Home | History | Annotate | Download | only in InstCombine
      1 //===- InstCombineAndOrXor.cpp --------------------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the visitAnd, visitOr, and visitXor functions.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "InstCombine.h"
     15 #include "llvm/Intrinsics.h"
     16 #include "llvm/Analysis/InstructionSimplify.h"
     17 #include "llvm/Transforms/Utils/CmpInstAnalysis.h"
     18 #include "llvm/Support/ConstantRange.h"
     19 #include "llvm/Support/PatternMatch.h"
     20 using namespace llvm;
     21 using namespace PatternMatch;
     22 
     23 
     24 /// AddOne - Add one to a ConstantInt.
     25 static Constant *AddOne(Constant *C) {
     26   return ConstantExpr::getAdd(C, ConstantInt::get(C->getType(), 1));
     27 }
     28 /// SubOne - Subtract one from a ConstantInt.
     29 static Constant *SubOne(ConstantInt *C) {
     30   return ConstantInt::get(C->getContext(), C->getValue()-1);
     31 }
     32 
     33 /// isFreeToInvert - Return true if the specified value is free to invert (apply
     34 /// ~ to).  This happens in cases where the ~ can be eliminated.
     35 static inline bool isFreeToInvert(Value *V) {
     36   // ~(~(X)) -> X.
     37   if (BinaryOperator::isNot(V))
     38     return true;
     39 
     40   // Constants can be considered to be not'ed values.
     41   if (isa<ConstantInt>(V))
     42     return true;
     43 
     44   // Compares can be inverted if they have a single use.
     45   if (CmpInst *CI = dyn_cast<CmpInst>(V))
     46     return CI->hasOneUse();
     47 
     48   return false;
     49 }
     50 
     51 static inline Value *dyn_castNotVal(Value *V) {
     52   // If this is not(not(x)) don't return that this is a not: we want the two
     53   // not's to be folded first.
     54   if (BinaryOperator::isNot(V)) {
     55     Value *Operand = BinaryOperator::getNotArgument(V);
     56     if (!isFreeToInvert(Operand))
     57       return Operand;
     58   }
     59 
     60   // Constants can be considered to be not'ed values...
     61   if (ConstantInt *C = dyn_cast<ConstantInt>(V))
     62     return ConstantInt::get(C->getType(), ~C->getValue());
     63   return 0;
     64 }
     65 
     66 /// getFCmpCode - Similar to getICmpCode but for FCmpInst. This encodes a fcmp
     67 /// predicate into a three bit mask. It also returns whether it is an ordered
     68 /// predicate by reference.
     69 static unsigned getFCmpCode(FCmpInst::Predicate CC, bool &isOrdered) {
     70   isOrdered = false;
     71   switch (CC) {
     72   case FCmpInst::FCMP_ORD: isOrdered = true; return 0;  // 000
     73   case FCmpInst::FCMP_UNO:                   return 0;  // 000
     74   case FCmpInst::FCMP_OGT: isOrdered = true; return 1;  // 001
     75   case FCmpInst::FCMP_UGT:                   return 1;  // 001
     76   case FCmpInst::FCMP_OEQ: isOrdered = true; return 2;  // 010
     77   case FCmpInst::FCMP_UEQ:                   return 2;  // 010
     78   case FCmpInst::FCMP_OGE: isOrdered = true; return 3;  // 011
     79   case FCmpInst::FCMP_UGE:                   return 3;  // 011
     80   case FCmpInst::FCMP_OLT: isOrdered = true; return 4;  // 100
     81   case FCmpInst::FCMP_ULT:                   return 4;  // 100
     82   case FCmpInst::FCMP_ONE: isOrdered = true; return 5;  // 101
     83   case FCmpInst::FCMP_UNE:                   return 5;  // 101
     84   case FCmpInst::FCMP_OLE: isOrdered = true; return 6;  // 110
     85   case FCmpInst::FCMP_ULE:                   return 6;  // 110
     86     // True -> 7
     87   default:
     88     // Not expecting FCMP_FALSE and FCMP_TRUE;
     89     llvm_unreachable("Unexpected FCmp predicate!");
     90   }
     91 }
     92 
     93 /// getNewICmpValue - This is the complement of getICmpCode, which turns an
     94 /// opcode and two operands into either a constant true or false, or a brand
     95 /// new ICmp instruction. The sign is passed in to determine which kind
     96 /// of predicate to use in the new icmp instruction.
     97 static Value *getNewICmpValue(bool Sign, unsigned Code, Value *LHS, Value *RHS,
     98                               InstCombiner::BuilderTy *Builder) {
     99   ICmpInst::Predicate NewPred;
    100   if (Value *NewConstant = getICmpValue(Sign, Code, LHS, RHS, NewPred))
    101     return NewConstant;
    102   return Builder->CreateICmp(NewPred, LHS, RHS);
    103 }
    104 
    105 /// getFCmpValue - This is the complement of getFCmpCode, which turns an
    106 /// opcode and two operands into either a FCmp instruction. isordered is passed
    107 /// in to determine which kind of predicate to use in the new fcmp instruction.
    108 static Value *getFCmpValue(bool isordered, unsigned code,
    109                            Value *LHS, Value *RHS,
    110                            InstCombiner::BuilderTy *Builder) {
    111   CmpInst::Predicate Pred;
    112   switch (code) {
    113   default: llvm_unreachable("Illegal FCmp code!");
    114   case 0: Pred = isordered ? FCmpInst::FCMP_ORD : FCmpInst::FCMP_UNO; break;
    115   case 1: Pred = isordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT; break;
    116   case 2: Pred = isordered ? FCmpInst::FCMP_OEQ : FCmpInst::FCMP_UEQ; break;
    117   case 3: Pred = isordered ? FCmpInst::FCMP_OGE : FCmpInst::FCMP_UGE; break;
    118   case 4: Pred = isordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT; break;
    119   case 5: Pred = isordered ? FCmpInst::FCMP_ONE : FCmpInst::FCMP_UNE; break;
    120   case 6: Pred = isordered ? FCmpInst::FCMP_OLE : FCmpInst::FCMP_ULE; break;
    121   case 7:
    122     if (!isordered) return ConstantInt::getTrue(LHS->getContext());
    123     Pred = FCmpInst::FCMP_ORD; break;
    124   }
    125   return Builder->CreateFCmp(Pred, LHS, RHS);
    126 }
    127 
    128 // OptAndOp - This handles expressions of the form ((val OP C1) & C2).  Where
    129 // the Op parameter is 'OP', OpRHS is 'C1', and AndRHS is 'C2'.  Op is
    130 // guaranteed to be a binary operator.
    131 Instruction *InstCombiner::OptAndOp(Instruction *Op,
    132                                     ConstantInt *OpRHS,
    133                                     ConstantInt *AndRHS,
    134                                     BinaryOperator &TheAnd) {
    135   Value *X = Op->getOperand(0);
    136   Constant *Together = 0;
    137   if (!Op->isShift())
    138     Together = ConstantExpr::getAnd(AndRHS, OpRHS);
    139 
    140   switch (Op->getOpcode()) {
    141   case Instruction::Xor:
    142     if (Op->hasOneUse()) {
    143       // (X ^ C1) & C2 --> (X & C2) ^ (C1&C2)
    144       Value *And = Builder->CreateAnd(X, AndRHS);
    145       And->takeName(Op);
    146       return BinaryOperator::CreateXor(And, Together);
    147     }
    148     break;
    149   case Instruction::Or:
    150     if (Op->hasOneUse()){
    151       if (Together != OpRHS) {
    152         // (X | C1) & C2 --> (X | (C1&C2)) & C2
    153         Value *Or = Builder->CreateOr(X, Together);
    154         Or->takeName(Op);
    155         return BinaryOperator::CreateAnd(Or, AndRHS);
    156       }
    157 
    158       ConstantInt *TogetherCI = dyn_cast<ConstantInt>(Together);
    159       if (TogetherCI && !TogetherCI->isZero()){
    160         // (X | C1) & C2 --> (X & (C2^(C1&C2))) | C1
    161         // NOTE: This reduces the number of bits set in the & mask, which
    162         // can expose opportunities for store narrowing.
    163         Together = ConstantExpr::getXor(AndRHS, Together);
    164         Value *And = Builder->CreateAnd(X, Together);
    165         And->takeName(Op);
    166         return BinaryOperator::CreateOr(And, OpRHS);
    167       }
    168     }
    169 
    170     break;
    171   case Instruction::Add:
    172     if (Op->hasOneUse()) {
    173       // Adding a one to a single bit bit-field should be turned into an XOR
    174       // of the bit.  First thing to check is to see if this AND is with a
    175       // single bit constant.
    176       const APInt &AndRHSV = cast<ConstantInt>(AndRHS)->getValue();
    177 
    178       // If there is only one bit set.
    179       if (AndRHSV.isPowerOf2()) {
    180         // Ok, at this point, we know that we are masking the result of the
    181         // ADD down to exactly one bit.  If the constant we are adding has
    182         // no bits set below this bit, then we can eliminate the ADD.
    183         const APInt& AddRHS = cast<ConstantInt>(OpRHS)->getValue();
    184 
    185         // Check to see if any bits below the one bit set in AndRHSV are set.
    186         if ((AddRHS & (AndRHSV-1)) == 0) {
    187           // If not, the only thing that can effect the output of the AND is
    188           // the bit specified by AndRHSV.  If that bit is set, the effect of
    189           // the XOR is to toggle the bit.  If it is clear, then the ADD has
    190           // no effect.
    191           if ((AddRHS & AndRHSV) == 0) { // Bit is not set, noop
    192             TheAnd.setOperand(0, X);
    193             return &TheAnd;
    194           } else {
    195             // Pull the XOR out of the AND.
    196             Value *NewAnd = Builder->CreateAnd(X, AndRHS);
    197             NewAnd->takeName(Op);
    198             return BinaryOperator::CreateXor(NewAnd, AndRHS);
    199           }
    200         }
    201       }
    202     }
    203     break;
    204 
    205   case Instruction::Shl: {
    206     // We know that the AND will not produce any of the bits shifted in, so if
    207     // the anded constant includes them, clear them now!
    208     //
    209     uint32_t BitWidth = AndRHS->getType()->getBitWidth();
    210     uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
    211     APInt ShlMask(APInt::getHighBitsSet(BitWidth, BitWidth-OpRHSVal));
    212     ConstantInt *CI = ConstantInt::get(AndRHS->getContext(),
    213                                        AndRHS->getValue() & ShlMask);
    214 
    215     if (CI->getValue() == ShlMask)
    216       // Masking out bits that the shift already masks.
    217       return ReplaceInstUsesWith(TheAnd, Op);   // No need for the and.
    218 
    219     if (CI != AndRHS) {                  // Reducing bits set in and.
    220       TheAnd.setOperand(1, CI);
    221       return &TheAnd;
    222     }
    223     break;
    224   }
    225   case Instruction::LShr: {
    226     // We know that the AND will not produce any of the bits shifted in, so if
    227     // the anded constant includes them, clear them now!  This only applies to
    228     // unsigned shifts, because a signed shr may bring in set bits!
    229     //
    230     uint32_t BitWidth = AndRHS->getType()->getBitWidth();
    231     uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
    232     APInt ShrMask(APInt::getLowBitsSet(BitWidth, BitWidth - OpRHSVal));
    233     ConstantInt *CI = ConstantInt::get(Op->getContext(),
    234                                        AndRHS->getValue() & ShrMask);
    235 
    236     if (CI->getValue() == ShrMask)
    237       // Masking out bits that the shift already masks.
    238       return ReplaceInstUsesWith(TheAnd, Op);
    239 
    240     if (CI != AndRHS) {
    241       TheAnd.setOperand(1, CI);  // Reduce bits set in and cst.
    242       return &TheAnd;
    243     }
    244     break;
    245   }
    246   case Instruction::AShr:
    247     // Signed shr.
    248     // See if this is shifting in some sign extension, then masking it out
    249     // with an and.
    250     if (Op->hasOneUse()) {
    251       uint32_t BitWidth = AndRHS->getType()->getBitWidth();
    252       uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
    253       APInt ShrMask(APInt::getLowBitsSet(BitWidth, BitWidth - OpRHSVal));
    254       Constant *C = ConstantInt::get(Op->getContext(),
    255                                      AndRHS->getValue() & ShrMask);
    256       if (C == AndRHS) {          // Masking out bits shifted in.
    257         // (Val ashr C1) & C2 -> (Val lshr C1) & C2
    258         // Make the argument unsigned.
    259         Value *ShVal = Op->getOperand(0);
    260         ShVal = Builder->CreateLShr(ShVal, OpRHS, Op->getName());
    261         return BinaryOperator::CreateAnd(ShVal, AndRHS, TheAnd.getName());
    262       }
    263     }
    264     break;
    265   }
    266   return 0;
    267 }
    268 
    269 
    270 /// InsertRangeTest - Emit a computation of: (V >= Lo && V < Hi) if Inside is
    271 /// true, otherwise (V < Lo || V >= Hi).  In practice, we emit the more efficient
    272 /// (V-Lo) <u Hi-Lo.  This method expects that Lo <= Hi. isSigned indicates
    273 /// whether to treat the V, Lo and HI as signed or not. IB is the location to
    274 /// insert new instructions.
    275 Value *InstCombiner::InsertRangeTest(Value *V, Constant *Lo, Constant *Hi,
    276                                      bool isSigned, bool Inside) {
    277   assert(cast<ConstantInt>(ConstantExpr::getICmp((isSigned ?
    278             ICmpInst::ICMP_SLE:ICmpInst::ICMP_ULE), Lo, Hi))->getZExtValue() &&
    279          "Lo is not <= Hi in range emission code!");
    280 
    281   if (Inside) {
    282     if (Lo == Hi)  // Trivially false.
    283       return ConstantInt::getFalse(V->getContext());
    284 
    285     // V >= Min && V < Hi --> V < Hi
    286     if (cast<ConstantInt>(Lo)->isMinValue(isSigned)) {
    287       ICmpInst::Predicate pred = (isSigned ?
    288         ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT);
    289       return Builder->CreateICmp(pred, V, Hi);
    290     }
    291 
    292     // Emit V-Lo <u Hi-Lo
    293     Constant *NegLo = ConstantExpr::getNeg(Lo);
    294     Value *Add = Builder->CreateAdd(V, NegLo, V->getName()+".off");
    295     Constant *UpperBound = ConstantExpr::getAdd(NegLo, Hi);
    296     return Builder->CreateICmpULT(Add, UpperBound);
    297   }
    298 
    299   if (Lo == Hi)  // Trivially true.
    300     return ConstantInt::getTrue(V->getContext());
    301 
    302   // V < Min || V >= Hi -> V > Hi-1
    303   Hi = SubOne(cast<ConstantInt>(Hi));
    304   if (cast<ConstantInt>(Lo)->isMinValue(isSigned)) {
    305     ICmpInst::Predicate pred = (isSigned ?
    306         ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT);
    307     return Builder->CreateICmp(pred, V, Hi);
    308   }
    309 
    310   // Emit V-Lo >u Hi-1-Lo
    311   // Note that Hi has already had one subtracted from it, above.
    312   ConstantInt *NegLo = cast<ConstantInt>(ConstantExpr::getNeg(Lo));
    313   Value *Add = Builder->CreateAdd(V, NegLo, V->getName()+".off");
    314   Constant *LowerBound = ConstantExpr::getAdd(NegLo, Hi);
    315   return Builder->CreateICmpUGT(Add, LowerBound);
    316 }
    317 
    318 // isRunOfOnes - Returns true iff Val consists of one contiguous run of 1s with
    319 // any number of 0s on either side.  The 1s are allowed to wrap from LSB to
    320 // MSB, so 0x000FFF0, 0x0000FFFF, and 0xFF0000FF are all runs.  0x0F0F0000 is
    321 // not, since all 1s are not contiguous.
    322 static bool isRunOfOnes(ConstantInt *Val, uint32_t &MB, uint32_t &ME) {
    323   const APInt& V = Val->getValue();
    324   uint32_t BitWidth = Val->getType()->getBitWidth();
    325   if (!APIntOps::isShiftedMask(BitWidth, V)) return false;
    326 
    327   // look for the first zero bit after the run of ones
    328   MB = BitWidth - ((V - 1) ^ V).countLeadingZeros();
    329   // look for the first non-zero bit
    330   ME = V.getActiveBits();
    331   return true;
    332 }
    333 
    334 /// FoldLogicalPlusAnd - This is part of an expression (LHS +/- RHS) & Mask,
    335 /// where isSub determines whether the operator is a sub.  If we can fold one of
    336 /// the following xforms:
    337 ///
    338 /// ((A & N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == Mask
    339 /// ((A | N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0
    340 /// ((A ^ N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0
    341 ///
    342 /// return (A +/- B).
    343 ///
    344 Value *InstCombiner::FoldLogicalPlusAnd(Value *LHS, Value *RHS,
    345                                         ConstantInt *Mask, bool isSub,
    346                                         Instruction &I) {
    347   Instruction *LHSI = dyn_cast<Instruction>(LHS);
    348   if (!LHSI || LHSI->getNumOperands() != 2 ||
    349       !isa<ConstantInt>(LHSI->getOperand(1))) return 0;
    350 
    351   ConstantInt *N = cast<ConstantInt>(LHSI->getOperand(1));
    352 
    353   switch (LHSI->getOpcode()) {
    354   default: return 0;
    355   case Instruction::And:
    356     if (ConstantExpr::getAnd(N, Mask) == Mask) {
    357       // If the AndRHS is a power of two minus one (0+1+), this is simple.
    358       if ((Mask->getValue().countLeadingZeros() +
    359            Mask->getValue().countPopulation()) ==
    360           Mask->getValue().getBitWidth())
    361         break;
    362 
    363       // Otherwise, if Mask is 0+1+0+, and if B is known to have the low 0+
    364       // part, we don't need any explicit masks to take them out of A.  If that
    365       // is all N is, ignore it.
    366       uint32_t MB = 0, ME = 0;
    367       if (isRunOfOnes(Mask, MB, ME)) {  // begin/end bit of run, inclusive
    368         uint32_t BitWidth = cast<IntegerType>(RHS->getType())->getBitWidth();
    369         APInt Mask(APInt::getLowBitsSet(BitWidth, MB-1));
    370         if (MaskedValueIsZero(RHS, Mask))
    371           break;
    372       }
    373     }
    374     return 0;
    375   case Instruction::Or:
    376   case Instruction::Xor:
    377     // If the AndRHS is a power of two minus one (0+1+), and N&Mask == 0
    378     if ((Mask->getValue().countLeadingZeros() +
    379          Mask->getValue().countPopulation()) == Mask->getValue().getBitWidth()
    380         && ConstantExpr::getAnd(N, Mask)->isNullValue())
    381       break;
    382     return 0;
    383   }
    384 
    385   if (isSub)
    386     return Builder->CreateSub(LHSI->getOperand(0), RHS, "fold");
    387   return Builder->CreateAdd(LHSI->getOperand(0), RHS, "fold");
    388 }
    389 
    390 /// enum for classifying (icmp eq (A & B), C) and (icmp ne (A & B), C)
    391 /// One of A and B is considered the mask, the other the value. This is
    392 /// described as the "AMask" or "BMask" part of the enum. If the enum
    393 /// contains only "Mask", then both A and B can be considered masks.
    394 /// If A is the mask, then it was proven, that (A & C) == C. This
    395 /// is trivial if C == A, or C == 0. If both A and C are constants, this
    396 /// proof is also easy.
    397 /// For the following explanations we assume that A is the mask.
    398 /// The part "AllOnes" declares, that the comparison is true only
    399 /// if (A & B) == A, or all bits of A are set in B.
    400 ///   Example: (icmp eq (A & 3), 3) -> FoldMskICmp_AMask_AllOnes
    401 /// The part "AllZeroes" declares, that the comparison is true only
    402 /// if (A & B) == 0, or all bits of A are cleared in B.
    403 ///   Example: (icmp eq (A & 3), 0) -> FoldMskICmp_Mask_AllZeroes
    404 /// The part "Mixed" declares, that (A & B) == C and C might or might not
    405 /// contain any number of one bits and zero bits.
    406 ///   Example: (icmp eq (A & 3), 1) -> FoldMskICmp_AMask_Mixed
    407 /// The Part "Not" means, that in above descriptions "==" should be replaced
    408 /// by "!=".
    409 ///   Example: (icmp ne (A & 3), 3) -> FoldMskICmp_AMask_NotAllOnes
    410 /// If the mask A contains a single bit, then the following is equivalent:
    411 ///    (icmp eq (A & B), A) equals (icmp ne (A & B), 0)
    412 ///    (icmp ne (A & B), A) equals (icmp eq (A & B), 0)
    413 enum MaskedICmpType {
    414   FoldMskICmp_AMask_AllOnes           =     1,
    415   FoldMskICmp_AMask_NotAllOnes        =     2,
    416   FoldMskICmp_BMask_AllOnes           =     4,
    417   FoldMskICmp_BMask_NotAllOnes        =     8,
    418   FoldMskICmp_Mask_AllZeroes          =    16,
    419   FoldMskICmp_Mask_NotAllZeroes       =    32,
    420   FoldMskICmp_AMask_Mixed             =    64,
    421   FoldMskICmp_AMask_NotMixed          =   128,
    422   FoldMskICmp_BMask_Mixed             =   256,
    423   FoldMskICmp_BMask_NotMixed          =   512
    424 };
    425 
    426 /// return the set of pattern classes (from MaskedICmpType)
    427 /// that (icmp SCC (A & B), C) satisfies
    428 static unsigned getTypeOfMaskedICmp(Value* A, Value* B, Value* C,
    429                                     ICmpInst::Predicate SCC)
    430 {
    431   ConstantInt *ACst = dyn_cast<ConstantInt>(A);
    432   ConstantInt *BCst = dyn_cast<ConstantInt>(B);
    433   ConstantInt *CCst = dyn_cast<ConstantInt>(C);
    434   bool icmp_eq = (SCC == ICmpInst::ICMP_EQ);
    435   bool icmp_abit = (ACst != 0 && !ACst->isZero() &&
    436                     ACst->getValue().isPowerOf2());
    437   bool icmp_bbit = (BCst != 0 && !BCst->isZero() &&
    438                     BCst->getValue().isPowerOf2());
    439   unsigned result = 0;
    440   if (CCst != 0 && CCst->isZero()) {
    441     // if C is zero, then both A and B qualify as mask
    442     result |= (icmp_eq ? (FoldMskICmp_Mask_AllZeroes |
    443                           FoldMskICmp_Mask_AllZeroes |
    444                           FoldMskICmp_AMask_Mixed |
    445                           FoldMskICmp_BMask_Mixed)
    446                        : (FoldMskICmp_Mask_NotAllZeroes |
    447                           FoldMskICmp_Mask_NotAllZeroes |
    448                           FoldMskICmp_AMask_NotMixed |
    449                           FoldMskICmp_BMask_NotMixed));
    450     if (icmp_abit)
    451       result |= (icmp_eq ? (FoldMskICmp_AMask_NotAllOnes |
    452                             FoldMskICmp_AMask_NotMixed)
    453                          : (FoldMskICmp_AMask_AllOnes |
    454                             FoldMskICmp_AMask_Mixed));
    455     if (icmp_bbit)
    456       result |= (icmp_eq ? (FoldMskICmp_BMask_NotAllOnes |
    457                             FoldMskICmp_BMask_NotMixed)
    458                          : (FoldMskICmp_BMask_AllOnes |
    459                             FoldMskICmp_BMask_Mixed));
    460     return result;
    461   }
    462   if (A == C) {
    463     result |= (icmp_eq ? (FoldMskICmp_AMask_AllOnes |
    464                           FoldMskICmp_AMask_Mixed)
    465                        : (FoldMskICmp_AMask_NotAllOnes |
    466                           FoldMskICmp_AMask_NotMixed));
    467     if (icmp_abit)
    468       result |= (icmp_eq ? (FoldMskICmp_Mask_NotAllZeroes |
    469                             FoldMskICmp_AMask_NotMixed)
    470                          : (FoldMskICmp_Mask_AllZeroes |
    471                             FoldMskICmp_AMask_Mixed));
    472   }
    473   else if (ACst != 0 && CCst != 0 &&
    474         ConstantExpr::getAnd(ACst, CCst) == CCst) {
    475     result |= (icmp_eq ? FoldMskICmp_AMask_Mixed
    476                        : FoldMskICmp_AMask_NotMixed);
    477   }
    478   if (B == C)
    479   {
    480     result |= (icmp_eq ? (FoldMskICmp_BMask_AllOnes |
    481                           FoldMskICmp_BMask_Mixed)
    482                        : (FoldMskICmp_BMask_NotAllOnes |
    483                           FoldMskICmp_BMask_NotMixed));
    484     if (icmp_bbit)
    485       result |= (icmp_eq ? (FoldMskICmp_Mask_NotAllZeroes |
    486                             FoldMskICmp_BMask_NotMixed)
    487                          : (FoldMskICmp_Mask_AllZeroes |
    488                             FoldMskICmp_BMask_Mixed));
    489   }
    490   else if (BCst != 0 && CCst != 0 &&
    491         ConstantExpr::getAnd(BCst, CCst) == CCst) {
    492     result |= (icmp_eq ? FoldMskICmp_BMask_Mixed
    493                        : FoldMskICmp_BMask_NotMixed);
    494   }
    495   return result;
    496 }
    497 
    498 /// decomposeBitTestICmp - Decompose an icmp into the form ((X & Y) pred Z)
    499 /// if possible. The returned predicate is either == or !=. Returns false if
    500 /// decomposition fails.
    501 static bool decomposeBitTestICmp(const ICmpInst *I, ICmpInst::Predicate &Pred,
    502                                  Value *&X, Value *&Y, Value *&Z) {
    503   // X < 0 is equivalent to (X & SignBit) != 0.
    504   if (I->getPredicate() == ICmpInst::ICMP_SLT)
    505     if (ConstantInt *C = dyn_cast<ConstantInt>(I->getOperand(1)))
    506       if (C->isZero()) {
    507         X = I->getOperand(0);
    508         Y = ConstantInt::get(I->getContext(),
    509                              APInt::getSignBit(C->getBitWidth()));
    510         Pred = ICmpInst::ICMP_NE;
    511         Z = C;
    512         return true;
    513       }
    514 
    515   // X > -1 is equivalent to (X & SignBit) == 0.
    516   if (I->getPredicate() == ICmpInst::ICMP_SGT)
    517     if (ConstantInt *C = dyn_cast<ConstantInt>(I->getOperand(1)))
    518       if (C->isAllOnesValue()) {
    519         X = I->getOperand(0);
    520         Y = ConstantInt::get(I->getContext(),
    521                              APInt::getSignBit(C->getBitWidth()));
    522         Pred = ICmpInst::ICMP_EQ;
    523         Z = ConstantInt::getNullValue(C->getType());
    524         return true;
    525       }
    526 
    527   return false;
    528 }
    529 
    530 /// foldLogOpOfMaskedICmpsHelper:
    531 /// handle (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E)
    532 /// return the set of pattern classes (from MaskedICmpType)
    533 /// that both LHS and RHS satisfy
    534 static unsigned foldLogOpOfMaskedICmpsHelper(Value*& A,
    535                                              Value*& B, Value*& C,
    536                                              Value*& D, Value*& E,
    537                                              ICmpInst *LHS, ICmpInst *RHS,
    538                                              ICmpInst::Predicate &LHSCC,
    539                                              ICmpInst::Predicate &RHSCC) {
    540   if (LHS->getOperand(0)->getType() != RHS->getOperand(0)->getType()) return 0;
    541   // vectors are not (yet?) supported
    542   if (LHS->getOperand(0)->getType()->isVectorTy()) return 0;
    543 
    544   // Here comes the tricky part:
    545   // LHS might be of the form L11 & L12 == X, X == L21 & L22,
    546   // and L11 & L12 == L21 & L22. The same goes for RHS.
    547   // Now we must find those components L** and R**, that are equal, so
    548   // that we can extract the parameters A, B, C, D, and E for the canonical
    549   // above.
    550   Value *L1 = LHS->getOperand(0);
    551   Value *L2 = LHS->getOperand(1);
    552   Value *L11,*L12,*L21,*L22;
    553   // Check whether the icmp can be decomposed into a bit test.
    554   if (decomposeBitTestICmp(LHS, LHSCC, L11, L12, L2)) {
    555     L21 = L22 = L1 = 0;
    556   } else {
    557     // Look for ANDs in the LHS icmp.
    558     if (match(L1, m_And(m_Value(L11), m_Value(L12)))) {
    559       if (!match(L2, m_And(m_Value(L21), m_Value(L22))))
    560         L21 = L22 = 0;
    561     } else {
    562       if (!match(L2, m_And(m_Value(L11), m_Value(L12))))
    563         return 0;
    564       std::swap(L1, L2);
    565       L21 = L22 = 0;
    566     }
    567   }
    568 
    569   // Bail if LHS was a icmp that can't be decomposed into an equality.
    570   if (!ICmpInst::isEquality(LHSCC))
    571     return 0;
    572 
    573   Value *R1 = RHS->getOperand(0);
    574   Value *R2 = RHS->getOperand(1);
    575   Value *R11,*R12;
    576   bool ok = false;
    577   if (decomposeBitTestICmp(RHS, RHSCC, R11, R12, R2)) {
    578     if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) {
    579       A = R11; D = R12;
    580     } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) {
    581       A = R12; D = R11;
    582     } else {
    583       return 0;
    584     }
    585     E = R2; R1 = 0; ok = true;
    586   } else if (match(R1, m_And(m_Value(R11), m_Value(R12)))) {
    587     if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) {
    588       A = R11; D = R12; E = R2; ok = true;
    589     } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) {
    590       A = R12; D = R11; E = R2; ok = true;
    591     }
    592   }
    593 
    594   // Bail if RHS was a icmp that can't be decomposed into an equality.
    595   if (!ICmpInst::isEquality(RHSCC))
    596     return 0;
    597 
    598   // Look for ANDs in on the right side of the RHS icmp.
    599   if (!ok && match(R2, m_And(m_Value(R11), m_Value(R12)))) {
    600     if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) {
    601       A = R11; D = R12; E = R1; ok = true;
    602     } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) {
    603       A = R12; D = R11; E = R1; ok = true;
    604     } else {
    605       return 0;
    606     }
    607   }
    608   if (!ok)
    609     return 0;
    610 
    611   if (L11 == A) {
    612     B = L12; C = L2;
    613   }
    614   else if (L12 == A) {
    615     B = L11; C = L2;
    616   }
    617   else if (L21 == A) {
    618     B = L22; C = L1;
    619   }
    620   else if (L22 == A) {
    621     B = L21; C = L1;
    622   }
    623 
    624   unsigned left_type = getTypeOfMaskedICmp(A, B, C, LHSCC);
    625   unsigned right_type = getTypeOfMaskedICmp(A, D, E, RHSCC);
    626   return left_type & right_type;
    627 }
    628 /// foldLogOpOfMaskedICmps:
    629 /// try to fold (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E)
    630 /// into a single (icmp(A & X) ==/!= Y)
    631 static Value* foldLogOpOfMaskedICmps(ICmpInst *LHS, ICmpInst *RHS,
    632                                      ICmpInst::Predicate NEWCC,
    633                                      llvm::InstCombiner::BuilderTy* Builder) {
    634   Value *A = 0, *B = 0, *C = 0, *D = 0, *E = 0;
    635   ICmpInst::Predicate LHSCC = LHS->getPredicate(), RHSCC = RHS->getPredicate();
    636   unsigned mask = foldLogOpOfMaskedICmpsHelper(A, B, C, D, E, LHS, RHS,
    637                                                LHSCC, RHSCC);
    638   if (mask == 0) return 0;
    639   assert(ICmpInst::isEquality(LHSCC) && ICmpInst::isEquality(RHSCC) &&
    640          "foldLogOpOfMaskedICmpsHelper must return an equality predicate.");
    641 
    642   if (NEWCC == ICmpInst::ICMP_NE)
    643     mask >>= 1; // treat "Not"-states as normal states
    644 
    645   if (mask & FoldMskICmp_Mask_AllZeroes) {
    646     // (icmp eq (A & B), 0) & (icmp eq (A & D), 0)
    647     // -> (icmp eq (A & (B|D)), 0)
    648     Value* newOr = Builder->CreateOr(B, D);
    649     Value* newAnd = Builder->CreateAnd(A, newOr);
    650     // we can't use C as zero, because we might actually handle
    651     //   (icmp ne (A & B), B) & (icmp ne (A & D), D)
    652     // with B and D, having a single bit set
    653     Value* zero = Constant::getNullValue(A->getType());
    654     return Builder->CreateICmp(NEWCC, newAnd, zero);
    655   }
    656   else if (mask & FoldMskICmp_BMask_AllOnes) {
    657     // (icmp eq (A & B), B) & (icmp eq (A & D), D)
    658     // -> (icmp eq (A & (B|D)), (B|D))
    659     Value* newOr = Builder->CreateOr(B, D);
    660     Value* newAnd = Builder->CreateAnd(A, newOr);
    661     return Builder->CreateICmp(NEWCC, newAnd, newOr);
    662   }
    663   else if (mask & FoldMskICmp_AMask_AllOnes) {
    664     // (icmp eq (A & B), A) & (icmp eq (A & D), A)
    665     // -> (icmp eq (A & (B&D)), A)
    666     Value* newAnd1 = Builder->CreateAnd(B, D);
    667     Value* newAnd = Builder->CreateAnd(A, newAnd1);
    668     return Builder->CreateICmp(NEWCC, newAnd, A);
    669   }
    670   else if (mask & FoldMskICmp_BMask_Mixed) {
    671     // (icmp eq (A & B), C) & (icmp eq (A & D), E)
    672     // We already know that B & C == C && D & E == E.
    673     // If we can prove that (B & D) & (C ^ E) == 0, that is, the bits of
    674     // C and E, which are shared by both the mask B and the mask D, don't
    675     // contradict, then we can transform to
    676     // -> (icmp eq (A & (B|D)), (C|E))
    677     // Currently, we only handle the case of B, C, D, and E being constant.
    678     ConstantInt *BCst = dyn_cast<ConstantInt>(B);
    679     if (BCst == 0) return 0;
    680     ConstantInt *DCst = dyn_cast<ConstantInt>(D);
    681     if (DCst == 0) return 0;
    682     // we can't simply use C and E, because we might actually handle
    683     //   (icmp ne (A & B), B) & (icmp eq (A & D), D)
    684     // with B and D, having a single bit set
    685 
    686     ConstantInt *CCst = dyn_cast<ConstantInt>(C);
    687     if (CCst == 0) return 0;
    688     if (LHSCC != NEWCC)
    689       CCst = dyn_cast<ConstantInt>( ConstantExpr::getXor(BCst, CCst) );
    690     ConstantInt *ECst = dyn_cast<ConstantInt>(E);
    691     if (ECst == 0) return 0;
    692     if (RHSCC != NEWCC)
    693       ECst = dyn_cast<ConstantInt>( ConstantExpr::getXor(DCst, ECst) );
    694     ConstantInt* MCst = dyn_cast<ConstantInt>(
    695       ConstantExpr::getAnd(ConstantExpr::getAnd(BCst, DCst),
    696                            ConstantExpr::getXor(CCst, ECst)) );
    697     // if there is a conflict we should actually return a false for the
    698     // whole construct
    699     if (!MCst->isZero())
    700       return 0;
    701     Value *newOr1 = Builder->CreateOr(B, D);
    702     Value *newOr2 = ConstantExpr::getOr(CCst, ECst);
    703     Value *newAnd = Builder->CreateAnd(A, newOr1);
    704     return Builder->CreateICmp(NEWCC, newAnd, newOr2);
    705   }
    706   return 0;
    707 }
    708 
    709 /// FoldAndOfICmps - Fold (icmp)&(icmp) if possible.
    710 Value *InstCombiner::FoldAndOfICmps(ICmpInst *LHS, ICmpInst *RHS) {
    711   ICmpInst::Predicate LHSCC = LHS->getPredicate(), RHSCC = RHS->getPredicate();
    712 
    713   // (icmp1 A, B) & (icmp2 A, B) --> (icmp3 A, B)
    714   if (PredicatesFoldable(LHSCC, RHSCC)) {
    715     if (LHS->getOperand(0) == RHS->getOperand(1) &&
    716         LHS->getOperand(1) == RHS->getOperand(0))
    717       LHS->swapOperands();
    718     if (LHS->getOperand(0) == RHS->getOperand(0) &&
    719         LHS->getOperand(1) == RHS->getOperand(1)) {
    720       Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1);
    721       unsigned Code = getICmpCode(LHS) & getICmpCode(RHS);
    722       bool isSigned = LHS->isSigned() || RHS->isSigned();
    723       return getNewICmpValue(isSigned, Code, Op0, Op1, Builder);
    724     }
    725   }
    726 
    727   // handle (roughly):  (icmp eq (A & B), C) & (icmp eq (A & D), E)
    728   if (Value *V = foldLogOpOfMaskedICmps(LHS, RHS, ICmpInst::ICMP_EQ, Builder))
    729     return V;
    730 
    731   // This only handles icmp of constants: (icmp1 A, C1) & (icmp2 B, C2).
    732   Value *Val = LHS->getOperand(0), *Val2 = RHS->getOperand(0);
    733   ConstantInt *LHSCst = dyn_cast<ConstantInt>(LHS->getOperand(1));
    734   ConstantInt *RHSCst = dyn_cast<ConstantInt>(RHS->getOperand(1));
    735   if (LHSCst == 0 || RHSCst == 0) return 0;
    736 
    737   if (LHSCst == RHSCst && LHSCC == RHSCC) {
    738     // (icmp ult A, C) & (icmp ult B, C) --> (icmp ult (A|B), C)
    739     // where C is a power of 2
    740     if (LHSCC == ICmpInst::ICMP_ULT &&
    741         LHSCst->getValue().isPowerOf2()) {
    742       Value *NewOr = Builder->CreateOr(Val, Val2);
    743       return Builder->CreateICmp(LHSCC, NewOr, LHSCst);
    744     }
    745 
    746     // (icmp eq A, 0) & (icmp eq B, 0) --> (icmp eq (A|B), 0)
    747     if (LHSCC == ICmpInst::ICMP_EQ && LHSCst->isZero()) {
    748       Value *NewOr = Builder->CreateOr(Val, Val2);
    749       return Builder->CreateICmp(LHSCC, NewOr, LHSCst);
    750     }
    751   }
    752 
    753   // (trunc x) == C1 & (and x, CA) == C2 -> (and x, CA|CMAX) == C1|C2
    754   // where CMAX is the all ones value for the truncated type,
    755   // iff the lower bits of C2 and CA are zero.
    756   if (LHSCC == ICmpInst::ICMP_EQ && LHSCC == RHSCC &&
    757       LHS->hasOneUse() && RHS->hasOneUse()) {
    758     Value *V;
    759     ConstantInt *AndCst, *SmallCst = 0, *BigCst = 0;
    760 
    761     // (trunc x) == C1 & (and x, CA) == C2
    762     if (match(Val2, m_Trunc(m_Value(V))) &&
    763         match(Val, m_And(m_Specific(V), m_ConstantInt(AndCst)))) {
    764       SmallCst = RHSCst;
    765       BigCst = LHSCst;
    766     }
    767     // (and x, CA) == C2 & (trunc x) == C1
    768     else if (match(Val, m_Trunc(m_Value(V))) &&
    769              match(Val2, m_And(m_Specific(V), m_ConstantInt(AndCst)))) {
    770       SmallCst = LHSCst;
    771       BigCst = RHSCst;
    772     }
    773 
    774     if (SmallCst && BigCst) {
    775       unsigned BigBitSize = BigCst->getType()->getBitWidth();
    776       unsigned SmallBitSize = SmallCst->getType()->getBitWidth();
    777 
    778       // Check that the low bits are zero.
    779       APInt Low = APInt::getLowBitsSet(BigBitSize, SmallBitSize);
    780       if ((Low & AndCst->getValue()) == 0 && (Low & BigCst->getValue()) == 0) {
    781         Value *NewAnd = Builder->CreateAnd(V, Low | AndCst->getValue());
    782         APInt N = SmallCst->getValue().zext(BigBitSize) | BigCst->getValue();
    783         Value *NewVal = ConstantInt::get(AndCst->getType()->getContext(), N);
    784         return Builder->CreateICmp(LHSCC, NewAnd, NewVal);
    785       }
    786     }
    787   }
    788 
    789   // From here on, we only handle:
    790   //    (icmp1 A, C1) & (icmp2 A, C2) --> something simpler.
    791   if (Val != Val2) return 0;
    792 
    793   // ICMP_[US][GL]E X, CST is folded to ICMP_[US][GL]T elsewhere.
    794   if (LHSCC == ICmpInst::ICMP_UGE || LHSCC == ICmpInst::ICMP_ULE ||
    795       RHSCC == ICmpInst::ICMP_UGE || RHSCC == ICmpInst::ICMP_ULE ||
    796       LHSCC == ICmpInst::ICMP_SGE || LHSCC == ICmpInst::ICMP_SLE ||
    797       RHSCC == ICmpInst::ICMP_SGE || RHSCC == ICmpInst::ICMP_SLE)
    798     return 0;
    799 
    800   // Make a constant range that's the intersection of the two icmp ranges.
    801   // If the intersection is empty, we know that the result is false.
    802   ConstantRange LHSRange =
    803     ConstantRange::makeICmpRegion(LHSCC, LHSCst->getValue());
    804   ConstantRange RHSRange =
    805     ConstantRange::makeICmpRegion(RHSCC, RHSCst->getValue());
    806 
    807   if (LHSRange.intersectWith(RHSRange).isEmptySet())
    808     return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0);
    809 
    810   // We can't fold (ugt x, C) & (sgt x, C2).
    811   if (!PredicatesFoldable(LHSCC, RHSCC))
    812     return 0;
    813 
    814   // Ensure that the larger constant is on the RHS.
    815   bool ShouldSwap;
    816   if (CmpInst::isSigned(LHSCC) ||
    817       (ICmpInst::isEquality(LHSCC) &&
    818        CmpInst::isSigned(RHSCC)))
    819     ShouldSwap = LHSCst->getValue().sgt(RHSCst->getValue());
    820   else
    821     ShouldSwap = LHSCst->getValue().ugt(RHSCst->getValue());
    822 
    823   if (ShouldSwap) {
    824     std::swap(LHS, RHS);
    825     std::swap(LHSCst, RHSCst);
    826     std::swap(LHSCC, RHSCC);
    827   }
    828 
    829   // At this point, we know we have two icmp instructions
    830   // comparing a value against two constants and and'ing the result
    831   // together.  Because of the above check, we know that we only have
    832   // icmp eq, icmp ne, icmp [su]lt, and icmp [SU]gt here. We also know
    833   // (from the icmp folding check above), that the two constants
    834   // are not equal and that the larger constant is on the RHS
    835   assert(LHSCst != RHSCst && "Compares not folded above?");
    836 
    837   switch (LHSCC) {
    838   default: llvm_unreachable("Unknown integer condition code!");
    839   case ICmpInst::ICMP_EQ:
    840     switch (RHSCC) {
    841     default: llvm_unreachable("Unknown integer condition code!");
    842     case ICmpInst::ICMP_NE:         // (X == 13 & X != 15) -> X == 13
    843     case ICmpInst::ICMP_ULT:        // (X == 13 & X <  15) -> X == 13
    844     case ICmpInst::ICMP_SLT:        // (X == 13 & X <  15) -> X == 13
    845       return LHS;
    846     }
    847   case ICmpInst::ICMP_NE:
    848     switch (RHSCC) {
    849     default: llvm_unreachable("Unknown integer condition code!");
    850     case ICmpInst::ICMP_ULT:
    851       if (LHSCst == SubOne(RHSCst)) // (X != 13 & X u< 14) -> X < 13
    852         return Builder->CreateICmpULT(Val, LHSCst);
    853       break;                        // (X != 13 & X u< 15) -> no change
    854     case ICmpInst::ICMP_SLT:
    855       if (LHSCst == SubOne(RHSCst)) // (X != 13 & X s< 14) -> X < 13
    856         return Builder->CreateICmpSLT(Val, LHSCst);
    857       break;                        // (X != 13 & X s< 15) -> no change
    858     case ICmpInst::ICMP_EQ:         // (X != 13 & X == 15) -> X == 15
    859     case ICmpInst::ICMP_UGT:        // (X != 13 & X u> 15) -> X u> 15
    860     case ICmpInst::ICMP_SGT:        // (X != 13 & X s> 15) -> X s> 15
    861       return RHS;
    862     case ICmpInst::ICMP_NE:
    863       if (LHSCst == SubOne(RHSCst)){// (X != 13 & X != 14) -> X-13 >u 1
    864         Constant *AddCST = ConstantExpr::getNeg(LHSCst);
    865         Value *Add = Builder->CreateAdd(Val, AddCST, Val->getName()+".off");
    866         return Builder->CreateICmpUGT(Add, ConstantInt::get(Add->getType(), 1));
    867       }
    868       break;                        // (X != 13 & X != 15) -> no change
    869     }
    870     break;
    871   case ICmpInst::ICMP_ULT:
    872     switch (RHSCC) {
    873     default: llvm_unreachable("Unknown integer condition code!");
    874     case ICmpInst::ICMP_EQ:         // (X u< 13 & X == 15) -> false
    875     case ICmpInst::ICMP_UGT:        // (X u< 13 & X u> 15) -> false
    876       return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0);
    877     case ICmpInst::ICMP_SGT:        // (X u< 13 & X s> 15) -> no change
    878       break;
    879     case ICmpInst::ICMP_NE:         // (X u< 13 & X != 15) -> X u< 13
    880     case ICmpInst::ICMP_ULT:        // (X u< 13 & X u< 15) -> X u< 13
    881       return LHS;
    882     case ICmpInst::ICMP_SLT:        // (X u< 13 & X s< 15) -> no change
    883       break;
    884     }
    885     break;
    886   case ICmpInst::ICMP_SLT:
    887     switch (RHSCC) {
    888     default: llvm_unreachable("Unknown integer condition code!");
    889     case ICmpInst::ICMP_UGT:        // (X s< 13 & X u> 15) -> no change
    890       break;
    891     case ICmpInst::ICMP_NE:         // (X s< 13 & X != 15) -> X < 13
    892     case ICmpInst::ICMP_SLT:        // (X s< 13 & X s< 15) -> X < 13
    893       return LHS;
    894     case ICmpInst::ICMP_ULT:        // (X s< 13 & X u< 15) -> no change
    895       break;
    896     }
    897     break;
    898   case ICmpInst::ICMP_UGT:
    899     switch (RHSCC) {
    900     default: llvm_unreachable("Unknown integer condition code!");
    901     case ICmpInst::ICMP_EQ:         // (X u> 13 & X == 15) -> X == 15
    902     case ICmpInst::ICMP_UGT:        // (X u> 13 & X u> 15) -> X u> 15
    903       return RHS;
    904     case ICmpInst::ICMP_SGT:        // (X u> 13 & X s> 15) -> no change
    905       break;
    906     case ICmpInst::ICMP_NE:
    907       if (RHSCst == AddOne(LHSCst)) // (X u> 13 & X != 14) -> X u> 14
    908         return Builder->CreateICmp(LHSCC, Val, RHSCst);
    909       break;                        // (X u> 13 & X != 15) -> no change
    910     case ICmpInst::ICMP_ULT:        // (X u> 13 & X u< 15) -> (X-14) <u 1
    911       return InsertRangeTest(Val, AddOne(LHSCst), RHSCst, false, true);
    912     case ICmpInst::ICMP_SLT:        // (X u> 13 & X s< 15) -> no change
    913       break;
    914     }
    915     break;
    916   case ICmpInst::ICMP_SGT:
    917     switch (RHSCC) {
    918     default: llvm_unreachable("Unknown integer condition code!");
    919     case ICmpInst::ICMP_EQ:         // (X s> 13 & X == 15) -> X == 15
    920     case ICmpInst::ICMP_SGT:        // (X s> 13 & X s> 15) -> X s> 15
    921       return RHS;
    922     case ICmpInst::ICMP_UGT:        // (X s> 13 & X u> 15) -> no change
    923       break;
    924     case ICmpInst::ICMP_NE:
    925       if (RHSCst == AddOne(LHSCst)) // (X s> 13 & X != 14) -> X s> 14
    926         return Builder->CreateICmp(LHSCC, Val, RHSCst);
    927       break;                        // (X s> 13 & X != 15) -> no change
    928     case ICmpInst::ICMP_SLT:        // (X s> 13 & X s< 15) -> (X-14) s< 1
    929       return InsertRangeTest(Val, AddOne(LHSCst), RHSCst, true, true);
    930     case ICmpInst::ICMP_ULT:        // (X s> 13 & X u< 15) -> no change
    931       break;
    932     }
    933     break;
    934   }
    935 
    936   return 0;
    937 }
    938 
    939 /// FoldAndOfFCmps - Optimize (fcmp)&(fcmp).  NOTE: Unlike the rest of
    940 /// instcombine, this returns a Value which should already be inserted into the
    941 /// function.
    942 Value *InstCombiner::FoldAndOfFCmps(FCmpInst *LHS, FCmpInst *RHS) {
    943   if (LHS->getPredicate() == FCmpInst::FCMP_ORD &&
    944       RHS->getPredicate() == FCmpInst::FCMP_ORD) {
    945     // (fcmp ord x, c) & (fcmp ord y, c)  -> (fcmp ord x, y)
    946     if (ConstantFP *LHSC = dyn_cast<ConstantFP>(LHS->getOperand(1)))
    947       if (ConstantFP *RHSC = dyn_cast<ConstantFP>(RHS->getOperand(1))) {
    948         // If either of the constants are nans, then the whole thing returns
    949         // false.
    950         if (LHSC->getValueAPF().isNaN() || RHSC->getValueAPF().isNaN())
    951           return ConstantInt::getFalse(LHS->getContext());
    952         return Builder->CreateFCmpORD(LHS->getOperand(0), RHS->getOperand(0));
    953       }
    954 
    955     // Handle vector zeros.  This occurs because the canonical form of
    956     // "fcmp ord x,x" is "fcmp ord x, 0".
    957     if (isa<ConstantAggregateZero>(LHS->getOperand(1)) &&
    958         isa<ConstantAggregateZero>(RHS->getOperand(1)))
    959       return Builder->CreateFCmpORD(LHS->getOperand(0), RHS->getOperand(0));
    960     return 0;
    961   }
    962 
    963   Value *Op0LHS = LHS->getOperand(0), *Op0RHS = LHS->getOperand(1);
    964   Value *Op1LHS = RHS->getOperand(0), *Op1RHS = RHS->getOperand(1);
    965   FCmpInst::Predicate Op0CC = LHS->getPredicate(), Op1CC = RHS->getPredicate();
    966 
    967 
    968   if (Op0LHS == Op1RHS && Op0RHS == Op1LHS) {
    969     // Swap RHS operands to match LHS.
    970     Op1CC = FCmpInst::getSwappedPredicate(Op1CC);
    971     std::swap(Op1LHS, Op1RHS);
    972   }
    973 
    974   if (Op0LHS == Op1LHS && Op0RHS == Op1RHS) {
    975     // Simplify (fcmp cc0 x, y) & (fcmp cc1 x, y).
    976     if (Op0CC == Op1CC)
    977       return Builder->CreateFCmp((FCmpInst::Predicate)Op0CC, Op0LHS, Op0RHS);
    978     if (Op0CC == FCmpInst::FCMP_FALSE || Op1CC == FCmpInst::FCMP_FALSE)
    979       return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0);
    980     if (Op0CC == FCmpInst::FCMP_TRUE)
    981       return RHS;
    982     if (Op1CC == FCmpInst::FCMP_TRUE)
    983       return LHS;
    984 
    985     bool Op0Ordered;
    986     bool Op1Ordered;
    987     unsigned Op0Pred = getFCmpCode(Op0CC, Op0Ordered);
    988     unsigned Op1Pred = getFCmpCode(Op1CC, Op1Ordered);
    989     if (Op1Pred == 0) {
    990       std::swap(LHS, RHS);
    991       std::swap(Op0Pred, Op1Pred);
    992       std::swap(Op0Ordered, Op1Ordered);
    993     }
    994     if (Op0Pred == 0) {
    995       // uno && ueq -> uno && (uno || eq) -> ueq
    996       // ord && olt -> ord && (ord && lt) -> olt
    997       if (Op0Ordered == Op1Ordered)
    998         return RHS;
    999 
   1000       // uno && oeq -> uno && (ord && eq) -> false
   1001       // uno && ord -> false
   1002       if (!Op0Ordered)
   1003         return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0);
   1004       // ord && ueq -> ord && (uno || eq) -> oeq
   1005       return getFCmpValue(true, Op1Pred, Op0LHS, Op0RHS, Builder);
   1006     }
   1007   }
   1008 
   1009   return 0;
   1010 }
   1011 
   1012 
   1013 Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
   1014   bool Changed = SimplifyAssociativeOrCommutative(I);
   1015   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
   1016 
   1017   if (Value *V = SimplifyAndInst(Op0, Op1, TD))
   1018     return ReplaceInstUsesWith(I, V);
   1019 
   1020   // (A|B)&(A|C) -> A|(B&C) etc
   1021   if (Value *V = SimplifyUsingDistributiveLaws(I))
   1022     return ReplaceInstUsesWith(I, V);
   1023 
   1024   // See if we can simplify any instructions used by the instruction whose sole
   1025   // purpose is to compute bits we don't care about.
   1026   if (SimplifyDemandedInstructionBits(I))
   1027     return &I;
   1028 
   1029   if (ConstantInt *AndRHS = dyn_cast<ConstantInt>(Op1)) {
   1030     const APInt &AndRHSMask = AndRHS->getValue();
   1031 
   1032     // Optimize a variety of ((val OP C1) & C2) combinations...
   1033     if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
   1034       Value *Op0LHS = Op0I->getOperand(0);
   1035       Value *Op0RHS = Op0I->getOperand(1);
   1036       switch (Op0I->getOpcode()) {
   1037       default: break;
   1038       case Instruction::Xor:
   1039       case Instruction::Or: {
   1040         // If the mask is only needed on one incoming arm, push it up.
   1041         if (!Op0I->hasOneUse()) break;
   1042 
   1043         APInt NotAndRHS(~AndRHSMask);
   1044         if (MaskedValueIsZero(Op0LHS, NotAndRHS)) {
   1045           // Not masking anything out for the LHS, move to RHS.
   1046           Value *NewRHS = Builder->CreateAnd(Op0RHS, AndRHS,
   1047                                              Op0RHS->getName()+".masked");
   1048           return BinaryOperator::Create(Op0I->getOpcode(), Op0LHS, NewRHS);
   1049         }
   1050         if (!isa<Constant>(Op0RHS) &&
   1051             MaskedValueIsZero(Op0RHS, NotAndRHS)) {
   1052           // Not masking anything out for the RHS, move to LHS.
   1053           Value *NewLHS = Builder->CreateAnd(Op0LHS, AndRHS,
   1054                                              Op0LHS->getName()+".masked");
   1055           return BinaryOperator::Create(Op0I->getOpcode(), NewLHS, Op0RHS);
   1056         }
   1057 
   1058         break;
   1059       }
   1060       case Instruction::Add:
   1061         // ((A & N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == AndRHS.
   1062         // ((A | N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0
   1063         // ((A ^ N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0
   1064         if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, false, I))
   1065           return BinaryOperator::CreateAnd(V, AndRHS);
   1066         if (Value *V = FoldLogicalPlusAnd(Op0RHS, Op0LHS, AndRHS, false, I))
   1067           return BinaryOperator::CreateAnd(V, AndRHS);  // Add commutes
   1068         break;
   1069 
   1070       case Instruction::Sub:
   1071         // ((A & N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == AndRHS.
   1072         // ((A | N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0
   1073         // ((A ^ N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0
   1074         if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, true, I))
   1075           return BinaryOperator::CreateAnd(V, AndRHS);
   1076 
   1077         // (A - N) & AndRHS -> -N & AndRHS iff A&AndRHS==0 and AndRHS
   1078         // has 1's for all bits that the subtraction with A might affect.
   1079         if (Op0I->hasOneUse() && !match(Op0LHS, m_Zero())) {
   1080           uint32_t BitWidth = AndRHSMask.getBitWidth();
   1081           uint32_t Zeros = AndRHSMask.countLeadingZeros();
   1082           APInt Mask = APInt::getLowBitsSet(BitWidth, BitWidth - Zeros);
   1083 
   1084           if (MaskedValueIsZero(Op0LHS, Mask)) {
   1085             Value *NewNeg = Builder->CreateNeg(Op0RHS);
   1086             return BinaryOperator::CreateAnd(NewNeg, AndRHS);
   1087           }
   1088         }
   1089         break;
   1090 
   1091       case Instruction::Shl:
   1092       case Instruction::LShr:
   1093         // (1 << x) & 1 --> zext(x == 0)
   1094         // (1 >> x) & 1 --> zext(x == 0)
   1095         if (AndRHSMask == 1 && Op0LHS == AndRHS) {
   1096           Value *NewICmp =
   1097             Builder->CreateICmpEQ(Op0RHS, Constant::getNullValue(I.getType()));
   1098           return new ZExtInst(NewICmp, I.getType());
   1099         }
   1100         break;
   1101       }
   1102 
   1103       if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1)))
   1104         if (Instruction *Res = OptAndOp(Op0I, Op0CI, AndRHS, I))
   1105           return Res;
   1106     }
   1107 
   1108     // If this is an integer truncation, and if the source is an 'and' with
   1109     // immediate, transform it.  This frequently occurs for bitfield accesses.
   1110     {
   1111       Value *X = 0; ConstantInt *YC = 0;
   1112       if (match(Op0, m_Trunc(m_And(m_Value(X), m_ConstantInt(YC))))) {
   1113         // Change: and (trunc (and X, YC) to T), C2
   1114         // into  : and (trunc X to T), trunc(YC) & C2
   1115         // This will fold the two constants together, which may allow
   1116         // other simplifications.
   1117         Value *NewCast = Builder->CreateTrunc(X, I.getType(), "and.shrunk");
   1118         Constant *C3 = ConstantExpr::getTrunc(YC, I.getType());
   1119         C3 = ConstantExpr::getAnd(C3, AndRHS);
   1120         return BinaryOperator::CreateAnd(NewCast, C3);
   1121       }
   1122     }
   1123 
   1124     // Try to fold constant and into select arguments.
   1125     if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
   1126       if (Instruction *R = FoldOpIntoSelect(I, SI))
   1127         return R;
   1128     if (isa<PHINode>(Op0))
   1129       if (Instruction *NV = FoldOpIntoPhi(I))
   1130         return NV;
   1131   }
   1132 
   1133 
   1134   // (~A & ~B) == (~(A | B)) - De Morgan's Law
   1135   if (Value *Op0NotVal = dyn_castNotVal(Op0))
   1136     if (Value *Op1NotVal = dyn_castNotVal(Op1))
   1137       if (Op0->hasOneUse() && Op1->hasOneUse()) {
   1138         Value *Or = Builder->CreateOr(Op0NotVal, Op1NotVal,
   1139                                       I.getName()+".demorgan");
   1140         return BinaryOperator::CreateNot(Or);
   1141       }
   1142 
   1143   {
   1144     Value *A = 0, *B = 0, *C = 0, *D = 0;
   1145     // (A|B) & ~(A&B) -> A^B
   1146     if (match(Op0, m_Or(m_Value(A), m_Value(B))) &&
   1147         match(Op1, m_Not(m_And(m_Value(C), m_Value(D)))) &&
   1148         ((A == C && B == D) || (A == D && B == C)))
   1149       return BinaryOperator::CreateXor(A, B);
   1150 
   1151     // ~(A&B) & (A|B) -> A^B
   1152     if (match(Op1, m_Or(m_Value(A), m_Value(B))) &&
   1153         match(Op0, m_Not(m_And(m_Value(C), m_Value(D)))) &&
   1154         ((A == C && B == D) || (A == D && B == C)))
   1155       return BinaryOperator::CreateXor(A, B);
   1156 
   1157     // A&(A^B) => A & ~B
   1158     {
   1159       Value *tmpOp0 = Op0;
   1160       Value *tmpOp1 = Op1;
   1161       if (Op0->hasOneUse() &&
   1162           match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
   1163         if (A == Op1 || B == Op1 ) {
   1164           tmpOp1 = Op0;
   1165           tmpOp0 = Op1;
   1166           // Simplify below
   1167         }
   1168       }
   1169 
   1170       if (tmpOp1->hasOneUse() &&
   1171           match(tmpOp1, m_Xor(m_Value(A), m_Value(B)))) {
   1172         if (B == tmpOp0) {
   1173           std::swap(A, B);
   1174         }
   1175         // Notice that the patten (A&(~B)) is actually (A&(-1^B)), so if
   1176         // A is originally -1 (or a vector of -1 and undefs), then we enter
   1177         // an endless loop. By checking that A is non-constant we ensure that
   1178         // we will never get to the loop.
   1179         if (A == tmpOp0 && !isa<Constant>(A)) // A&(A^B) -> A & ~B
   1180           return BinaryOperator::CreateAnd(A, Builder->CreateNot(B));
   1181       }
   1182     }
   1183 
   1184     // (A&((~A)|B)) -> A&B
   1185     if (match(Op0, m_Or(m_Not(m_Specific(Op1)), m_Value(A))) ||
   1186         match(Op0, m_Or(m_Value(A), m_Not(m_Specific(Op1)))))
   1187       return BinaryOperator::CreateAnd(A, Op1);
   1188     if (match(Op1, m_Or(m_Not(m_Specific(Op0)), m_Value(A))) ||
   1189         match(Op1, m_Or(m_Value(A), m_Not(m_Specific(Op0)))))
   1190       return BinaryOperator::CreateAnd(A, Op0);
   1191   }
   1192 
   1193   if (ICmpInst *RHS = dyn_cast<ICmpInst>(Op1))
   1194     if (ICmpInst *LHS = dyn_cast<ICmpInst>(Op0))
   1195       if (Value *Res = FoldAndOfICmps(LHS, RHS))
   1196         return ReplaceInstUsesWith(I, Res);
   1197 
   1198   // If and'ing two fcmp, try combine them into one.
   1199   if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0)))
   1200     if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1)))
   1201       if (Value *Res = FoldAndOfFCmps(LHS, RHS))
   1202         return ReplaceInstUsesWith(I, Res);
   1203 
   1204 
   1205   // fold (and (cast A), (cast B)) -> (cast (and A, B))
   1206   if (CastInst *Op0C = dyn_cast<CastInst>(Op0))
   1207     if (CastInst *Op1C = dyn_cast<CastInst>(Op1)) {
   1208       Type *SrcTy = Op0C->getOperand(0)->getType();
   1209       if (Op0C->getOpcode() == Op1C->getOpcode() && // same cast kind ?
   1210           SrcTy == Op1C->getOperand(0)->getType() &&
   1211           SrcTy->isIntOrIntVectorTy()) {
   1212         Value *Op0COp = Op0C->getOperand(0), *Op1COp = Op1C->getOperand(0);
   1213 
   1214         // Only do this if the casts both really cause code to be generated.
   1215         if (ShouldOptimizeCast(Op0C->getOpcode(), Op0COp, I.getType()) &&
   1216             ShouldOptimizeCast(Op1C->getOpcode(), Op1COp, I.getType())) {
   1217           Value *NewOp = Builder->CreateAnd(Op0COp, Op1COp, I.getName());
   1218           return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
   1219         }
   1220 
   1221         // If this is and(cast(icmp), cast(icmp)), try to fold this even if the
   1222         // cast is otherwise not optimizable.  This happens for vector sexts.
   1223         if (ICmpInst *RHS = dyn_cast<ICmpInst>(Op1COp))
   1224           if (ICmpInst *LHS = dyn_cast<ICmpInst>(Op0COp))
   1225             if (Value *Res = FoldAndOfICmps(LHS, RHS))
   1226               return CastInst::Create(Op0C->getOpcode(), Res, I.getType());
   1227 
   1228         // If this is and(cast(fcmp), cast(fcmp)), try to fold this even if the
   1229         // cast is otherwise not optimizable.  This happens for vector sexts.
   1230         if (FCmpInst *RHS = dyn_cast<FCmpInst>(Op1COp))
   1231           if (FCmpInst *LHS = dyn_cast<FCmpInst>(Op0COp))
   1232             if (Value *Res = FoldAndOfFCmps(LHS, RHS))
   1233               return CastInst::Create(Op0C->getOpcode(), Res, I.getType());
   1234       }
   1235     }
   1236 
   1237   // (X >> Z) & (Y >> Z)  -> (X&Y) >> Z  for all shifts.
   1238   if (BinaryOperator *SI1 = dyn_cast<BinaryOperator>(Op1)) {
   1239     if (BinaryOperator *SI0 = dyn_cast<BinaryOperator>(Op0))
   1240       if (SI0->isShift() && SI0->getOpcode() == SI1->getOpcode() &&
   1241           SI0->getOperand(1) == SI1->getOperand(1) &&
   1242           (SI0->hasOneUse() || SI1->hasOneUse())) {
   1243         Value *NewOp =
   1244           Builder->CreateAnd(SI0->getOperand(0), SI1->getOperand(0),
   1245                              SI0->getName());
   1246         return BinaryOperator::Create(SI1->getOpcode(), NewOp,
   1247                                       SI1->getOperand(1));
   1248       }
   1249   }
   1250 
   1251   return Changed ? &I : 0;
   1252 }
   1253 
   1254 /// CollectBSwapParts - Analyze the specified subexpression and see if it is
   1255 /// capable of providing pieces of a bswap.  The subexpression provides pieces
   1256 /// of a bswap if it is proven that each of the non-zero bytes in the output of
   1257 /// the expression came from the corresponding "byte swapped" byte in some other
   1258 /// value.  For example, if the current subexpression is "(shl i32 %X, 24)" then
   1259 /// we know that the expression deposits the low byte of %X into the high byte
   1260 /// of the bswap result and that all other bytes are zero.  This expression is
   1261 /// accepted, the high byte of ByteValues is set to X to indicate a correct
   1262 /// match.
   1263 ///
   1264 /// This function returns true if the match was unsuccessful and false if so.
   1265 /// On entry to the function the "OverallLeftShift" is a signed integer value
   1266 /// indicating the number of bytes that the subexpression is later shifted.  For
   1267 /// example, if the expression is later right shifted by 16 bits, the
   1268 /// OverallLeftShift value would be -2 on entry.  This is used to specify which
   1269 /// byte of ByteValues is actually being set.
   1270 ///
   1271 /// Similarly, ByteMask is a bitmask where a bit is clear if its corresponding
   1272 /// byte is masked to zero by a user.  For example, in (X & 255), X will be
   1273 /// processed with a bytemask of 1.  Because bytemask is 32-bits, this limits
   1274 /// this function to working on up to 32-byte (256 bit) values.  ByteMask is
   1275 /// always in the local (OverallLeftShift) coordinate space.
   1276 ///
   1277 static bool CollectBSwapParts(Value *V, int OverallLeftShift, uint32_t ByteMask,
   1278                               SmallVector<Value*, 8> &ByteValues) {
   1279   if (Instruction *I = dyn_cast<Instruction>(V)) {
   1280     // If this is an or instruction, it may be an inner node of the bswap.
   1281     if (I->getOpcode() == Instruction::Or) {
   1282       return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask,
   1283                                ByteValues) ||
   1284              CollectBSwapParts(I->getOperand(1), OverallLeftShift, ByteMask,
   1285                                ByteValues);
   1286     }
   1287 
   1288     // If this is a logical shift by a constant multiple of 8, recurse with
   1289     // OverallLeftShift and ByteMask adjusted.
   1290     if (I->isLogicalShift() && isa<ConstantInt>(I->getOperand(1))) {
   1291       unsigned ShAmt =
   1292         cast<ConstantInt>(I->getOperand(1))->getLimitedValue(~0U);
   1293       // Ensure the shift amount is defined and of a byte value.
   1294       if ((ShAmt & 7) || (ShAmt > 8*ByteValues.size()))
   1295         return true;
   1296 
   1297       unsigned ByteShift = ShAmt >> 3;
   1298       if (I->getOpcode() == Instruction::Shl) {
   1299         // X << 2 -> collect(X, +2)
   1300         OverallLeftShift += ByteShift;
   1301         ByteMask >>= ByteShift;
   1302       } else {
   1303         // X >>u 2 -> collect(X, -2)
   1304         OverallLeftShift -= ByteShift;
   1305         ByteMask <<= ByteShift;
   1306         ByteMask &= (~0U >> (32-ByteValues.size()));
   1307       }
   1308 
   1309       if (OverallLeftShift >= (int)ByteValues.size()) return true;
   1310       if (OverallLeftShift <= -(int)ByteValues.size()) return true;
   1311 
   1312       return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask,
   1313                                ByteValues);
   1314     }
   1315 
   1316     // If this is a logical 'and' with a mask that clears bytes, clear the
   1317     // corresponding bytes in ByteMask.
   1318     if (I->getOpcode() == Instruction::And &&
   1319         isa<ConstantInt>(I->getOperand(1))) {
   1320       // Scan every byte of the and mask, seeing if the byte is either 0 or 255.
   1321       unsigned NumBytes = ByteValues.size();
   1322       APInt Byte(I->getType()->getPrimitiveSizeInBits(), 255);
   1323       const APInt &AndMask = cast<ConstantInt>(I->getOperand(1))->getValue();
   1324 
   1325       for (unsigned i = 0; i != NumBytes; ++i, Byte <<= 8) {
   1326         // If this byte is masked out by a later operation, we don't care what
   1327         // the and mask is.
   1328         if ((ByteMask & (1 << i)) == 0)
   1329           continue;
   1330 
   1331         // If the AndMask is all zeros for this byte, clear the bit.
   1332         APInt MaskB = AndMask & Byte;
   1333         if (MaskB == 0) {
   1334           ByteMask &= ~(1U << i);
   1335           continue;
   1336         }
   1337 
   1338         // If the AndMask is not all ones for this byte, it's not a bytezap.
   1339         if (MaskB != Byte)
   1340           return true;
   1341 
   1342         // Otherwise, this byte is kept.
   1343       }
   1344 
   1345       return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask,
   1346                                ByteValues);
   1347     }
   1348   }
   1349 
   1350   // Okay, we got to something that isn't a shift, 'or' or 'and'.  This must be
   1351   // the input value to the bswap.  Some observations: 1) if more than one byte
   1352   // is demanded from this input, then it could not be successfully assembled
   1353   // into a byteswap.  At least one of the two bytes would not be aligned with
   1354   // their ultimate destination.
   1355   if (!isPowerOf2_32(ByteMask)) return true;
   1356   unsigned InputByteNo = CountTrailingZeros_32(ByteMask);
   1357 
   1358   // 2) The input and ultimate destinations must line up: if byte 3 of an i32
   1359   // is demanded, it needs to go into byte 0 of the result.  This means that the
   1360   // byte needs to be shifted until it lands in the right byte bucket.  The
   1361   // shift amount depends on the position: if the byte is coming from the high
   1362   // part of the value (e.g. byte 3) then it must be shifted right.  If from the
   1363   // low part, it must be shifted left.
   1364   unsigned DestByteNo = InputByteNo + OverallLeftShift;
   1365   if (ByteValues.size()-1-DestByteNo != InputByteNo)
   1366     return true;
   1367 
   1368   // If the destination byte value is already defined, the values are or'd
   1369   // together, which isn't a bswap (unless it's an or of the same bits).
   1370   if (ByteValues[DestByteNo] && ByteValues[DestByteNo] != V)
   1371     return true;
   1372   ByteValues[DestByteNo] = V;
   1373   return false;
   1374 }
   1375 
   1376 /// MatchBSwap - Given an OR instruction, check to see if this is a bswap idiom.
   1377 /// If so, insert the new bswap intrinsic and return it.
   1378 Instruction *InstCombiner::MatchBSwap(BinaryOperator &I) {
   1379   IntegerType *ITy = dyn_cast<IntegerType>(I.getType());
   1380   if (!ITy || ITy->getBitWidth() % 16 ||
   1381       // ByteMask only allows up to 32-byte values.
   1382       ITy->getBitWidth() > 32*8)
   1383     return 0;   // Can only bswap pairs of bytes.  Can't do vectors.
   1384 
   1385   /// ByteValues - For each byte of the result, we keep track of which value
   1386   /// defines each byte.
   1387   SmallVector<Value*, 8> ByteValues;
   1388   ByteValues.resize(ITy->getBitWidth()/8);
   1389 
   1390   // Try to find all the pieces corresponding to the bswap.
   1391   uint32_t ByteMask = ~0U >> (32-ByteValues.size());
   1392   if (CollectBSwapParts(&I, 0, ByteMask, ByteValues))
   1393     return 0;
   1394 
   1395   // Check to see if all of the bytes come from the same value.
   1396   Value *V = ByteValues[0];
   1397   if (V == 0) return 0;  // Didn't find a byte?  Must be zero.
   1398 
   1399   // Check to make sure that all of the bytes come from the same value.
   1400   for (unsigned i = 1, e = ByteValues.size(); i != e; ++i)
   1401     if (ByteValues[i] != V)
   1402       return 0;
   1403   Module *M = I.getParent()->getParent()->getParent();
   1404   Function *F = Intrinsic::getDeclaration(M, Intrinsic::bswap, ITy);
   1405   return CallInst::Create(F, V);
   1406 }
   1407 
   1408 /// MatchSelectFromAndOr - We have an expression of the form (A&C)|(B&D).  Check
   1409 /// If A is (cond?-1:0) and either B or D is ~(cond?-1,0) or (cond?0,-1), then
   1410 /// we can simplify this expression to "cond ? C : D or B".
   1411 static Instruction *MatchSelectFromAndOr(Value *A, Value *B,
   1412                                          Value *C, Value *D) {
   1413   // If A is not a select of -1/0, this cannot match.
   1414   Value *Cond = 0;
   1415   if (!match(A, m_SExt(m_Value(Cond))) ||
   1416       !Cond->getType()->isIntegerTy(1))
   1417     return 0;
   1418 
   1419   // ((cond?-1:0)&C) | (B&(cond?0:-1)) -> cond ? C : B.
   1420   if (match(D, m_Not(m_SExt(m_Specific(Cond)))))
   1421     return SelectInst::Create(Cond, C, B);
   1422   if (match(D, m_SExt(m_Not(m_Specific(Cond)))))
   1423     return SelectInst::Create(Cond, C, B);
   1424 
   1425   // ((cond?-1:0)&C) | ((cond?0:-1)&D) -> cond ? C : D.
   1426   if (match(B, m_Not(m_SExt(m_Specific(Cond)))))
   1427     return SelectInst::Create(Cond, C, D);
   1428   if (match(B, m_SExt(m_Not(m_Specific(Cond)))))
   1429     return SelectInst::Create(Cond, C, D);
   1430   return 0;
   1431 }
   1432 
   1433 /// FoldOrOfICmps - Fold (icmp)|(icmp) if possible.
   1434 Value *InstCombiner::FoldOrOfICmps(ICmpInst *LHS, ICmpInst *RHS) {
   1435   ICmpInst::Predicate LHSCC = LHS->getPredicate(), RHSCC = RHS->getPredicate();
   1436 
   1437   // (icmp1 A, B) | (icmp2 A, B) --> (icmp3 A, B)
   1438   if (PredicatesFoldable(LHSCC, RHSCC)) {
   1439     if (LHS->getOperand(0) == RHS->getOperand(1) &&
   1440         LHS->getOperand(1) == RHS->getOperand(0))
   1441       LHS->swapOperands();
   1442     if (LHS->getOperand(0) == RHS->getOperand(0) &&
   1443         LHS->getOperand(1) == RHS->getOperand(1)) {
   1444       Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1);
   1445       unsigned Code = getICmpCode(LHS) | getICmpCode(RHS);
   1446       bool isSigned = LHS->isSigned() || RHS->isSigned();
   1447       return getNewICmpValue(isSigned, Code, Op0, Op1, Builder);
   1448     }
   1449   }
   1450 
   1451   // handle (roughly):
   1452   // (icmp ne (A & B), C) | (icmp ne (A & D), E)
   1453   if (Value *V = foldLogOpOfMaskedICmps(LHS, RHS, ICmpInst::ICMP_NE, Builder))
   1454     return V;
   1455 
   1456   // This only handles icmp of constants: (icmp1 A, C1) | (icmp2 B, C2).
   1457   Value *Val = LHS->getOperand(0), *Val2 = RHS->getOperand(0);
   1458   ConstantInt *LHSCst = dyn_cast<ConstantInt>(LHS->getOperand(1));
   1459   ConstantInt *RHSCst = dyn_cast<ConstantInt>(RHS->getOperand(1));
   1460   if (LHSCst == 0 || RHSCst == 0) return 0;
   1461 
   1462   if (LHSCst == RHSCst && LHSCC == RHSCC) {
   1463     // (icmp ne A, 0) | (icmp ne B, 0) --> (icmp ne (A|B), 0)
   1464     if (LHSCC == ICmpInst::ICMP_NE && LHSCst->isZero()) {
   1465       Value *NewOr = Builder->CreateOr(Val, Val2);
   1466       return Builder->CreateICmp(LHSCC, NewOr, LHSCst);
   1467     }
   1468   }
   1469 
   1470   // (icmp ult (X + CA), C1) | (icmp eq X, C2) -> (icmp ule (X + CA), C1)
   1471   //   iff C2 + CA == C1.
   1472   if (LHSCC == ICmpInst::ICMP_ULT && RHSCC == ICmpInst::ICMP_EQ) {
   1473     ConstantInt *AddCst;
   1474     if (match(Val, m_Add(m_Specific(Val2), m_ConstantInt(AddCst))))
   1475       if (RHSCst->getValue() + AddCst->getValue() == LHSCst->getValue())
   1476         return Builder->CreateICmpULE(Val, LHSCst);
   1477   }
   1478 
   1479   // From here on, we only handle:
   1480   //    (icmp1 A, C1) | (icmp2 A, C2) --> something simpler.
   1481   if (Val != Val2) return 0;
   1482 
   1483   // ICMP_[US][GL]E X, CST is folded to ICMP_[US][GL]T elsewhere.
   1484   if (LHSCC == ICmpInst::ICMP_UGE || LHSCC == ICmpInst::ICMP_ULE ||
   1485       RHSCC == ICmpInst::ICMP_UGE || RHSCC == ICmpInst::ICMP_ULE ||
   1486       LHSCC == ICmpInst::ICMP_SGE || LHSCC == ICmpInst::ICMP_SLE ||
   1487       RHSCC == ICmpInst::ICMP_SGE || RHSCC == ICmpInst::ICMP_SLE)
   1488     return 0;
   1489 
   1490   // We can't fold (ugt x, C) | (sgt x, C2).
   1491   if (!PredicatesFoldable(LHSCC, RHSCC))
   1492     return 0;
   1493 
   1494   // Ensure that the larger constant is on the RHS.
   1495   bool ShouldSwap;
   1496   if (CmpInst::isSigned(LHSCC) ||
   1497       (ICmpInst::isEquality(LHSCC) &&
   1498        CmpInst::isSigned(RHSCC)))
   1499     ShouldSwap = LHSCst->getValue().sgt(RHSCst->getValue());
   1500   else
   1501     ShouldSwap = LHSCst->getValue().ugt(RHSCst->getValue());
   1502 
   1503   if (ShouldSwap) {
   1504     std::swap(LHS, RHS);
   1505     std::swap(LHSCst, RHSCst);
   1506     std::swap(LHSCC, RHSCC);
   1507   }
   1508 
   1509   // At this point, we know we have two icmp instructions
   1510   // comparing a value against two constants and or'ing the result
   1511   // together.  Because of the above check, we know that we only have
   1512   // ICMP_EQ, ICMP_NE, ICMP_LT, and ICMP_GT here. We also know (from the
   1513   // icmp folding check above), that the two constants are not
   1514   // equal.
   1515   assert(LHSCst != RHSCst && "Compares not folded above?");
   1516 
   1517   switch (LHSCC) {
   1518   default: llvm_unreachable("Unknown integer condition code!");
   1519   case ICmpInst::ICMP_EQ:
   1520     switch (RHSCC) {
   1521     default: llvm_unreachable("Unknown integer condition code!");
   1522     case ICmpInst::ICMP_EQ:
   1523       if (LHSCst == SubOne(RHSCst)) {
   1524         // (X == 13 | X == 14) -> X-13 <u 2
   1525         Constant *AddCST = ConstantExpr::getNeg(LHSCst);
   1526         Value *Add = Builder->CreateAdd(Val, AddCST, Val->getName()+".off");
   1527         AddCST = ConstantExpr::getSub(AddOne(RHSCst), LHSCst);
   1528         return Builder->CreateICmpULT(Add, AddCST);
   1529       }
   1530       break;                         // (X == 13 | X == 15) -> no change
   1531     case ICmpInst::ICMP_UGT:         // (X == 13 | X u> 14) -> no change
   1532     case ICmpInst::ICMP_SGT:         // (X == 13 | X s> 14) -> no change
   1533       break;
   1534     case ICmpInst::ICMP_NE:          // (X == 13 | X != 15) -> X != 15
   1535     case ICmpInst::ICMP_ULT:         // (X == 13 | X u< 15) -> X u< 15
   1536     case ICmpInst::ICMP_SLT:         // (X == 13 | X s< 15) -> X s< 15
   1537       return RHS;
   1538     }
   1539     break;
   1540   case ICmpInst::ICMP_NE:
   1541     switch (RHSCC) {
   1542     default: llvm_unreachable("Unknown integer condition code!");
   1543     case ICmpInst::ICMP_EQ:          // (X != 13 | X == 15) -> X != 13
   1544     case ICmpInst::ICMP_UGT:         // (X != 13 | X u> 15) -> X != 13
   1545     case ICmpInst::ICMP_SGT:         // (X != 13 | X s> 15) -> X != 13
   1546       return LHS;
   1547     case ICmpInst::ICMP_NE:          // (X != 13 | X != 15) -> true
   1548     case ICmpInst::ICMP_ULT:         // (X != 13 | X u< 15) -> true
   1549     case ICmpInst::ICMP_SLT:         // (X != 13 | X s< 15) -> true
   1550       return ConstantInt::getTrue(LHS->getContext());
   1551     }
   1552   case ICmpInst::ICMP_ULT:
   1553     switch (RHSCC) {
   1554     default: llvm_unreachable("Unknown integer condition code!");
   1555     case ICmpInst::ICMP_EQ:         // (X u< 13 | X == 14) -> no change
   1556       break;
   1557     case ICmpInst::ICMP_UGT:        // (X u< 13 | X u> 15) -> (X-13) u> 2
   1558       // If RHSCst is [us]MAXINT, it is always false.  Not handling
   1559       // this can cause overflow.
   1560       if (RHSCst->isMaxValue(false))
   1561         return LHS;
   1562       return InsertRangeTest(Val, LHSCst, AddOne(RHSCst), false, false);
   1563     case ICmpInst::ICMP_SGT:        // (X u< 13 | X s> 15) -> no change
   1564       break;
   1565     case ICmpInst::ICMP_NE:         // (X u< 13 | X != 15) -> X != 15
   1566     case ICmpInst::ICMP_ULT:        // (X u< 13 | X u< 15) -> X u< 15
   1567       return RHS;
   1568     case ICmpInst::ICMP_SLT:        // (X u< 13 | X s< 15) -> no change
   1569       break;
   1570     }
   1571     break;
   1572   case ICmpInst::ICMP_SLT:
   1573     switch (RHSCC) {
   1574     default: llvm_unreachable("Unknown integer condition code!");
   1575     case ICmpInst::ICMP_EQ:         // (X s< 13 | X == 14) -> no change
   1576       break;
   1577     case ICmpInst::ICMP_SGT:        // (X s< 13 | X s> 15) -> (X-13) s> 2
   1578       // If RHSCst is [us]MAXINT, it is always false.  Not handling
   1579       // this can cause overflow.
   1580       if (RHSCst->isMaxValue(true))
   1581         return LHS;
   1582       return InsertRangeTest(Val, LHSCst, AddOne(RHSCst), true, false);
   1583     case ICmpInst::ICMP_UGT:        // (X s< 13 | X u> 15) -> no change
   1584       break;
   1585     case ICmpInst::ICMP_NE:         // (X s< 13 | X != 15) -> X != 15
   1586     case ICmpInst::ICMP_SLT:        // (X s< 13 | X s< 15) -> X s< 15
   1587       return RHS;
   1588     case ICmpInst::ICMP_ULT:        // (X s< 13 | X u< 15) -> no change
   1589       break;
   1590     }
   1591     break;
   1592   case ICmpInst::ICMP_UGT:
   1593     switch (RHSCC) {
   1594     default: llvm_unreachable("Unknown integer condition code!");
   1595     case ICmpInst::ICMP_EQ:         // (X u> 13 | X == 15) -> X u> 13
   1596     case ICmpInst::ICMP_UGT:        // (X u> 13 | X u> 15) -> X u> 13
   1597       return LHS;
   1598     case ICmpInst::ICMP_SGT:        // (X u> 13 | X s> 15) -> no change
   1599       break;
   1600     case ICmpInst::ICMP_NE:         // (X u> 13 | X != 15) -> true
   1601     case ICmpInst::ICMP_ULT:        // (X u> 13 | X u< 15) -> true
   1602       return ConstantInt::getTrue(LHS->getContext());
   1603     case ICmpInst::ICMP_SLT:        // (X u> 13 | X s< 15) -> no change
   1604       break;
   1605     }
   1606     break;
   1607   case ICmpInst::ICMP_SGT:
   1608     switch (RHSCC) {
   1609     default: llvm_unreachable("Unknown integer condition code!");
   1610     case ICmpInst::ICMP_EQ:         // (X s> 13 | X == 15) -> X > 13
   1611     case ICmpInst::ICMP_SGT:        // (X s> 13 | X s> 15) -> X > 13
   1612       return LHS;
   1613     case ICmpInst::ICMP_UGT:        // (X s> 13 | X u> 15) -> no change
   1614       break;
   1615     case ICmpInst::ICMP_NE:         // (X s> 13 | X != 15) -> true
   1616     case ICmpInst::ICMP_SLT:        // (X s> 13 | X s< 15) -> true
   1617       return ConstantInt::getTrue(LHS->getContext());
   1618     case ICmpInst::ICMP_ULT:        // (X s> 13 | X u< 15) -> no change
   1619       break;
   1620     }
   1621     break;
   1622   }
   1623   return 0;
   1624 }
   1625 
   1626 /// FoldOrOfFCmps - Optimize (fcmp)|(fcmp).  NOTE: Unlike the rest of
   1627 /// instcombine, this returns a Value which should already be inserted into the
   1628 /// function.
   1629 Value *InstCombiner::FoldOrOfFCmps(FCmpInst *LHS, FCmpInst *RHS) {
   1630   if (LHS->getPredicate() == FCmpInst::FCMP_UNO &&
   1631       RHS->getPredicate() == FCmpInst::FCMP_UNO &&
   1632       LHS->getOperand(0)->getType() == RHS->getOperand(0)->getType()) {
   1633     if (ConstantFP *LHSC = dyn_cast<ConstantFP>(LHS->getOperand(1)))
   1634       if (ConstantFP *RHSC = dyn_cast<ConstantFP>(RHS->getOperand(1))) {
   1635         // If either of the constants are nans, then the whole thing returns
   1636         // true.
   1637         if (LHSC->getValueAPF().isNaN() || RHSC->getValueAPF().isNaN())
   1638           return ConstantInt::getTrue(LHS->getContext());
   1639 
   1640         // Otherwise, no need to compare the two constants, compare the
   1641         // rest.
   1642         return Builder->CreateFCmpUNO(LHS->getOperand(0), RHS->getOperand(0));
   1643       }
   1644 
   1645     // Handle vector zeros.  This occurs because the canonical form of
   1646     // "fcmp uno x,x" is "fcmp uno x, 0".
   1647     if (isa<ConstantAggregateZero>(LHS->getOperand(1)) &&
   1648         isa<ConstantAggregateZero>(RHS->getOperand(1)))
   1649       return Builder->CreateFCmpUNO(LHS->getOperand(0), RHS->getOperand(0));
   1650 
   1651     return 0;
   1652   }
   1653 
   1654   Value *Op0LHS = LHS->getOperand(0), *Op0RHS = LHS->getOperand(1);
   1655   Value *Op1LHS = RHS->getOperand(0), *Op1RHS = RHS->getOperand(1);
   1656   FCmpInst::Predicate Op0CC = LHS->getPredicate(), Op1CC = RHS->getPredicate();
   1657 
   1658   if (Op0LHS == Op1RHS && Op0RHS == Op1LHS) {
   1659     // Swap RHS operands to match LHS.
   1660     Op1CC = FCmpInst::getSwappedPredicate(Op1CC);
   1661     std::swap(Op1LHS, Op1RHS);
   1662   }
   1663   if (Op0LHS == Op1LHS && Op0RHS == Op1RHS) {
   1664     // Simplify (fcmp cc0 x, y) | (fcmp cc1 x, y).
   1665     if (Op0CC == Op1CC)
   1666       return Builder->CreateFCmp((FCmpInst::Predicate)Op0CC, Op0LHS, Op0RHS);
   1667     if (Op0CC == FCmpInst::FCMP_TRUE || Op1CC == FCmpInst::FCMP_TRUE)
   1668       return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 1);
   1669     if (Op0CC == FCmpInst::FCMP_FALSE)
   1670       return RHS;
   1671     if (Op1CC == FCmpInst::FCMP_FALSE)
   1672       return LHS;
   1673     bool Op0Ordered;
   1674     bool Op1Ordered;
   1675     unsigned Op0Pred = getFCmpCode(Op0CC, Op0Ordered);
   1676     unsigned Op1Pred = getFCmpCode(Op1CC, Op1Ordered);
   1677     if (Op0Ordered == Op1Ordered) {
   1678       // If both are ordered or unordered, return a new fcmp with
   1679       // or'ed predicates.
   1680       return getFCmpValue(Op0Ordered, Op0Pred|Op1Pred, Op0LHS, Op0RHS, Builder);
   1681     }
   1682   }
   1683   return 0;
   1684 }
   1685 
   1686 /// FoldOrWithConstants - This helper function folds:
   1687 ///
   1688 ///     ((A | B) & C1) | (B & C2)
   1689 ///
   1690 /// into:
   1691 ///
   1692 ///     (A & C1) | B
   1693 ///
   1694 /// when the XOR of the two constants is "all ones" (-1).
   1695 Instruction *InstCombiner::FoldOrWithConstants(BinaryOperator &I, Value *Op,
   1696                                                Value *A, Value *B, Value *C) {
   1697   ConstantInt *CI1 = dyn_cast<ConstantInt>(C);
   1698   if (!CI1) return 0;
   1699 
   1700   Value *V1 = 0;
   1701   ConstantInt *CI2 = 0;
   1702   if (!match(Op, m_And(m_Value(V1), m_ConstantInt(CI2)))) return 0;
   1703 
   1704   APInt Xor = CI1->getValue() ^ CI2->getValue();
   1705   if (!Xor.isAllOnesValue()) return 0;
   1706 
   1707   if (V1 == A || V1 == B) {
   1708     Value *NewOp = Builder->CreateAnd((V1 == A) ? B : A, CI1);
   1709     return BinaryOperator::CreateOr(NewOp, V1);
   1710   }
   1711 
   1712   return 0;
   1713 }
   1714 
   1715 Instruction *InstCombiner::visitOr(BinaryOperator &I) {
   1716   bool Changed = SimplifyAssociativeOrCommutative(I);
   1717   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
   1718 
   1719   if (Value *V = SimplifyOrInst(Op0, Op1, TD))
   1720     return ReplaceInstUsesWith(I, V);
   1721 
   1722   // (A&B)|(A&C) -> A&(B|C) etc
   1723   if (Value *V = SimplifyUsingDistributiveLaws(I))
   1724     return ReplaceInstUsesWith(I, V);
   1725 
   1726   // See if we can simplify any instructions used by the instruction whose sole
   1727   // purpose is to compute bits we don't care about.
   1728   if (SimplifyDemandedInstructionBits(I))
   1729     return &I;
   1730 
   1731   if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
   1732     ConstantInt *C1 = 0; Value *X = 0;
   1733     // (X & C1) | C2 --> (X | C2) & (C1|C2)
   1734     // iff (C1 & C2) == 0.
   1735     if (match(Op0, m_And(m_Value(X), m_ConstantInt(C1))) &&
   1736         (RHS->getValue() & C1->getValue()) != 0 &&
   1737         Op0->hasOneUse()) {
   1738       Value *Or = Builder->CreateOr(X, RHS);
   1739       Or->takeName(Op0);
   1740       return BinaryOperator::CreateAnd(Or,
   1741                          ConstantInt::get(I.getContext(),
   1742                                           RHS->getValue() | C1->getValue()));
   1743     }
   1744 
   1745     // (X ^ C1) | C2 --> (X | C2) ^ (C1&~C2)
   1746     if (match(Op0, m_Xor(m_Value(X), m_ConstantInt(C1))) &&
   1747         Op0->hasOneUse()) {
   1748       Value *Or = Builder->CreateOr(X, RHS);
   1749       Or->takeName(Op0);
   1750       return BinaryOperator::CreateXor(Or,
   1751                  ConstantInt::get(I.getContext(),
   1752                                   C1->getValue() & ~RHS->getValue()));
   1753     }
   1754 
   1755     // Try to fold constant and into select arguments.
   1756     if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
   1757       if (Instruction *R = FoldOpIntoSelect(I, SI))
   1758         return R;
   1759 
   1760     if (isa<PHINode>(Op0))
   1761       if (Instruction *NV = FoldOpIntoPhi(I))
   1762         return NV;
   1763   }
   1764 
   1765   Value *A = 0, *B = 0;
   1766   ConstantInt *C1 = 0, *C2 = 0;
   1767 
   1768   // (A | B) | C  and  A | (B | C)                  -> bswap if possible.
   1769   // (A >> B) | (C << D)  and  (A << B) | (B >> C)  -> bswap if possible.
   1770   if (match(Op0, m_Or(m_Value(), m_Value())) ||
   1771       match(Op1, m_Or(m_Value(), m_Value())) ||
   1772       (match(Op0, m_LogicalShift(m_Value(), m_Value())) &&
   1773        match(Op1, m_LogicalShift(m_Value(), m_Value())))) {
   1774     if (Instruction *BSwap = MatchBSwap(I))
   1775       return BSwap;
   1776   }
   1777 
   1778   // (X^C)|Y -> (X|Y)^C iff Y&C == 0
   1779   if (Op0->hasOneUse() &&
   1780       match(Op0, m_Xor(m_Value(A), m_ConstantInt(C1))) &&
   1781       MaskedValueIsZero(Op1, C1->getValue())) {
   1782     Value *NOr = Builder->CreateOr(A, Op1);
   1783     NOr->takeName(Op0);
   1784     return BinaryOperator::CreateXor(NOr, C1);
   1785   }
   1786 
   1787   // Y|(X^C) -> (X|Y)^C iff Y&C == 0
   1788   if (Op1->hasOneUse() &&
   1789       match(Op1, m_Xor(m_Value(A), m_ConstantInt(C1))) &&
   1790       MaskedValueIsZero(Op0, C1->getValue())) {
   1791     Value *NOr = Builder->CreateOr(A, Op0);
   1792     NOr->takeName(Op0);
   1793     return BinaryOperator::CreateXor(NOr, C1);
   1794   }
   1795 
   1796   // (A & C)|(B & D)
   1797   Value *C = 0, *D = 0;
   1798   if (match(Op0, m_And(m_Value(A), m_Value(C))) &&
   1799       match(Op1, m_And(m_Value(B), m_Value(D)))) {
   1800     Value *V1 = 0, *V2 = 0;
   1801     C1 = dyn_cast<ConstantInt>(C);
   1802     C2 = dyn_cast<ConstantInt>(D);
   1803     if (C1 && C2) {  // (A & C1)|(B & C2)
   1804       // If we have: ((V + N) & C1) | (V & C2)
   1805       // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0
   1806       // replace with V+N.
   1807       if (C1->getValue() == ~C2->getValue()) {
   1808         if ((C2->getValue() & (C2->getValue()+1)) == 0 && // C2 == 0+1+
   1809             match(A, m_Add(m_Value(V1), m_Value(V2)))) {
   1810           // Add commutes, try both ways.
   1811           if (V1 == B && MaskedValueIsZero(V2, C2->getValue()))
   1812             return ReplaceInstUsesWith(I, A);
   1813           if (V2 == B && MaskedValueIsZero(V1, C2->getValue()))
   1814             return ReplaceInstUsesWith(I, A);
   1815         }
   1816         // Or commutes, try both ways.
   1817         if ((C1->getValue() & (C1->getValue()+1)) == 0 &&
   1818             match(B, m_Add(m_Value(V1), m_Value(V2)))) {
   1819           // Add commutes, try both ways.
   1820           if (V1 == A && MaskedValueIsZero(V2, C1->getValue()))
   1821             return ReplaceInstUsesWith(I, B);
   1822           if (V2 == A && MaskedValueIsZero(V1, C1->getValue()))
   1823             return ReplaceInstUsesWith(I, B);
   1824         }
   1825       }
   1826 
   1827       if ((C1->getValue() & C2->getValue()) == 0) {
   1828         // ((V | N) & C1) | (V & C2) --> (V|N) & (C1|C2)
   1829         // iff (C1&C2) == 0 and (N&~C1) == 0
   1830         if (match(A, m_Or(m_Value(V1), m_Value(V2))) &&
   1831             ((V1 == B && MaskedValueIsZero(V2, ~C1->getValue())) ||  // (V|N)
   1832              (V2 == B && MaskedValueIsZero(V1, ~C1->getValue()))))   // (N|V)
   1833           return BinaryOperator::CreateAnd(A,
   1834                                ConstantInt::get(A->getContext(),
   1835                                                 C1->getValue()|C2->getValue()));
   1836         // Or commutes, try both ways.
   1837         if (match(B, m_Or(m_Value(V1), m_Value(V2))) &&
   1838             ((V1 == A && MaskedValueIsZero(V2, ~C2->getValue())) ||  // (V|N)
   1839              (V2 == A && MaskedValueIsZero(V1, ~C2->getValue()))))   // (N|V)
   1840           return BinaryOperator::CreateAnd(B,
   1841                                ConstantInt::get(B->getContext(),
   1842                                                 C1->getValue()|C2->getValue()));
   1843 
   1844         // ((V|C3)&C1) | ((V|C4)&C2) --> (V|C3|C4)&(C1|C2)
   1845         // iff (C1&C2) == 0 and (C3&~C1) == 0 and (C4&~C2) == 0.
   1846         ConstantInt *C3 = 0, *C4 = 0;
   1847         if (match(A, m_Or(m_Value(V1), m_ConstantInt(C3))) &&
   1848             (C3->getValue() & ~C1->getValue()) == 0 &&
   1849             match(B, m_Or(m_Specific(V1), m_ConstantInt(C4))) &&
   1850             (C4->getValue() & ~C2->getValue()) == 0) {
   1851           V2 = Builder->CreateOr(V1, ConstantExpr::getOr(C3, C4), "bitfield");
   1852           return BinaryOperator::CreateAnd(V2,
   1853                                ConstantInt::get(B->getContext(),
   1854                                                 C1->getValue()|C2->getValue()));
   1855         }
   1856       }
   1857     }
   1858 
   1859     // (A & (C0?-1:0)) | (B & ~(C0?-1:0)) ->  C0 ? A : B, and commuted variants.
   1860     // Don't do this for vector select idioms, the code generator doesn't handle
   1861     // them well yet.
   1862     if (!I.getType()->isVectorTy()) {
   1863       if (Instruction *Match = MatchSelectFromAndOr(A, B, C, D))
   1864         return Match;
   1865       if (Instruction *Match = MatchSelectFromAndOr(B, A, D, C))
   1866         return Match;
   1867       if (Instruction *Match = MatchSelectFromAndOr(C, B, A, D))
   1868         return Match;
   1869       if (Instruction *Match = MatchSelectFromAndOr(D, A, B, C))
   1870         return Match;
   1871     }
   1872 
   1873     // ((A&~B)|(~A&B)) -> A^B
   1874     if ((match(C, m_Not(m_Specific(D))) &&
   1875          match(B, m_Not(m_Specific(A)))))
   1876       return BinaryOperator::CreateXor(A, D);
   1877     // ((~B&A)|(~A&B)) -> A^B
   1878     if ((match(A, m_Not(m_Specific(D))) &&
   1879          match(B, m_Not(m_Specific(C)))))
   1880       return BinaryOperator::CreateXor(C, D);
   1881     // ((A&~B)|(B&~A)) -> A^B
   1882     if ((match(C, m_Not(m_Specific(B))) &&
   1883          match(D, m_Not(m_Specific(A)))))
   1884       return BinaryOperator::CreateXor(A, B);
   1885     // ((~B&A)|(B&~A)) -> A^B
   1886     if ((match(A, m_Not(m_Specific(B))) &&
   1887          match(D, m_Not(m_Specific(C)))))
   1888       return BinaryOperator::CreateXor(C, B);
   1889 
   1890     // ((A|B)&1)|(B&-2) -> (A&1) | B
   1891     if (match(A, m_Or(m_Value(V1), m_Specific(B))) ||
   1892         match(A, m_Or(m_Specific(B), m_Value(V1)))) {
   1893       Instruction *Ret = FoldOrWithConstants(I, Op1, V1, B, C);
   1894       if (Ret) return Ret;
   1895     }
   1896     // (B&-2)|((A|B)&1) -> (A&1) | B
   1897     if (match(B, m_Or(m_Specific(A), m_Value(V1))) ||
   1898         match(B, m_Or(m_Value(V1), m_Specific(A)))) {
   1899       Instruction *Ret = FoldOrWithConstants(I, Op0, A, V1, D);
   1900       if (Ret) return Ret;
   1901     }
   1902   }
   1903 
   1904   // (X >> Z) | (Y >> Z)  -> (X|Y) >> Z  for all shifts.
   1905   if (BinaryOperator *SI1 = dyn_cast<BinaryOperator>(Op1)) {
   1906     if (BinaryOperator *SI0 = dyn_cast<BinaryOperator>(Op0))
   1907       if (SI0->isShift() && SI0->getOpcode() == SI1->getOpcode() &&
   1908           SI0->getOperand(1) == SI1->getOperand(1) &&
   1909           (SI0->hasOneUse() || SI1->hasOneUse())) {
   1910         Value *NewOp = Builder->CreateOr(SI0->getOperand(0), SI1->getOperand(0),
   1911                                          SI0->getName());
   1912         return BinaryOperator::Create(SI1->getOpcode(), NewOp,
   1913                                       SI1->getOperand(1));
   1914       }
   1915   }
   1916 
   1917   // (~A | ~B) == (~(A & B)) - De Morgan's Law
   1918   if (Value *Op0NotVal = dyn_castNotVal(Op0))
   1919     if (Value *Op1NotVal = dyn_castNotVal(Op1))
   1920       if (Op0->hasOneUse() && Op1->hasOneUse()) {
   1921         Value *And = Builder->CreateAnd(Op0NotVal, Op1NotVal,
   1922                                         I.getName()+".demorgan");
   1923         return BinaryOperator::CreateNot(And);
   1924       }
   1925 
   1926   // Canonicalize xor to the RHS.
   1927   bool SwappedForXor = false;
   1928   if (match(Op0, m_Xor(m_Value(), m_Value()))) {
   1929     std::swap(Op0, Op1);
   1930     SwappedForXor = true;
   1931   }
   1932 
   1933   // A | ( A ^ B) -> A |  B
   1934   // A | (~A ^ B) -> A | ~B
   1935   if (match(Op1, m_Xor(m_Value(A), m_Value(B)))) {
   1936     if (Op0 == A || Op0 == B)
   1937       return BinaryOperator::CreateOr(A, B);
   1938 
   1939     if (Op1->hasOneUse() && match(A, m_Not(m_Specific(Op0)))) {
   1940       Value *Not = Builder->CreateNot(B, B->getName()+".not");
   1941       return BinaryOperator::CreateOr(Not, Op0);
   1942     }
   1943     if (Op1->hasOneUse() && match(B, m_Not(m_Specific(Op0)))) {
   1944       Value *Not = Builder->CreateNot(A, A->getName()+".not");
   1945       return BinaryOperator::CreateOr(Not, Op0);
   1946     }
   1947   }
   1948 
   1949   // A | ~(A | B) -> A | ~B
   1950   // A | ~(A ^ B) -> A | ~B
   1951   if (match(Op1, m_Not(m_Value(A))))
   1952     if (BinaryOperator *B = dyn_cast<BinaryOperator>(A))
   1953       if ((Op0 == B->getOperand(0) || Op0 == B->getOperand(1)) &&
   1954           Op1->hasOneUse() && (B->getOpcode() == Instruction::Or ||
   1955                                B->getOpcode() == Instruction::Xor)) {
   1956         Value *NotOp = Op0 == B->getOperand(0) ? B->getOperand(1) :
   1957                                                  B->getOperand(0);
   1958         Value *Not = Builder->CreateNot(NotOp, NotOp->getName()+".not");
   1959         return BinaryOperator::CreateOr(Not, Op0);
   1960       }
   1961 
   1962   if (SwappedForXor)
   1963     std::swap(Op0, Op1);
   1964 
   1965   if (ICmpInst *RHS = dyn_cast<ICmpInst>(I.getOperand(1)))
   1966     if (ICmpInst *LHS = dyn_cast<ICmpInst>(I.getOperand(0)))
   1967       if (Value *Res = FoldOrOfICmps(LHS, RHS))
   1968         return ReplaceInstUsesWith(I, Res);
   1969 
   1970   // (fcmp uno x, c) | (fcmp uno y, c)  -> (fcmp uno x, y)
   1971   if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0)))
   1972     if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1)))
   1973       if (Value *Res = FoldOrOfFCmps(LHS, RHS))
   1974         return ReplaceInstUsesWith(I, Res);
   1975 
   1976   // fold (or (cast A), (cast B)) -> (cast (or A, B))
   1977   if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
   1978     CastInst *Op1C = dyn_cast<CastInst>(Op1);
   1979     if (Op1C && Op0C->getOpcode() == Op1C->getOpcode()) {// same cast kind ?
   1980       Type *SrcTy = Op0C->getOperand(0)->getType();
   1981       if (SrcTy == Op1C->getOperand(0)->getType() &&
   1982           SrcTy->isIntOrIntVectorTy()) {
   1983         Value *Op0COp = Op0C->getOperand(0), *Op1COp = Op1C->getOperand(0);
   1984 
   1985         if ((!isa<ICmpInst>(Op0COp) || !isa<ICmpInst>(Op1COp)) &&
   1986             // Only do this if the casts both really cause code to be
   1987             // generated.
   1988             ShouldOptimizeCast(Op0C->getOpcode(), Op0COp, I.getType()) &&
   1989             ShouldOptimizeCast(Op1C->getOpcode(), Op1COp, I.getType())) {
   1990           Value *NewOp = Builder->CreateOr(Op0COp, Op1COp, I.getName());
   1991           return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
   1992         }
   1993 
   1994         // If this is or(cast(icmp), cast(icmp)), try to fold this even if the
   1995         // cast is otherwise not optimizable.  This happens for vector sexts.
   1996         if (ICmpInst *RHS = dyn_cast<ICmpInst>(Op1COp))
   1997           if (ICmpInst *LHS = dyn_cast<ICmpInst>(Op0COp))
   1998             if (Value *Res = FoldOrOfICmps(LHS, RHS))
   1999               return CastInst::Create(Op0C->getOpcode(), Res, I.getType());
   2000 
   2001         // If this is or(cast(fcmp), cast(fcmp)), try to fold this even if the
   2002         // cast is otherwise not optimizable.  This happens for vector sexts.
   2003         if (FCmpInst *RHS = dyn_cast<FCmpInst>(Op1COp))
   2004           if (FCmpInst *LHS = dyn_cast<FCmpInst>(Op0COp))
   2005             if (Value *Res = FoldOrOfFCmps(LHS, RHS))
   2006               return CastInst::Create(Op0C->getOpcode(), Res, I.getType());
   2007       }
   2008     }
   2009   }
   2010 
   2011   // or(sext(A), B) -> A ? -1 : B where A is an i1
   2012   // or(A, sext(B)) -> B ? -1 : A where B is an i1
   2013   if (match(Op0, m_SExt(m_Value(A))) && A->getType()->isIntegerTy(1))
   2014     return SelectInst::Create(A, ConstantInt::getSigned(I.getType(), -1), Op1);
   2015   if (match(Op1, m_SExt(m_Value(A))) && A->getType()->isIntegerTy(1))
   2016     return SelectInst::Create(A, ConstantInt::getSigned(I.getType(), -1), Op0);
   2017 
   2018   // Note: If we've gotten to the point of visiting the outer OR, then the
   2019   // inner one couldn't be simplified.  If it was a constant, then it won't
   2020   // be simplified by a later pass either, so we try swapping the inner/outer
   2021   // ORs in the hopes that we'll be able to simplify it this way.
   2022   // (X|C) | V --> (X|V) | C
   2023   if (Op0->hasOneUse() && !isa<ConstantInt>(Op1) &&
   2024       match(Op0, m_Or(m_Value(A), m_ConstantInt(C1)))) {
   2025     Value *Inner = Builder->CreateOr(A, Op1);
   2026     Inner->takeName(Op0);
   2027     return BinaryOperator::CreateOr(Inner, C1);
   2028   }
   2029 
   2030   return Changed ? &I : 0;
   2031 }
   2032 
   2033 Instruction *InstCombiner::visitXor(BinaryOperator &I) {
   2034   bool Changed = SimplifyAssociativeOrCommutative(I);
   2035   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
   2036 
   2037   if (Value *V = SimplifyXorInst(Op0, Op1, TD))
   2038     return ReplaceInstUsesWith(I, V);
   2039 
   2040   // (A&B)^(A&C) -> A&(B^C) etc
   2041   if (Value *V = SimplifyUsingDistributiveLaws(I))
   2042     return ReplaceInstUsesWith(I, V);
   2043 
   2044   // See if we can simplify any instructions used by the instruction whose sole
   2045   // purpose is to compute bits we don't care about.
   2046   if (SimplifyDemandedInstructionBits(I))
   2047     return &I;
   2048 
   2049   // Is this a ~ operation?
   2050   if (Value *NotOp = dyn_castNotVal(&I)) {
   2051     if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(NotOp)) {
   2052       if (Op0I->getOpcode() == Instruction::And ||
   2053           Op0I->getOpcode() == Instruction::Or) {
   2054         // ~(~X & Y) --> (X | ~Y) - De Morgan's Law
   2055         // ~(~X | Y) === (X & ~Y) - De Morgan's Law
   2056         if (dyn_castNotVal(Op0I->getOperand(1)))
   2057           Op0I->swapOperands();
   2058         if (Value *Op0NotVal = dyn_castNotVal(Op0I->getOperand(0))) {
   2059           Value *NotY =
   2060             Builder->CreateNot(Op0I->getOperand(1),
   2061                                Op0I->getOperand(1)->getName()+".not");
   2062           if (Op0I->getOpcode() == Instruction::And)
   2063             return BinaryOperator::CreateOr(Op0NotVal, NotY);
   2064           return BinaryOperator::CreateAnd(Op0NotVal, NotY);
   2065         }
   2066 
   2067         // ~(X & Y) --> (~X | ~Y) - De Morgan's Law
   2068         // ~(X | Y) === (~X & ~Y) - De Morgan's Law
   2069         if (isFreeToInvert(Op0I->getOperand(0)) &&
   2070             isFreeToInvert(Op0I->getOperand(1))) {
   2071           Value *NotX =
   2072             Builder->CreateNot(Op0I->getOperand(0), "notlhs");
   2073           Value *NotY =
   2074             Builder->CreateNot(Op0I->getOperand(1), "notrhs");
   2075           if (Op0I->getOpcode() == Instruction::And)
   2076             return BinaryOperator::CreateOr(NotX, NotY);
   2077           return BinaryOperator::CreateAnd(NotX, NotY);
   2078         }
   2079 
   2080       } else if (Op0I->getOpcode() == Instruction::AShr) {
   2081         // ~(~X >>s Y) --> (X >>s Y)
   2082         if (Value *Op0NotVal = dyn_castNotVal(Op0I->getOperand(0)))
   2083           return BinaryOperator::CreateAShr(Op0NotVal, Op0I->getOperand(1));
   2084       }
   2085     }
   2086   }
   2087 
   2088 
   2089   if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
   2090     if (RHS->isOne() && Op0->hasOneUse())
   2091       // xor (cmp A, B), true = not (cmp A, B) = !cmp A, B
   2092       if (CmpInst *CI = dyn_cast<CmpInst>(Op0))
   2093         return CmpInst::Create(CI->getOpcode(),
   2094                                CI->getInversePredicate(),
   2095                                CI->getOperand(0), CI->getOperand(1));
   2096 
   2097     // fold (xor(zext(cmp)), 1) and (xor(sext(cmp)), -1) to ext(!cmp).
   2098     if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
   2099       if (CmpInst *CI = dyn_cast<CmpInst>(Op0C->getOperand(0))) {
   2100         if (CI->hasOneUse() && Op0C->hasOneUse()) {
   2101           Instruction::CastOps Opcode = Op0C->getOpcode();
   2102           if ((Opcode == Instruction::ZExt || Opcode == Instruction::SExt) &&
   2103               (RHS == ConstantExpr::getCast(Opcode,
   2104                                            ConstantInt::getTrue(I.getContext()),
   2105                                             Op0C->getDestTy()))) {
   2106             CI->setPredicate(CI->getInversePredicate());
   2107             return CastInst::Create(Opcode, CI, Op0C->getType());
   2108           }
   2109         }
   2110       }
   2111     }
   2112 
   2113     if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
   2114       // ~(c-X) == X-c-1 == X+(-c-1)
   2115       if (Op0I->getOpcode() == Instruction::Sub && RHS->isAllOnesValue())
   2116         if (Constant *Op0I0C = dyn_cast<Constant>(Op0I->getOperand(0))) {
   2117           Constant *NegOp0I0C = ConstantExpr::getNeg(Op0I0C);
   2118           Constant *ConstantRHS = ConstantExpr::getSub(NegOp0I0C,
   2119                                       ConstantInt::get(I.getType(), 1));
   2120           return BinaryOperator::CreateAdd(Op0I->getOperand(1), ConstantRHS);
   2121         }
   2122 
   2123       if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1))) {
   2124         if (Op0I->getOpcode() == Instruction::Add) {
   2125           // ~(X-c) --> (-c-1)-X
   2126           if (RHS->isAllOnesValue()) {
   2127             Constant *NegOp0CI = ConstantExpr::getNeg(Op0CI);
   2128             return BinaryOperator::CreateSub(
   2129                            ConstantExpr::getSub(NegOp0CI,
   2130                                       ConstantInt::get(I.getType(), 1)),
   2131                                       Op0I->getOperand(0));
   2132           } else if (RHS->getValue().isSignBit()) {
   2133             // (X + C) ^ signbit -> (X + C + signbit)
   2134             Constant *C = ConstantInt::get(I.getContext(),
   2135                                            RHS->getValue() + Op0CI->getValue());
   2136             return BinaryOperator::CreateAdd(Op0I->getOperand(0), C);
   2137 
   2138           }
   2139         } else if (Op0I->getOpcode() == Instruction::Or) {
   2140           // (X|C1)^C2 -> X^(C1|C2) iff X&~C1 == 0
   2141           if (MaskedValueIsZero(Op0I->getOperand(0), Op0CI->getValue())) {
   2142             Constant *NewRHS = ConstantExpr::getOr(Op0CI, RHS);
   2143             // Anything in both C1 and C2 is known to be zero, remove it from
   2144             // NewRHS.
   2145             Constant *CommonBits = ConstantExpr::getAnd(Op0CI, RHS);
   2146             NewRHS = ConstantExpr::getAnd(NewRHS,
   2147                                        ConstantExpr::getNot(CommonBits));
   2148             Worklist.Add(Op0I);
   2149             I.setOperand(0, Op0I->getOperand(0));
   2150             I.setOperand(1, NewRHS);
   2151             return &I;
   2152           }
   2153         }
   2154       }
   2155     }
   2156 
   2157     // Try to fold constant and into select arguments.
   2158     if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
   2159       if (Instruction *R = FoldOpIntoSelect(I, SI))
   2160         return R;
   2161     if (isa<PHINode>(Op0))
   2162       if (Instruction *NV = FoldOpIntoPhi(I))
   2163         return NV;
   2164   }
   2165 
   2166   BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1);
   2167   if (Op1I) {
   2168     Value *A, *B;
   2169     if (match(Op1I, m_Or(m_Value(A), m_Value(B)))) {
   2170       if (A == Op0) {              // B^(B|A) == (A|B)^B
   2171         Op1I->swapOperands();
   2172         I.swapOperands();
   2173         std::swap(Op0, Op1);
   2174       } else if (B == Op0) {       // B^(A|B) == (A|B)^B
   2175         I.swapOperands();     // Simplified below.
   2176         std::swap(Op0, Op1);
   2177       }
   2178     } else if (match(Op1I, m_And(m_Value(A), m_Value(B))) &&
   2179                Op1I->hasOneUse()){
   2180       if (A == Op0) {                                      // A^(A&B) -> A^(B&A)
   2181         Op1I->swapOperands();
   2182         std::swap(A, B);
   2183       }
   2184       if (B == Op0) {                                      // A^(B&A) -> (B&A)^A
   2185         I.swapOperands();     // Simplified below.
   2186         std::swap(Op0, Op1);
   2187       }
   2188     }
   2189   }
   2190 
   2191   BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0);
   2192   if (Op0I) {
   2193     Value *A, *B;
   2194     if (match(Op0I, m_Or(m_Value(A), m_Value(B))) &&
   2195         Op0I->hasOneUse()) {
   2196       if (A == Op1)                                  // (B|A)^B == (A|B)^B
   2197         std::swap(A, B);
   2198       if (B == Op1)                                  // (A|B)^B == A & ~B
   2199         return BinaryOperator::CreateAnd(A, Builder->CreateNot(Op1));
   2200     } else if (match(Op0I, m_And(m_Value(A), m_Value(B))) &&
   2201                Op0I->hasOneUse()){
   2202       if (A == Op1)                                        // (A&B)^A -> (B&A)^A
   2203         std::swap(A, B);
   2204       if (B == Op1 &&                                      // (B&A)^A == ~B & A
   2205           !isa<ConstantInt>(Op1)) {  // Canonical form is (B&C)^C
   2206         return BinaryOperator::CreateAnd(Builder->CreateNot(A), Op1);
   2207       }
   2208     }
   2209   }
   2210 
   2211   // (X >> Z) ^ (Y >> Z)  -> (X^Y) >> Z  for all shifts.
   2212   if (Op0I && Op1I && Op0I->isShift() &&
   2213       Op0I->getOpcode() == Op1I->getOpcode() &&
   2214       Op0I->getOperand(1) == Op1I->getOperand(1) &&
   2215       (Op1I->hasOneUse() || Op1I->hasOneUse())) {
   2216     Value *NewOp =
   2217       Builder->CreateXor(Op0I->getOperand(0), Op1I->getOperand(0),
   2218                          Op0I->getName());
   2219     return BinaryOperator::Create(Op1I->getOpcode(), NewOp,
   2220                                   Op1I->getOperand(1));
   2221   }
   2222 
   2223   if (Op0I && Op1I) {
   2224     Value *A, *B, *C, *D;
   2225     // (A & B)^(A | B) -> A ^ B
   2226     if (match(Op0I, m_And(m_Value(A), m_Value(B))) &&
   2227         match(Op1I, m_Or(m_Value(C), m_Value(D)))) {
   2228       if ((A == C && B == D) || (A == D && B == C))
   2229         return BinaryOperator::CreateXor(A, B);
   2230     }
   2231     // (A | B)^(A & B) -> A ^ B
   2232     if (match(Op0I, m_Or(m_Value(A), m_Value(B))) &&
   2233         match(Op1I, m_And(m_Value(C), m_Value(D)))) {
   2234       if ((A == C && B == D) || (A == D && B == C))
   2235         return BinaryOperator::CreateXor(A, B);
   2236     }
   2237   }
   2238 
   2239   // (icmp1 A, B) ^ (icmp2 A, B) --> (icmp3 A, B)
   2240   if (ICmpInst *RHS = dyn_cast<ICmpInst>(I.getOperand(1)))
   2241     if (ICmpInst *LHS = dyn_cast<ICmpInst>(I.getOperand(0)))
   2242       if (PredicatesFoldable(LHS->getPredicate(), RHS->getPredicate())) {
   2243         if (LHS->getOperand(0) == RHS->getOperand(1) &&
   2244             LHS->getOperand(1) == RHS->getOperand(0))
   2245           LHS->swapOperands();
   2246         if (LHS->getOperand(0) == RHS->getOperand(0) &&
   2247             LHS->getOperand(1) == RHS->getOperand(1)) {
   2248           Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1);
   2249           unsigned Code = getICmpCode(LHS) ^ getICmpCode(RHS);
   2250           bool isSigned = LHS->isSigned() || RHS->isSigned();
   2251           return ReplaceInstUsesWith(I,
   2252                                getNewICmpValue(isSigned, Code, Op0, Op1,
   2253                                                Builder));
   2254         }
   2255       }
   2256 
   2257   // fold (xor (cast A), (cast B)) -> (cast (xor A, B))
   2258   if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
   2259     if (CastInst *Op1C = dyn_cast<CastInst>(Op1))
   2260       if (Op0C->getOpcode() == Op1C->getOpcode()) { // same cast kind?
   2261         Type *SrcTy = Op0C->getOperand(0)->getType();
   2262         if (SrcTy == Op1C->getOperand(0)->getType() && SrcTy->isIntegerTy() &&
   2263             // Only do this if the casts both really cause code to be generated.
   2264             ShouldOptimizeCast(Op0C->getOpcode(), Op0C->getOperand(0),
   2265                                I.getType()) &&
   2266             ShouldOptimizeCast(Op1C->getOpcode(), Op1C->getOperand(0),
   2267                                I.getType())) {
   2268           Value *NewOp = Builder->CreateXor(Op0C->getOperand(0),
   2269                                             Op1C->getOperand(0), I.getName());
   2270           return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
   2271         }
   2272       }
   2273   }
   2274 
   2275   return Changed ? &I : 0;
   2276 }
   2277