator;
    299     BumpPtrAllocator StubAllocator;
    300     BumpPtrAllocator DataAllocator;
    301 
    302     // Circular list of free blocks.
    303     FreeRangeHeader *FreeMemoryList;
    304 
    305     // When emitting code into a memory block, this is the block.
    306     MemoryRangeHeader *CurBlock;
    307 
    308     uint8_t *GOTBase;     // Target Specific reserved memory
    309   public:
    310     DefaultJITMemoryManager();
    311     ~DefaultJITMemoryManager();
    312 
    313     /// allocateNewSlab - Allocates a new MemoryBlock and remembers it as the
    314     /// last slab it allocated, so that subsequent allocations follow it.
    315     sys::MemoryBlock allocateNewSlab(size_t size);
    316 
    317     /// DefaultCodeSlabSize - When we have to go map more memory, we allocate at
    318     /// least this much unless more is requested.
    319     static const size_t DefaultCodeSlabSize;
    320 
    321     /// DefaultSlabSize - Allocate data into slabs of this size unless we get
    322     /// an allocation above SizeThreshold.
    323     static const size_t DefaultSlabSize;
    324 
    325     /// DefaultSizeThreshold - For any allocation larger than this threshold, we
    326     /// should allocate a separate slab.
    327     static const size_t DefaultSizeThreshold;
    328 
    329     /// getPointerToNamedFunction - This method returns the address of the
    330     /// specified function by using the dlsym function call.
    331     virtual void *getPointerToNamedFunction(const std::string &Name,
    332                                             bool AbortOnFailure = true);
    333 
    334     void AllocateGOT();
    335 
    336     // Testing methods.
    337     virtual bool CheckInvariants(std::string &ErrorStr);
    338     size_t GetDefaultCodeSlabSize() { return DefaultCodeSlabSize; }
    339     size_t GetDefaultDataSlabSize() { return DefaultSlabSize; }
    340     size_t GetDefaultStubSlabSize() { return DefaultSlabSize; }
    341     unsigned GetNumCodeSlabs() { return CodeSlabs.size(); }
    342     unsigned GetNumDataSlabs() { return DataAllocator.GetNumSlabs(); }
    343     unsigned GetNumStubSlabs() { return StubAllocator.GetNumSlabs(); }
    344 
    345     /// startFunctionBody - When a function starts, allocate a block of free
    346     /// executable memory, returning a pointer to it and its actual size.
    347     uint8_t *startFunctionBody(const Function *F, uintptr_t &ActualSize) {
    348 
    349       FreeRangeHeader* candidateBlock = FreeMemoryList;
    350       FreeRangeHeader* head = FreeMemoryList;
    351       FreeRangeHeader* iter = head->Next;
    352 
    353       uintptr_t largest = candidateBlock->BlockSize;
    354 
    355       // Search for the largest free block
    356       while (iter != head) {
    357         if (iter->BlockSize > largest) {
    358           largest = iter->BlockSize;
    359           candidateBlock = iter;
    360         }
    361         iter = iter->Next;
    362       }
    363 
    364       largest = largest - sizeof(MemoryRangeHeader);
    365 
    366       // If this block isn't big enough for the allocation desired, allocate
    367       // another block of memory and add it to the free list.
    368       if (largest < ActualSize ||
    369           largest <= FreeRangeHeader::getMinBlockSize()) {
    370         DEBUG(dbgs() << "JIT: Allocating another slab of memory for function.");
    371         candidateBlock = allocateNewCodeSlab((size_t)ActualSize);
    372       }
    373 
    374       // Select this candidate block for allocation
    375       CurBlock = candidateBlock;
    376 
    377       // Allocate the entire memory block.
    378       FreeMemoryList = candidateBlock->AllocateBlock();
    379       ActualSize = CurBlock->BlockSize - sizeof(MemoryRangeHeader);
    380       return (uint8_t *)(CurBlock + 1);
    381     }
    382 
    383     /// allocateNewCodeSlab - Helper method to allocate a new slab of code
    384     /// memory from the OS and add it to the free list.  Returns the new
    385     /// FreeRangeHeader at the base of the slab.
    386     FreeRangeHeader *allocateNewCodeSlab(size_t MinSize) {
    387       // If the user needs at least MinSize free memory, then we account for
    388       // two MemoryRangeHeaders: the one in the user's block, and the one at the
    389       // end of the slab.
    390       size_t PaddedMin = MinSize + 2 * sizeof(MemoryRangeHeader);
    391       size_t SlabSize = std::max(DefaultCodeSlabSize, PaddedMin);
    392       sys::MemoryBlock B = allocateNewSlab(SlabSize);
    393       CodeSlabs.push_back(B);
    394       char *MemBase = (char*)(B.base());
    395 
    396       // Put a tiny allocated block at the end of the memory chunk, so when
    397       // FreeBlock calls getBlockAfter it doesn't fall off the end.
    398       MemoryRangeHeader *EndBlock =
    399           (MemoryRangeHeader*)(MemBase + B.size()) - 1;
    400       EndBlock->ThisAllocated = 1;
    401       EndBlock->PrevAllocated = 0;
    402       EndBlock->BlockSize = sizeof(MemoryRangeHeader);
    403 
    404       // Start out with a vast new block of free memory.
    405       FreeRangeHeader *NewBlock = (FreeRangeHeader*)MemBase;
    406       NewBlock->ThisAllocated = 0;
    407       // Make sure getFreeBlockBefore doesn't look into unmapped memory.
    408       NewBlock->PrevAllocated = 1;
    409       NewBlock->BlockSize = (uintptr_t)EndBlock - (uintptr_t)NewBlock;
    410       NewBlock->SetEndOfBlockSizeMarker();
    411       NewBlock->AddToFreeList(FreeMemoryList);
    412 
    413       assert(NewBlock->BlockSize - sizeof(MemoryRangeHeader) >= MinSize &&
    414              "The block was too small!");
    415       return NewBlock;
    416     }
    417 
    418     /// endFunctionBody - The function F is now allocated, and takes the memory
    419     /// in the range [FunctionStart,FunctionEnd).
    420     void endFunctionBody(const Function *F, uint8_t *FunctionStart,
    421                          uint8_t *FunctionEnd) {
    422       assert(FunctionEnd > FunctionStart);
    423       assert(FunctionStart == (uint8_t *)(CurBlock+1) &&
    424              "Mismatched function start/end!");
    425 
    426       uintptr_t BlockSize = FunctionEnd - (uint8_t *)CurBlock;
    427 
    428       // Release the memory at the end of this block that isn't needed.
    429       FreeMemoryList =CurBlock->TrimAllocationToSize(FreeMemoryList, BlockSize);
    430     }
    431 
    432     /// allocateSpace - Allocate a memory block of the given size.  This method
    433     /// cannot be called between calls to startFunctionBody and endFunctionBody.
    434     uint8_t *allocateSpace(intptr_t Size, unsigned Alignment) {
    435       CurBlock = FreeMemoryList;
    436       FreeMemoryList = FreeMemoryList->AllocateBlock();
    437 
    438       uint8_t *result = (uint8_t *)(CurBlock + 1);
    439 
    440       if (Alignment == 0) Alignment = 1;
    441       result = (uint8_t*)(((intptr_t)result+Alignment-1) &
    442                ~(intptr_t)(Alignment-1));
    443 
    444       uintptr_t BlockSize = result + Size - (uint8_t *)CurBlock;
    445       FreeMemoryList =CurBlock->TrimAllocationToSize(FreeMemoryList, BlockSize);
    446 
    447       return result;
    448     }
    449 
    450     /// allocateStub - Allocate memory for a function stub.
    451     uint8_t *allocateStub(const GlobalValue* F, unsigned StubSize,
    452                           unsigned Alignment) {
    453       return (uint8_t*)StubAllocator.Allocate(StubSize, Alignment);
    454     }
    455 
    456     /// allocateGlobal - Allocate memory for a global.
    457     uint8_t *allocateGlobal(uintptr_t Size, unsigned Alignment) {
    458       return (uint8_t*)DataAllocator.Allocate(Size, Alignment);
    459     }
    460 
    461     /// allocateCodeSection - Allocate memory for a code section.
    462     uint8_t *allocateCodeSection(uintptr_t Size, unsigned Alignment,
    463                                  unsigned SectionID) {
    464       // FIXME: Alignement handling.
    465       FreeRangeHeader* candidateBlock = FreeMemoryList;
    466       FreeRangeHeader* head = FreeMemoryList;
    467       FreeRangeHeader* iter = head->Next;
    468 
    469       uintptr_t largest = candidateBlock->BlockSize;
    470 
    471       // Search for the largest free block.
    472       while (iter != head) {
    473         if (iter->BlockSize > largest) {
    474           largest = iter->BlockSize;
    475           candidateBlock = iter;
    476         }
    477         iter = iter->Next;
    478       }
    479 
    480       largest = largest - sizeof(MemoryRangeHeader);
    481 
    482       // If this block isn't big enough for the allocation desired, allocate
    483       // another block of memory and add it to the free list.
    484       if (largest < Size || largest <= FreeRangeHeader::getMinBlockSize()) {
    485         DEBUG(dbgs() << "JIT: Allocating another slab of memory for function.");
    486         candidateBlock = allocateNewCodeSlab((size_t)Size);
    487       }
    488 
    489       // Select this candidate block for allocation
    490       CurBlock = candidateBlock;
    491 
    492       // Allocate the entire memory block.
    493       FreeMemoryList = candidateBlock->AllocateBlock();
    494       // Release the memory at the end of this block that isn't needed.
    495       FreeMemoryList = CurBlock->TrimAllocationToSize(FreeMemoryList, Size);
    496       return (uint8_t *)(CurBlock + 1);
    497     }
    498 
    499     /// allocateDataSection - Allocate memory for a data section.
    500     uint8_t *allocateDataSection(uintptr_t Size, unsigned Alignment,
    501                                  unsigned SectionID) {
    502       return (uint8_t*)DataAllocator.Allocate(Size, Alignment);
    503     }
    504 
    505     /// startExceptionTable - Use startFunctionBody to allocate memory for the
    506     /// function's exception table.
    507     uint8_t* startExceptionTable(const Function* F, uintptr_t &ActualSize) {
    508       return startFunctionBody(F, ActualSize);
    509     }
    510 
    511     /// endExceptionTable - The exception table of F is now allocated,
    512     /// and takes the memory in the range [TableStart,TableEnd).
    513     void endExceptionTable(const Function *F, uint8_t *TableStart,
    514                            uint8_t *TableEnd, uint8_t* FrameRegister) {
    515       assert(TableEnd > TableStart);
    516       assert(TableStart == (uint8_t *)(CurBlock+1) &&
    517              "Mismatched table start/end!");
    518 
    519       uintptr_t BlockSize = TableEnd - (uint8_t *)CurBlock;
    520 
    521       // Release the memory at the end of this block that isn't needed.
    522       FreeMemoryList =CurBlock->TrimAllocationToSize(FreeMemoryList, BlockSize);
    523     }
    524 
    525     uint8_t *getGOTBase() const {
    526       return GOTBase;
    527     }
    528 
    529     void deallocateBlock(void *Block) {
    530       // Find the block that is allocated for this function.
    531       MemoryRangeHeader *MemRange = static_cast<MemoryRangeHeader*>(Block) - 1;
    532       assert(MemRange->ThisAllocated && "Block isn't allocated!");
    533 
    534       // Fill the buffer with garbage!
    535       if (PoisonMemory) {
    536         memset(MemRange+1, 0xCD, MemRange->BlockSize-sizeof(*MemRange));
    537       }
    538 
    539       // Free the memory.
    540       FreeMemoryList = MemRange->FreeBlock(FreeMemoryList);
    541     }
    542 
    543     /// deallocateFunctionBody - Deallocate all memory for the specified
    544     /// function body.
    545     void deallocateFunctionBody(void *Body) {
    546       if (Body) deallocateBlock(Body);
    547     }
    548 
    549     /// deallocateExceptionTable - Deallocate memory for the specified
    550     /// exception table.
    551     void deallocateExceptionTable(void *ET) {
    552       if (ET) deallocateBlock(ET);
    553     }
    554 
    555     /// setMemoryWritable - When code generation is in progress,
    556     /// the code pages may need permissions changed.
    557     void setMemoryWritable()
    558     {
    559       for (unsigned i = 0, e = CodeSlabs.size(); i != e; ++i)
    560         sys::Memory::setWritable(CodeSlabs[i]);
    561     }
    562     /// setMemoryExecutable - When code generation is done and we're ready to
    563     /// start execution, the code pages may need permissions changed.
    564     void setMemoryExecutable()
    565     {
    566       for (unsigned i = 0, e = CodeSlabs.size(); i != e; ++i)
    567         sys::Memory::setExecutable(CodeSlabs[i]);
    568     }
    569 
    570     /// setPoisonMemory - Controls whether we write garbage over freed memory.
    571     ///
    572     void setPoisonMemory(bool poison) {
    573       PoisonMemory = poison;
    574     }
    575   };
    576 }
    577 
    578 MemSlab *JITSlabAllocator::Allocate(size_t Size) {
    579   sys::MemoryBlock B = JMM.allocateNewSlab(Size);
    580   MemSlab *Slab = (MemSlab*)B.base();
    581   Slab->Size = B.size();
    582   Slab->NextPtr = 0;
    583   return Slab;
    584 }
    585 
    586 void JITSlabAllocator::Deallocate(MemSlab *Slab) {
    587   sys::MemoryBlock B(Slab, Slab->Size);
    588   sys::Memory::ReleaseRWX(B);
    589 }
    590 
    591 DefaultJITMemoryManager::DefaultJITMemoryManager()
    592   :
    593 #ifdef NDEBUG
    594     PoisonMemory(false),
    595 #else
    596     PoisonMemory(true),
    597 #endif
    598     LastSlab(0, 0),
    599     BumpSlabAllocator(*this),
    600     StubAllocator(DefaultSlabSize, DefaultSizeThreshold, BumpSlabAllocator),
    601     DataAllocator(DefaultSlabSize, DefaultSizeThreshold, BumpSlabAllocator) {
    602 
    603   // Allocate space for code.
    604   sys::MemoryBlock MemBlock = allocateNewSlab(DefaultCodeSlabSize);
    605   CodeSlabs.push_back(MemBlock);
    606   uint8_t *MemBase = (uint8_t*)MemBlock.base();
    607 
    608   // We set up the memory chunk with 4 mem regions, like this:
    609   //  [ START
    610   //    [ Free      #0 ] -> Large space to allocate functions from.
    611   //    [ Allocated #1 ] -> Tiny space to separate regions.
    612   //    [ Free      #2 ] -> Tiny space so there is always at least 1 free block.
    613   //    [ Allocated #3 ] -> Tiny space to prevent looking past end of block.
    614   //  END ]
    615   //
    616   // The last three blocks are never deallocated or touched.
    617 
    618   // Add MemoryRangeHeader to the end of the memory region, indicating that
    619   // the space after the block of memory is allocated.  This is block #3.
    620   MemoryRangeHeader *Mem3 = (MemoryRangeHeader*)(MemBase+MemBlock.size())-1;
    621   Mem3->ThisAllocated = 1;
    622   Mem3->PrevAllocated = 0;
    623   Mem3->BlockSize     = sizeof(MemoryRangeHeader);
    624 
    625   /// Add a tiny free region so that the free list always has one entry.
    626   FreeRangeHeader *Mem2 =
    627     (FreeRangeHeader *)(((char*)Mem3)-FreeRangeHeader::getMinBlockSize());
    628   Mem2->ThisAllocated = 0;
    629   Mem2->PrevAllocated = 1;
    630   Mem2->BlockSize     = FreeRangeHeader::getMinBlockSize();
    631   Mem2->SetEndOfBlockSizeMarker();
    632   Mem2->Prev = Mem2;   // Mem2 *is* the free list for now.
    633   Mem2->Next = Mem2;
    634 
    635   /// Add a tiny allocated region so that Mem2 is never coalesced away.
    636   MemoryRangeHeader *Mem1 = (MemoryRangeHeader*)Mem2-1;
    637   Mem1->ThisAllocated = 1;
    638   Mem1->PrevAllocated = 0;
    639   Mem1->BlockSize     = sizeof(MemoryRangeHeader);
    640 
    641   // Add a FreeRangeHeader to the start of the function body region, indicating
    642   // that the space is free.  Mark the previous block allocated so we never look
    643   // at it.
    644   FreeRangeHeader *Mem0 = (FreeRangeHeader*)MemBase;
    645   Mem0->ThisAllocated = 0;
    646   Mem0->PrevAllocated = 1;
    647   Mem0->BlockSize = (char*)Mem1-(char*)Mem0;
    648   Mem0->SetEndOfBlockSizeMarker();
    649   Mem0->AddToFreeList(Mem2);
    650 
    651   // Start out with the freelist pointing to Mem0.
    652   FreeMemoryList = Mem0;
    653 
    654   GOTBase = NULL;
    655 }
    656 
    657 void DefaultJITMemoryManager::AllocateGOT() {
    658   assert(GOTBase == 0 && "Cannot allocate the got multiple times");
    659   GOTBase = new uint8_t[sizeof(void*) * 8192];
    660   HasGOT = true;
    661 }
    662 
    663 DefaultJITMemoryManager::~DefaultJITMemoryManager() {
    664   for (unsigned i = 0, e = CodeSlabs.size(); i != e; ++i)
    665     sys::Memory::ReleaseRWX(CodeSlabs[i]);
    666 
    667   delete[] GOTBase;
    668 }
    669 
    670 sys::MemoryBlock DefaultJITMemoryManager::allocateNewSlab(size_t size) {
    671   // Allocate a new block close to the last one.
    672   std::string ErrMsg;
    673   sys::MemoryBlock *LastSlabPtr = LastSlab.base() ? &LastSlab : 0;
    674   sys::MemoryBlock B = sys::Memory::AllocateRWX(size, LastSlabPtr, &ErrMsg);
    675   if (B.base() == 0) {
    676     report_fatal_error("Allocation failed when allocating new memory in the"
    677                        " JIT\n" + Twine(ErrMsg));
    678   }
    679   LastSlab = B;
    680   ++NumSlabs;
    681   // Initialize the slab to garbage when debugging.
    682   if (PoisonMemory) {
    683     memset(B.base(), 0xCD, B.size());
    684   }
    685   return B;
    686 }
    687 
    688 /// CheckInvariants - For testing only.  Return "" if all internal invariants
    689 /// are preserved, and a helpful error message otherwise.  For free and
    690 /// allocated blocks, make sure that adding BlockSize gives a valid block.
    691 /// For free blocks, make sure they're in the free list and that their end of
    692 /// block size marker is correct.  This function should return an error before
    693 /// accessing bad memory.  This function is defined here instead of in
    694 /// JITMemoryManagerTest.cpp so that we don't have to expose all of the
    695 /// implementation details of DefaultJITMemoryManager.
    696 bool DefaultJITMemoryManager::CheckInvariants(std::string &ErrorStr) {
    697   raw_string_ostream Err(ErrorStr);
    698 
    699   // Construct a the set of FreeRangeHeader pointers so we can query it
    700   // efficiently.
    701   llvm::SmallPtrSet<MemoryRangeHeader*, 16> FreeHdrSet;
    702   FreeRangeHeader* FreeHead = FreeMemoryList;
    703   FreeRangeHeader* FreeRange = FreeHead;
    704 
    705   do {
    706     // Check that the free range pointer is in the blocks we've allocated.
    707     bool Found = false;
    708     for (std::vector<sys::MemoryBlock>::iterator I = CodeSlabs.begin(),
    709          E = CodeSlabs.end(); I != E && !Found; ++I) {
    710       char *Start = (char*)I->base();
    711       char *End = Start + I->size();
    712       Found = (Start <= (char*)FreeRange && (char*)FreeRange < End);
    713     }
    714     if (!Found) {
    715       Err << "Corrupt free list; points to " << FreeRange;
    716       return false;
    717     }
    718 
    719     if (FreeRange->Next->Prev != FreeRange) {
    720       Err << "Next and Prev pointers do not match.";
    721       return false;
    722     }
    723 
    724     // Otherwise, add it to the set.
    725     FreeHdrSet.insert(FreeRange);
    726     FreeRange = FreeRange->Next;
    727   } while (FreeRange != FreeHead);
    728 
    729   // Go over each block, and look at each MemoryRangeHeader.
    730   for (std::vector<sys::MemoryBlock>::iterator I = CodeSlabs.begin(),
    731        E = CodeSlabs.end(); I != E; ++I) {
    732     char *Start = (char*)I->base();
    733     char *End = Start + I->size();
    734 
    735     // Check each memory range.
    736     for (MemoryRangeHeader *Hdr = (MemoryRangeHeader*)Start, *LastHdr = NULL;
    737          Start <= (char*)Hdr && (char*)Hdr < End;
    738          Hdr = &Hdr->getBlockAfter()) {
    739       if (Hdr->ThisAllocated == 0) {
    740         // Check that this range is in the free list.
    741         if (!FreeHdrSet.count(Hdr)) {
    742           Err << "Found free header at " << Hdr << " that is not in free list.";
    743           return false;
    744         }
    745 
    746         // Now make sure the size marker at the end of the block is correct.
    747         uintptr_t *Marker = ((uintptr_t*)&Hdr->getBlockAfter()) - 1;
    748         if (!(Start <= (char*)Marker && (char*)Marker < End)) {
    749           Err << "Block size in header points out of current MemoryBlock.";
    750           return false;
    751         }
    752         if (Hdr->BlockSize != *Marker) {
    753           Err << "End of block size marker (" << *Marker << ") "
    754               << "and BlockSize (" << Hdr->BlockSize << ") don't match.";
    755           return false;
    756         }
    757       }
    758 
    759       if (LastHdr && LastHdr->ThisAllocated != Hdr->PrevAllocated) {
    760         Err << "Hdr->PrevAllocated (" << Hdr->PrevAllocated << ") != "
    761             << "LastHdr->ThisAllocated (" << LastHdr->ThisAllocated << ")";
    762         return false;
    763       } else if (!LastHdr && !Hdr->PrevAllocated) {
    764         Err << "The first header should have PrevAllocated true.";
    765         return false;
    766       }
    767 
    768       // Remember the last header.
    769       LastHdr = Hdr;
    770     }
    771   }
    772 
    773   // All invariants are preserved.
    774   return true;
    775 }
    776 
    777 //===----------------------------------------------------------------------===//
    778 // getPointerToNamedFunction() implementation.
    779 //===----------------------------------------------------------------------===//
    780 
    781 // AtExitHandlers - List of functions to call when the program exits,
    782 // registered with the atexit() library function.
    783 static std::vector<void (*)()> AtExitHandlers;
    784 
    785 /// runAtExitHandlers - Run any functions registered by the program's
    786 /// calls to atexit(3), which we intercept and store in
    787 /// AtExitHandlers.
    788 ///
    789 static void runAtExitHandlers() {
    790   while (!AtExitHandlers.empty()) {
    791     void (*Fn)() = AtExitHandlers.back();
    792     AtExitHandlers.pop_back();
    793     Fn();
    794   }
    795 }
    796 
    797 //===----------------------------------------------------------------------===//
    798 // Function stubs that are invoked instead of certain library calls
    799 //
    800 // Force the following functions to be linked in to anything that uses the
    801 // JIT. This is a hack designed to work around the all-too-clever Glibc
    802 // strategy of making these functions work differently when inlined vs. when
    803 // not inlined, and hiding their real definitions in a separate archive file
    804 // that the dynamic linker can't see. For more info, search for
    805 // 'libc_nonshared.a' on Google, or read http://llvm.org/PR274.
    806 #if defined(__linux__)
    807 /* stat functions are redirecting to __xstat with a version number.  On x86-64
    808  * linking with libc_nonshared.a and -Wl,--export-dynamic doesn't make 'stat'
    809  * available as an exported symbol, so we have to add it explicitly.
    810  */
    811 namespace {
    812 class StatSymbols {
    813 public:
    814   StatSymbols() {
    815     sys::DynamicLibrary::AddSymbol("stat", (void*)(intptr_t)stat);
    816     sys::DynamicLibrary::AddSymbol("fstat", (void*)(intptr_t)fstat);
    817     sys::DynamicLibrary::AddSymbol("lstat", (void*)(intptr_t)lstat);
    818     sys::DynamicLibrary::AddSymbol("stat64", (void*)(intptr_t)stat64);
    819     sys::DynamicLibrary::AddSymbol("\x1stat64", (void*)(intptr_t)stat64);
    820     sys::DynamicLibrary::AddSymbol("\x1open64", (void*)(intptr_t)open64);
    821     sys::DynamicLibrary::AddSymbol("\x1lseek64", (void*)(intptr_t)lseek64);
    822     sys::DynamicLibrary::AddSymbol("fstat64", (void*)(intptr_t)fstat64);
    823     sys::DynamicLibrary::AddSymbol("lstat64", (void*)(intptr_t)lstat64);
    824     sys::DynamicLibrary::AddSymbol("atexit", (void*)(intptr_t)atexit);
    825     sys::DynamicLibrary::AddSymbol("mknod", (void*)(intptr_t)mknod);
    826   }
    827 };
    828 }
    829 static StatSymbols initStatSymbols;
    830 #endif // __linux__
    831 
    832 // jit_exit - Used to intercept the "exit" library call.
    833 static void jit_exit(int Status) {
    834   runAtExitHandlers();   // Run atexit handlers...
    835   exit(Status);
    836 }
    837 
    838 // jit_atexit - Used to intercept the "atexit" library call.
    839 static int jit_atexit(void (*Fn)()) {
    840   AtExitHandlers.push_back(Fn);    // Take note of atexit handler...
    841   return 0;  // Always successful
    842 }
    843 
    844 static int jit_noop() {
    845   return 0;
    846 }
    847 
    848 //===----------------------------------------------------------------------===//
    849 //
    850 /// getPointerToNamedFunction - This method returns the address of the specified
    851 /// function by using the dynamic loader interface.  As such it is only useful
    852 /// for resolving library symbols, not code generated symbols.
    853 ///
    854 void *DefaultJITMemoryManager::getPointerToNamedFunction(const std::string &Name,
    855                                      bool AbortOnFailure) {
    856   // Check to see if this is one of the functions we want to intercept.  Note,
    857   // we cast to intptr_t here to silence a -pedantic warning that complains
    858   // about casting a function pointer to a normal pointer.
    859   if (Name == "exit") return (void*)(intptr_t)&jit_exit;
    860   if (Name == "atexit") return (void*)(intptr_t)&jit_atexit;
    861 
    862   // We should not invoke parent's ctors/dtors from generated main()!
    863   // On Mingw and Cygwin, the symbol __main is resolved to
    864   // callee's(eg. tools/lli) one, to invoke wrong duplicated ctors
    865   // (and register wrong callee's dtors with atexit(3)).
    866   // We expect ExecutionEngine::runStaticConstructorsDestructors()
    867   // is called before ExecutionEngine::runFunctionAsMain() is called.
    868   if (Name == "__main") return (void*)(intptr_t)&jit_noop;
    869 
    870   const char *NameStr = Name.c_str();
    871   // If this is an asm specifier, skip the sentinal.
    872   if (NameStr[0] == 1) ++NameStr;
    873 
    874   // If it's an external function, look it up in the process image...
    875   void *Ptr = sys::DynamicLibrary::SearchForAddressOfSymbol(NameStr);
    876   if (Ptr) return Ptr;
    877 
    878   // If it wasn't found and if it starts with an underscore ('_') character,
    879   // try again without the underscore.
    880   if (NameStr[0] == '_') {
    881     Ptr = sys::DynamicLibrary::SearchForAddressOfSymbol(NameStr+1);
    882     if (Ptr) return Ptr;
    883   }
    884 
    885   // Darwin/PPC adds $LDBLStub suffixes to various symbols like printf.  These
    886   // are references to hidden visibility symbols that dlsym cannot resolve.
    887   // If we have one of these, strip off $LDBLStub and try again.
    888 #if defined(__APPLE__) && defined(__ppc__)
    889   if (Name.size() > 9 && Name[Name.size()-9] == '$' &&
    890       memcmp(&Name[Name.size()-8], "LDBLStub", 8) == 0) {
    891     // First try turning $LDBLStub into $LDBL128. If that fails, strip it off.
    892     // This mirrors logic in libSystemStubs.a.
    893     std::string Prefix = std::string(Name.begin(), Name.end()-9);
    894     if (void *Ptr = getPointerToNamedFunction(Prefix+"$LDBL128", false))
    895       return Ptr;
    896     if (void *Ptr = getPointerToNamedFunction(Prefix, false))
    897       return Ptr;
    898   }
    899 #endif
    900 
    901   if (AbortOnFailure) {
    902     report_fatal_error("Program used external function '"+Name+
    903                       "' which could not be resolved!");
    904   }
    905   return 0;
    906 }
    907 
    908 
    909 
    910 JITMemoryManager *JITMemoryManager::CreateDefaultMemManager() {
    911   return new DefaultJITMemoryManager();
    912 }
    913 
    914 // Allocate memory for code in 512K slabs.
    915 const size_t DefaultJITMemoryManager::DefaultCodeSlabSize = 512 * 1024;
    916 
    917 // Allocate globals and stubs in slabs of 64K.  (probably 16 pages)
    918 const size_t DefaultJITMemoryManager::DefaultSlabSize = 64 * 1024;
    919 
    920 // Waste at most 16K at the end of each bump slab.  (probably 4 pages)
    921 const size_t DefaultJITMemoryManager::DefaultSizeThreshold = 16 * 1024;
    922