1 //===- ThreadSafety.cpp ----------------------------------------*- C++ --*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // A intra-procedural analysis for thread safety (e.g. deadlocks and race 11 // conditions), based off of an annotation system. 12 // 13 // See http://clang.llvm.org/docs/LanguageExtensions.html#threadsafety for more 14 // information. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "clang/Analysis/Analyses/ThreadSafety.h" 19 #include "clang/Analysis/Analyses/PostOrderCFGView.h" 20 #include "clang/Analysis/AnalysisContext.h" 21 #include "clang/Analysis/CFG.h" 22 #include "clang/Analysis/CFGStmtMap.h" 23 #include "clang/AST/DeclCXX.h" 24 #include "clang/AST/ExprCXX.h" 25 #include "clang/AST/StmtCXX.h" 26 #include "clang/AST/StmtVisitor.h" 27 #include "clang/Basic/SourceManager.h" 28 #include "clang/Basic/SourceLocation.h" 29 #include "llvm/ADT/BitVector.h" 30 #include "llvm/ADT/FoldingSet.h" 31 #include "llvm/ADT/ImmutableMap.h" 32 #include "llvm/ADT/PostOrderIterator.h" 33 #include "llvm/ADT/SmallVector.h" 34 #include "llvm/ADT/StringRef.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include <algorithm> 37 #include <utility> 38 #include <vector> 39 40 using namespace clang; 41 using namespace thread_safety; 42 43 // Key method definition 44 ThreadSafetyHandler::~ThreadSafetyHandler() {} 45 46 namespace { 47 48 /// \brief A MutexID object uniquely identifies a particular mutex, and 49 /// is built from an Expr* (i.e. calling a lock function). 50 /// 51 /// Thread-safety analysis works by comparing lock expressions. Within the 52 /// body of a function, an expression such as "x->foo->bar.mu" will resolve to 53 /// a particular mutex object at run-time. Subsequent occurrences of the same 54 /// expression (where "same" means syntactic equality) will refer to the same 55 /// run-time object if three conditions hold: 56 /// (1) Local variables in the expression, such as "x" have not changed. 57 /// (2) Values on the heap that affect the expression have not changed. 58 /// (3) The expression involves only pure function calls. 59 /// 60 /// The current implementation assumes, but does not verify, that multiple uses 61 /// of the same lock expression satisfies these criteria. 62 /// 63 /// Clang introduces an additional wrinkle, which is that it is difficult to 64 /// derive canonical expressions, or compare expressions directly for equality. 65 /// Thus, we identify a mutex not by an Expr, but by the list of named 66 /// declarations that are referenced by the Expr. In other words, 67 /// x->foo->bar.mu will be a four element vector with the Decls for 68 /// mu, bar, and foo, and x. The vector will uniquely identify the expression 69 /// for all practical purposes. Null is used to denote 'this'. 70 /// 71 /// Note we will need to perform substitution on "this" and function parameter 72 /// names when constructing a lock expression. 73 /// 74 /// For example: 75 /// class C { Mutex Mu; void lock() EXCLUSIVE_LOCK_FUNCTION(this->Mu); }; 76 /// void myFunc(C *X) { ... X->lock() ... } 77 /// The original expression for the mutex acquired by myFunc is "this->Mu", but 78 /// "X" is substituted for "this" so we get X->Mu(); 79 /// 80 /// For another example: 81 /// foo(MyList *L) EXCLUSIVE_LOCKS_REQUIRED(L->Mu) { ... } 82 /// MyList *MyL; 83 /// foo(MyL); // requires lock MyL->Mu to be held 84 class MutexID { 85 SmallVector<NamedDecl*, 2> DeclSeq; 86 87 /// Build a Decl sequence representing the lock from the given expression. 88 /// Recursive function that terminates on DeclRefExpr. 89 /// Note: this function merely creates a MutexID; it does not check to 90 /// ensure that the original expression is a valid mutex expression. 91 void buildMutexID(Expr *Exp, const NamedDecl *D, Expr *Parent, 92 unsigned NumArgs, Expr **FunArgs) { 93 if (!Exp) { 94 DeclSeq.clear(); 95 return; 96 } 97 98 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Exp)) { 99 NamedDecl *ND = cast<NamedDecl>(DRE->getDecl()->getCanonicalDecl()); 100 ParmVarDecl *PV = dyn_cast_or_null<ParmVarDecl>(ND); 101 if (PV) { 102 FunctionDecl *FD = 103 cast<FunctionDecl>(PV->getDeclContext())->getCanonicalDecl(); 104 unsigned i = PV->getFunctionScopeIndex(); 105 106 if (FunArgs && FD == D->getCanonicalDecl()) { 107 // Substitute call arguments for references to function parameters 108 assert(i < NumArgs); 109 buildMutexID(FunArgs[i], D, 0, 0, 0); 110 return; 111 } 112 // Map the param back to the param of the original function declaration. 113 DeclSeq.push_back(FD->getParamDecl(i)); 114 return; 115 } 116 // Not a function parameter -- just store the reference. 117 DeclSeq.push_back(ND); 118 } else if (MemberExpr *ME = dyn_cast<MemberExpr>(Exp)) { 119 NamedDecl *ND = ME->getMemberDecl(); 120 DeclSeq.push_back(ND); 121 buildMutexID(ME->getBase(), D, Parent, NumArgs, FunArgs); 122 } else if (isa<CXXThisExpr>(Exp)) { 123 if (Parent) 124 buildMutexID(Parent, D, 0, 0, 0); 125 else { 126 DeclSeq.push_back(0); // Use 0 to represent 'this'. 127 return; // mutexID is still valid in this case 128 } 129 } else if (CXXMemberCallExpr *CMCE = dyn_cast<CXXMemberCallExpr>(Exp)) { 130 DeclSeq.push_back(CMCE->getMethodDecl()->getCanonicalDecl()); 131 buildMutexID(CMCE->getImplicitObjectArgument(), 132 D, Parent, NumArgs, FunArgs); 133 unsigned NumCallArgs = CMCE->getNumArgs(); 134 Expr** CallArgs = CMCE->getArgs(); 135 for (unsigned i = 0; i < NumCallArgs; ++i) { 136 buildMutexID(CallArgs[i], D, Parent, NumArgs, FunArgs); 137 } 138 } else if (CallExpr *CE = dyn_cast<CallExpr>(Exp)) { 139 buildMutexID(CE->getCallee(), D, Parent, NumArgs, FunArgs); 140 unsigned NumCallArgs = CE->getNumArgs(); 141 Expr** CallArgs = CE->getArgs(); 142 for (unsigned i = 0; i < NumCallArgs; ++i) { 143 buildMutexID(CallArgs[i], D, Parent, NumArgs, FunArgs); 144 } 145 } else if (BinaryOperator *BOE = dyn_cast<BinaryOperator>(Exp)) { 146 buildMutexID(BOE->getLHS(), D, Parent, NumArgs, FunArgs); 147 buildMutexID(BOE->getRHS(), D, Parent, NumArgs, FunArgs); 148 } else if (UnaryOperator *UOE = dyn_cast<UnaryOperator>(Exp)) { 149 buildMutexID(UOE->getSubExpr(), D, Parent, NumArgs, FunArgs); 150 } else if (ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(Exp)) { 151 buildMutexID(ASE->getBase(), D, Parent, NumArgs, FunArgs); 152 buildMutexID(ASE->getIdx(), D, Parent, NumArgs, FunArgs); 153 } else if (AbstractConditionalOperator *CE = 154 dyn_cast<AbstractConditionalOperator>(Exp)) { 155 buildMutexID(CE->getCond(), D, Parent, NumArgs, FunArgs); 156 buildMutexID(CE->getTrueExpr(), D, Parent, NumArgs, FunArgs); 157 buildMutexID(CE->getFalseExpr(), D, Parent, NumArgs, FunArgs); 158 } else if (ChooseExpr *CE = dyn_cast<ChooseExpr>(Exp)) { 159 buildMutexID(CE->getCond(), D, Parent, NumArgs, FunArgs); 160 buildMutexID(CE->getLHS(), D, Parent, NumArgs, FunArgs); 161 buildMutexID(CE->getRHS(), D, Parent, NumArgs, FunArgs); 162 } else if (CastExpr *CE = dyn_cast<CastExpr>(Exp)) { 163 buildMutexID(CE->getSubExpr(), D, Parent, NumArgs, FunArgs); 164 } else if (ParenExpr *PE = dyn_cast<ParenExpr>(Exp)) { 165 buildMutexID(PE->getSubExpr(), D, Parent, NumArgs, FunArgs); 166 } else if (isa<CharacterLiteral>(Exp) || 167 isa<CXXNullPtrLiteralExpr>(Exp) || 168 isa<GNUNullExpr>(Exp) || 169 isa<CXXBoolLiteralExpr>(Exp) || 170 isa<FloatingLiteral>(Exp) || 171 isa<ImaginaryLiteral>(Exp) || 172 isa<IntegerLiteral>(Exp) || 173 isa<StringLiteral>(Exp) || 174 isa<ObjCStringLiteral>(Exp)) { 175 return; // FIXME: Ignore literals for now 176 } else { 177 // Ignore. FIXME: mark as invalid expression? 178 } 179 } 180 181 /// \brief Construct a MutexID from an expression. 182 /// \param MutexExp The original mutex expression within an attribute 183 /// \param DeclExp An expression involving the Decl on which the attribute 184 /// occurs. 185 /// \param D The declaration to which the lock/unlock attribute is attached. 186 void buildMutexIDFromExp(Expr *MutexExp, Expr *DeclExp, const NamedDecl *D) { 187 Expr *Parent = 0; 188 unsigned NumArgs = 0; 189 Expr **FunArgs = 0; 190 191 // If we are processing a raw attribute expression, with no substitutions. 192 if (DeclExp == 0) { 193 buildMutexID(MutexExp, D, 0, 0, 0); 194 return; 195 } 196 197 // Examine DeclExp to find Parent and FunArgs, which are used to substitute 198 // for formal parameters when we call buildMutexID later. 199 if (MemberExpr *ME = dyn_cast<MemberExpr>(DeclExp)) { 200 Parent = ME->getBase(); 201 } else if (CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(DeclExp)) { 202 Parent = CE->getImplicitObjectArgument(); 203 NumArgs = CE->getNumArgs(); 204 FunArgs = CE->getArgs(); 205 } else if (CallExpr *CE = dyn_cast<CallExpr>(DeclExp)) { 206 NumArgs = CE->getNumArgs(); 207 FunArgs = CE->getArgs(); 208 } else if (CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(DeclExp)) { 209 Parent = 0; // FIXME -- get the parent from DeclStmt 210 NumArgs = CE->getNumArgs(); 211 FunArgs = CE->getArgs(); 212 } else if (D && isa<CXXDestructorDecl>(D)) { 213 // There's no such thing as a "destructor call" in the AST. 214 Parent = DeclExp; 215 } 216 217 // If the attribute has no arguments, then assume the argument is "this". 218 if (MutexExp == 0) { 219 buildMutexID(Parent, D, 0, 0, 0); 220 return; 221 } 222 223 buildMutexID(MutexExp, D, Parent, NumArgs, FunArgs); 224 } 225 226 public: 227 explicit MutexID(clang::Decl::EmptyShell e) { 228 DeclSeq.clear(); 229 } 230 231 /// \param MutexExp The original mutex expression within an attribute 232 /// \param DeclExp An expression involving the Decl on which the attribute 233 /// occurs. 234 /// \param D The declaration to which the lock/unlock attribute is attached. 235 /// Caller must check isValid() after construction. 236 MutexID(Expr* MutexExp, Expr *DeclExp, const NamedDecl* D) { 237 buildMutexIDFromExp(MutexExp, DeclExp, D); 238 } 239 240 /// Return true if this is a valid decl sequence. 241 /// Caller must call this by hand after construction to handle errors. 242 bool isValid() const { 243 return !DeclSeq.empty(); 244 } 245 246 /// Issue a warning about an invalid lock expression 247 static void warnInvalidLock(ThreadSafetyHandler &Handler, Expr* MutexExp, 248 Expr *DeclExp, const NamedDecl* D) { 249 SourceLocation Loc; 250 if (DeclExp) 251 Loc = DeclExp->getExprLoc(); 252 253 // FIXME: add a note about the attribute location in MutexExp or D 254 if (Loc.isValid()) 255 Handler.handleInvalidLockExp(Loc); 256 } 257 258 bool operator==(const MutexID &other) const { 259 return DeclSeq == other.DeclSeq; 260 } 261 262 bool operator!=(const MutexID &other) const { 263 return !(*this == other); 264 } 265 266 // SmallVector overloads Operator< to do lexicographic ordering. Note that 267 // we use pointer equality (and <) to compare NamedDecls. This means the order 268 // of MutexIDs in a lockset is nondeterministic. In order to output 269 // diagnostics in a deterministic ordering, we must order all diagnostics to 270 // output by SourceLocation when iterating through this lockset. 271 bool operator<(const MutexID &other) const { 272 return DeclSeq < other.DeclSeq; 273 } 274 275 /// \brief Returns the name of the first Decl in the list for a given MutexID; 276 /// e.g. the lock expression foo.bar() has name "bar". 277 /// The caret will point unambiguously to the lock expression, so using this 278 /// name in diagnostics is a way to get simple, and consistent, mutex names. 279 /// We do not want to output the entire expression text for security reasons. 280 std::string getName() const { 281 assert(isValid()); 282 if (!DeclSeq.front()) 283 return "this"; // Use 0 to represent 'this'. 284 return DeclSeq.front()->getNameAsString(); 285 } 286 287 void Profile(llvm::FoldingSetNodeID &ID) const { 288 for (SmallVectorImpl<NamedDecl*>::const_iterator I = DeclSeq.begin(), 289 E = DeclSeq.end(); I != E; ++I) { 290 ID.AddPointer(*I); 291 } 292 } 293 }; 294 295 296 /// \brief This is a helper class that stores info about the most recent 297 /// accquire of a Lock. 298 /// 299 /// The main body of the analysis maps MutexIDs to LockDatas. 300 struct LockData { 301 SourceLocation AcquireLoc; 302 303 /// \brief LKind stores whether a lock is held shared or exclusively. 304 /// Note that this analysis does not currently support either re-entrant 305 /// locking or lock "upgrading" and "downgrading" between exclusive and 306 /// shared. 307 /// 308 /// FIXME: add support for re-entrant locking and lock up/downgrading 309 LockKind LKind; 310 MutexID UnderlyingMutex; // for ScopedLockable objects 311 312 LockData(SourceLocation AcquireLoc, LockKind LKind) 313 : AcquireLoc(AcquireLoc), LKind(LKind), UnderlyingMutex(Decl::EmptyShell()) 314 {} 315 316 LockData(SourceLocation AcquireLoc, LockKind LKind, const MutexID &Mu) 317 : AcquireLoc(AcquireLoc), LKind(LKind), UnderlyingMutex(Mu) {} 318 319 bool operator==(const LockData &other) const { 320 return AcquireLoc == other.AcquireLoc && LKind == other.LKind; 321 } 322 323 bool operator!=(const LockData &other) const { 324 return !(*this == other); 325 } 326 327 void Profile(llvm::FoldingSetNodeID &ID) const { 328 ID.AddInteger(AcquireLoc.getRawEncoding()); 329 ID.AddInteger(LKind); 330 } 331 }; 332 333 334 /// A Lockset maps each MutexID (defined above) to information about how it has 335 /// been locked. 336 typedef llvm::ImmutableMap<MutexID, LockData> Lockset; 337 typedef llvm::ImmutableMap<NamedDecl*, unsigned> LocalVarContext; 338 339 class LocalVariableMap; 340 341 /// A side (entry or exit) of a CFG node. 342 enum CFGBlockSide { CBS_Entry, CBS_Exit }; 343 344 /// CFGBlockInfo is a struct which contains all the information that is 345 /// maintained for each block in the CFG. See LocalVariableMap for more 346 /// information about the contexts. 347 struct CFGBlockInfo { 348 Lockset EntrySet; // Lockset held at entry to block 349 Lockset ExitSet; // Lockset held at exit from block 350 LocalVarContext EntryContext; // Context held at entry to block 351 LocalVarContext ExitContext; // Context held at exit from block 352 SourceLocation EntryLoc; // Location of first statement in block 353 SourceLocation ExitLoc; // Location of last statement in block. 354 unsigned EntryIndex; // Used to replay contexts later 355 356 const Lockset &getSet(CFGBlockSide Side) const { 357 return Side == CBS_Entry ? EntrySet : ExitSet; 358 } 359 SourceLocation getLocation(CFGBlockSide Side) const { 360 return Side == CBS_Entry ? EntryLoc : ExitLoc; 361 } 362 363 private: 364 CFGBlockInfo(Lockset EmptySet, LocalVarContext EmptyCtx) 365 : EntrySet(EmptySet), ExitSet(EmptySet), 366 EntryContext(EmptyCtx), ExitContext(EmptyCtx) 367 { } 368 369 public: 370 static CFGBlockInfo getEmptyBlockInfo(Lockset::Factory &F, 371 LocalVariableMap &M); 372 }; 373 374 375 376 // A LocalVariableMap maintains a map from local variables to their currently 377 // valid definitions. It provides SSA-like functionality when traversing the 378 // CFG. Like SSA, each definition or assignment to a variable is assigned a 379 // unique name (an integer), which acts as the SSA name for that definition. 380 // The total set of names is shared among all CFG basic blocks. 381 // Unlike SSA, we do not rewrite expressions to replace local variables declrefs 382 // with their SSA-names. Instead, we compute a Context for each point in the 383 // code, which maps local variables to the appropriate SSA-name. This map 384 // changes with each assignment. 385 // 386 // The map is computed in a single pass over the CFG. Subsequent analyses can 387 // then query the map to find the appropriate Context for a statement, and use 388 // that Context to look up the definitions of variables. 389 class LocalVariableMap { 390 public: 391 typedef LocalVarContext Context; 392 393 /// A VarDefinition consists of an expression, representing the value of the 394 /// variable, along with the context in which that expression should be 395 /// interpreted. A reference VarDefinition does not itself contain this 396 /// information, but instead contains a pointer to a previous VarDefinition. 397 struct VarDefinition { 398 public: 399 friend class LocalVariableMap; 400 401 NamedDecl *Dec; // The original declaration for this variable. 402 Expr *Exp; // The expression for this variable, OR 403 unsigned Ref; // Reference to another VarDefinition 404 Context Ctx; // The map with which Exp should be interpreted. 405 406 bool isReference() { return !Exp; } 407 408 private: 409 // Create ordinary variable definition 410 VarDefinition(NamedDecl *D, Expr *E, Context C) 411 : Dec(D), Exp(E), Ref(0), Ctx(C) 412 { } 413 414 // Create reference to previous definition 415 VarDefinition(NamedDecl *D, unsigned R, Context C) 416 : Dec(D), Exp(0), Ref(R), Ctx(C) 417 { } 418 }; 419 420 private: 421 Context::Factory ContextFactory; 422 std::vector<VarDefinition> VarDefinitions; 423 std::vector<unsigned> CtxIndices; 424 std::vector<std::pair<Stmt*, Context> > SavedContexts; 425 426 public: 427 LocalVariableMap() { 428 // index 0 is a placeholder for undefined variables (aka phi-nodes). 429 VarDefinitions.push_back(VarDefinition(0, 0u, getEmptyContext())); 430 } 431 432 /// Look up a definition, within the given context. 433 const VarDefinition* lookup(NamedDecl *D, Context Ctx) { 434 const unsigned *i = Ctx.lookup(D); 435 if (!i) 436 return 0; 437 assert(*i < VarDefinitions.size()); 438 return &VarDefinitions[*i]; 439 } 440 441 /// Look up the definition for D within the given context. Returns 442 /// NULL if the expression is not statically known. If successful, also 443 /// modifies Ctx to hold the context of the return Expr. 444 Expr* lookupExpr(NamedDecl *D, Context &Ctx) { 445 const unsigned *P = Ctx.lookup(D); 446 if (!P) 447 return 0; 448 449 unsigned i = *P; 450 while (i > 0) { 451 if (VarDefinitions[i].Exp) { 452 Ctx = VarDefinitions[i].Ctx; 453 return VarDefinitions[i].Exp; 454 } 455 i = VarDefinitions[i].Ref; 456 } 457 return 0; 458 } 459 460 Context getEmptyContext() { return ContextFactory.getEmptyMap(); } 461 462 /// Return the next context after processing S. This function is used by 463 /// clients of the class to get the appropriate context when traversing the 464 /// CFG. It must be called for every assignment or DeclStmt. 465 Context getNextContext(unsigned &CtxIndex, Stmt *S, Context C) { 466 if (SavedContexts[CtxIndex+1].first == S) { 467 CtxIndex++; 468 Context Result = SavedContexts[CtxIndex].second; 469 return Result; 470 } 471 return C; 472 } 473 474 void dumpVarDefinitionName(unsigned i) { 475 if (i == 0) { 476 llvm::errs() << "Undefined"; 477 return; 478 } 479 NamedDecl *Dec = VarDefinitions[i].Dec; 480 if (!Dec) { 481 llvm::errs() << "<<NULL>>"; 482 return; 483 } 484 Dec->printName(llvm::errs()); 485 llvm::errs() << "." << i << " " << ((void*) Dec); 486 } 487 488 /// Dumps an ASCII representation of the variable map to llvm::errs() 489 void dump() { 490 for (unsigned i = 1, e = VarDefinitions.size(); i < e; ++i) { 491 Expr *Exp = VarDefinitions[i].Exp; 492 unsigned Ref = VarDefinitions[i].Ref; 493 494 dumpVarDefinitionName(i); 495 llvm::errs() << " = "; 496 if (Exp) Exp->dump(); 497 else { 498 dumpVarDefinitionName(Ref); 499 llvm::errs() << "\n"; 500 } 501 } 502 } 503 504 /// Dumps an ASCII representation of a Context to llvm::errs() 505 void dumpContext(Context C) { 506 for (Context::iterator I = C.begin(), E = C.end(); I != E; ++I) { 507 NamedDecl *D = I.getKey(); 508 D->printName(llvm::errs()); 509 const unsigned *i = C.lookup(D); 510 llvm::errs() << " -> "; 511 dumpVarDefinitionName(*i); 512 llvm::errs() << "\n"; 513 } 514 } 515 516 /// Builds the variable map. 517 void traverseCFG(CFG *CFGraph, PostOrderCFGView *SortedGraph, 518 std::vector<CFGBlockInfo> &BlockInfo); 519 520 protected: 521 // Get the current context index 522 unsigned getContextIndex() { return SavedContexts.size()-1; } 523 524 // Save the current context for later replay 525 void saveContext(Stmt *S, Context C) { 526 SavedContexts.push_back(std::make_pair(S,C)); 527 } 528 529 // Adds a new definition to the given context, and returns a new context. 530 // This method should be called when declaring a new variable. 531 Context addDefinition(NamedDecl *D, Expr *Exp, Context Ctx) { 532 assert(!Ctx.contains(D)); 533 unsigned newID = VarDefinitions.size(); 534 Context NewCtx = ContextFactory.add(Ctx, D, newID); 535 VarDefinitions.push_back(VarDefinition(D, Exp, Ctx)); 536 return NewCtx; 537 } 538 539 // Add a new reference to an existing definition. 540 Context addReference(NamedDecl *D, unsigned i, Context Ctx) { 541 unsigned newID = VarDefinitions.size(); 542 Context NewCtx = ContextFactory.add(Ctx, D, newID); 543 VarDefinitions.push_back(VarDefinition(D, i, Ctx)); 544 return NewCtx; 545 } 546 547 // Updates a definition only if that definition is already in the map. 548 // This method should be called when assigning to an existing variable. 549 Context updateDefinition(NamedDecl *D, Expr *Exp, Context Ctx) { 550 if (Ctx.contains(D)) { 551 unsigned newID = VarDefinitions.size(); 552 Context NewCtx = ContextFactory.remove(Ctx, D); 553 NewCtx = ContextFactory.add(NewCtx, D, newID); 554 VarDefinitions.push_back(VarDefinition(D, Exp, Ctx)); 555 return NewCtx; 556 } 557 return Ctx; 558 } 559 560 // Removes a definition from the context, but keeps the variable name 561 // as a valid variable. The index 0 is a placeholder for cleared definitions. 562 Context clearDefinition(NamedDecl *D, Context Ctx) { 563 Context NewCtx = Ctx; 564 if (NewCtx.contains(D)) { 565 NewCtx = ContextFactory.remove(NewCtx, D); 566 NewCtx = ContextFactory.add(NewCtx, D, 0); 567 } 568 return NewCtx; 569 } 570 571 // Remove a definition entirely frmo the context. 572 Context removeDefinition(NamedDecl *D, Context Ctx) { 573 Context NewCtx = Ctx; 574 if (NewCtx.contains(D)) { 575 NewCtx = ContextFactory.remove(NewCtx, D); 576 } 577 return NewCtx; 578 } 579 580 Context intersectContexts(Context C1, Context C2); 581 Context createReferenceContext(Context C); 582 void intersectBackEdge(Context C1, Context C2); 583 584 friend class VarMapBuilder; 585 }; 586 587 588 // This has to be defined after LocalVariableMap. 589 CFGBlockInfo CFGBlockInfo::getEmptyBlockInfo(Lockset::Factory &F, 590 LocalVariableMap &M) { 591 return CFGBlockInfo(F.getEmptyMap(), M.getEmptyContext()); 592 } 593 594 595 /// Visitor which builds a LocalVariableMap 596 class VarMapBuilder : public StmtVisitor<VarMapBuilder> { 597 public: 598 LocalVariableMap* VMap; 599 LocalVariableMap::Context Ctx; 600 601 VarMapBuilder(LocalVariableMap *VM, LocalVariableMap::Context C) 602 : VMap(VM), Ctx(C) {} 603 604 void VisitDeclStmt(DeclStmt *S); 605 void VisitBinaryOperator(BinaryOperator *BO); 606 }; 607 608 609 // Add new local variables to the variable map 610 void VarMapBuilder::VisitDeclStmt(DeclStmt *S) { 611 bool modifiedCtx = false; 612 DeclGroupRef DGrp = S->getDeclGroup(); 613 for (DeclGroupRef::iterator I = DGrp.begin(), E = DGrp.end(); I != E; ++I) { 614 if (VarDecl *VD = dyn_cast_or_null<VarDecl>(*I)) { 615 Expr *E = VD->getInit(); 616 617 // Add local variables with trivial type to the variable map 618 QualType T = VD->getType(); 619 if (T.isTrivialType(VD->getASTContext())) { 620 Ctx = VMap->addDefinition(VD, E, Ctx); 621 modifiedCtx = true; 622 } 623 } 624 } 625 if (modifiedCtx) 626 VMap->saveContext(S, Ctx); 627 } 628 629 // Update local variable definitions in variable map 630 void VarMapBuilder::VisitBinaryOperator(BinaryOperator *BO) { 631 if (!BO->isAssignmentOp()) 632 return; 633 634 Expr *LHSExp = BO->getLHS()->IgnoreParenCasts(); 635 636 // Update the variable map and current context. 637 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(LHSExp)) { 638 ValueDecl *VDec = DRE->getDecl(); 639 if (Ctx.lookup(VDec)) { 640 if (BO->getOpcode() == BO_Assign) 641 Ctx = VMap->updateDefinition(VDec, BO->getRHS(), Ctx); 642 else 643 // FIXME -- handle compound assignment operators 644 Ctx = VMap->clearDefinition(VDec, Ctx); 645 VMap->saveContext(BO, Ctx); 646 } 647 } 648 } 649 650 651 // Computes the intersection of two contexts. The intersection is the 652 // set of variables which have the same definition in both contexts; 653 // variables with different definitions are discarded. 654 LocalVariableMap::Context 655 LocalVariableMap::intersectContexts(Context C1, Context C2) { 656 Context Result = C1; 657 for (Context::iterator I = C1.begin(), E = C1.end(); I != E; ++I) { 658 NamedDecl *Dec = I.getKey(); 659 unsigned i1 = I.getData(); 660 const unsigned *i2 = C2.lookup(Dec); 661 if (!i2) // variable doesn't exist on second path 662 Result = removeDefinition(Dec, Result); 663 else if (*i2 != i1) // variable exists, but has different definition 664 Result = clearDefinition(Dec, Result); 665 } 666 return Result; 667 } 668 669 // For every variable in C, create a new variable that refers to the 670 // definition in C. Return a new context that contains these new variables. 671 // (We use this for a naive implementation of SSA on loop back-edges.) 672 LocalVariableMap::Context LocalVariableMap::createReferenceContext(Context C) { 673 Context Result = getEmptyContext(); 674 for (Context::iterator I = C.begin(), E = C.end(); I != E; ++I) { 675 NamedDecl *Dec = I.getKey(); 676 unsigned i = I.getData(); 677 Result = addReference(Dec, i, Result); 678 } 679 return Result; 680 } 681 682 // This routine also takes the intersection of C1 and C2, but it does so by 683 // altering the VarDefinitions. C1 must be the result of an earlier call to 684 // createReferenceContext. 685 void LocalVariableMap::intersectBackEdge(Context C1, Context C2) { 686 for (Context::iterator I = C1.begin(), E = C1.end(); I != E; ++I) { 687 NamedDecl *Dec = I.getKey(); 688 unsigned i1 = I.getData(); 689 VarDefinition *VDef = &VarDefinitions[i1]; 690 assert(VDef->isReference()); 691 692 const unsigned *i2 = C2.lookup(Dec); 693 if (!i2 || (*i2 != i1)) 694 VDef->Ref = 0; // Mark this variable as undefined 695 } 696 } 697 698 699 // Traverse the CFG in topological order, so all predecessors of a block 700 // (excluding back-edges) are visited before the block itself. At 701 // each point in the code, we calculate a Context, which holds the set of 702 // variable definitions which are visible at that point in execution. 703 // Visible variables are mapped to their definitions using an array that 704 // contains all definitions. 705 // 706 // At join points in the CFG, the set is computed as the intersection of 707 // the incoming sets along each edge, E.g. 708 // 709 // { Context | VarDefinitions } 710 // int x = 0; { x -> x1 | x1 = 0 } 711 // int y = 0; { x -> x1, y -> y1 | y1 = 0, x1 = 0 } 712 // if (b) x = 1; { x -> x2, y -> y1 | x2 = 1, y1 = 0, ... } 713 // else x = 2; { x -> x3, y -> y1 | x3 = 2, x2 = 1, ... } 714 // ... { y -> y1 (x is unknown) | x3 = 2, x2 = 1, ... } 715 // 716 // This is essentially a simpler and more naive version of the standard SSA 717 // algorithm. Those definitions that remain in the intersection are from blocks 718 // that strictly dominate the current block. We do not bother to insert proper 719 // phi nodes, because they are not used in our analysis; instead, wherever 720 // a phi node would be required, we simply remove that definition from the 721 // context (E.g. x above). 722 // 723 // The initial traversal does not capture back-edges, so those need to be 724 // handled on a separate pass. Whenever the first pass encounters an 725 // incoming back edge, it duplicates the context, creating new definitions 726 // that refer back to the originals. (These correspond to places where SSA 727 // might have to insert a phi node.) On the second pass, these definitions are 728 // set to NULL if the the variable has changed on the back-edge (i.e. a phi 729 // node was actually required.) E.g. 730 // 731 // { Context | VarDefinitions } 732 // int x = 0, y = 0; { x -> x1, y -> y1 | y1 = 0, x1 = 0 } 733 // while (b) { x -> x2, y -> y1 | [1st:] x2=x1; [2nd:] x2=NULL; } 734 // x = x+1; { x -> x3, y -> y1 | x3 = x2 + 1, ... } 735 // ... { y -> y1 | x3 = 2, x2 = 1, ... } 736 // 737 void LocalVariableMap::traverseCFG(CFG *CFGraph, 738 PostOrderCFGView *SortedGraph, 739 std::vector<CFGBlockInfo> &BlockInfo) { 740 PostOrderCFGView::CFGBlockSet VisitedBlocks(CFGraph); 741 742 CtxIndices.resize(CFGraph->getNumBlockIDs()); 743 744 for (PostOrderCFGView::iterator I = SortedGraph->begin(), 745 E = SortedGraph->end(); I!= E; ++I) { 746 const CFGBlock *CurrBlock = *I; 747 int CurrBlockID = CurrBlock->getBlockID(); 748 CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlockID]; 749 750 VisitedBlocks.insert(CurrBlock); 751 752 // Calculate the entry context for the current block 753 bool HasBackEdges = false; 754 bool CtxInit = true; 755 for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(), 756 PE = CurrBlock->pred_end(); PI != PE; ++PI) { 757 // if *PI -> CurrBlock is a back edge, so skip it 758 if (*PI == 0 || !VisitedBlocks.alreadySet(*PI)) { 759 HasBackEdges = true; 760 continue; 761 } 762 763 int PrevBlockID = (*PI)->getBlockID(); 764 CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID]; 765 766 if (CtxInit) { 767 CurrBlockInfo->EntryContext = PrevBlockInfo->ExitContext; 768 CtxInit = false; 769 } 770 else { 771 CurrBlockInfo->EntryContext = 772 intersectContexts(CurrBlockInfo->EntryContext, 773 PrevBlockInfo->ExitContext); 774 } 775 } 776 777 // Duplicate the context if we have back-edges, so we can call 778 // intersectBackEdges later. 779 if (HasBackEdges) 780 CurrBlockInfo->EntryContext = 781 createReferenceContext(CurrBlockInfo->EntryContext); 782 783 // Create a starting context index for the current block 784 saveContext(0, CurrBlockInfo->EntryContext); 785 CurrBlockInfo->EntryIndex = getContextIndex(); 786 787 // Visit all the statements in the basic block. 788 VarMapBuilder VMapBuilder(this, CurrBlockInfo->EntryContext); 789 for (CFGBlock::const_iterator BI = CurrBlock->begin(), 790 BE = CurrBlock->end(); BI != BE; ++BI) { 791 switch (BI->getKind()) { 792 case CFGElement::Statement: { 793 const CFGStmt *CS = cast<CFGStmt>(&*BI); 794 VMapBuilder.Visit(const_cast<Stmt*>(CS->getStmt())); 795 break; 796 } 797 default: 798 break; 799 } 800 } 801 CurrBlockInfo->ExitContext = VMapBuilder.Ctx; 802 803 // Mark variables on back edges as "unknown" if they've been changed. 804 for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(), 805 SE = CurrBlock->succ_end(); SI != SE; ++SI) { 806 // if CurrBlock -> *SI is *not* a back edge 807 if (*SI == 0 || !VisitedBlocks.alreadySet(*SI)) 808 continue; 809 810 CFGBlock *FirstLoopBlock = *SI; 811 Context LoopBegin = BlockInfo[FirstLoopBlock->getBlockID()].EntryContext; 812 Context LoopEnd = CurrBlockInfo->ExitContext; 813 intersectBackEdge(LoopBegin, LoopEnd); 814 } 815 } 816 817 // Put an extra entry at the end of the indexed context array 818 unsigned exitID = CFGraph->getExit().getBlockID(); 819 saveContext(0, BlockInfo[exitID].ExitContext); 820 } 821 822 /// Find the appropriate source locations to use when producing diagnostics for 823 /// each block in the CFG. 824 static void findBlockLocations(CFG *CFGraph, 825 PostOrderCFGView *SortedGraph, 826 std::vector<CFGBlockInfo> &BlockInfo) { 827 for (PostOrderCFGView::iterator I = SortedGraph->begin(), 828 E = SortedGraph->end(); I!= E; ++I) { 829 const CFGBlock *CurrBlock = *I; 830 CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlock->getBlockID()]; 831 832 // Find the source location of the last statement in the block, if the 833 // block is not empty. 834 if (const Stmt *S = CurrBlock->getTerminator()) { 835 CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc = S->getLocStart(); 836 } else { 837 for (CFGBlock::const_reverse_iterator BI = CurrBlock->rbegin(), 838 BE = CurrBlock->rend(); BI != BE; ++BI) { 839 // FIXME: Handle other CFGElement kinds. 840 if (const CFGStmt *CS = dyn_cast<CFGStmt>(&*BI)) { 841 CurrBlockInfo->ExitLoc = CS->getStmt()->getLocStart(); 842 break; 843 } 844 } 845 } 846 847 if (!CurrBlockInfo->ExitLoc.isInvalid()) { 848 // This block contains at least one statement. Find the source location 849 // of the first statement in the block. 850 for (CFGBlock::const_iterator BI = CurrBlock->begin(), 851 BE = CurrBlock->end(); BI != BE; ++BI) { 852 // FIXME: Handle other CFGElement kinds. 853 if (const CFGStmt *CS = dyn_cast<CFGStmt>(&*BI)) { 854 CurrBlockInfo->EntryLoc = CS->getStmt()->getLocStart(); 855 break; 856 } 857 } 858 } else if (CurrBlock->pred_size() == 1 && *CurrBlock->pred_begin() && 859 CurrBlock != &CFGraph->getExit()) { 860 // The block is empty, and has a single predecessor. Use its exit 861 // location. 862 CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc = 863 BlockInfo[(*CurrBlock->pred_begin())->getBlockID()].ExitLoc; 864 } 865 } 866 } 867 868 /// \brief Class which implements the core thread safety analysis routines. 869 class ThreadSafetyAnalyzer { 870 friend class BuildLockset; 871 872 ThreadSafetyHandler &Handler; 873 Lockset::Factory LocksetFactory; 874 LocalVariableMap LocalVarMap; 875 876 public: 877 ThreadSafetyAnalyzer(ThreadSafetyHandler &H) : Handler(H) {} 878 879 Lockset intersectAndWarn(const CFGBlockInfo &Block1, CFGBlockSide Side1, 880 const CFGBlockInfo &Block2, CFGBlockSide Side2, 881 LockErrorKind LEK); 882 883 Lockset addLock(Lockset &LSet, Expr *MutexExp, const NamedDecl *D, 884 LockKind LK, SourceLocation Loc); 885 886 void runAnalysis(AnalysisDeclContext &AC); 887 }; 888 889 890 /// \brief We use this class to visit different types of expressions in 891 /// CFGBlocks, and build up the lockset. 892 /// An expression may cause us to add or remove locks from the lockset, or else 893 /// output error messages related to missing locks. 894 /// FIXME: In future, we may be able to not inherit from a visitor. 895 class BuildLockset : public StmtVisitor<BuildLockset> { 896 friend class ThreadSafetyAnalyzer; 897 898 ThreadSafetyHandler &Handler; 899 Lockset::Factory &LocksetFactory; 900 LocalVariableMap &LocalVarMap; 901 902 Lockset LSet; 903 LocalVariableMap::Context LVarCtx; 904 unsigned CtxIndex; 905 906 // Helper functions 907 void addLock(const MutexID &Mutex, const LockData &LDat); 908 void removeLock(const MutexID &Mutex, SourceLocation UnlockLoc); 909 910 template <class AttrType> 911 void addLocksToSet(LockKind LK, AttrType *Attr, 912 Expr *Exp, NamedDecl *D, VarDecl *VD = 0); 913 void removeLocksFromSet(UnlockFunctionAttr *Attr, 914 Expr *Exp, NamedDecl* FunDecl); 915 916 const ValueDecl *getValueDecl(Expr *Exp); 917 void warnIfMutexNotHeld (const NamedDecl *D, Expr *Exp, AccessKind AK, 918 Expr *MutexExp, ProtectedOperationKind POK); 919 void checkAccess(Expr *Exp, AccessKind AK); 920 void checkDereference(Expr *Exp, AccessKind AK); 921 void handleCall(Expr *Exp, NamedDecl *D, VarDecl *VD = 0); 922 923 template <class AttrType> 924 void addTrylock(LockKind LK, AttrType *Attr, Expr *Exp, NamedDecl *FunDecl, 925 const CFGBlock* PredBlock, const CFGBlock *CurrBlock, 926 Expr *BrE, bool Neg); 927 CallExpr* getTrylockCallExpr(Stmt *Cond, LocalVariableMap::Context C, 928 bool &Negate); 929 void handleTrylock(Stmt *Cond, const CFGBlock* PredBlock, 930 const CFGBlock *CurrBlock); 931 932 /// \brief Returns true if the lockset contains a lock, regardless of whether 933 /// the lock is held exclusively or shared. 934 bool locksetContains(const MutexID &Lock) const { 935 return LSet.lookup(Lock); 936 } 937 938 /// \brief Returns true if the lockset contains a lock with the passed in 939 /// locktype. 940 bool locksetContains(const MutexID &Lock, LockKind KindRequested) const { 941 const LockData *LockHeld = LSet.lookup(Lock); 942 return (LockHeld && KindRequested == LockHeld->LKind); 943 } 944 945 /// \brief Returns true if the lockset contains a lock with at least the 946 /// passed in locktype. So for example, if we pass in LK_Shared, this function 947 /// returns true if the lock is held LK_Shared or LK_Exclusive. If we pass in 948 /// LK_Exclusive, this function returns true if the lock is held LK_Exclusive. 949 bool locksetContainsAtLeast(const MutexID &Lock, 950 LockKind KindRequested) const { 951 switch (KindRequested) { 952 case LK_Shared: 953 return locksetContains(Lock); 954 case LK_Exclusive: 955 return locksetContains(Lock, KindRequested); 956 } 957 llvm_unreachable("Unknown LockKind"); 958 } 959 960 public: 961 BuildLockset(ThreadSafetyAnalyzer *analyzer, CFGBlockInfo &Info) 962 : StmtVisitor<BuildLockset>(), 963 Handler(analyzer->Handler), 964 LocksetFactory(analyzer->LocksetFactory), 965 LocalVarMap(analyzer->LocalVarMap), 966 LSet(Info.EntrySet), 967 LVarCtx(Info.EntryContext), 968 CtxIndex(Info.EntryIndex) 969 {} 970 971 void VisitUnaryOperator(UnaryOperator *UO); 972 void VisitBinaryOperator(BinaryOperator *BO); 973 void VisitCastExpr(CastExpr *CE); 974 void VisitCallExpr(CallExpr *Exp); 975 void VisitCXXConstructExpr(CXXConstructExpr *Exp); 976 void VisitDeclStmt(DeclStmt *S); 977 }; 978 979 /// \brief Add a new lock to the lockset, warning if the lock is already there. 980 /// \param Mutex -- the Mutex expression for the lock 981 /// \param LDat -- the LockData for the lock 982 void BuildLockset::addLock(const MutexID &Mutex, const LockData& LDat) { 983 // FIXME: deal with acquired before/after annotations. 984 // FIXME: Don't always warn when we have support for reentrant locks. 985 if (locksetContains(Mutex)) 986 Handler.handleDoubleLock(Mutex.getName(), LDat.AcquireLoc); 987 else 988 LSet = LocksetFactory.add(LSet, Mutex, LDat); 989 } 990 991 /// \brief Remove a lock from the lockset, warning if the lock is not there. 992 /// \param LockExp The lock expression corresponding to the lock to be removed 993 /// \param UnlockLoc The source location of the unlock (only used in error msg) 994 void BuildLockset::removeLock(const MutexID &Mutex, SourceLocation UnlockLoc) { 995 const LockData *LDat = LSet.lookup(Mutex); 996 if (!LDat) 997 Handler.handleUnmatchedUnlock(Mutex.getName(), UnlockLoc); 998 else { 999 // For scoped-lockable vars, remove the mutex associated with this var. 1000 if (LDat->UnderlyingMutex.isValid()) 1001 removeLock(LDat->UnderlyingMutex, UnlockLoc); 1002 LSet = LocksetFactory.remove(LSet, Mutex); 1003 } 1004 } 1005 1006 /// \brief This function, parameterized by an attribute type, is used to add a 1007 /// set of locks specified as attribute arguments to the lockset. 1008 template <typename AttrType> 1009 void BuildLockset::addLocksToSet(LockKind LK, AttrType *Attr, 1010 Expr *Exp, NamedDecl* FunDecl, VarDecl *VD) { 1011 typedef typename AttrType::args_iterator iterator_type; 1012 1013 SourceLocation ExpLocation = Exp->getExprLoc(); 1014 1015 // Figure out if we're calling the constructor of scoped lockable class 1016 bool isScopedVar = false; 1017 if (VD) { 1018 if (CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FunDecl)) { 1019 CXXRecordDecl* PD = CD->getParent(); 1020 if (PD && PD->getAttr<ScopedLockableAttr>()) 1021 isScopedVar = true; 1022 } 1023 } 1024 1025 if (Attr->args_size() == 0) { 1026 // The mutex held is the "this" object. 1027 MutexID Mutex(0, Exp, FunDecl); 1028 if (!Mutex.isValid()) 1029 MutexID::warnInvalidLock(Handler, 0, Exp, FunDecl); 1030 else 1031 addLock(Mutex, LockData(ExpLocation, LK)); 1032 return; 1033 } 1034 1035 for (iterator_type I=Attr->args_begin(), E=Attr->args_end(); I != E; ++I) { 1036 MutexID Mutex(*I, Exp, FunDecl); 1037 if (!Mutex.isValid()) 1038 MutexID::warnInvalidLock(Handler, *I, Exp, FunDecl); 1039 else { 1040 addLock(Mutex, LockData(ExpLocation, LK)); 1041 if (isScopedVar) { 1042 // For scoped lockable vars, map this var to its underlying mutex. 1043 DeclRefExpr DRE(VD, false, VD->getType(), VK_LValue, VD->getLocation()); 1044 MutexID SMutex(&DRE, 0, 0); 1045 addLock(SMutex, LockData(VD->getLocation(), LK, Mutex)); 1046 } 1047 } 1048 } 1049 } 1050 1051 /// \brief This function removes a set of locks specified as attribute 1052 /// arguments from the lockset. 1053 void BuildLockset::removeLocksFromSet(UnlockFunctionAttr *Attr, 1054 Expr *Exp, NamedDecl* FunDecl) { 1055 SourceLocation ExpLocation; 1056 if (Exp) ExpLocation = Exp->getExprLoc(); 1057 1058 if (Attr->args_size() == 0) { 1059 // The mutex held is the "this" object. 1060 MutexID Mu(0, Exp, FunDecl); 1061 if (!Mu.isValid()) 1062 MutexID::warnInvalidLock(Handler, 0, Exp, FunDecl); 1063 else 1064 removeLock(Mu, ExpLocation); 1065 return; 1066 } 1067 1068 for (UnlockFunctionAttr::args_iterator I = Attr->args_begin(), 1069 E = Attr->args_end(); I != E; ++I) { 1070 MutexID Mutex(*I, Exp, FunDecl); 1071 if (!Mutex.isValid()) 1072 MutexID::warnInvalidLock(Handler, *I, Exp, FunDecl); 1073 else 1074 removeLock(Mutex, ExpLocation); 1075 } 1076 } 1077 1078 /// \brief Gets the value decl pointer from DeclRefExprs or MemberExprs 1079 const ValueDecl *BuildLockset::getValueDecl(Expr *Exp) { 1080 if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Exp)) 1081 return DR->getDecl(); 1082 1083 if (const MemberExpr *ME = dyn_cast<MemberExpr>(Exp)) 1084 return ME->getMemberDecl(); 1085 1086 return 0; 1087 } 1088 1089 /// \brief Warn if the LSet does not contain a lock sufficient to protect access 1090 /// of at least the passed in AccessKind. 1091 void BuildLockset::warnIfMutexNotHeld(const NamedDecl *D, Expr *Exp, 1092 AccessKind AK, Expr *MutexExp, 1093 ProtectedOperationKind POK) { 1094 LockKind LK = getLockKindFromAccessKind(AK); 1095 1096 MutexID Mutex(MutexExp, Exp, D); 1097 if (!Mutex.isValid()) 1098 MutexID::warnInvalidLock(Handler, MutexExp, Exp, D); 1099 else if (!locksetContainsAtLeast(Mutex, LK)) 1100 Handler.handleMutexNotHeld(D, POK, Mutex.getName(), LK, Exp->getExprLoc()); 1101 } 1102 1103 /// \brief This method identifies variable dereferences and checks pt_guarded_by 1104 /// and pt_guarded_var annotations. Note that we only check these annotations 1105 /// at the time a pointer is dereferenced. 1106 /// FIXME: We need to check for other types of pointer dereferences 1107 /// (e.g. [], ->) and deal with them here. 1108 /// \param Exp An expression that has been read or written. 1109 void BuildLockset::checkDereference(Expr *Exp, AccessKind AK) { 1110 UnaryOperator *UO = dyn_cast<UnaryOperator>(Exp); 1111 if (!UO || UO->getOpcode() != clang::UO_Deref) 1112 return; 1113 Exp = UO->getSubExpr()->IgnoreParenCasts(); 1114 1115 const ValueDecl *D = getValueDecl(Exp); 1116 if(!D || !D->hasAttrs()) 1117 return; 1118 1119 if (D->getAttr<PtGuardedVarAttr>() && LSet.isEmpty()) 1120 Handler.handleNoMutexHeld(D, POK_VarDereference, AK, Exp->getExprLoc()); 1121 1122 const AttrVec &ArgAttrs = D->getAttrs(); 1123 for(unsigned i = 0, Size = ArgAttrs.size(); i < Size; ++i) 1124 if (PtGuardedByAttr *PGBAttr = dyn_cast<PtGuardedByAttr>(ArgAttrs[i])) 1125 warnIfMutexNotHeld(D, Exp, AK, PGBAttr->getArg(), POK_VarDereference); 1126 } 1127 1128 /// \brief Checks guarded_by and guarded_var attributes. 1129 /// Whenever we identify an access (read or write) of a DeclRefExpr or 1130 /// MemberExpr, we need to check whether there are any guarded_by or 1131 /// guarded_var attributes, and make sure we hold the appropriate mutexes. 1132 void BuildLockset::checkAccess(Expr *Exp, AccessKind AK) { 1133 const ValueDecl *D = getValueDecl(Exp); 1134 if(!D || !D->hasAttrs()) 1135 return; 1136 1137 if (D->getAttr<GuardedVarAttr>() && LSet.isEmpty()) 1138 Handler.handleNoMutexHeld(D, POK_VarAccess, AK, Exp->getExprLoc()); 1139 1140 const AttrVec &ArgAttrs = D->getAttrs(); 1141 for(unsigned i = 0, Size = ArgAttrs.size(); i < Size; ++i) 1142 if (GuardedByAttr *GBAttr = dyn_cast<GuardedByAttr>(ArgAttrs[i])) 1143 warnIfMutexNotHeld(D, Exp, AK, GBAttr->getArg(), POK_VarAccess); 1144 } 1145 1146 /// \brief Process a function call, method call, constructor call, 1147 /// or destructor call. This involves looking at the attributes on the 1148 /// corresponding function/method/constructor/destructor, issuing warnings, 1149 /// and updating the locksets accordingly. 1150 /// 1151 /// FIXME: For classes annotated with one of the guarded annotations, we need 1152 /// to treat const method calls as reads and non-const method calls as writes, 1153 /// and check that the appropriate locks are held. Non-const method calls with 1154 /// the same signature as const method calls can be also treated as reads. 1155 /// 1156 /// FIXME: We need to also visit CallExprs to catch/check global functions. 1157 /// 1158 /// FIXME: Do not flag an error for member variables accessed in constructors/ 1159 /// destructors 1160 void BuildLockset::handleCall(Expr *Exp, NamedDecl *D, VarDecl *VD) { 1161 AttrVec &ArgAttrs = D->getAttrs(); 1162 for(unsigned i = 0; i < ArgAttrs.size(); ++i) { 1163 Attr *Attr = ArgAttrs[i]; 1164 switch (Attr->getKind()) { 1165 // When we encounter an exclusive lock function, we need to add the lock 1166 // to our lockset with kind exclusive. 1167 case attr::ExclusiveLockFunction: { 1168 ExclusiveLockFunctionAttr *A = cast<ExclusiveLockFunctionAttr>(Attr); 1169 addLocksToSet(LK_Exclusive, A, Exp, D, VD); 1170 break; 1171 } 1172 1173 // When we encounter a shared lock function, we need to add the lock 1174 // to our lockset with kind shared. 1175 case attr::SharedLockFunction: { 1176 SharedLockFunctionAttr *A = cast<SharedLockFunctionAttr>(Attr); 1177 addLocksToSet(LK_Shared, A, Exp, D, VD); 1178 break; 1179 } 1180 1181 // When we encounter an unlock function, we need to remove unlocked 1182 // mutexes from the lockset, and flag a warning if they are not there. 1183 case attr::UnlockFunction: { 1184 UnlockFunctionAttr *UFAttr = cast<UnlockFunctionAttr>(Attr); 1185 removeLocksFromSet(UFAttr, Exp, D); 1186 break; 1187 } 1188 1189 case attr::ExclusiveLocksRequired: { 1190 ExclusiveLocksRequiredAttr *ELRAttr = 1191 cast<ExclusiveLocksRequiredAttr>(Attr); 1192 1193 for (ExclusiveLocksRequiredAttr::args_iterator 1194 I = ELRAttr->args_begin(), E = ELRAttr->args_end(); I != E; ++I) 1195 warnIfMutexNotHeld(D, Exp, AK_Written, *I, POK_FunctionCall); 1196 break; 1197 } 1198 1199 case attr::SharedLocksRequired: { 1200 SharedLocksRequiredAttr *SLRAttr = cast<SharedLocksRequiredAttr>(Attr); 1201 1202 for (SharedLocksRequiredAttr::args_iterator I = SLRAttr->args_begin(), 1203 E = SLRAttr->args_end(); I != E; ++I) 1204 warnIfMutexNotHeld(D, Exp, AK_Read, *I, POK_FunctionCall); 1205 break; 1206 } 1207 1208 case attr::LocksExcluded: { 1209 LocksExcludedAttr *LEAttr = cast<LocksExcludedAttr>(Attr); 1210 for (LocksExcludedAttr::args_iterator I = LEAttr->args_begin(), 1211 E = LEAttr->args_end(); I != E; ++I) { 1212 MutexID Mutex(*I, Exp, D); 1213 if (!Mutex.isValid()) 1214 MutexID::warnInvalidLock(Handler, *I, Exp, D); 1215 else if (locksetContains(Mutex)) 1216 Handler.handleFunExcludesLock(D->getName(), Mutex.getName(), 1217 Exp->getExprLoc()); 1218 } 1219 break; 1220 } 1221 1222 // Ignore other (non thread-safety) attributes 1223 default: 1224 break; 1225 } 1226 } 1227 } 1228 1229 1230 /// \brief Add lock to set, if the current block is in the taken branch of a 1231 /// trylock. 1232 template <class AttrType> 1233 void BuildLockset::addTrylock(LockKind LK, AttrType *Attr, Expr *Exp, 1234 NamedDecl *FunDecl, const CFGBlock *PredBlock, 1235 const CFGBlock *CurrBlock, Expr *BrE, bool Neg) { 1236 // Find out which branch has the lock 1237 bool branch = 0; 1238 if (CXXBoolLiteralExpr *BLE = dyn_cast_or_null<CXXBoolLiteralExpr>(BrE)) { 1239 branch = BLE->getValue(); 1240 } 1241 else if (IntegerLiteral *ILE = dyn_cast_or_null<IntegerLiteral>(BrE)) { 1242 branch = ILE->getValue().getBoolValue(); 1243 } 1244 int branchnum = branch ? 0 : 1; 1245 if (Neg) branchnum = !branchnum; 1246 1247 // If we've taken the trylock branch, then add the lock 1248 int i = 0; 1249 for (CFGBlock::const_succ_iterator SI = PredBlock->succ_begin(), 1250 SE = PredBlock->succ_end(); SI != SE && i < 2; ++SI, ++i) { 1251 if (*SI == CurrBlock && i == branchnum) { 1252 addLocksToSet(LK, Attr, Exp, FunDecl, 0); 1253 } 1254 } 1255 } 1256 1257 1258 // If Cond can be traced back to a function call, return the call expression. 1259 // The negate variable should be called with false, and will be set to true 1260 // if the function call is negated, e.g. if (!mu.tryLock(...)) 1261 CallExpr* BuildLockset::getTrylockCallExpr(Stmt *Cond, 1262 LocalVariableMap::Context C, 1263 bool &Negate) { 1264 if (!Cond) 1265 return 0; 1266 1267 if (CallExpr *CallExp = dyn_cast<CallExpr>(Cond)) { 1268 return CallExp; 1269 } 1270 else if (ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(Cond)) { 1271 return getTrylockCallExpr(CE->getSubExpr(), C, Negate); 1272 } 1273 else if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Cond)) { 1274 Expr *E = LocalVarMap.lookupExpr(DRE->getDecl(), C); 1275 return getTrylockCallExpr(E, C, Negate); 1276 } 1277 else if (UnaryOperator *UOP = dyn_cast<UnaryOperator>(Cond)) { 1278 if (UOP->getOpcode() == UO_LNot) { 1279 Negate = !Negate; 1280 return getTrylockCallExpr(UOP->getSubExpr(), C, Negate); 1281 } 1282 } 1283 // FIXME -- handle && and || as well. 1284 return NULL; 1285 } 1286 1287 1288 /// \brief Process a conditional branch from a previous block to the current 1289 /// block, looking for trylock calls. 1290 void BuildLockset::handleTrylock(Stmt *Cond, const CFGBlock *PredBlock, 1291 const CFGBlock *CurrBlock) { 1292 bool Negate = false; 1293 CallExpr *Exp = getTrylockCallExpr(Cond, LVarCtx, Negate); 1294 if (!Exp) 1295 return; 1296 1297 NamedDecl *FunDecl = dyn_cast_or_null<NamedDecl>(Exp->getCalleeDecl()); 1298 if(!FunDecl || !FunDecl->hasAttrs()) 1299 return; 1300 1301 // If the condition is a call to a Trylock function, then grab the attributes 1302 AttrVec &ArgAttrs = FunDecl->getAttrs(); 1303 for (unsigned i = 0; i < ArgAttrs.size(); ++i) { 1304 Attr *Attr = ArgAttrs[i]; 1305 switch (Attr->getKind()) { 1306 case attr::ExclusiveTrylockFunction: { 1307 ExclusiveTrylockFunctionAttr *A = 1308 cast<ExclusiveTrylockFunctionAttr>(Attr); 1309 addTrylock(LK_Exclusive, A, Exp, FunDecl, PredBlock, CurrBlock, 1310 A->getSuccessValue(), Negate); 1311 break; 1312 } 1313 case attr::SharedTrylockFunction: { 1314 SharedTrylockFunctionAttr *A = 1315 cast<SharedTrylockFunctionAttr>(Attr); 1316 addTrylock(LK_Shared, A, Exp, FunDecl, PredBlock, CurrBlock, 1317 A->getSuccessValue(), Negate); 1318 break; 1319 } 1320 default: 1321 break; 1322 } 1323 } 1324 } 1325 1326 1327 /// \brief For unary operations which read and write a variable, we need to 1328 /// check whether we hold any required mutexes. Reads are checked in 1329 /// VisitCastExpr. 1330 void BuildLockset::VisitUnaryOperator(UnaryOperator *UO) { 1331 switch (UO->getOpcode()) { 1332 case clang::UO_PostDec: 1333 case clang::UO_PostInc: 1334 case clang::UO_PreDec: 1335 case clang::UO_PreInc: { 1336 Expr *SubExp = UO->getSubExpr()->IgnoreParenCasts(); 1337 checkAccess(SubExp, AK_Written); 1338 checkDereference(SubExp, AK_Written); 1339 break; 1340 } 1341 default: 1342 break; 1343 } 1344 } 1345 1346 /// For binary operations which assign to a variable (writes), we need to check 1347 /// whether we hold any required mutexes. 1348 /// FIXME: Deal with non-primitive types. 1349 void BuildLockset::VisitBinaryOperator(BinaryOperator *BO) { 1350 if (!BO->isAssignmentOp()) 1351 return; 1352 1353 // adjust the context 1354 LVarCtx = LocalVarMap.getNextContext(CtxIndex, BO, LVarCtx); 1355 1356 Expr *LHSExp = BO->getLHS()->IgnoreParenCasts(); 1357 checkAccess(LHSExp, AK_Written); 1358 checkDereference(LHSExp, AK_Written); 1359 } 1360 1361 /// Whenever we do an LValue to Rvalue cast, we are reading a variable and 1362 /// need to ensure we hold any required mutexes. 1363 /// FIXME: Deal with non-primitive types. 1364 void BuildLockset::VisitCastExpr(CastExpr *CE) { 1365 if (CE->getCastKind() != CK_LValueToRValue) 1366 return; 1367 Expr *SubExp = CE->getSubExpr()->IgnoreParenCasts(); 1368 checkAccess(SubExp, AK_Read); 1369 checkDereference(SubExp, AK_Read); 1370 } 1371 1372 1373 void BuildLockset::VisitCallExpr(CallExpr *Exp) { 1374 NamedDecl *D = dyn_cast_or_null<NamedDecl>(Exp->getCalleeDecl()); 1375 if(!D || !D->hasAttrs()) 1376 return; 1377 handleCall(Exp, D); 1378 } 1379 1380 void BuildLockset::VisitCXXConstructExpr(CXXConstructExpr *Exp) { 1381 // FIXME -- only handles constructors in DeclStmt below. 1382 } 1383 1384 void BuildLockset::VisitDeclStmt(DeclStmt *S) { 1385 // adjust the context 1386 LVarCtx = LocalVarMap.getNextContext(CtxIndex, S, LVarCtx); 1387 1388 DeclGroupRef DGrp = S->getDeclGroup(); 1389 for (DeclGroupRef::iterator I = DGrp.begin(), E = DGrp.end(); I != E; ++I) { 1390 Decl *D = *I; 1391 if (VarDecl *VD = dyn_cast_or_null<VarDecl>(D)) { 1392 Expr *E = VD->getInit(); 1393 if (CXXConstructExpr *CE = dyn_cast_or_null<CXXConstructExpr>(E)) { 1394 NamedDecl *CtorD = dyn_cast_or_null<NamedDecl>(CE->getConstructor()); 1395 if (!CtorD || !CtorD->hasAttrs()) 1396 return; 1397 handleCall(CE, CtorD, VD); 1398 } 1399 } 1400 } 1401 } 1402 1403 1404 /// \brief Compute the intersection of two locksets and issue warnings for any 1405 /// locks in the symmetric difference. 1406 /// 1407 /// This function is used at a merge point in the CFG when comparing the lockset 1408 /// of each branch being merged. For example, given the following sequence: 1409 /// A; if () then B; else C; D; we need to check that the lockset after B and C 1410 /// are the same. In the event of a difference, we use the intersection of these 1411 /// two locksets at the start of D. 1412 Lockset ThreadSafetyAnalyzer::intersectAndWarn(const CFGBlockInfo &Block1, 1413 CFGBlockSide Side1, 1414 const CFGBlockInfo &Block2, 1415 CFGBlockSide Side2, 1416 LockErrorKind LEK) { 1417 Lockset LSet1 = Block1.getSet(Side1); 1418 Lockset LSet2 = Block2.getSet(Side2); 1419 1420 Lockset Intersection = LSet1; 1421 for (Lockset::iterator I = LSet2.begin(), E = LSet2.end(); I != E; ++I) { 1422 const MutexID &LSet2Mutex = I.getKey(); 1423 const LockData &LSet2LockData = I.getData(); 1424 if (const LockData *LD = LSet1.lookup(LSet2Mutex)) { 1425 if (LD->LKind != LSet2LockData.LKind) { 1426 Handler.handleExclusiveAndShared(LSet2Mutex.getName(), 1427 LSet2LockData.AcquireLoc, 1428 LD->AcquireLoc); 1429 if (LD->LKind != LK_Exclusive) 1430 Intersection = LocksetFactory.add(Intersection, LSet2Mutex, 1431 LSet2LockData); 1432 } 1433 } else { 1434 Handler.handleMutexHeldEndOfScope(LSet2Mutex.getName(), 1435 LSet2LockData.AcquireLoc, 1436 Block1.getLocation(Side1), LEK); 1437 } 1438 } 1439 1440 for (Lockset::iterator I = LSet1.begin(), E = LSet1.end(); I != E; ++I) { 1441 if (!LSet2.contains(I.getKey())) { 1442 const MutexID &Mutex = I.getKey(); 1443 const LockData &MissingLock = I.getData(); 1444 Handler.handleMutexHeldEndOfScope(Mutex.getName(), 1445 MissingLock.AcquireLoc, 1446 Block2.getLocation(Side2), LEK); 1447 Intersection = LocksetFactory.remove(Intersection, Mutex); 1448 } 1449 } 1450 return Intersection; 1451 } 1452 1453 Lockset ThreadSafetyAnalyzer::addLock(Lockset &LSet, Expr *MutexExp, 1454 const NamedDecl *D, 1455 LockKind LK, SourceLocation Loc) { 1456 MutexID Mutex(MutexExp, 0, D); 1457 if (!Mutex.isValid()) { 1458 MutexID::warnInvalidLock(Handler, MutexExp, 0, D); 1459 return LSet; 1460 } 1461 LockData NewLock(Loc, LK); 1462 return LocksetFactory.add(LSet, Mutex, NewLock); 1463 } 1464 1465 /// \brief Check a function's CFG for thread-safety violations. 1466 /// 1467 /// We traverse the blocks in the CFG, compute the set of mutexes that are held 1468 /// at the end of each block, and issue warnings for thread safety violations. 1469 /// Each block in the CFG is traversed exactly once. 1470 void ThreadSafetyAnalyzer::runAnalysis(AnalysisDeclContext &AC) { 1471 CFG *CFGraph = AC.getCFG(); 1472 if (!CFGraph) return; 1473 const NamedDecl *D = dyn_cast_or_null<NamedDecl>(AC.getDecl()); 1474 1475 if (!D) 1476 return; // Ignore anonymous functions for now. 1477 if (D->getAttr<NoThreadSafetyAnalysisAttr>()) 1478 return; 1479 // FIXME: Do something a bit more intelligent inside constructor and 1480 // destructor code. Constructors and destructors must assume unique access 1481 // to 'this', so checks on member variable access is disabled, but we should 1482 // still enable checks on other objects. 1483 if (isa<CXXConstructorDecl>(D)) 1484 return; // Don't check inside constructors. 1485 if (isa<CXXDestructorDecl>(D)) 1486 return; // Don't check inside destructors. 1487 1488 std::vector<CFGBlockInfo> BlockInfo(CFGraph->getNumBlockIDs(), 1489 CFGBlockInfo::getEmptyBlockInfo(LocksetFactory, LocalVarMap)); 1490 1491 // We need to explore the CFG via a "topological" ordering. 1492 // That way, we will be guaranteed to have information about required 1493 // predecessor locksets when exploring a new block. 1494 PostOrderCFGView *SortedGraph = AC.getAnalysis<PostOrderCFGView>(); 1495 PostOrderCFGView::CFGBlockSet VisitedBlocks(CFGraph); 1496 1497 // Compute SSA names for local variables 1498 LocalVarMap.traverseCFG(CFGraph, SortedGraph, BlockInfo); 1499 1500 // Fill in source locations for all CFGBlocks. 1501 findBlockLocations(CFGraph, SortedGraph, BlockInfo); 1502 1503 // Add locks from exclusive_locks_required and shared_locks_required 1504 // to initial lockset. Also turn off checking for lock and unlock functions. 1505 // FIXME: is there a more intelligent way to check lock/unlock functions? 1506 if (!SortedGraph->empty() && D->hasAttrs()) { 1507 const CFGBlock *FirstBlock = *SortedGraph->begin(); 1508 Lockset &InitialLockset = BlockInfo[FirstBlock->getBlockID()].EntrySet; 1509 const AttrVec &ArgAttrs = D->getAttrs(); 1510 for (unsigned i = 0; i < ArgAttrs.size(); ++i) { 1511 Attr *Attr = ArgAttrs[i]; 1512 SourceLocation AttrLoc = Attr->getLocation(); 1513 if (SharedLocksRequiredAttr *SLRAttr 1514 = dyn_cast<SharedLocksRequiredAttr>(Attr)) { 1515 for (SharedLocksRequiredAttr::args_iterator 1516 SLRIter = SLRAttr->args_begin(), 1517 SLREnd = SLRAttr->args_end(); SLRIter != SLREnd; ++SLRIter) 1518 InitialLockset = addLock(InitialLockset, 1519 *SLRIter, D, LK_Shared, 1520 AttrLoc); 1521 } else if (ExclusiveLocksRequiredAttr *ELRAttr 1522 = dyn_cast<ExclusiveLocksRequiredAttr>(Attr)) { 1523 for (ExclusiveLocksRequiredAttr::args_iterator 1524 ELRIter = ELRAttr->args_begin(), 1525 ELREnd = ELRAttr->args_end(); ELRIter != ELREnd; ++ELRIter) 1526 InitialLockset = addLock(InitialLockset, 1527 *ELRIter, D, LK_Exclusive, 1528 AttrLoc); 1529 } else if (isa<UnlockFunctionAttr>(Attr)) { 1530 // Don't try to check unlock functions for now 1531 return; 1532 } else if (isa<ExclusiveLockFunctionAttr>(Attr)) { 1533 // Don't try to check lock functions for now 1534 return; 1535 } else if (isa<SharedLockFunctionAttr>(Attr)) { 1536 // Don't try to check lock functions for now 1537 return; 1538 } 1539 } 1540 } 1541 1542 for (PostOrderCFGView::iterator I = SortedGraph->begin(), 1543 E = SortedGraph->end(); I!= E; ++I) { 1544 const CFGBlock *CurrBlock = *I; 1545 int CurrBlockID = CurrBlock->getBlockID(); 1546 CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlockID]; 1547 1548 // Use the default initial lockset in case there are no predecessors. 1549 VisitedBlocks.insert(CurrBlock); 1550 1551 // Iterate through the predecessor blocks and warn if the lockset for all 1552 // predecessors is not the same. We take the entry lockset of the current 1553 // block to be the intersection of all previous locksets. 1554 // FIXME: By keeping the intersection, we may output more errors in future 1555 // for a lock which is not in the intersection, but was in the union. We 1556 // may want to also keep the union in future. As an example, let's say 1557 // the intersection contains Mutex L, and the union contains L and M. 1558 // Later we unlock M. At this point, we would output an error because we 1559 // never locked M; although the real error is probably that we forgot to 1560 // lock M on all code paths. Conversely, let's say that later we lock M. 1561 // In this case, we should compare against the intersection instead of the 1562 // union because the real error is probably that we forgot to unlock M on 1563 // all code paths. 1564 bool LocksetInitialized = false; 1565 llvm::SmallVector<CFGBlock*, 8> SpecialBlocks; 1566 for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(), 1567 PE = CurrBlock->pred_end(); PI != PE; ++PI) { 1568 1569 // if *PI -> CurrBlock is a back edge 1570 if (*PI == 0 || !VisitedBlocks.alreadySet(*PI)) 1571 continue; 1572 1573 // Ignore edges from blocks that can't return. 1574 if ((*PI)->hasNoReturnElement()) 1575 continue; 1576 1577 // If the previous block ended in a 'continue' or 'break' statement, then 1578 // a difference in locksets is probably due to a bug in that block, rather 1579 // than in some other predecessor. In that case, keep the other 1580 // predecessor's lockset. 1581 if (const Stmt *Terminator = (*PI)->getTerminator()) { 1582 if (isa<ContinueStmt>(Terminator) || isa<BreakStmt>(Terminator)) { 1583 SpecialBlocks.push_back(*PI); 1584 continue; 1585 } 1586 } 1587 1588 int PrevBlockID = (*PI)->getBlockID(); 1589 CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID]; 1590 1591 if (!LocksetInitialized) { 1592 CurrBlockInfo->EntrySet = PrevBlockInfo->ExitSet; 1593 LocksetInitialized = true; 1594 } else { 1595 CurrBlockInfo->EntrySet = 1596 intersectAndWarn(*CurrBlockInfo, CBS_Entry, 1597 *PrevBlockInfo, CBS_Exit, 1598 LEK_LockedSomePredecessors); 1599 } 1600 } 1601 1602 // Process continue and break blocks. Assume that the lockset for the 1603 // resulting block is unaffected by any discrepancies in them. 1604 for (unsigned SpecialI = 0, SpecialN = SpecialBlocks.size(); 1605 SpecialI < SpecialN; ++SpecialI) { 1606 CFGBlock *PrevBlock = SpecialBlocks[SpecialI]; 1607 int PrevBlockID = PrevBlock->getBlockID(); 1608 CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID]; 1609 1610 if (!LocksetInitialized) { 1611 CurrBlockInfo->EntrySet = PrevBlockInfo->ExitSet; 1612 LocksetInitialized = true; 1613 } else { 1614 // Determine whether this edge is a loop terminator for diagnostic 1615 // purposes. FIXME: A 'break' statement might be a loop terminator, but 1616 // it might also be part of a switch. Also, a subsequent destructor 1617 // might add to the lockset, in which case the real issue might be a 1618 // double lock on the other path. 1619 const Stmt *Terminator = PrevBlock->getTerminator(); 1620 bool IsLoop = Terminator && isa<ContinueStmt>(Terminator); 1621 1622 // Do not update EntrySet. 1623 intersectAndWarn(*CurrBlockInfo, CBS_Entry, *PrevBlockInfo, CBS_Exit, 1624 IsLoop ? LEK_LockedSomeLoopIterations 1625 : LEK_LockedSomePredecessors); 1626 } 1627 } 1628 1629 BuildLockset LocksetBuilder(this, *CurrBlockInfo); 1630 CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(), 1631 PE = CurrBlock->pred_end(); 1632 if (PI != PE) { 1633 // If the predecessor ended in a branch, then process any trylocks. 1634 // FIXME -- check to make sure there's only one predecessor. 1635 if (Stmt *TCE = (*PI)->getTerminatorCondition()) { 1636 LocksetBuilder.handleTrylock(TCE, *PI, CurrBlock); 1637 } 1638 } 1639 1640 // Visit all the statements in the basic block. 1641 for (CFGBlock::const_iterator BI = CurrBlock->begin(), 1642 BE = CurrBlock->end(); BI != BE; ++BI) { 1643 switch (BI->getKind()) { 1644 case CFGElement::Statement: { 1645 const CFGStmt *CS = cast<CFGStmt>(&*BI); 1646 LocksetBuilder.Visit(const_cast<Stmt*>(CS->getStmt())); 1647 break; 1648 } 1649 // Ignore BaseDtor, MemberDtor, and TemporaryDtor for now. 1650 case CFGElement::AutomaticObjectDtor: { 1651 const CFGAutomaticObjDtor *AD = cast<CFGAutomaticObjDtor>(&*BI); 1652 CXXDestructorDecl *DD = const_cast<CXXDestructorDecl*>( 1653 AD->getDestructorDecl(AC.getASTContext())); 1654 if (!DD->hasAttrs()) 1655 break; 1656 1657 // Create a dummy expression, 1658 VarDecl *VD = const_cast<VarDecl*>(AD->getVarDecl()); 1659 DeclRefExpr DRE(VD, false, VD->getType(), VK_LValue, 1660 AD->getTriggerStmt()->getLocEnd()); 1661 LocksetBuilder.handleCall(&DRE, DD); 1662 break; 1663 } 1664 default: 1665 break; 1666 } 1667 } 1668 CurrBlockInfo->ExitSet = LocksetBuilder.LSet; 1669 1670 // For every back edge from CurrBlock (the end of the loop) to another block 1671 // (FirstLoopBlock) we need to check that the Lockset of Block is equal to 1672 // the one held at the beginning of FirstLoopBlock. We can look up the 1673 // Lockset held at the beginning of FirstLoopBlock in the EntryLockSets map. 1674 for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(), 1675 SE = CurrBlock->succ_end(); SI != SE; ++SI) { 1676 1677 // if CurrBlock -> *SI is *not* a back edge 1678 if (*SI == 0 || !VisitedBlocks.alreadySet(*SI)) 1679 continue; 1680 1681 CFGBlock *FirstLoopBlock = *SI; 1682 CFGBlockInfo &PreLoop = BlockInfo[FirstLoopBlock->getBlockID()]; 1683 CFGBlockInfo &LoopEnd = BlockInfo[CurrBlockID]; 1684 intersectAndWarn(LoopEnd, CBS_Exit, PreLoop, CBS_Entry, 1685 LEK_LockedSomeLoopIterations); 1686 } 1687 } 1688 1689 CFGBlockInfo &Initial = BlockInfo[CFGraph->getEntry().getBlockID()]; 1690 CFGBlockInfo &Final = BlockInfo[CFGraph->getExit().getBlockID()]; 1691 1692 // FIXME: Should we call this function for all blocks which exit the function? 1693 intersectAndWarn(Initial, CBS_Entry, Final, CBS_Exit, 1694 LEK_LockedAtEndOfFunction); 1695 } 1696 1697 } // end anonymous namespace 1698 1699 1700 namespace clang { 1701 namespace thread_safety { 1702 1703 /// \brief Check a function's CFG for thread-safety violations. 1704 /// 1705 /// We traverse the blocks in the CFG, compute the set of mutexes that are held 1706 /// at the end of each block, and issue warnings for thread safety violations. 1707 /// Each block in the CFG is traversed exactly once. 1708 void runThreadSafetyAnalysis(AnalysisDeclContext &AC, 1709 ThreadSafetyHandler &Handler) { 1710 ThreadSafetyAnalyzer Analyzer(Handler); 1711 Analyzer.runAnalysis(AC); 1712 } 1713 1714 /// \brief Helper function that returns a LockKind required for the given level 1715 /// of access. 1716 LockKind getLockKindFromAccessKind(AccessKind AK) { 1717 switch (AK) { 1718 case AK_Read : 1719 return LK_Shared; 1720 case AK_Written : 1721 return LK_Exclusive; 1722 } 1723 llvm_unreachable("Unknown AccessKind"); 1724 } 1725 1726 }} // end namespace clang::thread_safety 1727