Home | History | Annotate | Download | only in disk_cache
      1 // Copyright (c) 2009-2010 The Chromium Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #include "net/disk_cache/sparse_control.h"
      6 
      7 #include "base/format_macros.h"
      8 #include "base/logging.h"
      9 #include "base/message_loop.h"
     10 #include "base/string_util.h"
     11 #include "base/stringprintf.h"
     12 #include "base/time.h"
     13 #include "net/base/io_buffer.h"
     14 #include "net/base/net_errors.h"
     15 #include "net/disk_cache/backend_impl.h"
     16 #include "net/disk_cache/entry_impl.h"
     17 #include "net/disk_cache/file.h"
     18 #include "net/disk_cache/net_log_parameters.h"
     19 
     20 using base::Time;
     21 
     22 namespace {
     23 
     24 // Stream of the sparse data index.
     25 const int kSparseIndex = 2;
     26 
     27 // Stream of the sparse data.
     28 const int kSparseData = 1;
     29 
     30 // We can have up to 64k children.
     31 const int kMaxMapSize = 8 * 1024;
     32 
     33 // The maximum number of bytes that a child can store.
     34 const int kMaxEntrySize = 0x100000;
     35 
     36 // The size of each data block (tracked by the child allocation bitmap).
     37 const int kBlockSize = 1024;
     38 
     39 // Returns the name of a child entry given the base_name and signature of the
     40 // parent and the child_id.
     41 // If the entry is called entry_name, child entries will be named something
     42 // like Range_entry_name:XXX:YYY where XXX is the entry signature and YYY is the
     43 // number of the particular child.
     44 std::string GenerateChildName(const std::string& base_name, int64 signature,
     45                               int64 child_id) {
     46   return base::StringPrintf("Range_%s:%" PRIx64 ":%" PRIx64, base_name.c_str(),
     47                             signature, child_id);
     48 }
     49 
     50 // This class deletes the children of a sparse entry.
     51 class ChildrenDeleter
     52     : public base::RefCounted<ChildrenDeleter>,
     53       public disk_cache::FileIOCallback {
     54  public:
     55   ChildrenDeleter(disk_cache::BackendImpl* backend, const std::string& name)
     56       : backend_(backend->GetWeakPtr()), name_(name), signature_(0) {}
     57 
     58   virtual void OnFileIOComplete(int bytes_copied);
     59 
     60   // Two ways of deleting the children: if we have the children map, use Start()
     61   // directly, otherwise pass the data address to ReadData().
     62   void Start(char* buffer, int len);
     63   void ReadData(disk_cache::Addr address, int len);
     64 
     65  private:
     66   friend class base::RefCounted<ChildrenDeleter>;
     67   ~ChildrenDeleter() {}
     68 
     69   void DeleteChildren();
     70 
     71   base::WeakPtr<disk_cache::BackendImpl> backend_;
     72   std::string name_;
     73   disk_cache::Bitmap children_map_;
     74   int64 signature_;
     75   scoped_array<char> buffer_;
     76   DISALLOW_COPY_AND_ASSIGN(ChildrenDeleter);
     77 };
     78 
     79 // This is the callback of the file operation.
     80 void ChildrenDeleter::OnFileIOComplete(int bytes_copied) {
     81   char* buffer = buffer_.release();
     82   Start(buffer, bytes_copied);
     83 }
     84 
     85 void ChildrenDeleter::Start(char* buffer, int len) {
     86   buffer_.reset(buffer);
     87   if (len < static_cast<int>(sizeof(disk_cache::SparseData)))
     88     return Release();
     89 
     90   // Just copy the information from |buffer|, delete |buffer| and start deleting
     91   // the child entries.
     92   disk_cache::SparseData* data =
     93       reinterpret_cast<disk_cache::SparseData*>(buffer);
     94   signature_ = data->header.signature;
     95 
     96   int num_bits = (len - sizeof(disk_cache::SparseHeader)) * 8;
     97   children_map_.Resize(num_bits, false);
     98   children_map_.SetMap(data->bitmap, num_bits / 32);
     99   buffer_.reset();
    100 
    101   DeleteChildren();
    102 }
    103 
    104 void ChildrenDeleter::ReadData(disk_cache::Addr address, int len) {
    105   DCHECK(address.is_block_file());
    106   if (!backend_)
    107     return Release();
    108 
    109   disk_cache::File* file(backend_->File(address));
    110   if (!file)
    111     return Release();
    112 
    113   size_t file_offset = address.start_block() * address.BlockSize() +
    114                        disk_cache::kBlockHeaderSize;
    115 
    116   buffer_.reset(new char[len]);
    117   bool completed;
    118   if (!file->Read(buffer_.get(), len, file_offset, this, &completed))
    119     return Release();
    120 
    121   if (completed)
    122     OnFileIOComplete(len);
    123 
    124   // And wait until OnFileIOComplete gets called.
    125 }
    126 
    127 void ChildrenDeleter::DeleteChildren() {
    128   int child_id = 0;
    129   if (!children_map_.FindNextSetBit(&child_id) || !backend_) {
    130     // We are done. Just delete this object.
    131     return Release();
    132   }
    133   std::string child_name = GenerateChildName(name_, signature_, child_id);
    134   backend_->SyncDoomEntry(child_name);
    135   children_map_.Set(child_id, false);
    136 
    137   // Post a task to delete the next child.
    138   MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
    139       this, &ChildrenDeleter::DeleteChildren));
    140 }
    141 
    142 // Returns the NetLog event type corresponding to a SparseOperation.
    143 net::NetLog::EventType GetSparseEventType(
    144     disk_cache::SparseControl::SparseOperation operation) {
    145   switch (operation) {
    146     case disk_cache::SparseControl::kReadOperation:
    147       return net::NetLog::TYPE_SPARSE_READ;
    148     case disk_cache::SparseControl::kWriteOperation:
    149       return net::NetLog::TYPE_SPARSE_WRITE;
    150     case disk_cache::SparseControl::kGetRangeOperation:
    151       return net::NetLog::TYPE_SPARSE_GET_RANGE;
    152     default:
    153       NOTREACHED();
    154       return net::NetLog::TYPE_CANCELLED;
    155   }
    156 }
    157 
    158 // Logs the end event for |operation| on a child entry.  Range operations log
    159 // no events for each child they search through.
    160 void LogChildOperationEnd(const net::BoundNetLog& net_log,
    161                           disk_cache::SparseControl::SparseOperation operation,
    162                           int result) {
    163   if (net_log.IsLoggingAllEvents()) {
    164     net::NetLog::EventType event_type;
    165     switch (operation) {
    166       case disk_cache::SparseControl::kReadOperation:
    167         event_type = net::NetLog::TYPE_SPARSE_READ_CHILD_DATA;
    168         break;
    169       case disk_cache::SparseControl::kWriteOperation:
    170         event_type = net::NetLog::TYPE_SPARSE_WRITE_CHILD_DATA;
    171         break;
    172       case disk_cache::SparseControl::kGetRangeOperation:
    173         return;
    174       default:
    175         NOTREACHED();
    176         return;
    177     }
    178     net_log.EndEventWithNetErrorCode(event_type, result);
    179   }
    180 }
    181 
    182 }  // namespace.
    183 
    184 namespace disk_cache {
    185 
    186 SparseControl::SparseControl(EntryImpl* entry)
    187     : entry_(entry),
    188       child_(NULL),
    189       operation_(kNoOperation),
    190       init_(false),
    191       child_map_(child_data_.bitmap, kNumSparseBits, kNumSparseBits / 32),
    192       ALLOW_THIS_IN_INITIALIZER_LIST(
    193           child_callback_(this, &SparseControl::OnChildIOCompleted)),
    194       user_callback_(NULL) {
    195 }
    196 
    197 SparseControl::~SparseControl() {
    198   if (child_)
    199     CloseChild();
    200   if (init_)
    201     WriteSparseData();
    202 }
    203 
    204 int SparseControl::Init() {
    205   DCHECK(!init_);
    206 
    207   // We should not have sparse data for the exposed entry.
    208   if (entry_->GetDataSize(kSparseData))
    209     return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;
    210 
    211   // Now see if there is something where we store our data.
    212   int rv = net::OK;
    213   int data_len = entry_->GetDataSize(kSparseIndex);
    214   if (!data_len) {
    215     rv = CreateSparseEntry();
    216   } else {
    217     rv = OpenSparseEntry(data_len);
    218   }
    219 
    220   if (rv == net::OK)
    221     init_ = true;
    222   return rv;
    223 }
    224 
    225 bool SparseControl::CouldBeSparse() const {
    226   DCHECK(!init_);
    227 
    228   if (entry_->GetDataSize(kSparseData))
    229     return false;
    230 
    231   // We don't verify the data, just see if it could be there.
    232   return (entry_->GetDataSize(kSparseIndex) != 0);
    233 }
    234 
    235 int SparseControl::StartIO(SparseOperation op, int64 offset, net::IOBuffer* buf,
    236                            int buf_len, net::CompletionCallback* callback) {
    237   DCHECK(init_);
    238   // We don't support simultaneous IO for sparse data.
    239   if (operation_ != kNoOperation)
    240     return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;
    241 
    242   if (offset < 0 || buf_len < 0)
    243     return net::ERR_INVALID_ARGUMENT;
    244 
    245   // We only support up to 64 GB.
    246   if (offset + buf_len >= 0x1000000000LL || offset + buf_len < 0)
    247     return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;
    248 
    249   DCHECK(!user_buf_);
    250   DCHECK(!user_callback_);
    251 
    252   if (!buf && (op == kReadOperation || op == kWriteOperation))
    253     return 0;
    254 
    255   // Copy the operation parameters.
    256   operation_ = op;
    257   offset_ = offset;
    258   user_buf_ = buf ? new net::DrainableIOBuffer(buf, buf_len) : NULL;
    259   buf_len_ = buf_len;
    260   user_callback_ = callback;
    261 
    262   result_ = 0;
    263   pending_ = false;
    264   finished_ = false;
    265   abort_ = false;
    266 
    267   if (entry_->net_log().IsLoggingAllEvents()) {
    268     entry_->net_log().BeginEvent(
    269         GetSparseEventType(operation_),
    270         make_scoped_refptr(new SparseOperationParameters(offset_, buf_len_)));
    271   }
    272   DoChildrenIO();
    273 
    274   if (!pending_) {
    275     // Everything was done synchronously.
    276     operation_ = kNoOperation;
    277     user_buf_ = NULL;
    278     user_callback_ = NULL;
    279     return result_;
    280   }
    281 
    282   return net::ERR_IO_PENDING;
    283 }
    284 
    285 int SparseControl::GetAvailableRange(int64 offset, int len, int64* start) {
    286   DCHECK(init_);
    287   // We don't support simultaneous IO for sparse data.
    288   if (operation_ != kNoOperation)
    289     return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;
    290 
    291   DCHECK(start);
    292 
    293   range_found_ = false;
    294   int result = StartIO(kGetRangeOperation, offset, NULL, len, NULL);
    295   if (range_found_) {
    296     *start = offset_;
    297     return result;
    298   }
    299 
    300   // This is a failure. We want to return a valid start value in any case.
    301   *start = offset;
    302   return result < 0 ? result : 0;  // Don't mask error codes to the caller.
    303 }
    304 
    305 void SparseControl::CancelIO() {
    306   if (operation_ == kNoOperation)
    307     return;
    308   abort_ = true;
    309 }
    310 
    311 int SparseControl::ReadyToUse(net::CompletionCallback* completion_callback) {
    312   if (!abort_)
    313     return net::OK;
    314 
    315   // We'll grab another reference to keep this object alive because we just have
    316   // one extra reference due to the pending IO operation itself, but we'll
    317   // release that one before invoking user_callback_.
    318   entry_->AddRef();  // Balanced in DoAbortCallbacks.
    319   abort_callbacks_.push_back(completion_callback);
    320   return net::ERR_IO_PENDING;
    321 }
    322 
    323 // Static
    324 void SparseControl::DeleteChildren(EntryImpl* entry) {
    325   DCHECK(entry->GetEntryFlags() & PARENT_ENTRY);
    326   int data_len = entry->GetDataSize(kSparseIndex);
    327   if (data_len < static_cast<int>(sizeof(SparseData)) ||
    328       entry->GetDataSize(kSparseData))
    329     return;
    330 
    331   int map_len = data_len - sizeof(SparseHeader);
    332   if (map_len > kMaxMapSize || map_len % 4)
    333     return;
    334 
    335   char* buffer;
    336   Addr address;
    337   entry->GetData(kSparseIndex, &buffer, &address);
    338   if (!buffer && !address.is_initialized())
    339     return;
    340 
    341   entry->net_log().AddEvent(net::NetLog::TYPE_SPARSE_DELETE_CHILDREN, NULL);
    342 
    343   ChildrenDeleter* deleter = new ChildrenDeleter(entry->backend_,
    344                                                  entry->GetKey());
    345   // The object will self destruct when finished.
    346   deleter->AddRef();
    347 
    348   if (buffer) {
    349     MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
    350         deleter, &ChildrenDeleter::Start, buffer, data_len));
    351   } else {
    352     MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
    353         deleter, &ChildrenDeleter::ReadData, address, data_len));
    354   }
    355 }
    356 
    357 // We are going to start using this entry to store sparse data, so we have to
    358 // initialize our control info.
    359 int SparseControl::CreateSparseEntry() {
    360   if (CHILD_ENTRY & entry_->GetEntryFlags())
    361     return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;
    362 
    363   memset(&sparse_header_, 0, sizeof(sparse_header_));
    364   sparse_header_.signature = Time::Now().ToInternalValue();
    365   sparse_header_.magic = kIndexMagic;
    366   sparse_header_.parent_key_len = entry_->GetKey().size();
    367   children_map_.Resize(kNumSparseBits, true);
    368 
    369   // Save the header. The bitmap is saved in the destructor.
    370   scoped_refptr<net::IOBuffer> buf(
    371       new net::WrappedIOBuffer(reinterpret_cast<char*>(&sparse_header_)));
    372 
    373   int rv = entry_->WriteData(kSparseIndex, 0, buf, sizeof(sparse_header_), NULL,
    374                              false);
    375   if (rv != sizeof(sparse_header_)) {
    376     DLOG(ERROR) << "Unable to save sparse_header_";
    377     return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;
    378   }
    379 
    380   entry_->SetEntryFlags(PARENT_ENTRY);
    381   return net::OK;
    382 }
    383 
    384 // We are opening an entry from disk. Make sure that our control data is there.
    385 int SparseControl::OpenSparseEntry(int data_len) {
    386   if (data_len < static_cast<int>(sizeof(SparseData)))
    387     return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;
    388 
    389   if (entry_->GetDataSize(kSparseData))
    390     return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;
    391 
    392   if (!(PARENT_ENTRY & entry_->GetEntryFlags()))
    393     return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;
    394 
    395   // Dont't go over board with the bitmap. 8 KB gives us offsets up to 64 GB.
    396   int map_len = data_len - sizeof(sparse_header_);
    397   if (map_len > kMaxMapSize || map_len % 4)
    398     return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;
    399 
    400   scoped_refptr<net::IOBuffer> buf(
    401       new net::WrappedIOBuffer(reinterpret_cast<char*>(&sparse_header_)));
    402 
    403   // Read header.
    404   int rv = entry_->ReadData(kSparseIndex, 0, buf, sizeof(sparse_header_), NULL);
    405   if (rv != static_cast<int>(sizeof(sparse_header_)))
    406     return net::ERR_CACHE_READ_FAILURE;
    407 
    408   // The real validation should be performed by the caller. This is just to
    409   // double check.
    410   if (sparse_header_.magic != kIndexMagic ||
    411       sparse_header_.parent_key_len !=
    412           static_cast<int>(entry_->GetKey().size()))
    413     return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;
    414 
    415   // Read the actual bitmap.
    416   buf = new net::IOBuffer(map_len);
    417   rv = entry_->ReadData(kSparseIndex, sizeof(sparse_header_), buf, map_len,
    418                         NULL);
    419   if (rv != map_len)
    420     return net::ERR_CACHE_READ_FAILURE;
    421 
    422   // Grow the bitmap to the current size and copy the bits.
    423   children_map_.Resize(map_len * 8, false);
    424   children_map_.SetMap(reinterpret_cast<uint32*>(buf->data()), map_len);
    425   return net::OK;
    426 }
    427 
    428 bool SparseControl::OpenChild() {
    429   DCHECK_GE(result_, 0);
    430 
    431   std::string key = GenerateChildKey();
    432   if (child_) {
    433     // Keep using the same child or open another one?.
    434     if (key == child_->GetKey())
    435       return true;
    436     CloseChild();
    437   }
    438 
    439   // See if we are tracking this child.
    440   if (!ChildPresent())
    441     return ContinueWithoutChild(key);
    442 
    443   child_ = entry_->backend_->OpenEntryImpl(key);
    444   if (!child_)
    445     return ContinueWithoutChild(key);
    446 
    447   EntryImpl* child = static_cast<EntryImpl*>(child_);
    448   if (!(CHILD_ENTRY & child->GetEntryFlags()) ||
    449       child->GetDataSize(kSparseIndex) <
    450           static_cast<int>(sizeof(child_data_)))
    451     return KillChildAndContinue(key, false);
    452 
    453   scoped_refptr<net::WrappedIOBuffer> buf(
    454       new net::WrappedIOBuffer(reinterpret_cast<char*>(&child_data_)));
    455 
    456   // Read signature.
    457   int rv = child_->ReadData(kSparseIndex, 0, buf, sizeof(child_data_), NULL);
    458   if (rv != sizeof(child_data_))
    459     return KillChildAndContinue(key, true);  // This is a fatal failure.
    460 
    461   if (child_data_.header.signature != sparse_header_.signature ||
    462       child_data_.header.magic != kIndexMagic)
    463     return KillChildAndContinue(key, false);
    464 
    465   if (child_data_.header.last_block_len < 0 ||
    466       child_data_.header.last_block_len > kBlockSize) {
    467     // Make sure these values are always within range.
    468     child_data_.header.last_block_len = 0;
    469     child_data_.header.last_block = -1;
    470   }
    471 
    472   return true;
    473 }
    474 
    475 void SparseControl::CloseChild() {
    476   scoped_refptr<net::WrappedIOBuffer> buf(
    477       new net::WrappedIOBuffer(reinterpret_cast<char*>(&child_data_)));
    478 
    479   // Save the allocation bitmap before closing the child entry.
    480   int rv = child_->WriteData(kSparseIndex, 0, buf, sizeof(child_data_),
    481                              NULL, false);
    482   if (rv != sizeof(child_data_))
    483     DLOG(ERROR) << "Failed to save child data";
    484   child_->Release();
    485   child_ = NULL;
    486 }
    487 
    488 std::string SparseControl::GenerateChildKey() {
    489   return GenerateChildName(entry_->GetKey(), sparse_header_.signature,
    490                            offset_ >> 20);
    491 }
    492 
    493 // We are deleting the child because something went wrong.
    494 bool SparseControl::KillChildAndContinue(const std::string& key, bool fatal) {
    495   SetChildBit(false);
    496   child_->DoomImpl();
    497   child_->Release();
    498   child_ = NULL;
    499   if (fatal) {
    500     result_ = net::ERR_CACHE_READ_FAILURE;
    501     return false;
    502   }
    503   return ContinueWithoutChild(key);
    504 }
    505 
    506 // We were not able to open this child; see what we can do.
    507 bool SparseControl::ContinueWithoutChild(const std::string& key) {
    508   if (kReadOperation == operation_)
    509     return false;
    510   if (kGetRangeOperation == operation_)
    511     return true;
    512 
    513   child_ = entry_->backend_->CreateEntryImpl(key);
    514   if (!child_) {
    515     child_ = NULL;
    516     result_ = net::ERR_CACHE_READ_FAILURE;
    517     return false;
    518   }
    519   // Write signature.
    520   InitChildData();
    521   return true;
    522 }
    523 
    524 bool SparseControl::ChildPresent() {
    525   int child_bit = static_cast<int>(offset_ >> 20);
    526   if (children_map_.Size() <= child_bit)
    527     return false;
    528 
    529   return children_map_.Get(child_bit);
    530 }
    531 
    532 void SparseControl::SetChildBit(bool value) {
    533   int child_bit = static_cast<int>(offset_ >> 20);
    534 
    535   // We may have to increase the bitmap of child entries.
    536   if (children_map_.Size() <= child_bit)
    537     children_map_.Resize(Bitmap::RequiredArraySize(child_bit + 1) * 32, true);
    538 
    539   children_map_.Set(child_bit, value);
    540 }
    541 
    542 void SparseControl::WriteSparseData() {
    543   scoped_refptr<net::IOBuffer> buf(new net::WrappedIOBuffer(
    544       reinterpret_cast<const char*>(children_map_.GetMap())));
    545 
    546   int len = children_map_.ArraySize() * 4;
    547   int rv = entry_->WriteData(kSparseIndex, sizeof(sparse_header_), buf, len,
    548                              NULL, false);
    549   if (rv != len) {
    550     DLOG(ERROR) << "Unable to save sparse map";
    551   }
    552 }
    553 
    554 bool SparseControl::VerifyRange() {
    555   DCHECK_GE(result_, 0);
    556 
    557   child_offset_ = static_cast<int>(offset_) & (kMaxEntrySize - 1);
    558   child_len_ = std::min(buf_len_, kMaxEntrySize - child_offset_);
    559 
    560   // We can write to (or get info from) anywhere in this child.
    561   if (operation_ != kReadOperation)
    562     return true;
    563 
    564   // Check that there are no holes in this range.
    565   int last_bit = (child_offset_ + child_len_ + 1023) >> 10;
    566   int start = child_offset_ >> 10;
    567   if (child_map_.FindNextBit(&start, last_bit, false)) {
    568     // Something is not here.
    569     DCHECK_GE(child_data_.header.last_block_len, 0);
    570     DCHECK_LT(child_data_.header.last_block_len, kMaxEntrySize);
    571     int partial_block_len = PartialBlockLength(start);
    572     if (start == child_offset_ >> 10) {
    573       // It looks like we don't have anything.
    574       if (partial_block_len <= (child_offset_ & (kBlockSize - 1)))
    575         return false;
    576     }
    577 
    578     // We have the first part.
    579     child_len_ = (start << 10) - child_offset_;
    580     if (partial_block_len) {
    581       // We may have a few extra bytes.
    582       child_len_ = std::min(child_len_ + partial_block_len, buf_len_);
    583     }
    584     // There is no need to read more after this one.
    585     buf_len_ = child_len_;
    586   }
    587   return true;
    588 }
    589 
    590 void SparseControl::UpdateRange(int result) {
    591   if (result <= 0 || operation_ != kWriteOperation)
    592     return;
    593 
    594   DCHECK_GE(child_data_.header.last_block_len, 0);
    595   DCHECK_LT(child_data_.header.last_block_len, kMaxEntrySize);
    596 
    597   // Write the bitmap.
    598   int first_bit = child_offset_ >> 10;
    599   int block_offset = child_offset_ & (kBlockSize - 1);
    600   if (block_offset && (child_data_.header.last_block != first_bit ||
    601                        child_data_.header.last_block_len < block_offset)) {
    602     // The first block is not completely filled; ignore it.
    603     first_bit++;
    604   }
    605 
    606   int last_bit = (child_offset_ + result) >> 10;
    607   block_offset = (child_offset_ + result) & (kBlockSize - 1);
    608 
    609   // This condition will hit with the following criteria:
    610   // 1. The first byte doesn't follow the last write.
    611   // 2. The first byte is in the middle of a block.
    612   // 3. The first byte and the last byte are in the same block.
    613   if (first_bit > last_bit)
    614     return;
    615 
    616   if (block_offset && !child_map_.Get(last_bit)) {
    617     // The last block is not completely filled; save it for later.
    618     child_data_.header.last_block = last_bit;
    619     child_data_.header.last_block_len = block_offset;
    620   } else {
    621     child_data_.header.last_block = -1;
    622   }
    623 
    624   child_map_.SetRange(first_bit, last_bit, true);
    625 }
    626 
    627 int SparseControl::PartialBlockLength(int block_index) const {
    628   if (block_index == child_data_.header.last_block)
    629     return child_data_.header.last_block_len;
    630 
    631   // This may be the last stored index.
    632   int entry_len = child_->GetDataSize(kSparseData);
    633   if (block_index == entry_len >> 10)
    634     return entry_len & (kBlockSize - 1);
    635 
    636   // This is really empty.
    637   return 0;
    638 }
    639 
    640 void SparseControl::InitChildData() {
    641   // We know the real type of child_.
    642   EntryImpl* child = static_cast<EntryImpl*>(child_);
    643   child->SetEntryFlags(CHILD_ENTRY);
    644 
    645   memset(&child_data_, 0, sizeof(child_data_));
    646   child_data_.header = sparse_header_;
    647 
    648   scoped_refptr<net::WrappedIOBuffer> buf(
    649       new net::WrappedIOBuffer(reinterpret_cast<char*>(&child_data_)));
    650 
    651   int rv = child_->WriteData(kSparseIndex, 0, buf, sizeof(child_data_),
    652                              NULL, false);
    653   if (rv != sizeof(child_data_))
    654     DLOG(ERROR) << "Failed to save child data";
    655   SetChildBit(true);
    656 }
    657 
    658 void SparseControl::DoChildrenIO() {
    659   while (DoChildIO()) continue;
    660 
    661   // Range operations are finished synchronously, often without setting
    662   // |finished_| to true.
    663   if (kGetRangeOperation == operation_ &&
    664       entry_->net_log().IsLoggingAllEvents()) {
    665     entry_->net_log().EndEvent(
    666         net::NetLog::TYPE_SPARSE_GET_RANGE,
    667         make_scoped_refptr(
    668             new GetAvailableRangeResultParameters(offset_, result_)));
    669   }
    670   if (finished_) {
    671     if (kGetRangeOperation != operation_ &&
    672         entry_->net_log().IsLoggingAllEvents()) {
    673       entry_->net_log().EndEvent(GetSparseEventType(operation_), NULL);
    674     }
    675     if (pending_)
    676       DoUserCallback();
    677   }
    678 }
    679 
    680 bool SparseControl::DoChildIO() {
    681   finished_ = true;
    682   if (!buf_len_ || result_ < 0)
    683     return false;
    684 
    685   if (!OpenChild())
    686     return false;
    687 
    688   if (!VerifyRange())
    689     return false;
    690 
    691   // We have more work to do. Let's not trigger a callback to the caller.
    692   finished_ = false;
    693   net::CompletionCallback* callback = user_callback_ ? &child_callback_ : NULL;
    694 
    695   int rv = 0;
    696   switch (operation_) {
    697     case kReadOperation:
    698       if (entry_->net_log().IsLoggingAllEvents()) {
    699         entry_->net_log().BeginEvent(
    700             net::NetLog::TYPE_SPARSE_READ_CHILD_DATA,
    701             make_scoped_refptr(new SparseReadWriteParameters(
    702                 child_->net_log().source(),
    703                 child_len_)));
    704       }
    705       rv = child_->ReadDataImpl(kSparseData, child_offset_, user_buf_,
    706                                 child_len_, callback);
    707       break;
    708     case kWriteOperation:
    709       if (entry_->net_log().IsLoggingAllEvents()) {
    710         entry_->net_log().BeginEvent(
    711             net::NetLog::TYPE_SPARSE_WRITE_CHILD_DATA,
    712             make_scoped_refptr(new SparseReadWriteParameters(
    713                 child_->net_log().source(),
    714                 child_len_)));
    715       }
    716       rv = child_->WriteDataImpl(kSparseData, child_offset_, user_buf_,
    717                                  child_len_, callback, false);
    718       break;
    719     case kGetRangeOperation:
    720       rv = DoGetAvailableRange();
    721       break;
    722     default:
    723       NOTREACHED();
    724   }
    725 
    726   if (rv == net::ERR_IO_PENDING) {
    727     if (!pending_) {
    728       pending_ = true;
    729       // The child will protect himself against closing the entry while IO is in
    730       // progress. However, this entry can still be closed, and that would not
    731       // be a good thing for us, so we increase the refcount until we're
    732       // finished doing sparse stuff.
    733       entry_->AddRef();  // Balanced in DoUserCallback.
    734     }
    735     return false;
    736   }
    737   if (!rv)
    738     return false;
    739 
    740   DoChildIOCompleted(rv);
    741   return true;
    742 }
    743 
    744 int SparseControl::DoGetAvailableRange() {
    745   if (!child_)
    746     return child_len_;  // Move on to the next child.
    747 
    748   // Check that there are no holes in this range.
    749   int last_bit = (child_offset_ + child_len_ + 1023) >> 10;
    750   int start = child_offset_ >> 10;
    751   int partial_start_bytes = PartialBlockLength(start);
    752   int found = start;
    753   int bits_found = child_map_.FindBits(&found, last_bit, true);
    754 
    755   // We don't care if there is a partial block in the middle of the range.
    756   int block_offset = child_offset_ & (kBlockSize - 1);
    757   if (!bits_found && partial_start_bytes <= block_offset)
    758     return child_len_;
    759 
    760   // We are done. Just break the loop and reset result_ to our real result.
    761   range_found_ = true;
    762 
    763   // found now points to the first 1. Lets see if we have zeros before it.
    764   int empty_start = std::max((found << 10) - child_offset_, 0);
    765 
    766   int bytes_found = bits_found << 10;
    767   bytes_found += PartialBlockLength(found + bits_found);
    768 
    769   if (start == found)
    770     bytes_found -= block_offset;
    771 
    772   // If the user is searching past the end of this child, bits_found is the
    773   // right result; otherwise, we have some empty space at the start of this
    774   // query that we have to subtract from the range that we searched.
    775   result_ = std::min(bytes_found, child_len_ - empty_start);
    776 
    777   if (!bits_found) {
    778     result_ = std::min(partial_start_bytes - block_offset, child_len_);
    779     empty_start = 0;
    780   }
    781 
    782   // Only update offset_ when this query found zeros at the start.
    783   if (empty_start)
    784     offset_ += empty_start;
    785 
    786   // This will actually break the loop.
    787   buf_len_ = 0;
    788   return 0;
    789 }
    790 
    791 void SparseControl::DoChildIOCompleted(int result) {
    792   LogChildOperationEnd(entry_->net_log(), operation_, result);
    793   if (result < 0) {
    794     // We fail the whole operation if we encounter an error.
    795     result_ = result;
    796     return;
    797   }
    798 
    799   UpdateRange(result);
    800 
    801   result_ += result;
    802   offset_ += result;
    803   buf_len_ -= result;
    804 
    805   // We'll be reusing the user provided buffer for the next chunk.
    806   if (buf_len_ && user_buf_)
    807     user_buf_->DidConsume(result);
    808 }
    809 
    810 void SparseControl::OnChildIOCompleted(int result) {
    811   DCHECK_NE(net::ERR_IO_PENDING, result);
    812   DoChildIOCompleted(result);
    813 
    814   if (abort_) {
    815     // We'll return the current result of the operation, which may be less than
    816     // the bytes to read or write, but the user cancelled the operation.
    817     abort_ = false;
    818     if (entry_->net_log().IsLoggingAllEvents()) {
    819       entry_->net_log().AddEvent(net::NetLog::TYPE_CANCELLED, NULL);
    820       entry_->net_log().EndEvent(GetSparseEventType(operation_), NULL);
    821     }
    822     DoUserCallback();
    823     return DoAbortCallbacks();
    824   }
    825 
    826   // We are running a callback from the message loop. It's time to restart what
    827   // we were doing before.
    828   DoChildrenIO();
    829 }
    830 
    831 void SparseControl::DoUserCallback() {
    832   DCHECK(user_callback_);
    833   net::CompletionCallback* c = user_callback_;
    834   user_callback_ = NULL;
    835   user_buf_ = NULL;
    836   pending_ = false;
    837   operation_ = kNoOperation;
    838   entry_->Release();  // Don't touch object after this line.
    839   c->Run(result_);
    840 }
    841 
    842 void SparseControl::DoAbortCallbacks() {
    843   for (size_t i = 0; i < abort_callbacks_.size(); i++) {
    844     // Releasing all references to entry_ may result in the destruction of this
    845     // object so we should not be touching it after the last Release().
    846     net::CompletionCallback* c = abort_callbacks_[i];
    847     if (i == abort_callbacks_.size() - 1)
    848       abort_callbacks_.clear();
    849 
    850     entry_->Release();  // Don't touch object after this line.
    851     c->Run(net::OK);
    852   }
    853 }
    854 
    855 }  // namespace disk_cache
    856