Home | History | Annotate | Download | only in src
      1 // Copyright 2012 the V8 project authors. All rights reserved.
      2 // Redistribution and use in source and binary forms, with or without
      3 // modification, are permitted provided that the following conditions are
      4 // met:
      5 //
      6 //     * Redistributions of source code must retain the above copyright
      7 //       notice, this list of conditions and the following disclaimer.
      8 //     * Redistributions in binary form must reproduce the above
      9 //       copyright notice, this list of conditions and the following
     10 //       disclaimer in the documentation and/or other materials provided
     11 //       with the distribution.
     12 //     * Neither the name of Google Inc. nor the names of its
     13 //       contributors may be used to endorse or promote products derived
     14 //       from this software without specific prior written permission.
     15 //
     16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     27 
     28 #ifndef V8_GLOBALS_H_
     29 #define V8_GLOBALS_H_
     30 
     31 // Define V8_INFINITY
     32 #define V8_INFINITY INFINITY
     33 
     34 // GCC specific stuff
     35 #ifdef __GNUC__
     36 
     37 #define __GNUC_VERSION_FOR_INFTY__ (__GNUC__ * 10000 + __GNUC_MINOR__ * 100)
     38 
     39 // Unfortunately, the INFINITY macro cannot be used with the '-pedantic'
     40 // warning flag and certain versions of GCC due to a bug:
     41 // http://gcc.gnu.org/bugzilla/show_bug.cgi?id=11931
     42 // For now, we use the more involved template-based version from <limits>, but
     43 // only when compiling with GCC versions affected by the bug (2.96.x - 4.0.x)
     44 // __GNUC_PREREQ is not defined in GCC for Mac OS X, so we define our own macro
     45 #if __GNUC_VERSION_FOR_INFTY__ >= 29600 && __GNUC_VERSION_FOR_INFTY__ < 40100
     46 #include <limits>
     47 #undef V8_INFINITY
     48 #define V8_INFINITY std::numeric_limits<double>::infinity()
     49 #endif
     50 #undef __GNUC_VERSION_FOR_INFTY__
     51 
     52 #endif  // __GNUC__
     53 
     54 #ifdef _MSC_VER
     55 #undef V8_INFINITY
     56 #define V8_INFINITY HUGE_VAL
     57 #endif
     58 
     59 
     60 #include "../include/v8stdint.h"
     61 
     62 namespace v8 {
     63 namespace internal {
     64 
     65 // Processor architecture detection.  For more info on what's defined, see:
     66 //   http://msdn.microsoft.com/en-us/library/b0084kay.aspx
     67 //   http://www.agner.org/optimize/calling_conventions.pdf
     68 //   or with gcc, run: "echo | gcc -E -dM -"
     69 #if defined(_M_X64) || defined(__x86_64__)
     70 #define V8_HOST_ARCH_X64 1
     71 #define V8_HOST_ARCH_64_BIT 1
     72 #define V8_HOST_CAN_READ_UNALIGNED 1
     73 #elif defined(_M_IX86) || defined(__i386__)
     74 #define V8_HOST_ARCH_IA32 1
     75 #define V8_HOST_ARCH_32_BIT 1
     76 #define V8_HOST_CAN_READ_UNALIGNED 1
     77 #elif defined(__ARMEL__)
     78 #define V8_HOST_ARCH_ARM 1
     79 #define V8_HOST_ARCH_32_BIT 1
     80 // Some CPU-OS combinations allow unaligned access on ARM. We assume
     81 // that unaligned accesses are not allowed unless the build system
     82 // defines the CAN_USE_UNALIGNED_ACCESSES macro to be non-zero.
     83 #if CAN_USE_UNALIGNED_ACCESSES
     84 #define V8_HOST_CAN_READ_UNALIGNED 1
     85 #endif
     86 #elif defined(__MIPSEL__)
     87 #define V8_HOST_ARCH_MIPS 1
     88 #define V8_HOST_ARCH_32_BIT 1
     89 #else
     90 #error Host architecture was not detected as supported by v8
     91 #endif
     92 
     93 // Target architecture detection. This may be set externally. If not, detect
     94 // in the same way as the host architecture, that is, target the native
     95 // environment as presented by the compiler.
     96 #if !defined(V8_TARGET_ARCH_X64) && !defined(V8_TARGET_ARCH_IA32) && \
     97     !defined(V8_TARGET_ARCH_ARM) && !defined(V8_TARGET_ARCH_MIPS)
     98 #if defined(_M_X64) || defined(__x86_64__)
     99 #define V8_TARGET_ARCH_X64 1
    100 #elif defined(_M_IX86) || defined(__i386__)
    101 #define V8_TARGET_ARCH_IA32 1
    102 #elif defined(__ARMEL__)
    103 #define V8_TARGET_ARCH_ARM 1
    104 #elif defined(__MIPSEL__)
    105 #define V8_TARGET_ARCH_MIPS 1
    106 #else
    107 #error Target architecture was not detected as supported by v8
    108 #endif
    109 #endif
    110 
    111 // Check for supported combinations of host and target architectures.
    112 #if defined(V8_TARGET_ARCH_IA32) && !defined(V8_HOST_ARCH_IA32)
    113 #error Target architecture ia32 is only supported on ia32 host
    114 #endif
    115 #if defined(V8_TARGET_ARCH_X64) && !defined(V8_HOST_ARCH_X64)
    116 #error Target architecture x64 is only supported on x64 host
    117 #endif
    118 #if (defined(V8_TARGET_ARCH_ARM) && \
    119     !(defined(V8_HOST_ARCH_IA32) || defined(V8_HOST_ARCH_ARM)))
    120 #error Target architecture arm is only supported on arm and ia32 host
    121 #endif
    122 #if (defined(V8_TARGET_ARCH_MIPS) && \
    123     !(defined(V8_HOST_ARCH_IA32) || defined(V8_HOST_ARCH_MIPS)))
    124 #error Target architecture mips is only supported on mips and ia32 host
    125 #endif
    126 
    127 // Determine whether we are running in a simulated environment.
    128 // Setting USE_SIMULATOR explicitly from the build script will force
    129 // the use of a simulated environment.
    130 #if !defined(USE_SIMULATOR)
    131 #if (defined(V8_TARGET_ARCH_ARM) && !defined(V8_HOST_ARCH_ARM))
    132 #define USE_SIMULATOR 1
    133 #endif
    134 #if (defined(V8_TARGET_ARCH_MIPS) && !defined(V8_HOST_ARCH_MIPS))
    135 #define USE_SIMULATOR 1
    136 #endif
    137 #endif
    138 
    139 // Define unaligned read for the target architectures supporting it.
    140 #if defined(V8_TARGET_ARCH_X64) || defined(V8_TARGET_ARCH_IA32)
    141 #define V8_TARGET_CAN_READ_UNALIGNED 1
    142 #elif V8_TARGET_ARCH_ARM
    143 // Some CPU-OS combinations allow unaligned access on ARM. We assume
    144 // that unaligned accesses are not allowed unless the build system
    145 // defines the CAN_USE_UNALIGNED_ACCESSES macro to be non-zero.
    146 #if CAN_USE_UNALIGNED_ACCESSES
    147 #define V8_TARGET_CAN_READ_UNALIGNED 1
    148 #endif
    149 #elif V8_TARGET_ARCH_MIPS
    150 #else
    151 #error Target architecture is not supported by v8
    152 #endif
    153 
    154 // Support for alternative bool type. This is only enabled if the code is
    155 // compiled with USE_MYBOOL defined. This catches some nasty type bugs.
    156 // For instance, 'bool b = "false";' results in b == true! This is a hidden
    157 // source of bugs.
    158 // However, redefining the bool type does have some negative impact on some
    159 // platforms. It gives rise to compiler warnings (i.e. with
    160 // MSVC) in the API header files when mixing code that uses the standard
    161 // bool with code that uses the redefined version.
    162 // This does not actually belong in the platform code, but needs to be
    163 // defined here because the platform code uses bool, and platform.h is
    164 // include very early in the main include file.
    165 
    166 #ifdef USE_MYBOOL
    167 typedef unsigned int __my_bool__;
    168 #define bool __my_bool__  // use 'indirection' to avoid name clashes
    169 #endif
    170 
    171 typedef uint8_t byte;
    172 typedef byte* Address;
    173 
    174 // Define our own macros for writing 64-bit constants.  This is less fragile
    175 // than defining __STDC_CONSTANT_MACROS before including <stdint.h>, and it
    176 // works on compilers that don't have it (like MSVC).
    177 #if V8_HOST_ARCH_64_BIT
    178 #if defined(_MSC_VER)
    179 #define V8_UINT64_C(x)  (x ## UI64)
    180 #define V8_INT64_C(x)   (x ## I64)
    181 #define V8_INTPTR_C(x)  (x ## I64)
    182 #define V8_PTR_PREFIX "ll"
    183 #elif defined(__MINGW64__)
    184 #define V8_UINT64_C(x)  (x ## ULL)
    185 #define V8_INT64_C(x)   (x ## LL)
    186 #define V8_INTPTR_C(x)  (x ## LL)
    187 #define V8_PTR_PREFIX "I64"
    188 #else
    189 #define V8_UINT64_C(x)  (x ## UL)
    190 #define V8_INT64_C(x)   (x ## L)
    191 #define V8_INTPTR_C(x)  (x ## L)
    192 #define V8_PTR_PREFIX "l"
    193 #endif
    194 #else  // V8_HOST_ARCH_64_BIT
    195 #define V8_INTPTR_C(x)  (x)
    196 #define V8_PTR_PREFIX ""
    197 #endif  // V8_HOST_ARCH_64_BIT
    198 
    199 // The following macro works on both 32 and 64-bit platforms.
    200 // Usage: instead of writing 0x1234567890123456
    201 //      write V8_2PART_UINT64_C(0x12345678,90123456);
    202 #define V8_2PART_UINT64_C(a, b) (((static_cast<uint64_t>(a) << 32) + 0x##b##u))
    203 
    204 #define V8PRIxPTR V8_PTR_PREFIX "x"
    205 #define V8PRIdPTR V8_PTR_PREFIX "d"
    206 
    207 // Fix for Mac OS X defining uintptr_t as "unsigned long":
    208 #if defined(__APPLE__) && defined(__MACH__)
    209 #undef V8PRIxPTR
    210 #define V8PRIxPTR "lx"
    211 #endif
    212 
    213 #if (defined(__APPLE__) && defined(__MACH__)) || \
    214     defined(__FreeBSD__) || defined(__OpenBSD__)
    215 #define USING_BSD_ABI
    216 #endif
    217 
    218 // -----------------------------------------------------------------------------
    219 // Constants
    220 
    221 const int KB = 1024;
    222 const int MB = KB * KB;
    223 const int GB = KB * KB * KB;
    224 const int kMaxInt = 0x7FFFFFFF;
    225 const int kMinInt = -kMaxInt - 1;
    226 
    227 const uint32_t kMaxUInt32 = 0xFFFFFFFFu;
    228 
    229 const int kCharSize     = sizeof(char);      // NOLINT
    230 const int kShortSize    = sizeof(short);     // NOLINT
    231 const int kIntSize      = sizeof(int);       // NOLINT
    232 const int kDoubleSize   = sizeof(double);    // NOLINT
    233 const int kIntptrSize   = sizeof(intptr_t);  // NOLINT
    234 const int kPointerSize  = sizeof(void*);     // NOLINT
    235 
    236 const int kDoubleSizeLog2 = 3;
    237 
    238 // Size of the state of a the random number generator.
    239 const int kRandomStateSize = 2 * kIntSize;
    240 
    241 #if V8_HOST_ARCH_64_BIT
    242 const int kPointerSizeLog2 = 3;
    243 const intptr_t kIntptrSignBit = V8_INT64_C(0x8000000000000000);
    244 const uintptr_t kUintptrAllBitsSet = V8_UINT64_C(0xFFFFFFFFFFFFFFFF);
    245 #else
    246 const int kPointerSizeLog2 = 2;
    247 const intptr_t kIntptrSignBit = 0x80000000;
    248 const uintptr_t kUintptrAllBitsSet = 0xFFFFFFFFu;
    249 #endif
    250 
    251 const int kBitsPerByte = 8;
    252 const int kBitsPerByteLog2 = 3;
    253 const int kBitsPerPointer = kPointerSize * kBitsPerByte;
    254 const int kBitsPerInt = kIntSize * kBitsPerByte;
    255 
    256 // IEEE 754 single precision floating point number bit layout.
    257 const uint32_t kBinary32SignMask = 0x80000000u;
    258 const uint32_t kBinary32ExponentMask = 0x7f800000u;
    259 const uint32_t kBinary32MantissaMask = 0x007fffffu;
    260 const int kBinary32ExponentBias = 127;
    261 const int kBinary32MaxExponent  = 0xFE;
    262 const int kBinary32MinExponent  = 0x01;
    263 const int kBinary32MantissaBits = 23;
    264 const int kBinary32ExponentShift = 23;
    265 
    266 // Quiet NaNs have bits 51 to 62 set, possibly the sign bit, and no
    267 // other bits set.
    268 const uint64_t kQuietNaNMask = static_cast<uint64_t>(0xfff) << 51;
    269 
    270 // ASCII/UTF-16 constants
    271 // Code-point values in Unicode 4.0 are 21 bits wide.
    272 // Code units in UTF-16 are 16 bits wide.
    273 typedef uint16_t uc16;
    274 typedef int32_t uc32;
    275 const int kASCIISize    = kCharSize;
    276 const int kUC16Size     = sizeof(uc16);      // NOLINT
    277 const uc32 kMaxAsciiCharCode = 0x7f;
    278 const uint32_t kMaxAsciiCharCodeU = 0x7fu;
    279 
    280 
    281 // The expression OFFSET_OF(type, field) computes the byte-offset
    282 // of the specified field relative to the containing type. This
    283 // corresponds to 'offsetof' (in stddef.h), except that it doesn't
    284 // use 0 or NULL, which causes a problem with the compiler warnings
    285 // we have enabled (which is also why 'offsetof' doesn't seem to work).
    286 // Here we simply use the non-zero value 4, which seems to work.
    287 #define OFFSET_OF(type, field)                                          \
    288   (reinterpret_cast<intptr_t>(&(reinterpret_cast<type*>(4)->field)) - 4)
    289 
    290 
    291 // The expression ARRAY_SIZE(a) is a compile-time constant of type
    292 // size_t which represents the number of elements of the given
    293 // array. You should only use ARRAY_SIZE on statically allocated
    294 // arrays.
    295 #define ARRAY_SIZE(a)                                   \
    296   ((sizeof(a) / sizeof(*(a))) /                         \
    297   static_cast<size_t>(!(sizeof(a) % sizeof(*(a)))))
    298 
    299 
    300 // The USE(x) template is used to silence C++ compiler warnings
    301 // issued for (yet) unused variables (typically parameters).
    302 template <typename T>
    303 inline void USE(T) { }
    304 
    305 
    306 // FUNCTION_ADDR(f) gets the address of a C function f.
    307 #define FUNCTION_ADDR(f)                                        \
    308   (reinterpret_cast<v8::internal::Address>(reinterpret_cast<intptr_t>(f)))
    309 
    310 
    311 // FUNCTION_CAST<F>(addr) casts an address into a function
    312 // of type F. Used to invoke generated code from within C.
    313 template <typename F>
    314 F FUNCTION_CAST(Address addr) {
    315   return reinterpret_cast<F>(reinterpret_cast<intptr_t>(addr));
    316 }
    317 
    318 
    319 // A macro to disallow the evil copy constructor and operator= functions
    320 // This should be used in the private: declarations for a class
    321 #define DISALLOW_COPY_AND_ASSIGN(TypeName)      \
    322   TypeName(const TypeName&);                    \
    323   void operator=(const TypeName&)
    324 
    325 
    326 // A macro to disallow all the implicit constructors, namely the
    327 // default constructor, copy constructor and operator= functions.
    328 //
    329 // This should be used in the private: declarations for a class
    330 // that wants to prevent anyone from instantiating it. This is
    331 // especially useful for classes containing only static methods.
    332 #define DISALLOW_IMPLICIT_CONSTRUCTORS(TypeName) \
    333   TypeName();                                    \
    334   DISALLOW_COPY_AND_ASSIGN(TypeName)
    335 
    336 
    337 // Define used for helping GCC to make better inlining. Don't bother for debug
    338 // builds. On GCC 3.4.5 using __attribute__((always_inline)) causes compilation
    339 // errors in debug build.
    340 #if defined(__GNUC__) && !defined(DEBUG)
    341 #if (__GNUC__ >= 4)
    342 #define INLINE(header) inline header  __attribute__((always_inline))
    343 #define NO_INLINE(header) header __attribute__((noinline))
    344 #else
    345 #define INLINE(header) inline __attribute__((always_inline)) header
    346 #define NO_INLINE(header) __attribute__((noinline)) header
    347 #endif
    348 #else
    349 #define INLINE(header) inline header
    350 #define NO_INLINE(header) header
    351 #endif
    352 
    353 
    354 #if defined(__GNUC__) && __GNUC__ >= 4
    355 #define MUST_USE_RESULT __attribute__ ((warn_unused_result))
    356 #else
    357 #define MUST_USE_RESULT
    358 #endif
    359 
    360 // -----------------------------------------------------------------------------
    361 // Forward declarations for frequently used classes
    362 // (sorted alphabetically)
    363 
    364 class FreeStoreAllocationPolicy;
    365 template <typename T, class P = FreeStoreAllocationPolicy> class List;
    366 
    367 // -----------------------------------------------------------------------------
    368 // Declarations for use in both the preparser and the rest of V8.
    369 
    370 // The different language modes that V8 implements. ES5 defines two language
    371 // modes: an unrestricted mode respectively a strict mode which are indicated by
    372 // CLASSIC_MODE respectively STRICT_MODE in the enum. The harmony spec drafts
    373 // for the next ES standard specify a new third mode which is called 'extended
    374 // mode'. The extended mode is only available if the harmony flag is set. It is
    375 // based on the 'strict mode' and adds new functionality to it. This means that
    376 // most of the semantics of these two modes coincide.
    377 //
    378 // In the current draft the term 'base code' is used to refer to code that is
    379 // neither in strict nor extended mode. However, the more distinguishing term
    380 // 'classic mode' is used in V8 instead to avoid mix-ups.
    381 
    382 enum LanguageMode {
    383   CLASSIC_MODE,
    384   STRICT_MODE,
    385   EXTENDED_MODE
    386 };
    387 
    388 
    389 // The Strict Mode (ECMA-262 5th edition, 4.2.2).
    390 //
    391 // This flag is used in the backend to represent the language mode. So far
    392 // there is no semantic difference between the strict and the extended mode in
    393 // the backend, so both modes are represented by the kStrictMode value.
    394 enum StrictModeFlag {
    395   kNonStrictMode,
    396   kStrictMode
    397 };
    398 
    399 
    400 } }  // namespace v8::internal
    401 
    402 #endif  // V8_GLOBALS_H_
    403