Home | History | Annotate | Download | only in CodeGen
      1 //===- RegisterCoalescer.cpp - Generic Register Coalescing Interface -------==//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the generic RegisterCoalescer interface which
     11 // is used as the common interface used by all clients and
     12 // implementations of register coalescing.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #define DEBUG_TYPE "regalloc"
     17 #include "RegisterCoalescer.h"
     18 #include "LiveDebugVariables.h"
     19 #include "RegisterClassInfo.h"
     20 #include "VirtRegMap.h"
     21 
     22 #include "llvm/Pass.h"
     23 #include "llvm/Value.h"
     24 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
     25 #include "llvm/CodeGen/MachineInstr.h"
     26 #include "llvm/CodeGen/MachineRegisterInfo.h"
     27 #include "llvm/Target/TargetInstrInfo.h"
     28 #include "llvm/Target/TargetRegisterInfo.h"
     29 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
     30 #include "llvm/Analysis/AliasAnalysis.h"
     31 #include "llvm/CodeGen/MachineFrameInfo.h"
     32 #include "llvm/CodeGen/MachineInstr.h"
     33 #include "llvm/CodeGen/MachineLoopInfo.h"
     34 #include "llvm/CodeGen/MachineRegisterInfo.h"
     35 #include "llvm/CodeGen/Passes.h"
     36 #include "llvm/Target/TargetInstrInfo.h"
     37 #include "llvm/Target/TargetMachine.h"
     38 #include "llvm/Target/TargetOptions.h"
     39 #include "llvm/Support/CommandLine.h"
     40 #include "llvm/Support/Debug.h"
     41 #include "llvm/Support/ErrorHandling.h"
     42 #include "llvm/Support/raw_ostream.h"
     43 #include "llvm/ADT/OwningPtr.h"
     44 #include "llvm/ADT/SmallSet.h"
     45 #include "llvm/ADT/Statistic.h"
     46 #include "llvm/ADT/STLExtras.h"
     47 #include <algorithm>
     48 #include <cmath>
     49 using namespace llvm;
     50 
     51 STATISTIC(numJoins    , "Number of interval joins performed");
     52 STATISTIC(numCrossRCs , "Number of cross class joins performed");
     53 STATISTIC(numCommutes , "Number of instruction commuting performed");
     54 STATISTIC(numExtends  , "Number of copies extended");
     55 STATISTIC(NumReMats   , "Number of instructions re-materialized");
     56 STATISTIC(numPeep     , "Number of identity moves eliminated after coalescing");
     57 STATISTIC(numAborts   , "Number of times interval joining aborted");
     58 STATISTIC(NumInflated , "Number of register classes inflated");
     59 
     60 static cl::opt<bool>
     61 EnableJoining("join-liveintervals",
     62               cl::desc("Coalesce copies (default=true)"),
     63               cl::init(true));
     64 
     65 static cl::opt<bool>
     66 DisableCrossClassJoin("disable-cross-class-join",
     67                cl::desc("Avoid coalescing cross register class copies"),
     68                cl::init(false), cl::Hidden);
     69 
     70 static cl::opt<bool>
     71 EnablePhysicalJoin("join-physregs",
     72                    cl::desc("Join physical register copies"),
     73                    cl::init(false), cl::Hidden);
     74 
     75 static cl::opt<bool>
     76 VerifyCoalescing("verify-coalescing",
     77          cl::desc("Verify machine instrs before and after register coalescing"),
     78          cl::Hidden);
     79 
     80 namespace {
     81   class RegisterCoalescer : public MachineFunctionPass {
     82     MachineFunction* MF;
     83     MachineRegisterInfo* MRI;
     84     const TargetMachine* TM;
     85     const TargetRegisterInfo* TRI;
     86     const TargetInstrInfo* TII;
     87     LiveIntervals *LIS;
     88     LiveDebugVariables *LDV;
     89     const MachineLoopInfo* Loops;
     90     AliasAnalysis *AA;
     91     RegisterClassInfo RegClassInfo;
     92 
     93     /// JoinedCopies - Keep track of copies eliminated due to coalescing.
     94     ///
     95     SmallPtrSet<MachineInstr*, 32> JoinedCopies;
     96 
     97     /// ReMatCopies - Keep track of copies eliminated due to remat.
     98     ///
     99     SmallPtrSet<MachineInstr*, 32> ReMatCopies;
    100 
    101     /// ReMatDefs - Keep track of definition instructions which have
    102     /// been remat'ed.
    103     SmallPtrSet<MachineInstr*, 8> ReMatDefs;
    104 
    105     /// joinIntervals - join compatible live intervals
    106     void joinIntervals();
    107 
    108     /// CopyCoalesceInMBB - Coalesce copies in the specified MBB, putting
    109     /// copies that cannot yet be coalesced into the "TryAgain" list.
    110     void CopyCoalesceInMBB(MachineBasicBlock *MBB,
    111                            std::vector<MachineInstr*> &TryAgain);
    112 
    113     /// JoinCopy - Attempt to join intervals corresponding to SrcReg/DstReg,
    114     /// which are the src/dst of the copy instruction CopyMI.  This returns
    115     /// true if the copy was successfully coalesced away. If it is not
    116     /// currently possible to coalesce this interval, but it may be possible if
    117     /// other things get coalesced, then it returns true by reference in
    118     /// 'Again'.
    119     bool JoinCopy(MachineInstr *TheCopy, bool &Again);
    120 
    121     /// JoinIntervals - Attempt to join these two intervals.  On failure, this
    122     /// returns false.  The output "SrcInt" will not have been modified, so we
    123     /// can use this information below to update aliases.
    124     bool JoinIntervals(CoalescerPair &CP);
    125 
    126     /// AdjustCopiesBackFrom - We found a non-trivially-coalescable copy. If
    127     /// the source value number is defined by a copy from the destination reg
    128     /// see if we can merge these two destination reg valno# into a single
    129     /// value number, eliminating a copy.
    130     bool AdjustCopiesBackFrom(const CoalescerPair &CP, MachineInstr *CopyMI);
    131 
    132     /// HasOtherReachingDefs - Return true if there are definitions of IntB
    133     /// other than BValNo val# that can reach uses of AValno val# of IntA.
    134     bool HasOtherReachingDefs(LiveInterval &IntA, LiveInterval &IntB,
    135                               VNInfo *AValNo, VNInfo *BValNo);
    136 
    137     /// RemoveCopyByCommutingDef - We found a non-trivially-coalescable copy.
    138     /// If the source value number is defined by a commutable instruction and
    139     /// its other operand is coalesced to the copy dest register, see if we
    140     /// can transform the copy into a noop by commuting the definition.
    141     bool RemoveCopyByCommutingDef(const CoalescerPair &CP,MachineInstr *CopyMI);
    142 
    143     /// ReMaterializeTrivialDef - If the source of a copy is defined by a
    144     /// trivial computation, replace the copy by rematerialize the definition.
    145     /// If PreserveSrcInt is true, make sure SrcInt is valid after the call.
    146     bool ReMaterializeTrivialDef(LiveInterval &SrcInt, bool PreserveSrcInt,
    147                                  unsigned DstReg, MachineInstr *CopyMI);
    148 
    149     /// shouldJoinPhys - Return true if a physreg copy should be joined.
    150     bool shouldJoinPhys(CoalescerPair &CP);
    151 
    152     /// isWinToJoinCrossClass - Return true if it's profitable to coalesce
    153     /// two virtual registers from different register classes.
    154     bool isWinToJoinCrossClass(unsigned SrcReg,
    155                                unsigned DstReg,
    156                                const TargetRegisterClass *SrcRC,
    157                                const TargetRegisterClass *DstRC,
    158                                const TargetRegisterClass *NewRC);
    159 
    160     /// UpdateRegDefsUses - Replace all defs and uses of SrcReg to DstReg and
    161     /// update the subregister number if it is not zero. If DstReg is a
    162     /// physical register and the existing subregister number of the def / use
    163     /// being updated is not zero, make sure to set it to the correct physical
    164     /// subregister.
    165     void UpdateRegDefsUses(const CoalescerPair &CP);
    166 
    167     /// RemoveDeadDef - If a def of a live interval is now determined dead,
    168     /// remove the val# it defines. If the live interval becomes empty, remove
    169     /// it as well.
    170     bool RemoveDeadDef(LiveInterval &li, MachineInstr *DefMI);
    171 
    172     /// markAsJoined - Remember that CopyMI has already been joined.
    173     void markAsJoined(MachineInstr *CopyMI);
    174 
    175     /// eliminateUndefCopy - Handle copies of undef values.
    176     bool eliminateUndefCopy(MachineInstr *CopyMI, const CoalescerPair &CP);
    177 
    178   public:
    179     static char ID; // Class identification, replacement for typeinfo
    180     RegisterCoalescer() : MachineFunctionPass(ID) {
    181       initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry());
    182     }
    183 
    184     virtual void getAnalysisUsage(AnalysisUsage &AU) const;
    185 
    186     virtual void releaseMemory();
    187 
    188     /// runOnMachineFunction - pass entry point
    189     virtual bool runOnMachineFunction(MachineFunction&);
    190 
    191     /// print - Implement the dump method.
    192     virtual void print(raw_ostream &O, const Module* = 0) const;
    193   };
    194 } /// end anonymous namespace
    195 
    196 char &llvm::RegisterCoalescerID = RegisterCoalescer::ID;
    197 
    198 INITIALIZE_PASS_BEGIN(RegisterCoalescer, "simple-register-coalescing",
    199                       "Simple Register Coalescing", false, false)
    200 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
    201 INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables)
    202 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
    203 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
    204 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
    205 INITIALIZE_PASS_END(RegisterCoalescer, "simple-register-coalescing",
    206                     "Simple Register Coalescing", false, false)
    207 
    208 char RegisterCoalescer::ID = 0;
    209 
    210 static unsigned compose(const TargetRegisterInfo &tri, unsigned a, unsigned b) {
    211   if (!a) return b;
    212   if (!b) return a;
    213   return tri.composeSubRegIndices(a, b);
    214 }
    215 
    216 static bool isMoveInstr(const TargetRegisterInfo &tri, const MachineInstr *MI,
    217                         unsigned &Src, unsigned &Dst,
    218                         unsigned &SrcSub, unsigned &DstSub) {
    219   if (MI->isCopy()) {
    220     Dst = MI->getOperand(0).getReg();
    221     DstSub = MI->getOperand(0).getSubReg();
    222     Src = MI->getOperand(1).getReg();
    223     SrcSub = MI->getOperand(1).getSubReg();
    224   } else if (MI->isSubregToReg()) {
    225     Dst = MI->getOperand(0).getReg();
    226     DstSub = compose(tri, MI->getOperand(0).getSubReg(),
    227                      MI->getOperand(3).getImm());
    228     Src = MI->getOperand(2).getReg();
    229     SrcSub = MI->getOperand(2).getSubReg();
    230   } else
    231     return false;
    232   return true;
    233 }
    234 
    235 bool CoalescerPair::setRegisters(const MachineInstr *MI) {
    236   SrcReg = DstReg = SubIdx = 0;
    237   NewRC = 0;
    238   Flipped = CrossClass = false;
    239 
    240   unsigned Src, Dst, SrcSub, DstSub;
    241   if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub))
    242     return false;
    243   Partial = SrcSub || DstSub;
    244 
    245   // If one register is a physreg, it must be Dst.
    246   if (TargetRegisterInfo::isPhysicalRegister(Src)) {
    247     if (TargetRegisterInfo::isPhysicalRegister(Dst))
    248       return false;
    249     std::swap(Src, Dst);
    250     std::swap(SrcSub, DstSub);
    251     Flipped = true;
    252   }
    253 
    254   const MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
    255 
    256   if (TargetRegisterInfo::isPhysicalRegister(Dst)) {
    257     // Eliminate DstSub on a physreg.
    258     if (DstSub) {
    259       Dst = TRI.getSubReg(Dst, DstSub);
    260       if (!Dst) return false;
    261       DstSub = 0;
    262     }
    263 
    264     // Eliminate SrcSub by picking a corresponding Dst superregister.
    265     if (SrcSub) {
    266       Dst = TRI.getMatchingSuperReg(Dst, SrcSub, MRI.getRegClass(Src));
    267       if (!Dst) return false;
    268       SrcSub = 0;
    269     } else if (!MRI.getRegClass(Src)->contains(Dst)) {
    270       return false;
    271     }
    272   } else {
    273     // Both registers are virtual.
    274 
    275     // Both registers have subreg indices.
    276     if (SrcSub && DstSub) {
    277       // For now we only handle the case of identical indices in commensurate
    278       // registers: Dreg:ssub_1 + Dreg:ssub_1 -> Dreg
    279       // FIXME: Handle Qreg:ssub_3 + Dreg:ssub_1 as QReg:dsub_1 + Dreg.
    280       if (SrcSub != DstSub)
    281         return false;
    282       const TargetRegisterClass *SrcRC = MRI.getRegClass(Src);
    283       const TargetRegisterClass *DstRC = MRI.getRegClass(Dst);
    284       if (!TRI.getCommonSubClass(DstRC, SrcRC))
    285         return false;
    286       SrcSub = DstSub = 0;
    287     }
    288 
    289     // There can be no SrcSub.
    290     if (SrcSub) {
    291       std::swap(Src, Dst);
    292       DstSub = SrcSub;
    293       SrcSub = 0;
    294       assert(!Flipped && "Unexpected flip");
    295       Flipped = true;
    296     }
    297 
    298     // Find the new register class.
    299     const TargetRegisterClass *SrcRC = MRI.getRegClass(Src);
    300     const TargetRegisterClass *DstRC = MRI.getRegClass(Dst);
    301     if (DstSub)
    302       NewRC = TRI.getMatchingSuperRegClass(DstRC, SrcRC, DstSub);
    303     else
    304       NewRC = TRI.getCommonSubClass(DstRC, SrcRC);
    305     if (!NewRC)
    306       return false;
    307     CrossClass = NewRC != DstRC || NewRC != SrcRC;
    308   }
    309   // Check our invariants
    310   assert(TargetRegisterInfo::isVirtualRegister(Src) && "Src must be virtual");
    311   assert(!(TargetRegisterInfo::isPhysicalRegister(Dst) && DstSub) &&
    312          "Cannot have a physical SubIdx");
    313   SrcReg = Src;
    314   DstReg = Dst;
    315   SubIdx = DstSub;
    316   return true;
    317 }
    318 
    319 bool CoalescerPair::flip() {
    320   if (SubIdx || TargetRegisterInfo::isPhysicalRegister(DstReg))
    321     return false;
    322   std::swap(SrcReg, DstReg);
    323   Flipped = !Flipped;
    324   return true;
    325 }
    326 
    327 bool CoalescerPair::isCoalescable(const MachineInstr *MI) const {
    328   if (!MI)
    329     return false;
    330   unsigned Src, Dst, SrcSub, DstSub;
    331   if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub))
    332     return false;
    333 
    334   // Find the virtual register that is SrcReg.
    335   if (Dst == SrcReg) {
    336     std::swap(Src, Dst);
    337     std::swap(SrcSub, DstSub);
    338   } else if (Src != SrcReg) {
    339     return false;
    340   }
    341 
    342   // Now check that Dst matches DstReg.
    343   if (TargetRegisterInfo::isPhysicalRegister(DstReg)) {
    344     if (!TargetRegisterInfo::isPhysicalRegister(Dst))
    345       return false;
    346     assert(!SubIdx && "Inconsistent CoalescerPair state.");
    347     // DstSub could be set for a physreg from INSERT_SUBREG.
    348     if (DstSub)
    349       Dst = TRI.getSubReg(Dst, DstSub);
    350     // Full copy of Src.
    351     if (!SrcSub)
    352       return DstReg == Dst;
    353     // This is a partial register copy. Check that the parts match.
    354     return TRI.getSubReg(DstReg, SrcSub) == Dst;
    355   } else {
    356     // DstReg is virtual.
    357     if (DstReg != Dst)
    358       return false;
    359     // Registers match, do the subregisters line up?
    360     return compose(TRI, SubIdx, SrcSub) == DstSub;
    361   }
    362 }
    363 
    364 void RegisterCoalescer::getAnalysisUsage(AnalysisUsage &AU) const {
    365   AU.setPreservesCFG();
    366   AU.addRequired<AliasAnalysis>();
    367   AU.addRequired<LiveIntervals>();
    368   AU.addPreserved<LiveIntervals>();
    369   AU.addRequired<LiveDebugVariables>();
    370   AU.addPreserved<LiveDebugVariables>();
    371   AU.addPreserved<SlotIndexes>();
    372   AU.addRequired<MachineLoopInfo>();
    373   AU.addPreserved<MachineLoopInfo>();
    374   AU.addPreservedID(MachineDominatorsID);
    375   MachineFunctionPass::getAnalysisUsage(AU);
    376 }
    377 
    378 void RegisterCoalescer::markAsJoined(MachineInstr *CopyMI) {
    379   /// Joined copies are not deleted immediately, but kept in JoinedCopies.
    380   JoinedCopies.insert(CopyMI);
    381 
    382   /// Mark all register operands of CopyMI as <undef> so they won't affect dead
    383   /// code elimination.
    384   for (MachineInstr::mop_iterator I = CopyMI->operands_begin(),
    385        E = CopyMI->operands_end(); I != E; ++I)
    386     if (I->isReg())
    387       I->setIsUndef(true);
    388 }
    389 
    390 /// AdjustCopiesBackFrom - We found a non-trivially-coalescable copy with IntA
    391 /// being the source and IntB being the dest, thus this defines a value number
    392 /// in IntB.  If the source value number (in IntA) is defined by a copy from B,
    393 /// see if we can merge these two pieces of B into a single value number,
    394 /// eliminating a copy.  For example:
    395 ///
    396 ///  A3 = B0
    397 ///    ...
    398 ///  B1 = A3      <- this copy
    399 ///
    400 /// In this case, B0 can be extended to where the B1 copy lives, allowing the B1
    401 /// value number to be replaced with B0 (which simplifies the B liveinterval).
    402 ///
    403 /// This returns true if an interval was modified.
    404 ///
    405 bool RegisterCoalescer::AdjustCopiesBackFrom(const CoalescerPair &CP,
    406                                                     MachineInstr *CopyMI) {
    407   // Bail if there is no dst interval - can happen when merging physical subreg
    408   // operations.
    409   if (!LIS->hasInterval(CP.getDstReg()))
    410     return false;
    411 
    412   LiveInterval &IntA =
    413     LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
    414   LiveInterval &IntB =
    415     LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
    416   SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot();
    417 
    418   // BValNo is a value number in B that is defined by a copy from A.  'B3' in
    419   // the example above.
    420   LiveInterval::iterator BLR = IntB.FindLiveRangeContaining(CopyIdx);
    421   if (BLR == IntB.end()) return false;
    422   VNInfo *BValNo = BLR->valno;
    423 
    424   // Get the location that B is defined at.  Two options: either this value has
    425   // an unknown definition point or it is defined at CopyIdx.  If unknown, we
    426   // can't process it.
    427   if (BValNo->def != CopyIdx) return false;
    428 
    429   // AValNo is the value number in A that defines the copy, A3 in the example.
    430   SlotIndex CopyUseIdx = CopyIdx.getRegSlot(true);
    431   LiveInterval::iterator ALR = IntA.FindLiveRangeContaining(CopyUseIdx);
    432   // The live range might not exist after fun with physreg coalescing.
    433   if (ALR == IntA.end()) return false;
    434   VNInfo *AValNo = ALR->valno;
    435 
    436   // If AValNo is defined as a copy from IntB, we can potentially process this.
    437   // Get the instruction that defines this value number.
    438   MachineInstr *ACopyMI = LIS->getInstructionFromIndex(AValNo->def);
    439   if (!CP.isCoalescable(ACopyMI))
    440     return false;
    441 
    442   // Get the LiveRange in IntB that this value number starts with.
    443   LiveInterval::iterator ValLR =
    444     IntB.FindLiveRangeContaining(AValNo->def.getPrevSlot());
    445   if (ValLR == IntB.end())
    446     return false;
    447 
    448   // Make sure that the end of the live range is inside the same block as
    449   // CopyMI.
    450   MachineInstr *ValLREndInst =
    451     LIS->getInstructionFromIndex(ValLR->end.getPrevSlot());
    452   if (!ValLREndInst || ValLREndInst->getParent() != CopyMI->getParent())
    453     return false;
    454 
    455   // Okay, we now know that ValLR ends in the same block that the CopyMI
    456   // live-range starts.  If there are no intervening live ranges between them in
    457   // IntB, we can merge them.
    458   if (ValLR+1 != BLR) return false;
    459 
    460   // If a live interval is a physical register, conservatively check if any
    461   // of its aliases is overlapping the live interval of the virtual register.
    462   // If so, do not coalesce.
    463   if (TargetRegisterInfo::isPhysicalRegister(IntB.reg)) {
    464     for (const uint16_t *AS = TRI->getAliasSet(IntB.reg); *AS; ++AS)
    465       if (LIS->hasInterval(*AS) && IntA.overlaps(LIS->getInterval(*AS))) {
    466         DEBUG({
    467             dbgs() << "\t\tInterfere with alias ";
    468             LIS->getInterval(*AS).print(dbgs(), TRI);
    469           });
    470         return false;
    471       }
    472   }
    473 
    474   DEBUG({
    475       dbgs() << "Extending: ";
    476       IntB.print(dbgs(), TRI);
    477     });
    478 
    479   SlotIndex FillerStart = ValLR->end, FillerEnd = BLR->start;
    480   // We are about to delete CopyMI, so need to remove it as the 'instruction
    481   // that defines this value #'. Update the valnum with the new defining
    482   // instruction #.
    483   BValNo->def = FillerStart;
    484 
    485   // Okay, we can merge them.  We need to insert a new liverange:
    486   // [ValLR.end, BLR.begin) of either value number, then we merge the
    487   // two value numbers.
    488   IntB.addRange(LiveRange(FillerStart, FillerEnd, BValNo));
    489 
    490   // If the IntB live range is assigned to a physical register, and if that
    491   // physreg has sub-registers, update their live intervals as well.
    492   if (TargetRegisterInfo::isPhysicalRegister(IntB.reg)) {
    493     for (const uint16_t *SR = TRI->getSubRegisters(IntB.reg); *SR; ++SR) {
    494       if (!LIS->hasInterval(*SR))
    495         continue;
    496       LiveInterval &SRLI = LIS->getInterval(*SR);
    497       SRLI.addRange(LiveRange(FillerStart, FillerEnd,
    498                               SRLI.getNextValue(FillerStart,
    499                                                 LIS->getVNInfoAllocator())));
    500     }
    501   }
    502 
    503   // Okay, merge "B1" into the same value number as "B0".
    504   if (BValNo != ValLR->valno) {
    505     // If B1 is killed by a PHI, then the merged live range must also be killed
    506     // by the same PHI, as B0 and B1 can not overlap.
    507     bool HasPHIKill = BValNo->hasPHIKill();
    508     IntB.MergeValueNumberInto(BValNo, ValLR->valno);
    509     if (HasPHIKill)
    510       ValLR->valno->setHasPHIKill(true);
    511   }
    512   DEBUG({
    513       dbgs() << "   result = ";
    514       IntB.print(dbgs(), TRI);
    515       dbgs() << "\n";
    516     });
    517 
    518   // If the source instruction was killing the source register before the
    519   // merge, unset the isKill marker given the live range has been extended.
    520   int UIdx = ValLREndInst->findRegisterUseOperandIdx(IntB.reg, true);
    521   if (UIdx != -1) {
    522     ValLREndInst->getOperand(UIdx).setIsKill(false);
    523   }
    524 
    525   // Rewrite the copy. If the copy instruction was killing the destination
    526   // register before the merge, find the last use and trim the live range. That
    527   // will also add the isKill marker.
    528   CopyMI->substituteRegister(IntA.reg, IntB.reg, CP.getSubIdx(),
    529                              *TRI);
    530   if (ALR->end == CopyIdx)
    531     LIS->shrinkToUses(&IntA);
    532 
    533   ++numExtends;
    534   return true;
    535 }
    536 
    537 /// HasOtherReachingDefs - Return true if there are definitions of IntB
    538 /// other than BValNo val# that can reach uses of AValno val# of IntA.
    539 bool RegisterCoalescer::HasOtherReachingDefs(LiveInterval &IntA,
    540                                                     LiveInterval &IntB,
    541                                                     VNInfo *AValNo,
    542                                                     VNInfo *BValNo) {
    543   for (LiveInterval::iterator AI = IntA.begin(), AE = IntA.end();
    544        AI != AE; ++AI) {
    545     if (AI->valno != AValNo) continue;
    546     LiveInterval::Ranges::iterator BI =
    547       std::upper_bound(IntB.ranges.begin(), IntB.ranges.end(), AI->start);
    548     if (BI != IntB.ranges.begin())
    549       --BI;
    550     for (; BI != IntB.ranges.end() && AI->end >= BI->start; ++BI) {
    551       if (BI->valno == BValNo)
    552         continue;
    553       if (BI->start <= AI->start && BI->end > AI->start)
    554         return true;
    555       if (BI->start > AI->start && BI->start < AI->end)
    556         return true;
    557     }
    558   }
    559   return false;
    560 }
    561 
    562 /// RemoveCopyByCommutingDef - We found a non-trivially-coalescable copy with
    563 /// IntA being the source and IntB being the dest, thus this defines a value
    564 /// number in IntB.  If the source value number (in IntA) is defined by a
    565 /// commutable instruction and its other operand is coalesced to the copy dest
    566 /// register, see if we can transform the copy into a noop by commuting the
    567 /// definition. For example,
    568 ///
    569 ///  A3 = op A2 B0<kill>
    570 ///    ...
    571 ///  B1 = A3      <- this copy
    572 ///    ...
    573 ///     = op A3   <- more uses
    574 ///
    575 /// ==>
    576 ///
    577 ///  B2 = op B0 A2<kill>
    578 ///    ...
    579 ///  B1 = B2      <- now an identify copy
    580 ///    ...
    581 ///     = op B2   <- more uses
    582 ///
    583 /// This returns true if an interval was modified.
    584 ///
    585 bool RegisterCoalescer::RemoveCopyByCommutingDef(const CoalescerPair &CP,
    586                                                         MachineInstr *CopyMI) {
    587   // FIXME: For now, only eliminate the copy by commuting its def when the
    588   // source register is a virtual register. We want to guard against cases
    589   // where the copy is a back edge copy and commuting the def lengthen the
    590   // live interval of the source register to the entire loop.
    591   if (CP.isPhys() && CP.isFlipped())
    592     return false;
    593 
    594   // Bail if there is no dst interval.
    595   if (!LIS->hasInterval(CP.getDstReg()))
    596     return false;
    597 
    598   SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot();
    599 
    600   LiveInterval &IntA =
    601     LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
    602   LiveInterval &IntB =
    603     LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
    604 
    605   // BValNo is a value number in B that is defined by a copy from A. 'B3' in
    606   // the example above.
    607   VNInfo *BValNo = IntB.getVNInfoAt(CopyIdx);
    608   if (!BValNo || BValNo->def != CopyIdx)
    609     return false;
    610 
    611   assert(BValNo->def == CopyIdx && "Copy doesn't define the value?");
    612 
    613   // AValNo is the value number in A that defines the copy, A3 in the example.
    614   VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx.getRegSlot(true));
    615   assert(AValNo && "COPY source not live");
    616 
    617   // If other defs can reach uses of this def, then it's not safe to perform
    618   // the optimization.
    619   if (AValNo->isPHIDef() || AValNo->isUnused() || AValNo->hasPHIKill())
    620     return false;
    621   MachineInstr *DefMI = LIS->getInstructionFromIndex(AValNo->def);
    622   if (!DefMI)
    623     return false;
    624   if (!DefMI->isCommutable())
    625     return false;
    626   // If DefMI is a two-address instruction then commuting it will change the
    627   // destination register.
    628   int DefIdx = DefMI->findRegisterDefOperandIdx(IntA.reg);
    629   assert(DefIdx != -1);
    630   unsigned UseOpIdx;
    631   if (!DefMI->isRegTiedToUseOperand(DefIdx, &UseOpIdx))
    632     return false;
    633   unsigned Op1, Op2, NewDstIdx;
    634   if (!TII->findCommutedOpIndices(DefMI, Op1, Op2))
    635     return false;
    636   if (Op1 == UseOpIdx)
    637     NewDstIdx = Op2;
    638   else if (Op2 == UseOpIdx)
    639     NewDstIdx = Op1;
    640   else
    641     return false;
    642 
    643   MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx);
    644   unsigned NewReg = NewDstMO.getReg();
    645   if (NewReg != IntB.reg || !NewDstMO.isKill())
    646     return false;
    647 
    648   // Make sure there are no other definitions of IntB that would reach the
    649   // uses which the new definition can reach.
    650   if (HasOtherReachingDefs(IntA, IntB, AValNo, BValNo))
    651     return false;
    652 
    653   // Abort if the aliases of IntB.reg have values that are not simply the
    654   // clobbers from the superreg.
    655   if (TargetRegisterInfo::isPhysicalRegister(IntB.reg))
    656     for (const uint16_t *AS = TRI->getAliasSet(IntB.reg); *AS; ++AS)
    657       if (LIS->hasInterval(*AS) &&
    658           HasOtherReachingDefs(IntA, LIS->getInterval(*AS), AValNo, 0))
    659         return false;
    660 
    661   // If some of the uses of IntA.reg is already coalesced away, return false.
    662   // It's not possible to determine whether it's safe to perform the coalescing.
    663   for (MachineRegisterInfo::use_nodbg_iterator UI =
    664          MRI->use_nodbg_begin(IntA.reg),
    665        UE = MRI->use_nodbg_end(); UI != UE; ++UI) {
    666     MachineInstr *UseMI = &*UI;
    667     SlotIndex UseIdx = LIS->getInstructionIndex(UseMI);
    668     LiveInterval::iterator ULR = IntA.FindLiveRangeContaining(UseIdx);
    669     if (ULR == IntA.end())
    670       continue;
    671     if (ULR->valno == AValNo && JoinedCopies.count(UseMI))
    672       return false;
    673   }
    674 
    675   DEBUG(dbgs() << "\tRemoveCopyByCommutingDef: " << AValNo->def << '\t'
    676                << *DefMI);
    677 
    678   // At this point we have decided that it is legal to do this
    679   // transformation.  Start by commuting the instruction.
    680   MachineBasicBlock *MBB = DefMI->getParent();
    681   MachineInstr *NewMI = TII->commuteInstruction(DefMI);
    682   if (!NewMI)
    683     return false;
    684   if (TargetRegisterInfo::isVirtualRegister(IntA.reg) &&
    685       TargetRegisterInfo::isVirtualRegister(IntB.reg) &&
    686       !MRI->constrainRegClass(IntB.reg, MRI->getRegClass(IntA.reg)))
    687     return false;
    688   if (NewMI != DefMI) {
    689     LIS->ReplaceMachineInstrInMaps(DefMI, NewMI);
    690     MachineBasicBlock::iterator Pos = DefMI;
    691     MBB->insert(Pos, NewMI);
    692     MBB->erase(DefMI);
    693   }
    694   unsigned OpIdx = NewMI->findRegisterUseOperandIdx(IntA.reg, false);
    695   NewMI->getOperand(OpIdx).setIsKill();
    696 
    697   // If ALR and BLR overlaps and end of BLR extends beyond end of ALR, e.g.
    698   // A = or A, B
    699   // ...
    700   // B = A
    701   // ...
    702   // C = A<kill>
    703   // ...
    704   //   = B
    705 
    706   // Update uses of IntA of the specific Val# with IntB.
    707   for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(IntA.reg),
    708          UE = MRI->use_end(); UI != UE;) {
    709     MachineOperand &UseMO = UI.getOperand();
    710     MachineInstr *UseMI = &*UI;
    711     ++UI;
    712     if (JoinedCopies.count(UseMI))
    713       continue;
    714     if (UseMI->isDebugValue()) {
    715       // FIXME These don't have an instruction index.  Not clear we have enough
    716       // info to decide whether to do this replacement or not.  For now do it.
    717       UseMO.setReg(NewReg);
    718       continue;
    719     }
    720     SlotIndex UseIdx = LIS->getInstructionIndex(UseMI).getRegSlot(true);
    721     LiveInterval::iterator ULR = IntA.FindLiveRangeContaining(UseIdx);
    722     if (ULR == IntA.end() || ULR->valno != AValNo)
    723       continue;
    724     if (TargetRegisterInfo::isPhysicalRegister(NewReg))
    725       UseMO.substPhysReg(NewReg, *TRI);
    726     else
    727       UseMO.setReg(NewReg);
    728     if (UseMI == CopyMI)
    729       continue;
    730     if (!UseMI->isCopy())
    731       continue;
    732     if (UseMI->getOperand(0).getReg() != IntB.reg ||
    733         UseMI->getOperand(0).getSubReg())
    734       continue;
    735 
    736     // This copy will become a noop. If it's defining a new val#, merge it into
    737     // BValNo.
    738     SlotIndex DefIdx = UseIdx.getRegSlot();
    739     VNInfo *DVNI = IntB.getVNInfoAt(DefIdx);
    740     if (!DVNI)
    741       continue;
    742     DEBUG(dbgs() << "\t\tnoop: " << DefIdx << '\t' << *UseMI);
    743     assert(DVNI->def == DefIdx);
    744     BValNo = IntB.MergeValueNumberInto(BValNo, DVNI);
    745     markAsJoined(UseMI);
    746   }
    747 
    748   // Extend BValNo by merging in IntA live ranges of AValNo. Val# definition
    749   // is updated.
    750   VNInfo *ValNo = BValNo;
    751   ValNo->def = AValNo->def;
    752   for (LiveInterval::iterator AI = IntA.begin(), AE = IntA.end();
    753        AI != AE; ++AI) {
    754     if (AI->valno != AValNo) continue;
    755     IntB.addRange(LiveRange(AI->start, AI->end, ValNo));
    756   }
    757   DEBUG(dbgs() << "\t\textended: " << IntB << '\n');
    758 
    759   IntA.removeValNo(AValNo);
    760   DEBUG(dbgs() << "\t\ttrimmed:  " << IntA << '\n');
    761   ++numCommutes;
    762   return true;
    763 }
    764 
    765 /// ReMaterializeTrivialDef - If the source of a copy is defined by a trivial
    766 /// computation, replace the copy by rematerialize the definition.
    767 bool RegisterCoalescer::ReMaterializeTrivialDef(LiveInterval &SrcInt,
    768                                                        bool preserveSrcInt,
    769                                                        unsigned DstReg,
    770                                                        MachineInstr *CopyMI) {
    771   SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot(true);
    772   LiveInterval::iterator SrcLR = SrcInt.FindLiveRangeContaining(CopyIdx);
    773   assert(SrcLR != SrcInt.end() && "Live range not found!");
    774   VNInfo *ValNo = SrcLR->valno;
    775   if (ValNo->isPHIDef() || ValNo->isUnused())
    776     return false;
    777   MachineInstr *DefMI = LIS->getInstructionFromIndex(ValNo->def);
    778   if (!DefMI)
    779     return false;
    780   assert(DefMI && "Defining instruction disappeared");
    781   if (!DefMI->isAsCheapAsAMove())
    782     return false;
    783   if (!TII->isTriviallyReMaterializable(DefMI, AA))
    784     return false;
    785   bool SawStore = false;
    786   if (!DefMI->isSafeToMove(TII, AA, SawStore))
    787     return false;
    788   const MCInstrDesc &MCID = DefMI->getDesc();
    789   if (MCID.getNumDefs() != 1)
    790     return false;
    791   if (!DefMI->isImplicitDef()) {
    792     // Make sure the copy destination register class fits the instruction
    793     // definition register class. The mismatch can happen as a result of earlier
    794     // extract_subreg, insert_subreg, subreg_to_reg coalescing.
    795     const TargetRegisterClass *RC = TII->getRegClass(MCID, 0, TRI);
    796     if (TargetRegisterInfo::isVirtualRegister(DstReg)) {
    797       if (MRI->getRegClass(DstReg) != RC)
    798         return false;
    799     } else if (!RC->contains(DstReg))
    800       return false;
    801   }
    802 
    803   MachineBasicBlock *MBB = CopyMI->getParent();
    804   MachineBasicBlock::iterator MII =
    805     llvm::next(MachineBasicBlock::iterator(CopyMI));
    806   TII->reMaterialize(*MBB, MII, DstReg, 0, DefMI, *TRI);
    807   MachineInstr *NewMI = prior(MII);
    808 
    809   // NewMI may have dead implicit defs (E.g. EFLAGS for MOV<bits>r0 on X86).
    810   // We need to remember these so we can add intervals once we insert
    811   // NewMI into SlotIndexes.
    812   SmallVector<unsigned, 4> NewMIImplDefs;
    813   for (unsigned i = NewMI->getDesc().getNumOperands(),
    814          e = NewMI->getNumOperands(); i != e; ++i) {
    815     MachineOperand &MO = NewMI->getOperand(i);
    816     if (MO.isReg()) {
    817       assert(MO.isDef() && MO.isImplicit() && MO.isDead() &&
    818              TargetRegisterInfo::isPhysicalRegister(MO.getReg()));
    819       NewMIImplDefs.push_back(MO.getReg());
    820     }
    821   }
    822 
    823   // CopyMI may have implicit operands, transfer them over to the newly
    824   // rematerialized instruction. And update implicit def interval valnos.
    825   for (unsigned i = CopyMI->getDesc().getNumOperands(),
    826          e = CopyMI->getNumOperands(); i != e; ++i) {
    827     MachineOperand &MO = CopyMI->getOperand(i);
    828     if (MO.isReg()) {
    829       assert(MO.isImplicit() && "No explicit operands after implict operands.");
    830       // Discard VReg implicit defs.
    831       if (TargetRegisterInfo::isPhysicalRegister(MO.getReg())) {
    832         NewMI->addOperand(MO);
    833       }
    834     }
    835   }
    836 
    837   LIS->ReplaceMachineInstrInMaps(CopyMI, NewMI);
    838 
    839   SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI);
    840   for (unsigned i = 0, e = NewMIImplDefs.size(); i != e; ++i) {
    841     unsigned reg = NewMIImplDefs[i];
    842     LiveInterval &li = LIS->getInterval(reg);
    843     VNInfo *DeadDefVN = li.getNextValue(NewMIIdx.getRegSlot(),
    844                                         LIS->getVNInfoAllocator());
    845     LiveRange lr(NewMIIdx.getRegSlot(), NewMIIdx.getDeadSlot(), DeadDefVN);
    846     li.addRange(lr);
    847   }
    848 
    849   CopyMI->eraseFromParent();
    850   ReMatCopies.insert(CopyMI);
    851   ReMatDefs.insert(DefMI);
    852   DEBUG(dbgs() << "Remat: " << *NewMI);
    853   ++NumReMats;
    854 
    855   // The source interval can become smaller because we removed a use.
    856   if (preserveSrcInt)
    857     LIS->shrinkToUses(&SrcInt);
    858 
    859   return true;
    860 }
    861 
    862 /// eliminateUndefCopy - ProcessImpicitDefs may leave some copies of <undef>
    863 /// values, it only removes local variables. When we have a copy like:
    864 ///
    865 ///   %vreg1 = COPY %vreg2<undef>
    866 ///
    867 /// We delete the copy and remove the corresponding value number from %vreg1.
    868 /// Any uses of that value number are marked as <undef>.
    869 bool RegisterCoalescer::eliminateUndefCopy(MachineInstr *CopyMI,
    870                                            const CoalescerPair &CP) {
    871   SlotIndex Idx = LIS->getInstructionIndex(CopyMI);
    872   LiveInterval *SrcInt = &LIS->getInterval(CP.getSrcReg());
    873   if (SrcInt->liveAt(Idx))
    874     return false;
    875   LiveInterval *DstInt = &LIS->getInterval(CP.getDstReg());
    876   if (DstInt->liveAt(Idx))
    877     return false;
    878 
    879   // No intervals are live-in to CopyMI - it is undef.
    880   if (CP.isFlipped())
    881     DstInt = SrcInt;
    882   SrcInt = 0;
    883 
    884   VNInfo *DeadVNI = DstInt->getVNInfoAt(Idx.getRegSlot());
    885   assert(DeadVNI && "No value defined in DstInt");
    886   DstInt->removeValNo(DeadVNI);
    887 
    888   // Find new undef uses.
    889   for (MachineRegisterInfo::reg_nodbg_iterator
    890          I = MRI->reg_nodbg_begin(DstInt->reg), E = MRI->reg_nodbg_end();
    891        I != E; ++I) {
    892     MachineOperand &MO = I.getOperand();
    893     if (MO.isDef() || MO.isUndef())
    894       continue;
    895     MachineInstr *MI = MO.getParent();
    896     SlotIndex Idx = LIS->getInstructionIndex(MI);
    897     if (DstInt->liveAt(Idx))
    898       continue;
    899     MO.setIsUndef(true);
    900     DEBUG(dbgs() << "\tnew undef: " << Idx << '\t' << *MI);
    901   }
    902   return true;
    903 }
    904 
    905 /// UpdateRegDefsUses - Replace all defs and uses of SrcReg to DstReg and
    906 /// update the subregister number if it is not zero. If DstReg is a
    907 /// physical register and the existing subregister number of the def / use
    908 /// being updated is not zero, make sure to set it to the correct physical
    909 /// subregister.
    910 void
    911 RegisterCoalescer::UpdateRegDefsUses(const CoalescerPair &CP) {
    912   bool DstIsPhys = CP.isPhys();
    913   unsigned SrcReg = CP.getSrcReg();
    914   unsigned DstReg = CP.getDstReg();
    915   unsigned SubIdx = CP.getSubIdx();
    916 
    917   // Update LiveDebugVariables.
    918   LDV->renameRegister(SrcReg, DstReg, SubIdx);
    919 
    920   for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(SrcReg);
    921        MachineInstr *UseMI = I.skipInstruction();) {
    922     // A PhysReg copy that won't be coalesced can perhaps be rematerialized
    923     // instead.
    924     if (DstIsPhys) {
    925       if (UseMI->isFullCopy() &&
    926           UseMI->getOperand(1).getReg() == SrcReg &&
    927           UseMI->getOperand(0).getReg() != SrcReg &&
    928           UseMI->getOperand(0).getReg() != DstReg &&
    929           !JoinedCopies.count(UseMI) &&
    930           ReMaterializeTrivialDef(LIS->getInterval(SrcReg), false,
    931                                   UseMI->getOperand(0).getReg(), UseMI))
    932         continue;
    933     }
    934 
    935     SmallVector<unsigned,8> Ops;
    936     bool Reads, Writes;
    937     tie(Reads, Writes) = UseMI->readsWritesVirtualRegister(SrcReg, &Ops);
    938 
    939     // Replace SrcReg with DstReg in all UseMI operands.
    940     for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
    941       MachineOperand &MO = UseMI->getOperand(Ops[i]);
    942 
    943       // Make sure we don't create read-modify-write defs accidentally.  We
    944       // assume here that a SrcReg def cannot be joined into a live DstReg.  If
    945       // RegisterCoalescer starts tracking partially live registers, we will
    946       // need to check the actual LiveInterval to determine if DstReg is live
    947       // here.
    948       if (SubIdx && !Reads)
    949         MO.setIsUndef();
    950 
    951       if (DstIsPhys)
    952         MO.substPhysReg(DstReg, *TRI);
    953       else
    954         MO.substVirtReg(DstReg, SubIdx, *TRI);
    955     }
    956 
    957     // This instruction is a copy that will be removed.
    958     if (JoinedCopies.count(UseMI))
    959       continue;
    960 
    961     DEBUG({
    962         dbgs() << "\t\tupdated: ";
    963         if (!UseMI->isDebugValue())
    964           dbgs() << LIS->getInstructionIndex(UseMI) << "\t";
    965         dbgs() << *UseMI;
    966       });
    967   }
    968 }
    969 
    970 /// removeIntervalIfEmpty - Check if the live interval of a physical register
    971 /// is empty, if so remove it and also remove the empty intervals of its
    972 /// sub-registers. Return true if live interval is removed.
    973 static bool removeIntervalIfEmpty(LiveInterval &li, LiveIntervals *LIS,
    974                                   const TargetRegisterInfo *TRI) {
    975   if (li.empty()) {
    976     if (TargetRegisterInfo::isPhysicalRegister(li.reg))
    977       for (const uint16_t* SR = TRI->getSubRegisters(li.reg); *SR; ++SR) {
    978         if (!LIS->hasInterval(*SR))
    979           continue;
    980         LiveInterval &sli = LIS->getInterval(*SR);
    981         if (sli.empty())
    982           LIS->removeInterval(*SR);
    983       }
    984     LIS->removeInterval(li.reg);
    985     return true;
    986   }
    987   return false;
    988 }
    989 
    990 /// RemoveDeadDef - If a def of a live interval is now determined dead, remove
    991 /// the val# it defines. If the live interval becomes empty, remove it as well.
    992 bool RegisterCoalescer::RemoveDeadDef(LiveInterval &li,
    993                                              MachineInstr *DefMI) {
    994   SlotIndex DefIdx = LIS->getInstructionIndex(DefMI).getRegSlot();
    995   LiveInterval::iterator MLR = li.FindLiveRangeContaining(DefIdx);
    996   if (DefIdx != MLR->valno->def)
    997     return false;
    998   li.removeValNo(MLR->valno);
    999   return removeIntervalIfEmpty(li, LIS, TRI);
   1000 }
   1001 
   1002 /// shouldJoinPhys - Return true if a copy involving a physreg should be joined.
   1003 /// We need to be careful about coalescing a source physical register with a
   1004 /// virtual register. Once the coalescing is done, it cannot be broken and these
   1005 /// are not spillable! If the destination interval uses are far away, think
   1006 /// twice about coalescing them!
   1007 bool RegisterCoalescer::shouldJoinPhys(CoalescerPair &CP) {
   1008   bool Allocatable = LIS->isAllocatable(CP.getDstReg());
   1009   LiveInterval &JoinVInt = LIS->getInterval(CP.getSrcReg());
   1010 
   1011   /// Always join simple intervals that are defined by a single copy from a
   1012   /// reserved register. This doesn't increase register pressure, so it is
   1013   /// always beneficial.
   1014   if (!Allocatable && CP.isFlipped() && JoinVInt.containsOneValue())
   1015     return true;
   1016 
   1017   if (!EnablePhysicalJoin) {
   1018     DEBUG(dbgs() << "\tPhysreg joins disabled.\n");
   1019     return false;
   1020   }
   1021 
   1022   // Only coalesce to allocatable physreg, we don't want to risk modifying
   1023   // reserved registers.
   1024   if (!Allocatable) {
   1025     DEBUG(dbgs() << "\tRegister is an unallocatable physreg.\n");
   1026     return false;  // Not coalescable.
   1027   }
   1028 
   1029   // Don't join with physregs that have a ridiculous number of live
   1030   // ranges. The data structure performance is really bad when that
   1031   // happens.
   1032   if (LIS->hasInterval(CP.getDstReg()) &&
   1033       LIS->getInterval(CP.getDstReg()).ranges.size() > 1000) {
   1034     ++numAborts;
   1035     DEBUG(dbgs()
   1036           << "\tPhysical register live interval too complicated, abort!\n");
   1037     return false;
   1038   }
   1039 
   1040   // FIXME: Why are we skipping this test for partial copies?
   1041   //        CodeGen/X86/phys_subreg_coalesce-3.ll needs it.
   1042   if (!CP.isPartial()) {
   1043     const TargetRegisterClass *RC = MRI->getRegClass(CP.getSrcReg());
   1044     unsigned Threshold = RegClassInfo.getNumAllocatableRegs(RC) * 2;
   1045     unsigned Length = LIS->getApproximateInstructionCount(JoinVInt);
   1046     if (Length > Threshold) {
   1047       ++numAborts;
   1048       DEBUG(dbgs() << "\tMay tie down a physical register, abort!\n");
   1049       return false;
   1050     }
   1051   }
   1052   return true;
   1053 }
   1054 
   1055 /// isWinToJoinCrossClass - Return true if it's profitable to coalesce
   1056 /// two virtual registers from different register classes.
   1057 bool
   1058 RegisterCoalescer::isWinToJoinCrossClass(unsigned SrcReg,
   1059                                              unsigned DstReg,
   1060                                              const TargetRegisterClass *SrcRC,
   1061                                              const TargetRegisterClass *DstRC,
   1062                                              const TargetRegisterClass *NewRC) {
   1063   unsigned NewRCCount = RegClassInfo.getNumAllocatableRegs(NewRC);
   1064   // This heuristics is good enough in practice, but it's obviously not *right*.
   1065   // 4 is a magic number that works well enough for x86, ARM, etc. It filter
   1066   // out all but the most restrictive register classes.
   1067   if (NewRCCount > 4 ||
   1068       // Early exit if the function is fairly small, coalesce aggressively if
   1069       // that's the case. For really special register classes with 3 or
   1070       // fewer registers, be a bit more careful.
   1071       (LIS->getFuncInstructionCount() / NewRCCount) < 8)
   1072     return true;
   1073   LiveInterval &SrcInt = LIS->getInterval(SrcReg);
   1074   LiveInterval &DstInt = LIS->getInterval(DstReg);
   1075   unsigned SrcSize = LIS->getApproximateInstructionCount(SrcInt);
   1076   unsigned DstSize = LIS->getApproximateInstructionCount(DstInt);
   1077 
   1078   // Coalesce aggressively if the intervals are small compared to the number of
   1079   // registers in the new class. The number 4 is fairly arbitrary, chosen to be
   1080   // less aggressive than the 8 used for the whole function size.
   1081   const unsigned ThresSize = 4 * NewRCCount;
   1082   if (SrcSize <= ThresSize && DstSize <= ThresSize)
   1083     return true;
   1084 
   1085   // Estimate *register use density*. If it doubles or more, abort.
   1086   unsigned SrcUses = std::distance(MRI->use_nodbg_begin(SrcReg),
   1087                                    MRI->use_nodbg_end());
   1088   unsigned DstUses = std::distance(MRI->use_nodbg_begin(DstReg),
   1089                                    MRI->use_nodbg_end());
   1090   unsigned NewUses = SrcUses + DstUses;
   1091   unsigned NewSize = SrcSize + DstSize;
   1092   if (SrcRC != NewRC && SrcSize > ThresSize) {
   1093     unsigned SrcRCCount = RegClassInfo.getNumAllocatableRegs(SrcRC);
   1094     if (NewUses*SrcSize*SrcRCCount > 2*SrcUses*NewSize*NewRCCount)
   1095       return false;
   1096   }
   1097   if (DstRC != NewRC && DstSize > ThresSize) {
   1098     unsigned DstRCCount = RegClassInfo.getNumAllocatableRegs(DstRC);
   1099     if (NewUses*DstSize*DstRCCount > 2*DstUses*NewSize*NewRCCount)
   1100       return false;
   1101   }
   1102   return true;
   1103 }
   1104 
   1105 
   1106 /// JoinCopy - Attempt to join intervals corresponding to SrcReg/DstReg,
   1107 /// which are the src/dst of the copy instruction CopyMI.  This returns true
   1108 /// if the copy was successfully coalesced away. If it is not currently
   1109 /// possible to coalesce this interval, but it may be possible if other
   1110 /// things get coalesced, then it returns true by reference in 'Again'.
   1111 bool RegisterCoalescer::JoinCopy(MachineInstr *CopyMI, bool &Again) {
   1112 
   1113   Again = false;
   1114   if (JoinedCopies.count(CopyMI) || ReMatCopies.count(CopyMI))
   1115     return false; // Already done.
   1116 
   1117   DEBUG(dbgs() << LIS->getInstructionIndex(CopyMI) << '\t' << *CopyMI);
   1118 
   1119   CoalescerPair CP(*TII, *TRI);
   1120   if (!CP.setRegisters(CopyMI)) {
   1121     DEBUG(dbgs() << "\tNot coalescable.\n");
   1122     return false;
   1123   }
   1124 
   1125   // If they are already joined we continue.
   1126   if (CP.getSrcReg() == CP.getDstReg()) {
   1127     markAsJoined(CopyMI);
   1128     DEBUG(dbgs() << "\tCopy already coalesced.\n");
   1129     return false;  // Not coalescable.
   1130   }
   1131 
   1132   // Eliminate undefs.
   1133   if (!CP.isPhys() && eliminateUndefCopy(CopyMI, CP)) {
   1134     markAsJoined(CopyMI);
   1135     DEBUG(dbgs() << "\tEliminated copy of <undef> value.\n");
   1136     return false;  // Not coalescable.
   1137   }
   1138 
   1139   DEBUG(dbgs() << "\tConsidering merging " << PrintReg(CP.getSrcReg(), TRI)
   1140                << " with " << PrintReg(CP.getDstReg(), TRI, CP.getSubIdx())
   1141                << "\n");
   1142 
   1143   // Enforce policies.
   1144   if (CP.isPhys()) {
   1145     if (!shouldJoinPhys(CP)) {
   1146       // Before giving up coalescing, if definition of source is defined by
   1147       // trivial computation, try rematerializing it.
   1148       if (!CP.isFlipped() &&
   1149           ReMaterializeTrivialDef(LIS->getInterval(CP.getSrcReg()), true,
   1150                                   CP.getDstReg(), CopyMI))
   1151         return true;
   1152       return false;
   1153     }
   1154   } else {
   1155     // Avoid constraining virtual register regclass too much.
   1156     if (CP.isCrossClass()) {
   1157       DEBUG(dbgs() << "\tCross-class to " << CP.getNewRC()->getName() << ".\n");
   1158       if (DisableCrossClassJoin) {
   1159         DEBUG(dbgs() << "\tCross-class joins disabled.\n");
   1160         return false;
   1161       }
   1162       if (!isWinToJoinCrossClass(CP.getSrcReg(), CP.getDstReg(),
   1163                                  MRI->getRegClass(CP.getSrcReg()),
   1164                                  MRI->getRegClass(CP.getDstReg()),
   1165                                  CP.getNewRC())) {
   1166         DEBUG(dbgs() << "\tAvoid coalescing to constrained register class.\n");
   1167         Again = true;  // May be possible to coalesce later.
   1168         return false;
   1169       }
   1170     }
   1171 
   1172     // When possible, let DstReg be the larger interval.
   1173     if (!CP.getSubIdx() && LIS->getInterval(CP.getSrcReg()).ranges.size() >
   1174                            LIS->getInterval(CP.getDstReg()).ranges.size())
   1175       CP.flip();
   1176   }
   1177 
   1178   // Okay, attempt to join these two intervals.  On failure, this returns false.
   1179   // Otherwise, if one of the intervals being joined is a physreg, this method
   1180   // always canonicalizes DstInt to be it.  The output "SrcInt" will not have
   1181   // been modified, so we can use this information below to update aliases.
   1182   if (!JoinIntervals(CP)) {
   1183     // Coalescing failed.
   1184 
   1185     // If definition of source is defined by trivial computation, try
   1186     // rematerializing it.
   1187     if (!CP.isFlipped() &&
   1188         ReMaterializeTrivialDef(LIS->getInterval(CP.getSrcReg()), true,
   1189                                 CP.getDstReg(), CopyMI))
   1190       return true;
   1191 
   1192     // If we can eliminate the copy without merging the live ranges, do so now.
   1193     if (!CP.isPartial()) {
   1194       if (AdjustCopiesBackFrom(CP, CopyMI) ||
   1195           RemoveCopyByCommutingDef(CP, CopyMI)) {
   1196         markAsJoined(CopyMI);
   1197         DEBUG(dbgs() << "\tTrivial!\n");
   1198         return true;
   1199       }
   1200     }
   1201 
   1202     // Otherwise, we are unable to join the intervals.
   1203     DEBUG(dbgs() << "\tInterference!\n");
   1204     Again = true;  // May be possible to coalesce later.
   1205     return false;
   1206   }
   1207 
   1208   // Coalescing to a virtual register that is of a sub-register class of the
   1209   // other. Make sure the resulting register is set to the right register class.
   1210   if (CP.isCrossClass()) {
   1211     ++numCrossRCs;
   1212     MRI->setRegClass(CP.getDstReg(), CP.getNewRC());
   1213   }
   1214 
   1215   // Remember to delete the copy instruction.
   1216   markAsJoined(CopyMI);
   1217 
   1218   UpdateRegDefsUses(CP);
   1219 
   1220   // If we have extended the live range of a physical register, make sure we
   1221   // update live-in lists as well.
   1222   if (CP.isPhys()) {
   1223     SmallVector<MachineBasicBlock*, 16> BlockSeq;
   1224     // JoinIntervals invalidates the VNInfos in SrcInt, but we only need the
   1225     // ranges for this, and they are preserved.
   1226     LiveInterval &SrcInt = LIS->getInterval(CP.getSrcReg());
   1227     for (LiveInterval::const_iterator I = SrcInt.begin(), E = SrcInt.end();
   1228          I != E; ++I ) {
   1229       LIS->findLiveInMBBs(I->start, I->end, BlockSeq);
   1230       for (unsigned idx = 0, size = BlockSeq.size(); idx != size; ++idx) {
   1231         MachineBasicBlock &block = *BlockSeq[idx];
   1232         if (!block.isLiveIn(CP.getDstReg()))
   1233           block.addLiveIn(CP.getDstReg());
   1234       }
   1235       BlockSeq.clear();
   1236     }
   1237   }
   1238 
   1239   // SrcReg is guaranteed to be the register whose live interval that is
   1240   // being merged.
   1241   LIS->removeInterval(CP.getSrcReg());
   1242 
   1243   // Update regalloc hint.
   1244   TRI->UpdateRegAllocHint(CP.getSrcReg(), CP.getDstReg(), *MF);
   1245 
   1246   DEBUG({
   1247     LiveInterval &DstInt = LIS->getInterval(CP.getDstReg());
   1248     dbgs() << "\tJoined. Result = ";
   1249     DstInt.print(dbgs(), TRI);
   1250     dbgs() << "\n";
   1251   });
   1252 
   1253   ++numJoins;
   1254   return true;
   1255 }
   1256 
   1257 /// ComputeUltimateVN - Assuming we are going to join two live intervals,
   1258 /// compute what the resultant value numbers for each value in the input two
   1259 /// ranges will be.  This is complicated by copies between the two which can
   1260 /// and will commonly cause multiple value numbers to be merged into one.
   1261 ///
   1262 /// VN is the value number that we're trying to resolve.  InstDefiningValue
   1263 /// keeps track of the new InstDefiningValue assignment for the result
   1264 /// LiveInterval.  ThisFromOther/OtherFromThis are sets that keep track of
   1265 /// whether a value in this or other is a copy from the opposite set.
   1266 /// ThisValNoAssignments/OtherValNoAssignments keep track of value #'s that have
   1267 /// already been assigned.
   1268 ///
   1269 /// ThisFromOther[x] - If x is defined as a copy from the other interval, this
   1270 /// contains the value number the copy is from.
   1271 ///
   1272 static unsigned ComputeUltimateVN(VNInfo *VNI,
   1273                                   SmallVector<VNInfo*, 16> &NewVNInfo,
   1274                                   DenseMap<VNInfo*, VNInfo*> &ThisFromOther,
   1275                                   DenseMap<VNInfo*, VNInfo*> &OtherFromThis,
   1276                                   SmallVector<int, 16> &ThisValNoAssignments,
   1277                                   SmallVector<int, 16> &OtherValNoAssignments) {
   1278   unsigned VN = VNI->id;
   1279 
   1280   // If the VN has already been computed, just return it.
   1281   if (ThisValNoAssignments[VN] >= 0)
   1282     return ThisValNoAssignments[VN];
   1283   assert(ThisValNoAssignments[VN] != -2 && "Cyclic value numbers");
   1284 
   1285   // If this val is not a copy from the other val, then it must be a new value
   1286   // number in the destination.
   1287   DenseMap<VNInfo*, VNInfo*>::iterator I = ThisFromOther.find(VNI);
   1288   if (I == ThisFromOther.end()) {
   1289     NewVNInfo.push_back(VNI);
   1290     return ThisValNoAssignments[VN] = NewVNInfo.size()-1;
   1291   }
   1292   VNInfo *OtherValNo = I->second;
   1293 
   1294   // Otherwise, this *is* a copy from the RHS.  If the other side has already
   1295   // been computed, return it.
   1296   if (OtherValNoAssignments[OtherValNo->id] >= 0)
   1297     return ThisValNoAssignments[VN] = OtherValNoAssignments[OtherValNo->id];
   1298 
   1299   // Mark this value number as currently being computed, then ask what the
   1300   // ultimate value # of the other value is.
   1301   ThisValNoAssignments[VN] = -2;
   1302   unsigned UltimateVN =
   1303     ComputeUltimateVN(OtherValNo, NewVNInfo, OtherFromThis, ThisFromOther,
   1304                       OtherValNoAssignments, ThisValNoAssignments);
   1305   return ThisValNoAssignments[VN] = UltimateVN;
   1306 }
   1307 
   1308 
   1309 // Find out if we have something like
   1310 // A = X
   1311 // B = X
   1312 // if so, we can pretend this is actually
   1313 // A = X
   1314 // B = A
   1315 // which allows us to coalesce A and B.
   1316 // VNI is the definition of B. LR is the life range of A that includes
   1317 // the slot just before B. If we return true, we add "B = X" to DupCopies.
   1318 // This implies that A dominates B.
   1319 static bool RegistersDefinedFromSameValue(LiveIntervals &li,
   1320                                           const TargetRegisterInfo &tri,
   1321                                           CoalescerPair &CP,
   1322                                           VNInfo *VNI,
   1323                                           LiveRange *LR,
   1324                                      SmallVector<MachineInstr*, 8> &DupCopies) {
   1325   // FIXME: This is very conservative. For example, we don't handle
   1326   // physical registers.
   1327 
   1328   MachineInstr *MI = li.getInstructionFromIndex(VNI->def);
   1329 
   1330   if (!MI || !MI->isFullCopy() || CP.isPartial() || CP.isPhys())
   1331     return false;
   1332 
   1333   unsigned Dst = MI->getOperand(0).getReg();
   1334   unsigned Src = MI->getOperand(1).getReg();
   1335 
   1336   if (!TargetRegisterInfo::isVirtualRegister(Src) ||
   1337       !TargetRegisterInfo::isVirtualRegister(Dst))
   1338     return false;
   1339 
   1340   unsigned A = CP.getDstReg();
   1341   unsigned B = CP.getSrcReg();
   1342 
   1343   if (B == Dst)
   1344     std::swap(A, B);
   1345   assert(Dst == A);
   1346 
   1347   VNInfo *Other = LR->valno;
   1348   const MachineInstr *OtherMI = li.getInstructionFromIndex(Other->def);
   1349 
   1350   if (!OtherMI || !OtherMI->isFullCopy())
   1351     return false;
   1352 
   1353   unsigned OtherDst = OtherMI->getOperand(0).getReg();
   1354   unsigned OtherSrc = OtherMI->getOperand(1).getReg();
   1355 
   1356   if (!TargetRegisterInfo::isVirtualRegister(OtherSrc) ||
   1357       !TargetRegisterInfo::isVirtualRegister(OtherDst))
   1358     return false;
   1359 
   1360   assert(OtherDst == B);
   1361 
   1362   if (Src != OtherSrc)
   1363     return false;
   1364 
   1365   // If the copies use two different value numbers of X, we cannot merge
   1366   // A and B.
   1367   LiveInterval &SrcInt = li.getInterval(Src);
   1368   // getVNInfoBefore returns NULL for undef copies. In this case, the
   1369   // optimization is still safe.
   1370   if (SrcInt.getVNInfoBefore(Other->def) != SrcInt.getVNInfoBefore(VNI->def))
   1371     return false;
   1372 
   1373   DupCopies.push_back(MI);
   1374 
   1375   return true;
   1376 }
   1377 
   1378 /// JoinIntervals - Attempt to join these two intervals.  On failure, this
   1379 /// returns false.
   1380 bool RegisterCoalescer::JoinIntervals(CoalescerPair &CP) {
   1381   LiveInterval &RHS = LIS->getInterval(CP.getSrcReg());
   1382   DEBUG({ dbgs() << "\t\tRHS = "; RHS.print(dbgs(), TRI); dbgs() << "\n"; });
   1383 
   1384   // If a live interval is a physical register, check for interference with any
   1385   // aliases. The interference check implemented here is a bit more conservative
   1386   // than the full interfeence check below. We allow overlapping live ranges
   1387   // only when one is a copy of the other.
   1388   if (CP.isPhys()) {
   1389     // Optimization for reserved registers like ESP.
   1390     // We can only merge with a reserved physreg if RHS has a single value that
   1391     // is a copy of CP.DstReg().  The live range of the reserved register will
   1392     // look like a set of dead defs - we don't properly track the live range of
   1393     // reserved registers.
   1394     if (RegClassInfo.isReserved(CP.getDstReg())) {
   1395       assert(CP.isFlipped() && RHS.containsOneValue() &&
   1396              "Invalid join with reserved register");
   1397       // Deny any overlapping intervals.  This depends on all the reserved
   1398       // register live ranges to look like dead defs.
   1399       for (const uint16_t *AS = TRI->getOverlaps(CP.getDstReg()); *AS; ++AS) {
   1400         if (!LIS->hasInterval(*AS)) {
   1401           // Make sure at least DstReg itself exists before attempting a join.
   1402           if (*AS == CP.getDstReg())
   1403             LIS->getOrCreateInterval(CP.getDstReg());
   1404           continue;
   1405         }
   1406         if (RHS.overlaps(LIS->getInterval(*AS))) {
   1407           DEBUG(dbgs() << "\t\tInterference: " << PrintReg(*AS, TRI) << '\n');
   1408           return false;
   1409         }
   1410       }
   1411       // Skip any value computations, we are not adding new values to the
   1412       // reserved register.  Also skip merging the live ranges, the reserved
   1413       // register live range doesn't need to be accurate as long as all the
   1414       // defs are there.
   1415       return true;
   1416     }
   1417 
   1418     // Check if a register mask clobbers DstReg.
   1419     BitVector UsableRegs;
   1420     if (LIS->checkRegMaskInterference(RHS, UsableRegs) &&
   1421         !UsableRegs.test(CP.getDstReg())) {
   1422       DEBUG(dbgs() << "\t\tRegister mask interference.\n");
   1423       return false;
   1424     }
   1425 
   1426     for (const uint16_t *AS = TRI->getAliasSet(CP.getDstReg()); *AS; ++AS){
   1427       if (!LIS->hasInterval(*AS))
   1428         continue;
   1429       const LiveInterval &LHS = LIS->getInterval(*AS);
   1430       LiveInterval::const_iterator LI = LHS.begin();
   1431       for (LiveInterval::const_iterator RI = RHS.begin(), RE = RHS.end();
   1432            RI != RE; ++RI) {
   1433         LI = std::lower_bound(LI, LHS.end(), RI->start);
   1434         // Does LHS have an overlapping live range starting before RI?
   1435         if ((LI != LHS.begin() && LI[-1].end > RI->start) &&
   1436             (RI->start != RI->valno->def ||
   1437              !CP.isCoalescable(LIS->getInstructionFromIndex(RI->start)))) {
   1438           DEBUG({
   1439             dbgs() << "\t\tInterference from alias: ";
   1440             LHS.print(dbgs(), TRI);
   1441             dbgs() << "\n\t\tOverlap at " << RI->start << " and no copy.\n";
   1442           });
   1443           return false;
   1444         }
   1445 
   1446         // Check that LHS ranges beginning in this range are copies.
   1447         for (; LI != LHS.end() && LI->start < RI->end; ++LI) {
   1448           if (LI->start != LI->valno->def ||
   1449               !CP.isCoalescable(LIS->getInstructionFromIndex(LI->start))) {
   1450             DEBUG({
   1451               dbgs() << "\t\tInterference from alias: ";
   1452               LHS.print(dbgs(), TRI);
   1453               dbgs() << "\n\t\tDef at " << LI->start << " is not a copy.\n";
   1454             });
   1455             return false;
   1456           }
   1457         }
   1458       }
   1459     }
   1460   }
   1461 
   1462   // Compute the final value assignment, assuming that the live ranges can be
   1463   // coalesced.
   1464   SmallVector<int, 16> LHSValNoAssignments;
   1465   SmallVector<int, 16> RHSValNoAssignments;
   1466   DenseMap<VNInfo*, VNInfo*> LHSValsDefinedFromRHS;
   1467   DenseMap<VNInfo*, VNInfo*> RHSValsDefinedFromLHS;
   1468   SmallVector<VNInfo*, 16> NewVNInfo;
   1469 
   1470   SmallVector<MachineInstr*, 8> DupCopies;
   1471 
   1472   LiveInterval &LHS = LIS->getOrCreateInterval(CP.getDstReg());
   1473   DEBUG({ dbgs() << "\t\tLHS = "; LHS.print(dbgs(), TRI); dbgs() << "\n"; });
   1474 
   1475   // Loop over the value numbers of the LHS, seeing if any are defined from
   1476   // the RHS.
   1477   for (LiveInterval::vni_iterator i = LHS.vni_begin(), e = LHS.vni_end();
   1478        i != e; ++i) {
   1479     VNInfo *VNI = *i;
   1480     if (VNI->isUnused() || VNI->isPHIDef())
   1481       continue;
   1482     MachineInstr *MI = LIS->getInstructionFromIndex(VNI->def);
   1483     assert(MI && "Missing def");
   1484     if (!MI->isCopyLike())  // Src not defined by a copy?
   1485       continue;
   1486 
   1487     // Figure out the value # from the RHS.
   1488     LiveRange *lr = RHS.getLiveRangeContaining(VNI->def.getPrevSlot());
   1489     // The copy could be to an aliased physreg.
   1490     if (!lr) continue;
   1491 
   1492     // DstReg is known to be a register in the LHS interval.  If the src is
   1493     // from the RHS interval, we can use its value #.
   1494     if (!CP.isCoalescable(MI) &&
   1495         !RegistersDefinedFromSameValue(*LIS, *TRI, CP, VNI, lr, DupCopies))
   1496       continue;
   1497 
   1498     LHSValsDefinedFromRHS[VNI] = lr->valno;
   1499   }
   1500 
   1501   // Loop over the value numbers of the RHS, seeing if any are defined from
   1502   // the LHS.
   1503   for (LiveInterval::vni_iterator i = RHS.vni_begin(), e = RHS.vni_end();
   1504        i != e; ++i) {
   1505     VNInfo *VNI = *i;
   1506     if (VNI->isUnused() || VNI->isPHIDef())
   1507       continue;
   1508     MachineInstr *MI = LIS->getInstructionFromIndex(VNI->def);
   1509     assert(MI && "Missing def");
   1510     if (!MI->isCopyLike())  // Src not defined by a copy?
   1511       continue;
   1512 
   1513     // Figure out the value # from the LHS.
   1514     LiveRange *lr = LHS.getLiveRangeContaining(VNI->def.getPrevSlot());
   1515     // The copy could be to an aliased physreg.
   1516     if (!lr) continue;
   1517 
   1518     // DstReg is known to be a register in the RHS interval.  If the src is
   1519     // from the LHS interval, we can use its value #.
   1520     if (!CP.isCoalescable(MI) &&
   1521         !RegistersDefinedFromSameValue(*LIS, *TRI, CP, VNI, lr, DupCopies))
   1522         continue;
   1523 
   1524     RHSValsDefinedFromLHS[VNI] = lr->valno;
   1525   }
   1526 
   1527   LHSValNoAssignments.resize(LHS.getNumValNums(), -1);
   1528   RHSValNoAssignments.resize(RHS.getNumValNums(), -1);
   1529   NewVNInfo.reserve(LHS.getNumValNums() + RHS.getNumValNums());
   1530 
   1531   for (LiveInterval::vni_iterator i = LHS.vni_begin(), e = LHS.vni_end();
   1532        i != e; ++i) {
   1533     VNInfo *VNI = *i;
   1534     unsigned VN = VNI->id;
   1535     if (LHSValNoAssignments[VN] >= 0 || VNI->isUnused())
   1536       continue;
   1537     ComputeUltimateVN(VNI, NewVNInfo,
   1538                       LHSValsDefinedFromRHS, RHSValsDefinedFromLHS,
   1539                       LHSValNoAssignments, RHSValNoAssignments);
   1540   }
   1541   for (LiveInterval::vni_iterator i = RHS.vni_begin(), e = RHS.vni_end();
   1542        i != e; ++i) {
   1543     VNInfo *VNI = *i;
   1544     unsigned VN = VNI->id;
   1545     if (RHSValNoAssignments[VN] >= 0 || VNI->isUnused())
   1546       continue;
   1547     // If this value number isn't a copy from the LHS, it's a new number.
   1548     if (RHSValsDefinedFromLHS.find(VNI) == RHSValsDefinedFromLHS.end()) {
   1549       NewVNInfo.push_back(VNI);
   1550       RHSValNoAssignments[VN] = NewVNInfo.size()-1;
   1551       continue;
   1552     }
   1553 
   1554     ComputeUltimateVN(VNI, NewVNInfo,
   1555                       RHSValsDefinedFromLHS, LHSValsDefinedFromRHS,
   1556                       RHSValNoAssignments, LHSValNoAssignments);
   1557   }
   1558 
   1559   // Armed with the mappings of LHS/RHS values to ultimate values, walk the
   1560   // interval lists to see if these intervals are coalescable.
   1561   LiveInterval::const_iterator I = LHS.begin();
   1562   LiveInterval::const_iterator IE = LHS.end();
   1563   LiveInterval::const_iterator J = RHS.begin();
   1564   LiveInterval::const_iterator JE = RHS.end();
   1565 
   1566   // Skip ahead until the first place of potential sharing.
   1567   if (I != IE && J != JE) {
   1568     if (I->start < J->start) {
   1569       I = std::upper_bound(I, IE, J->start);
   1570       if (I != LHS.begin()) --I;
   1571     } else if (J->start < I->start) {
   1572       J = std::upper_bound(J, JE, I->start);
   1573       if (J != RHS.begin()) --J;
   1574     }
   1575   }
   1576 
   1577   while (I != IE && J != JE) {
   1578     // Determine if these two live ranges overlap.
   1579     bool Overlaps;
   1580     if (I->start < J->start) {
   1581       Overlaps = I->end > J->start;
   1582     } else {
   1583       Overlaps = J->end > I->start;
   1584     }
   1585 
   1586     // If so, check value # info to determine if they are really different.
   1587     if (Overlaps) {
   1588       // If the live range overlap will map to the same value number in the
   1589       // result liverange, we can still coalesce them.  If not, we can't.
   1590       if (LHSValNoAssignments[I->valno->id] !=
   1591           RHSValNoAssignments[J->valno->id])
   1592         return false;
   1593     }
   1594 
   1595     if (I->end < J->end)
   1596       ++I;
   1597     else
   1598       ++J;
   1599   }
   1600 
   1601   // Update kill info. Some live ranges are extended due to copy coalescing.
   1602   for (DenseMap<VNInfo*, VNInfo*>::iterator I = LHSValsDefinedFromRHS.begin(),
   1603          E = LHSValsDefinedFromRHS.end(); I != E; ++I) {
   1604     VNInfo *VNI = I->first;
   1605     unsigned LHSValID = LHSValNoAssignments[VNI->id];
   1606     if (VNI->hasPHIKill())
   1607       NewVNInfo[LHSValID]->setHasPHIKill(true);
   1608   }
   1609 
   1610   // Update kill info. Some live ranges are extended due to copy coalescing.
   1611   for (DenseMap<VNInfo*, VNInfo*>::iterator I = RHSValsDefinedFromLHS.begin(),
   1612          E = RHSValsDefinedFromLHS.end(); I != E; ++I) {
   1613     VNInfo *VNI = I->first;
   1614     unsigned RHSValID = RHSValNoAssignments[VNI->id];
   1615     if (VNI->hasPHIKill())
   1616       NewVNInfo[RHSValID]->setHasPHIKill(true);
   1617   }
   1618 
   1619   if (LHSValNoAssignments.empty())
   1620     LHSValNoAssignments.push_back(-1);
   1621   if (RHSValNoAssignments.empty())
   1622     RHSValNoAssignments.push_back(-1);
   1623 
   1624   SmallVector<unsigned, 8> SourceRegisters;
   1625   for (SmallVector<MachineInstr*, 8>::iterator I = DupCopies.begin(),
   1626          E = DupCopies.end(); I != E; ++I) {
   1627     MachineInstr *MI = *I;
   1628 
   1629     // We have pretended that the assignment to B in
   1630     // A = X
   1631     // B = X
   1632     // was actually a copy from A. Now that we decided to coalesce A and B,
   1633     // transform the code into
   1634     // A = X
   1635     // X = X
   1636     // and mark the X as coalesced to keep the illusion.
   1637     unsigned Src = MI->getOperand(1).getReg();
   1638     SourceRegisters.push_back(Src);
   1639     MI->getOperand(0).substVirtReg(Src, 0, *TRI);
   1640 
   1641     markAsJoined(MI);
   1642   }
   1643 
   1644   // If B = X was the last use of X in a liverange, we have to shrink it now
   1645   // that B = X is gone.
   1646   for (SmallVector<unsigned, 8>::iterator I = SourceRegisters.begin(),
   1647          E = SourceRegisters.end(); I != E; ++I) {
   1648     LIS->shrinkToUses(&LIS->getInterval(*I));
   1649   }
   1650 
   1651   // If we get here, we know that we can coalesce the live ranges.  Ask the
   1652   // intervals to coalesce themselves now.
   1653   LHS.join(RHS, &LHSValNoAssignments[0], &RHSValNoAssignments[0], NewVNInfo,
   1654            MRI);
   1655   return true;
   1656 }
   1657 
   1658 namespace {
   1659   // DepthMBBCompare - Comparison predicate that sort first based on the loop
   1660   // depth of the basic block (the unsigned), and then on the MBB number.
   1661   struct DepthMBBCompare {
   1662     typedef std::pair<unsigned, MachineBasicBlock*> DepthMBBPair;
   1663     bool operator()(const DepthMBBPair &LHS, const DepthMBBPair &RHS) const {
   1664       // Deeper loops first
   1665       if (LHS.first != RHS.first)
   1666         return LHS.first > RHS.first;
   1667 
   1668       // Prefer blocks that are more connected in the CFG. This takes care of
   1669       // the most difficult copies first while intervals are short.
   1670       unsigned cl = LHS.second->pred_size() + LHS.second->succ_size();
   1671       unsigned cr = RHS.second->pred_size() + RHS.second->succ_size();
   1672       if (cl != cr)
   1673         return cl > cr;
   1674 
   1675       // As a last resort, sort by block number.
   1676       return LHS.second->getNumber() < RHS.second->getNumber();
   1677     }
   1678   };
   1679 }
   1680 
   1681 void RegisterCoalescer::CopyCoalesceInMBB(MachineBasicBlock *MBB,
   1682                                             std::vector<MachineInstr*> &TryAgain) {
   1683   DEBUG(dbgs() << MBB->getName() << ":\n");
   1684 
   1685   SmallVector<MachineInstr*, 8> VirtCopies;
   1686   SmallVector<MachineInstr*, 8> PhysCopies;
   1687   SmallVector<MachineInstr*, 8> ImpDefCopies;
   1688   for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end();
   1689        MII != E;) {
   1690     MachineInstr *Inst = MII++;
   1691 
   1692     // If this isn't a copy nor a extract_subreg, we can't join intervals.
   1693     unsigned SrcReg, DstReg;
   1694     if (Inst->isCopy()) {
   1695       DstReg = Inst->getOperand(0).getReg();
   1696       SrcReg = Inst->getOperand(1).getReg();
   1697     } else if (Inst->isSubregToReg()) {
   1698       DstReg = Inst->getOperand(0).getReg();
   1699       SrcReg = Inst->getOperand(2).getReg();
   1700     } else
   1701       continue;
   1702 
   1703     bool SrcIsPhys = TargetRegisterInfo::isPhysicalRegister(SrcReg);
   1704     bool DstIsPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
   1705     if (LIS->hasInterval(SrcReg) && LIS->getInterval(SrcReg).empty())
   1706       ImpDefCopies.push_back(Inst);
   1707     else if (SrcIsPhys || DstIsPhys)
   1708       PhysCopies.push_back(Inst);
   1709     else
   1710       VirtCopies.push_back(Inst);
   1711   }
   1712 
   1713   // Try coalescing implicit copies and insert_subreg <undef> first,
   1714   // followed by copies to / from physical registers, then finally copies
   1715   // from virtual registers to virtual registers.
   1716   for (unsigned i = 0, e = ImpDefCopies.size(); i != e; ++i) {
   1717     MachineInstr *TheCopy = ImpDefCopies[i];
   1718     bool Again = false;
   1719     if (!JoinCopy(TheCopy, Again))
   1720       if (Again)
   1721         TryAgain.push_back(TheCopy);
   1722   }
   1723   for (unsigned i = 0, e = PhysCopies.size(); i != e; ++i) {
   1724     MachineInstr *TheCopy = PhysCopies[i];
   1725     bool Again = false;
   1726     if (!JoinCopy(TheCopy, Again))
   1727       if (Again)
   1728         TryAgain.push_back(TheCopy);
   1729   }
   1730   for (unsigned i = 0, e = VirtCopies.size(); i != e; ++i) {
   1731     MachineInstr *TheCopy = VirtCopies[i];
   1732     bool Again = false;
   1733     if (!JoinCopy(TheCopy, Again))
   1734       if (Again)
   1735         TryAgain.push_back(TheCopy);
   1736   }
   1737 }
   1738 
   1739 void RegisterCoalescer::joinIntervals() {
   1740   DEBUG(dbgs() << "********** JOINING INTERVALS ***********\n");
   1741 
   1742   std::vector<MachineInstr*> TryAgainList;
   1743   if (Loops->empty()) {
   1744     // If there are no loops in the function, join intervals in function order.
   1745     for (MachineFunction::iterator I = MF->begin(), E = MF->end();
   1746          I != E; ++I)
   1747       CopyCoalesceInMBB(I, TryAgainList);
   1748   } else {
   1749     // Otherwise, join intervals in inner loops before other intervals.
   1750     // Unfortunately we can't just iterate over loop hierarchy here because
   1751     // there may be more MBB's than BB's.  Collect MBB's for sorting.
   1752 
   1753     // Join intervals in the function prolog first. We want to join physical
   1754     // registers with virtual registers before the intervals got too long.
   1755     std::vector<std::pair<unsigned, MachineBasicBlock*> > MBBs;
   1756     for (MachineFunction::iterator I = MF->begin(), E = MF->end();I != E;++I){
   1757       MachineBasicBlock *MBB = I;
   1758       MBBs.push_back(std::make_pair(Loops->getLoopDepth(MBB), I));
   1759     }
   1760 
   1761     // Sort by loop depth.
   1762     std::sort(MBBs.begin(), MBBs.end(), DepthMBBCompare());
   1763 
   1764     // Finally, join intervals in loop nest order.
   1765     for (unsigned i = 0, e = MBBs.size(); i != e; ++i)
   1766       CopyCoalesceInMBB(MBBs[i].second, TryAgainList);
   1767   }
   1768 
   1769   // Joining intervals can allow other intervals to be joined.  Iteratively join
   1770   // until we make no progress.
   1771   bool ProgressMade = true;
   1772   while (ProgressMade) {
   1773     ProgressMade = false;
   1774 
   1775     for (unsigned i = 0, e = TryAgainList.size(); i != e; ++i) {
   1776       MachineInstr *&TheCopy = TryAgainList[i];
   1777       if (!TheCopy)
   1778         continue;
   1779 
   1780       bool Again = false;
   1781       bool Success = JoinCopy(TheCopy, Again);
   1782       if (Success || !Again) {
   1783         TheCopy= 0;   // Mark this one as done.
   1784         ProgressMade = true;
   1785       }
   1786     }
   1787   }
   1788 }
   1789 
   1790 void RegisterCoalescer::releaseMemory() {
   1791   JoinedCopies.clear();
   1792   ReMatCopies.clear();
   1793   ReMatDefs.clear();
   1794 }
   1795 
   1796 bool RegisterCoalescer::runOnMachineFunction(MachineFunction &fn) {
   1797   MF = &fn;
   1798   MRI = &fn.getRegInfo();
   1799   TM = &fn.getTarget();
   1800   TRI = TM->getRegisterInfo();
   1801   TII = TM->getInstrInfo();
   1802   LIS = &getAnalysis<LiveIntervals>();
   1803   LDV = &getAnalysis<LiveDebugVariables>();
   1804   AA = &getAnalysis<AliasAnalysis>();
   1805   Loops = &getAnalysis<MachineLoopInfo>();
   1806 
   1807   DEBUG(dbgs() << "********** SIMPLE REGISTER COALESCING **********\n"
   1808                << "********** Function: "
   1809                << ((Value*)MF->getFunction())->getName() << '\n');
   1810 
   1811   if (VerifyCoalescing)
   1812     MF->verify(this, "Before register coalescing");
   1813 
   1814   RegClassInfo.runOnMachineFunction(fn);
   1815 
   1816   // Join (coalesce) intervals if requested.
   1817   if (EnableJoining) {
   1818     joinIntervals();
   1819     DEBUG({
   1820         dbgs() << "********** INTERVALS POST JOINING **********\n";
   1821         for (LiveIntervals::iterator I = LIS->begin(), E = LIS->end();
   1822              I != E; ++I){
   1823           I->second->print(dbgs(), TRI);
   1824           dbgs() << "\n";
   1825         }
   1826       });
   1827   }
   1828 
   1829   // Perform a final pass over the instructions and compute spill weights
   1830   // and remove identity moves.
   1831   SmallVector<unsigned, 4> DeadDefs, InflateRegs;
   1832   for (MachineFunction::iterator mbbi = MF->begin(), mbbe = MF->end();
   1833        mbbi != mbbe; ++mbbi) {
   1834     MachineBasicBlock* mbb = mbbi;
   1835     for (MachineBasicBlock::iterator mii = mbb->begin(), mie = mbb->end();
   1836          mii != mie; ) {
   1837       MachineInstr *MI = mii;
   1838       if (JoinedCopies.count(MI)) {
   1839         // Delete all coalesced copies.
   1840         bool DoDelete = true;
   1841         assert(MI->isCopyLike() && "Unrecognized copy instruction");
   1842         unsigned SrcReg = MI->getOperand(MI->isSubregToReg() ? 2 : 1).getReg();
   1843         unsigned DstReg = MI->getOperand(0).getReg();
   1844 
   1845         // Collect candidates for register class inflation.
   1846         if (TargetRegisterInfo::isVirtualRegister(SrcReg) &&
   1847             RegClassInfo.isProperSubClass(MRI->getRegClass(SrcReg)))
   1848           InflateRegs.push_back(SrcReg);
   1849         if (TargetRegisterInfo::isVirtualRegister(DstReg) &&
   1850             RegClassInfo.isProperSubClass(MRI->getRegClass(DstReg)))
   1851           InflateRegs.push_back(DstReg);
   1852 
   1853         if (TargetRegisterInfo::isPhysicalRegister(SrcReg) &&
   1854             MI->getNumOperands() > 2)
   1855           // Do not delete extract_subreg, insert_subreg of physical
   1856           // registers unless the definition is dead. e.g.
   1857           // %DO<def> = INSERT_SUBREG %D0<undef>, %S0<kill>, 1
   1858           // or else the scavenger may complain. LowerSubregs will
   1859           // delete them later.
   1860           DoDelete = false;
   1861 
   1862         if (MI->allDefsAreDead()) {
   1863           if (TargetRegisterInfo::isVirtualRegister(SrcReg) &&
   1864               LIS->hasInterval(SrcReg))
   1865             LIS->shrinkToUses(&LIS->getInterval(SrcReg));
   1866           DoDelete = true;
   1867         }
   1868         if (!DoDelete) {
   1869           // We need the instruction to adjust liveness, so make it a KILL.
   1870           if (MI->isSubregToReg()) {
   1871             MI->RemoveOperand(3);
   1872             MI->RemoveOperand(1);
   1873           }
   1874           MI->setDesc(TII->get(TargetOpcode::KILL));
   1875           mii = llvm::next(mii);
   1876         } else {
   1877           LIS->RemoveMachineInstrFromMaps(MI);
   1878           mii = mbbi->erase(mii);
   1879           ++numPeep;
   1880         }
   1881         continue;
   1882       }
   1883 
   1884       // Now check if this is a remat'ed def instruction which is now dead.
   1885       if (ReMatDefs.count(MI)) {
   1886         bool isDead = true;
   1887         for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
   1888           const MachineOperand &MO = MI->getOperand(i);
   1889           if (!MO.isReg())
   1890             continue;
   1891           unsigned Reg = MO.getReg();
   1892           if (!Reg)
   1893             continue;
   1894           DeadDefs.push_back(Reg);
   1895           if (TargetRegisterInfo::isVirtualRegister(Reg)) {
   1896             // Remat may also enable register class inflation.
   1897             if (RegClassInfo.isProperSubClass(MRI->getRegClass(Reg)))
   1898               InflateRegs.push_back(Reg);
   1899           }
   1900           if (MO.isDead())
   1901             continue;
   1902           if (TargetRegisterInfo::isPhysicalRegister(Reg) ||
   1903               !MRI->use_nodbg_empty(Reg)) {
   1904             isDead = false;
   1905             break;
   1906           }
   1907         }
   1908         if (isDead) {
   1909           while (!DeadDefs.empty()) {
   1910             unsigned DeadDef = DeadDefs.back();
   1911             DeadDefs.pop_back();
   1912             RemoveDeadDef(LIS->getInterval(DeadDef), MI);
   1913           }
   1914           LIS->RemoveMachineInstrFromMaps(mii);
   1915           mii = mbbi->erase(mii);
   1916           continue;
   1917         } else
   1918           DeadDefs.clear();
   1919       }
   1920 
   1921       ++mii;
   1922 
   1923       // Check for now unnecessary kill flags.
   1924       if (LIS->isNotInMIMap(MI)) continue;
   1925       SlotIndex DefIdx = LIS->getInstructionIndex(MI).getRegSlot();
   1926       for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
   1927         MachineOperand &MO = MI->getOperand(i);
   1928         if (!MO.isReg() || !MO.isKill()) continue;
   1929         unsigned reg = MO.getReg();
   1930         if (!reg || !LIS->hasInterval(reg)) continue;
   1931         if (!LIS->getInterval(reg).killedAt(DefIdx)) {
   1932           MO.setIsKill(false);
   1933           continue;
   1934         }
   1935         // When leaving a kill flag on a physreg, check if any subregs should
   1936         // remain alive.
   1937         if (!TargetRegisterInfo::isPhysicalRegister(reg))
   1938           continue;
   1939         for (const uint16_t *SR = TRI->getSubRegisters(reg);
   1940              unsigned S = *SR; ++SR)
   1941           if (LIS->hasInterval(S) && LIS->getInterval(S).liveAt(DefIdx))
   1942             MI->addRegisterDefined(S, TRI);
   1943       }
   1944     }
   1945   }
   1946 
   1947   // After deleting a lot of copies, register classes may be less constrained.
   1948   // Removing sub-register opreands may alow GR32_ABCD -> GR32 and DPR_VFP2 ->
   1949   // DPR inflation.
   1950   array_pod_sort(InflateRegs.begin(), InflateRegs.end());
   1951   InflateRegs.erase(std::unique(InflateRegs.begin(), InflateRegs.end()),
   1952                     InflateRegs.end());
   1953   DEBUG(dbgs() << "Trying to inflate " << InflateRegs.size() << " regs.\n");
   1954   for (unsigned i = 0, e = InflateRegs.size(); i != e; ++i) {
   1955     unsigned Reg = InflateRegs[i];
   1956     if (MRI->reg_nodbg_empty(Reg))
   1957       continue;
   1958     if (MRI->recomputeRegClass(Reg, *TM)) {
   1959       DEBUG(dbgs() << PrintReg(Reg) << " inflated to "
   1960                    << MRI->getRegClass(Reg)->getName() << '\n');
   1961       ++NumInflated;
   1962     }
   1963   }
   1964 
   1965   DEBUG(dump());
   1966   DEBUG(LDV->dump());
   1967   if (VerifyCoalescing)
   1968     MF->verify(this, "After register coalescing");
   1969   return true;
   1970 }
   1971 
   1972 /// print - Implement the dump method.
   1973 void RegisterCoalescer::print(raw_ostream &O, const Module* m) const {
   1974    LIS->print(O, m);
   1975 }
   1976