Home | History | Annotate | Download | only in Utils
      1 //===- PromoteMemoryToRegister.cpp - Convert allocas to registers ---------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file promotes memory references to be register references.  It promotes
     11 // alloca instructions which only have loads and stores as uses.  An alloca is
     12 // transformed by using iterated dominator frontiers to place PHI nodes, then
     13 // traversing the function in depth-first order to rewrite loads and stores as
     14 // appropriate.
     15 //
     16 // The algorithm used here is based on:
     17 //
     18 //   Sreedhar and Gao. A linear time algorithm for placing phi-nodes.
     19 //   In Proceedings of the 22nd ACM SIGPLAN-SIGACT Symposium on Principles of
     20 //   Programming Languages
     21 //   POPL '95. ACM, New York, NY, 62-73.
     22 //
     23 // It has been modified to not explicitly use the DJ graph data structure and to
     24 // directly compute pruned SSA using per-variable liveness information.
     25 //
     26 //===----------------------------------------------------------------------===//
     27 
     28 #define DEBUG_TYPE "mem2reg"
     29 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
     30 #include "llvm/Constants.h"
     31 #include "llvm/DerivedTypes.h"
     32 #include "llvm/Function.h"
     33 #include "llvm/Instructions.h"
     34 #include "llvm/IntrinsicInst.h"
     35 #include "llvm/Metadata.h"
     36 #include "llvm/Analysis/AliasSetTracker.h"
     37 #include "llvm/Analysis/DebugInfo.h"
     38 #include "llvm/Analysis/DIBuilder.h"
     39 #include "llvm/Analysis/Dominators.h"
     40 #include "llvm/Analysis/InstructionSimplify.h"
     41 #include "llvm/Analysis/ValueTracking.h"
     42 #include "llvm/Transforms/Utils/Local.h"
     43 #include "llvm/ADT/DenseMap.h"
     44 #include "llvm/ADT/Hashing.h"
     45 #include "llvm/ADT/SmallPtrSet.h"
     46 #include "llvm/ADT/SmallVector.h"
     47 #include "llvm/ADT/Statistic.h"
     48 #include "llvm/ADT/STLExtras.h"
     49 #include "llvm/Support/CFG.h"
     50 #include <algorithm>
     51 #include <queue>
     52 using namespace llvm;
     53 
     54 STATISTIC(NumLocalPromoted, "Number of alloca's promoted within one block");
     55 STATISTIC(NumSingleStore,   "Number of alloca's promoted with a single store");
     56 STATISTIC(NumDeadAlloca,    "Number of dead alloca's removed");
     57 STATISTIC(NumPHIInsert,     "Number of PHI nodes inserted");
     58 
     59 namespace llvm {
     60 template<>
     61 struct DenseMapInfo<std::pair<BasicBlock*, unsigned> > {
     62   typedef std::pair<BasicBlock*, unsigned> EltTy;
     63   static inline EltTy getEmptyKey() {
     64     return EltTy(reinterpret_cast<BasicBlock*>(-1), ~0U);
     65   }
     66   static inline EltTy getTombstoneKey() {
     67     return EltTy(reinterpret_cast<BasicBlock*>(-2), 0U);
     68   }
     69   static unsigned getHashValue(const std::pair<BasicBlock*, unsigned> &Val) {
     70     using llvm::hash_value;
     71     return static_cast<unsigned>(hash_value(Val));
     72   }
     73   static bool isEqual(const EltTy &LHS, const EltTy &RHS) {
     74     return LHS == RHS;
     75   }
     76 };
     77 }
     78 
     79 /// isAllocaPromotable - Return true if this alloca is legal for promotion.
     80 /// This is true if there are only loads and stores to the alloca.
     81 ///
     82 bool llvm::isAllocaPromotable(const AllocaInst *AI) {
     83   // FIXME: If the memory unit is of pointer or integer type, we can permit
     84   // assignments to subsections of the memory unit.
     85 
     86   // Only allow direct and non-volatile loads and stores...
     87   for (Value::const_use_iterator UI = AI->use_begin(), UE = AI->use_end();
     88        UI != UE; ++UI) {   // Loop over all of the uses of the alloca
     89     const User *U = *UI;
     90     if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
     91       // Note that atomic loads can be transformed; atomic semantics do
     92       // not have any meaning for a local alloca.
     93       if (LI->isVolatile())
     94         return false;
     95     } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) {
     96       if (SI->getOperand(0) == AI)
     97         return false;   // Don't allow a store OF the AI, only INTO the AI.
     98       // Note that atomic stores can be transformed; atomic semantics do
     99       // not have any meaning for a local alloca.
    100       if (SI->isVolatile())
    101         return false;
    102     } else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) {
    103       if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
    104           II->getIntrinsicID() != Intrinsic::lifetime_end)
    105         return false;
    106     } else if (const BitCastInst *BCI = dyn_cast<BitCastInst>(U)) {
    107       if (BCI->getType() != Type::getInt8PtrTy(U->getContext()))
    108         return false;
    109       if (!onlyUsedByLifetimeMarkers(BCI))
    110         return false;
    111     } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
    112       if (GEPI->getType() != Type::getInt8PtrTy(U->getContext()))
    113         return false;
    114       if (!GEPI->hasAllZeroIndices())
    115         return false;
    116       if (!onlyUsedByLifetimeMarkers(GEPI))
    117         return false;
    118     } else {
    119       return false;
    120     }
    121   }
    122 
    123   return true;
    124 }
    125 
    126 namespace {
    127   struct AllocaInfo;
    128 
    129   // Data package used by RenamePass()
    130   class RenamePassData {
    131   public:
    132     typedef std::vector<Value *> ValVector;
    133 
    134     RenamePassData() : BB(NULL), Pred(NULL), Values() {}
    135     RenamePassData(BasicBlock *B, BasicBlock *P,
    136                    const ValVector &V) : BB(B), Pred(P), Values(V) {}
    137     BasicBlock *BB;
    138     BasicBlock *Pred;
    139     ValVector Values;
    140 
    141     void swap(RenamePassData &RHS) {
    142       std::swap(BB, RHS.BB);
    143       std::swap(Pred, RHS.Pred);
    144       Values.swap(RHS.Values);
    145     }
    146   };
    147 
    148   /// LargeBlockInfo - This assigns and keeps a per-bb relative ordering of
    149   /// load/store instructions in the block that directly load or store an alloca.
    150   ///
    151   /// This functionality is important because it avoids scanning large basic
    152   /// blocks multiple times when promoting many allocas in the same block.
    153   class LargeBlockInfo {
    154     /// InstNumbers - For each instruction that we track, keep the index of the
    155     /// instruction.  The index starts out as the number of the instruction from
    156     /// the start of the block.
    157     DenseMap<const Instruction *, unsigned> InstNumbers;
    158   public:
    159 
    160     /// isInterestingInstruction - This code only looks at accesses to allocas.
    161     static bool isInterestingInstruction(const Instruction *I) {
    162       return (isa<LoadInst>(I) && isa<AllocaInst>(I->getOperand(0))) ||
    163              (isa<StoreInst>(I) && isa<AllocaInst>(I->getOperand(1)));
    164     }
    165 
    166     /// getInstructionIndex - Get or calculate the index of the specified
    167     /// instruction.
    168     unsigned getInstructionIndex(const Instruction *I) {
    169       assert(isInterestingInstruction(I) &&
    170              "Not a load/store to/from an alloca?");
    171 
    172       // If we already have this instruction number, return it.
    173       DenseMap<const Instruction *, unsigned>::iterator It = InstNumbers.find(I);
    174       if (It != InstNumbers.end()) return It->second;
    175 
    176       // Scan the whole block to get the instruction.  This accumulates
    177       // information for every interesting instruction in the block, in order to
    178       // avoid gratuitus rescans.
    179       const BasicBlock *BB = I->getParent();
    180       unsigned InstNo = 0;
    181       for (BasicBlock::const_iterator BBI = BB->begin(), E = BB->end();
    182            BBI != E; ++BBI)
    183         if (isInterestingInstruction(BBI))
    184           InstNumbers[BBI] = InstNo++;
    185       It = InstNumbers.find(I);
    186 
    187       assert(It != InstNumbers.end() && "Didn't insert instruction?");
    188       return It->second;
    189     }
    190 
    191     void deleteValue(const Instruction *I) {
    192       InstNumbers.erase(I);
    193     }
    194 
    195     void clear() {
    196       InstNumbers.clear();
    197     }
    198   };
    199 
    200   struct PromoteMem2Reg {
    201     /// Allocas - The alloca instructions being promoted.
    202     ///
    203     std::vector<AllocaInst*> Allocas;
    204     DominatorTree &DT;
    205     DIBuilder *DIB;
    206 
    207     /// AST - An AliasSetTracker object to update.  If null, don't update it.
    208     ///
    209     AliasSetTracker *AST;
    210 
    211     /// AllocaLookup - Reverse mapping of Allocas.
    212     ///
    213     DenseMap<AllocaInst*, unsigned>  AllocaLookup;
    214 
    215     /// NewPhiNodes - The PhiNodes we're adding.
    216     ///
    217     DenseMap<std::pair<BasicBlock*, unsigned>, PHINode*> NewPhiNodes;
    218 
    219     /// PhiToAllocaMap - For each PHI node, keep track of which entry in Allocas
    220     /// it corresponds to.
    221     DenseMap<PHINode*, unsigned> PhiToAllocaMap;
    222 
    223     /// PointerAllocaValues - If we are updating an AliasSetTracker, then for
    224     /// each alloca that is of pointer type, we keep track of what to copyValue
    225     /// to the inserted PHI nodes here.
    226     ///
    227     std::vector<Value*> PointerAllocaValues;
    228 
    229     /// AllocaDbgDeclares - For each alloca, we keep track of the dbg.declare
    230     /// intrinsic that describes it, if any, so that we can convert it to a
    231     /// dbg.value intrinsic if the alloca gets promoted.
    232     SmallVector<DbgDeclareInst*, 8> AllocaDbgDeclares;
    233 
    234     /// Visited - The set of basic blocks the renamer has already visited.
    235     ///
    236     SmallPtrSet<BasicBlock*, 16> Visited;
    237 
    238     /// BBNumbers - Contains a stable numbering of basic blocks to avoid
    239     /// non-determinstic behavior.
    240     DenseMap<BasicBlock*, unsigned> BBNumbers;
    241 
    242     /// DomLevels - Maps DomTreeNodes to their level in the dominator tree.
    243     DenseMap<DomTreeNode*, unsigned> DomLevels;
    244 
    245     /// BBNumPreds - Lazily compute the number of predecessors a block has.
    246     DenseMap<const BasicBlock*, unsigned> BBNumPreds;
    247   public:
    248     PromoteMem2Reg(const std::vector<AllocaInst*> &A, DominatorTree &dt,
    249                    AliasSetTracker *ast)
    250       : Allocas(A), DT(dt), DIB(0), AST(ast) {}
    251     ~PromoteMem2Reg() {
    252       delete DIB;
    253     }
    254 
    255     void run();
    256 
    257     /// dominates - Return true if BB1 dominates BB2 using the DominatorTree.
    258     ///
    259     bool dominates(BasicBlock *BB1, BasicBlock *BB2) const {
    260       return DT.dominates(BB1, BB2);
    261     }
    262 
    263   private:
    264     void RemoveFromAllocasList(unsigned &AllocaIdx) {
    265       Allocas[AllocaIdx] = Allocas.back();
    266       Allocas.pop_back();
    267       --AllocaIdx;
    268     }
    269 
    270     unsigned getNumPreds(const BasicBlock *BB) {
    271       unsigned &NP = BBNumPreds[BB];
    272       if (NP == 0)
    273         NP = std::distance(pred_begin(BB), pred_end(BB))+1;
    274       return NP-1;
    275     }
    276 
    277     void DetermineInsertionPoint(AllocaInst *AI, unsigned AllocaNum,
    278                                  AllocaInfo &Info);
    279     void ComputeLiveInBlocks(AllocaInst *AI, AllocaInfo &Info,
    280                              const SmallPtrSet<BasicBlock*, 32> &DefBlocks,
    281                              SmallPtrSet<BasicBlock*, 32> &LiveInBlocks);
    282 
    283     void RewriteSingleStoreAlloca(AllocaInst *AI, AllocaInfo &Info,
    284                                   LargeBlockInfo &LBI);
    285     void PromoteSingleBlockAlloca(AllocaInst *AI, AllocaInfo &Info,
    286                                   LargeBlockInfo &LBI);
    287 
    288     void RenamePass(BasicBlock *BB, BasicBlock *Pred,
    289                     RenamePassData::ValVector &IncVals,
    290                     std::vector<RenamePassData> &Worklist);
    291     bool QueuePhiNode(BasicBlock *BB, unsigned AllocaIdx, unsigned &Version);
    292   };
    293 
    294   struct AllocaInfo {
    295     SmallVector<BasicBlock*, 32> DefiningBlocks;
    296     SmallVector<BasicBlock*, 32> UsingBlocks;
    297 
    298     StoreInst  *OnlyStore;
    299     BasicBlock *OnlyBlock;
    300     bool OnlyUsedInOneBlock;
    301 
    302     Value *AllocaPointerVal;
    303     DbgDeclareInst *DbgDeclare;
    304 
    305     void clear() {
    306       DefiningBlocks.clear();
    307       UsingBlocks.clear();
    308       OnlyStore = 0;
    309       OnlyBlock = 0;
    310       OnlyUsedInOneBlock = true;
    311       AllocaPointerVal = 0;
    312       DbgDeclare = 0;
    313     }
    314 
    315     /// AnalyzeAlloca - Scan the uses of the specified alloca, filling in our
    316     /// ivars.
    317     void AnalyzeAlloca(AllocaInst *AI) {
    318       clear();
    319 
    320       // As we scan the uses of the alloca instruction, keep track of stores,
    321       // and decide whether all of the loads and stores to the alloca are within
    322       // the same basic block.
    323       for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
    324            UI != E;)  {
    325         Instruction *User = cast<Instruction>(*UI++);
    326 
    327         if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
    328           // Remember the basic blocks which define new values for the alloca
    329           DefiningBlocks.push_back(SI->getParent());
    330           AllocaPointerVal = SI->getOperand(0);
    331           OnlyStore = SI;
    332         } else {
    333           LoadInst *LI = cast<LoadInst>(User);
    334           // Otherwise it must be a load instruction, keep track of variable
    335           // reads.
    336           UsingBlocks.push_back(LI->getParent());
    337           AllocaPointerVal = LI;
    338         }
    339 
    340         if (OnlyUsedInOneBlock) {
    341           if (OnlyBlock == 0)
    342             OnlyBlock = User->getParent();
    343           else if (OnlyBlock != User->getParent())
    344             OnlyUsedInOneBlock = false;
    345         }
    346       }
    347 
    348       DbgDeclare = FindAllocaDbgDeclare(AI);
    349     }
    350   };
    351 
    352   typedef std::pair<DomTreeNode*, unsigned> DomTreeNodePair;
    353 
    354   struct DomTreeNodeCompare {
    355     bool operator()(const DomTreeNodePair &LHS, const DomTreeNodePair &RHS) {
    356       return LHS.second < RHS.second;
    357     }
    358   };
    359 }  // end of anonymous namespace
    360 
    361 static void removeLifetimeIntrinsicUsers(AllocaInst *AI) {
    362   // Knowing that this alloca is promotable, we know that it's safe to kill all
    363   // instructions except for load and store.
    364 
    365   for (Value::use_iterator UI = AI->use_begin(), UE = AI->use_end();
    366        UI != UE;) {
    367     Instruction *I = cast<Instruction>(*UI);
    368     ++UI;
    369     if (isa<LoadInst>(I) || isa<StoreInst>(I))
    370       continue;
    371 
    372     if (!I->getType()->isVoidTy()) {
    373       // The only users of this bitcast/GEP instruction are lifetime intrinsics.
    374       // Follow the use/def chain to erase them now instead of leaving it for
    375       // dead code elimination later.
    376       for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
    377            UI != UE;) {
    378         Instruction *Inst = cast<Instruction>(*UI);
    379         ++UI;
    380         Inst->eraseFromParent();
    381       }
    382     }
    383     I->eraseFromParent();
    384   }
    385 }
    386 
    387 void PromoteMem2Reg::run() {
    388   Function &F = *DT.getRoot()->getParent();
    389 
    390   if (AST) PointerAllocaValues.resize(Allocas.size());
    391   AllocaDbgDeclares.resize(Allocas.size());
    392 
    393   AllocaInfo Info;
    394   LargeBlockInfo LBI;
    395 
    396   for (unsigned AllocaNum = 0; AllocaNum != Allocas.size(); ++AllocaNum) {
    397     AllocaInst *AI = Allocas[AllocaNum];
    398 
    399     assert(isAllocaPromotable(AI) &&
    400            "Cannot promote non-promotable alloca!");
    401     assert(AI->getParent()->getParent() == &F &&
    402            "All allocas should be in the same function, which is same as DF!");
    403 
    404     removeLifetimeIntrinsicUsers(AI);
    405 
    406     if (AI->use_empty()) {
    407       // If there are no uses of the alloca, just delete it now.
    408       if (AST) AST->deleteValue(AI);
    409       AI->eraseFromParent();
    410 
    411       // Remove the alloca from the Allocas list, since it has been processed
    412       RemoveFromAllocasList(AllocaNum);
    413       ++NumDeadAlloca;
    414       continue;
    415     }
    416 
    417     // Calculate the set of read and write-locations for each alloca.  This is
    418     // analogous to finding the 'uses' and 'definitions' of each variable.
    419     Info.AnalyzeAlloca(AI);
    420 
    421     // If there is only a single store to this value, replace any loads of
    422     // it that are directly dominated by the definition with the value stored.
    423     if (Info.DefiningBlocks.size() == 1) {
    424       RewriteSingleStoreAlloca(AI, Info, LBI);
    425 
    426       // Finally, after the scan, check to see if the store is all that is left.
    427       if (Info.UsingBlocks.empty()) {
    428         // Record debuginfo for the store and remove the declaration's
    429         // debuginfo.
    430         if (DbgDeclareInst *DDI = Info.DbgDeclare) {
    431           if (!DIB)
    432             DIB = new DIBuilder(*DDI->getParent()->getParent()->getParent());
    433           ConvertDebugDeclareToDebugValue(DDI, Info.OnlyStore, *DIB);
    434           DDI->eraseFromParent();
    435         }
    436         // Remove the (now dead) store and alloca.
    437         Info.OnlyStore->eraseFromParent();
    438         LBI.deleteValue(Info.OnlyStore);
    439 
    440         if (AST) AST->deleteValue(AI);
    441         AI->eraseFromParent();
    442         LBI.deleteValue(AI);
    443 
    444         // The alloca has been processed, move on.
    445         RemoveFromAllocasList(AllocaNum);
    446 
    447         ++NumSingleStore;
    448         continue;
    449       }
    450     }
    451 
    452     // If the alloca is only read and written in one basic block, just perform a
    453     // linear sweep over the block to eliminate it.
    454     if (Info.OnlyUsedInOneBlock) {
    455       PromoteSingleBlockAlloca(AI, Info, LBI);
    456 
    457       // Finally, after the scan, check to see if the stores are all that is
    458       // left.
    459       if (Info.UsingBlocks.empty()) {
    460 
    461         // Remove the (now dead) stores and alloca.
    462         while (!AI->use_empty()) {
    463           StoreInst *SI = cast<StoreInst>(AI->use_back());
    464           // Record debuginfo for the store before removing it.
    465           if (DbgDeclareInst *DDI = Info.DbgDeclare) {
    466             if (!DIB)
    467               DIB = new DIBuilder(*SI->getParent()->getParent()->getParent());
    468             ConvertDebugDeclareToDebugValue(DDI, SI, *DIB);
    469           }
    470           SI->eraseFromParent();
    471           LBI.deleteValue(SI);
    472         }
    473 
    474         if (AST) AST->deleteValue(AI);
    475         AI->eraseFromParent();
    476         LBI.deleteValue(AI);
    477 
    478         // The alloca has been processed, move on.
    479         RemoveFromAllocasList(AllocaNum);
    480 
    481         // The alloca's debuginfo can be removed as well.
    482         if (DbgDeclareInst *DDI = Info.DbgDeclare)
    483           DDI->eraseFromParent();
    484 
    485         ++NumLocalPromoted;
    486         continue;
    487       }
    488     }
    489 
    490     // If we haven't computed dominator tree levels, do so now.
    491     if (DomLevels.empty()) {
    492       SmallVector<DomTreeNode*, 32> Worklist;
    493 
    494       DomTreeNode *Root = DT.getRootNode();
    495       DomLevels[Root] = 0;
    496       Worklist.push_back(Root);
    497 
    498       while (!Worklist.empty()) {
    499         DomTreeNode *Node = Worklist.pop_back_val();
    500         unsigned ChildLevel = DomLevels[Node] + 1;
    501         for (DomTreeNode::iterator CI = Node->begin(), CE = Node->end();
    502              CI != CE; ++CI) {
    503           DomLevels[*CI] = ChildLevel;
    504           Worklist.push_back(*CI);
    505         }
    506       }
    507     }
    508 
    509     // If we haven't computed a numbering for the BB's in the function, do so
    510     // now.
    511     if (BBNumbers.empty()) {
    512       unsigned ID = 0;
    513       for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I)
    514         BBNumbers[I] = ID++;
    515     }
    516 
    517     // If we have an AST to keep updated, remember some pointer value that is
    518     // stored into the alloca.
    519     if (AST)
    520       PointerAllocaValues[AllocaNum] = Info.AllocaPointerVal;
    521 
    522     // Remember the dbg.declare intrinsic describing this alloca, if any.
    523     if (Info.DbgDeclare) AllocaDbgDeclares[AllocaNum] = Info.DbgDeclare;
    524 
    525     // Keep the reverse mapping of the 'Allocas' array for the rename pass.
    526     AllocaLookup[Allocas[AllocaNum]] = AllocaNum;
    527 
    528     // At this point, we're committed to promoting the alloca using IDF's, and
    529     // the standard SSA construction algorithm.  Determine which blocks need PHI
    530     // nodes and see if we can optimize out some work by avoiding insertion of
    531     // dead phi nodes.
    532     DetermineInsertionPoint(AI, AllocaNum, Info);
    533   }
    534 
    535   if (Allocas.empty())
    536     return; // All of the allocas must have been trivial!
    537 
    538   LBI.clear();
    539 
    540 
    541   // Set the incoming values for the basic block to be null values for all of
    542   // the alloca's.  We do this in case there is a load of a value that has not
    543   // been stored yet.  In this case, it will get this null value.
    544   //
    545   RenamePassData::ValVector Values(Allocas.size());
    546   for (unsigned i = 0, e = Allocas.size(); i != e; ++i)
    547     Values[i] = UndefValue::get(Allocas[i]->getAllocatedType());
    548 
    549   // Walks all basic blocks in the function performing the SSA rename algorithm
    550   // and inserting the phi nodes we marked as necessary
    551   //
    552   std::vector<RenamePassData> RenamePassWorkList;
    553   RenamePassWorkList.push_back(RenamePassData(F.begin(), 0, Values));
    554   do {
    555     RenamePassData RPD;
    556     RPD.swap(RenamePassWorkList.back());
    557     RenamePassWorkList.pop_back();
    558     // RenamePass may add new worklist entries.
    559     RenamePass(RPD.BB, RPD.Pred, RPD.Values, RenamePassWorkList);
    560   } while (!RenamePassWorkList.empty());
    561 
    562   // The renamer uses the Visited set to avoid infinite loops.  Clear it now.
    563   Visited.clear();
    564 
    565   // Remove the allocas themselves from the function.
    566   for (unsigned i = 0, e = Allocas.size(); i != e; ++i) {
    567     Instruction *A = Allocas[i];
    568 
    569     // If there are any uses of the alloca instructions left, they must be in
    570     // unreachable basic blocks that were not processed by walking the dominator
    571     // tree. Just delete the users now.
    572     if (!A->use_empty())
    573       A->replaceAllUsesWith(UndefValue::get(A->getType()));
    574     if (AST) AST->deleteValue(A);
    575     A->eraseFromParent();
    576   }
    577 
    578   // Remove alloca's dbg.declare instrinsics from the function.
    579   for (unsigned i = 0, e = AllocaDbgDeclares.size(); i != e; ++i)
    580     if (DbgDeclareInst *DDI = AllocaDbgDeclares[i])
    581       DDI->eraseFromParent();
    582 
    583   // Loop over all of the PHI nodes and see if there are any that we can get
    584   // rid of because they merge all of the same incoming values.  This can
    585   // happen due to undef values coming into the PHI nodes.  This process is
    586   // iterative, because eliminating one PHI node can cause others to be removed.
    587   bool EliminatedAPHI = true;
    588   while (EliminatedAPHI) {
    589     EliminatedAPHI = false;
    590 
    591     for (DenseMap<std::pair<BasicBlock*, unsigned>, PHINode*>::iterator I =
    592            NewPhiNodes.begin(), E = NewPhiNodes.end(); I != E;) {
    593       PHINode *PN = I->second;
    594 
    595       // If this PHI node merges one value and/or undefs, get the value.
    596       if (Value *V = SimplifyInstruction(PN, 0, 0, &DT)) {
    597         if (AST && PN->getType()->isPointerTy())
    598           AST->deleteValue(PN);
    599         PN->replaceAllUsesWith(V);
    600         PN->eraseFromParent();
    601         NewPhiNodes.erase(I++);
    602         EliminatedAPHI = true;
    603         continue;
    604       }
    605       ++I;
    606     }
    607   }
    608 
    609   // At this point, the renamer has added entries to PHI nodes for all reachable
    610   // code.  Unfortunately, there may be unreachable blocks which the renamer
    611   // hasn't traversed.  If this is the case, the PHI nodes may not
    612   // have incoming values for all predecessors.  Loop over all PHI nodes we have
    613   // created, inserting undef values if they are missing any incoming values.
    614   //
    615   for (DenseMap<std::pair<BasicBlock*, unsigned>, PHINode*>::iterator I =
    616          NewPhiNodes.begin(), E = NewPhiNodes.end(); I != E; ++I) {
    617     // We want to do this once per basic block.  As such, only process a block
    618     // when we find the PHI that is the first entry in the block.
    619     PHINode *SomePHI = I->second;
    620     BasicBlock *BB = SomePHI->getParent();
    621     if (&BB->front() != SomePHI)
    622       continue;
    623 
    624     // Only do work here if there the PHI nodes are missing incoming values.  We
    625     // know that all PHI nodes that were inserted in a block will have the same
    626     // number of incoming values, so we can just check any of them.
    627     if (SomePHI->getNumIncomingValues() == getNumPreds(BB))
    628       continue;
    629 
    630     // Get the preds for BB.
    631     SmallVector<BasicBlock*, 16> Preds(pred_begin(BB), pred_end(BB));
    632 
    633     // Ok, now we know that all of the PHI nodes are missing entries for some
    634     // basic blocks.  Start by sorting the incoming predecessors for efficient
    635     // access.
    636     std::sort(Preds.begin(), Preds.end());
    637 
    638     // Now we loop through all BB's which have entries in SomePHI and remove
    639     // them from the Preds list.
    640     for (unsigned i = 0, e = SomePHI->getNumIncomingValues(); i != e; ++i) {
    641       // Do a log(n) search of the Preds list for the entry we want.
    642       SmallVector<BasicBlock*, 16>::iterator EntIt =
    643         std::lower_bound(Preds.begin(), Preds.end(),
    644                          SomePHI->getIncomingBlock(i));
    645       assert(EntIt != Preds.end() && *EntIt == SomePHI->getIncomingBlock(i)&&
    646              "PHI node has entry for a block which is not a predecessor!");
    647 
    648       // Remove the entry
    649       Preds.erase(EntIt);
    650     }
    651 
    652     // At this point, the blocks left in the preds list must have dummy
    653     // entries inserted into every PHI nodes for the block.  Update all the phi
    654     // nodes in this block that we are inserting (there could be phis before
    655     // mem2reg runs).
    656     unsigned NumBadPreds = SomePHI->getNumIncomingValues();
    657     BasicBlock::iterator BBI = BB->begin();
    658     while ((SomePHI = dyn_cast<PHINode>(BBI++)) &&
    659            SomePHI->getNumIncomingValues() == NumBadPreds) {
    660       Value *UndefVal = UndefValue::get(SomePHI->getType());
    661       for (unsigned pred = 0, e = Preds.size(); pred != e; ++pred)
    662         SomePHI->addIncoming(UndefVal, Preds[pred]);
    663     }
    664   }
    665 
    666   NewPhiNodes.clear();
    667 }
    668 
    669 
    670 /// ComputeLiveInBlocks - Determine which blocks the value is live in.  These
    671 /// are blocks which lead to uses.  Knowing this allows us to avoid inserting
    672 /// PHI nodes into blocks which don't lead to uses (thus, the inserted phi nodes
    673 /// would be dead).
    674 void PromoteMem2Reg::
    675 ComputeLiveInBlocks(AllocaInst *AI, AllocaInfo &Info,
    676                     const SmallPtrSet<BasicBlock*, 32> &DefBlocks,
    677                     SmallPtrSet<BasicBlock*, 32> &LiveInBlocks) {
    678 
    679   // To determine liveness, we must iterate through the predecessors of blocks
    680   // where the def is live.  Blocks are added to the worklist if we need to
    681   // check their predecessors.  Start with all the using blocks.
    682   SmallVector<BasicBlock*, 64> LiveInBlockWorklist(Info.UsingBlocks.begin(),
    683                                                    Info.UsingBlocks.end());
    684 
    685   // If any of the using blocks is also a definition block, check to see if the
    686   // definition occurs before or after the use.  If it happens before the use,
    687   // the value isn't really live-in.
    688   for (unsigned i = 0, e = LiveInBlockWorklist.size(); i != e; ++i) {
    689     BasicBlock *BB = LiveInBlockWorklist[i];
    690     if (!DefBlocks.count(BB)) continue;
    691 
    692     // Okay, this is a block that both uses and defines the value.  If the first
    693     // reference to the alloca is a def (store), then we know it isn't live-in.
    694     for (BasicBlock::iterator I = BB->begin(); ; ++I) {
    695       if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
    696         if (SI->getOperand(1) != AI) continue;
    697 
    698         // We found a store to the alloca before a load.  The alloca is not
    699         // actually live-in here.
    700         LiveInBlockWorklist[i] = LiveInBlockWorklist.back();
    701         LiveInBlockWorklist.pop_back();
    702         --i, --e;
    703         break;
    704       }
    705 
    706       if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
    707         if (LI->getOperand(0) != AI) continue;
    708 
    709         // Okay, we found a load before a store to the alloca.  It is actually
    710         // live into this block.
    711         break;
    712       }
    713     }
    714   }
    715 
    716   // Now that we have a set of blocks where the phi is live-in, recursively add
    717   // their predecessors until we find the full region the value is live.
    718   while (!LiveInBlockWorklist.empty()) {
    719     BasicBlock *BB = LiveInBlockWorklist.pop_back_val();
    720 
    721     // The block really is live in here, insert it into the set.  If already in
    722     // the set, then it has already been processed.
    723     if (!LiveInBlocks.insert(BB))
    724       continue;
    725 
    726     // Since the value is live into BB, it is either defined in a predecessor or
    727     // live into it to.  Add the preds to the worklist unless they are a
    728     // defining block.
    729     for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
    730       BasicBlock *P = *PI;
    731 
    732       // The value is not live into a predecessor if it defines the value.
    733       if (DefBlocks.count(P))
    734         continue;
    735 
    736       // Otherwise it is, add to the worklist.
    737       LiveInBlockWorklist.push_back(P);
    738     }
    739   }
    740 }
    741 
    742 /// DetermineInsertionPoint - At this point, we're committed to promoting the
    743 /// alloca using IDF's, and the standard SSA construction algorithm.  Determine
    744 /// which blocks need phi nodes and see if we can optimize out some work by
    745 /// avoiding insertion of dead phi nodes.
    746 void PromoteMem2Reg::DetermineInsertionPoint(AllocaInst *AI, unsigned AllocaNum,
    747                                              AllocaInfo &Info) {
    748   // Unique the set of defining blocks for efficient lookup.
    749   SmallPtrSet<BasicBlock*, 32> DefBlocks;
    750   DefBlocks.insert(Info.DefiningBlocks.begin(), Info.DefiningBlocks.end());
    751 
    752   // Determine which blocks the value is live in.  These are blocks which lead
    753   // to uses.
    754   SmallPtrSet<BasicBlock*, 32> LiveInBlocks;
    755   ComputeLiveInBlocks(AI, Info, DefBlocks, LiveInBlocks);
    756 
    757   // Use a priority queue keyed on dominator tree level so that inserted nodes
    758   // are handled from the bottom of the dominator tree upwards.
    759   typedef std::priority_queue<DomTreeNodePair, SmallVector<DomTreeNodePair, 32>,
    760                               DomTreeNodeCompare> IDFPriorityQueue;
    761   IDFPriorityQueue PQ;
    762 
    763   for (SmallPtrSet<BasicBlock*, 32>::const_iterator I = DefBlocks.begin(),
    764        E = DefBlocks.end(); I != E; ++I) {
    765     if (DomTreeNode *Node = DT.getNode(*I))
    766       PQ.push(std::make_pair(Node, DomLevels[Node]));
    767   }
    768 
    769   SmallVector<std::pair<unsigned, BasicBlock*>, 32> DFBlocks;
    770   SmallPtrSet<DomTreeNode*, 32> Visited;
    771   SmallVector<DomTreeNode*, 32> Worklist;
    772   while (!PQ.empty()) {
    773     DomTreeNodePair RootPair = PQ.top();
    774     PQ.pop();
    775     DomTreeNode *Root = RootPair.first;
    776     unsigned RootLevel = RootPair.second;
    777 
    778     // Walk all dominator tree children of Root, inspecting their CFG edges with
    779     // targets elsewhere on the dominator tree. Only targets whose level is at
    780     // most Root's level are added to the iterated dominance frontier of the
    781     // definition set.
    782 
    783     Worklist.clear();
    784     Worklist.push_back(Root);
    785 
    786     while (!Worklist.empty()) {
    787       DomTreeNode *Node = Worklist.pop_back_val();
    788       BasicBlock *BB = Node->getBlock();
    789 
    790       for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE;
    791            ++SI) {
    792         DomTreeNode *SuccNode = DT.getNode(*SI);
    793 
    794         // Quickly skip all CFG edges that are also dominator tree edges instead
    795         // of catching them below.
    796         if (SuccNode->getIDom() == Node)
    797           continue;
    798 
    799         unsigned SuccLevel = DomLevels[SuccNode];
    800         if (SuccLevel > RootLevel)
    801           continue;
    802 
    803         if (!Visited.insert(SuccNode))
    804           continue;
    805 
    806         BasicBlock *SuccBB = SuccNode->getBlock();
    807         if (!LiveInBlocks.count(SuccBB))
    808           continue;
    809 
    810         DFBlocks.push_back(std::make_pair(BBNumbers[SuccBB], SuccBB));
    811         if (!DefBlocks.count(SuccBB))
    812           PQ.push(std::make_pair(SuccNode, SuccLevel));
    813       }
    814 
    815       for (DomTreeNode::iterator CI = Node->begin(), CE = Node->end(); CI != CE;
    816            ++CI) {
    817         if (!Visited.count(*CI))
    818           Worklist.push_back(*CI);
    819       }
    820     }
    821   }
    822 
    823   if (DFBlocks.size() > 1)
    824     std::sort(DFBlocks.begin(), DFBlocks.end());
    825 
    826   unsigned CurrentVersion = 0;
    827   for (unsigned i = 0, e = DFBlocks.size(); i != e; ++i)
    828     QueuePhiNode(DFBlocks[i].second, AllocaNum, CurrentVersion);
    829 }
    830 
    831 /// RewriteSingleStoreAlloca - If there is only a single store to this value,
    832 /// replace any loads of it that are directly dominated by the definition with
    833 /// the value stored.
    834 void PromoteMem2Reg::RewriteSingleStoreAlloca(AllocaInst *AI,
    835                                               AllocaInfo &Info,
    836                                               LargeBlockInfo &LBI) {
    837   StoreInst *OnlyStore = Info.OnlyStore;
    838   bool StoringGlobalVal = !isa<Instruction>(OnlyStore->getOperand(0));
    839   BasicBlock *StoreBB = OnlyStore->getParent();
    840   int StoreIndex = -1;
    841 
    842   // Clear out UsingBlocks.  We will reconstruct it here if needed.
    843   Info.UsingBlocks.clear();
    844 
    845   for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end(); UI != E; ) {
    846     Instruction *UserInst = cast<Instruction>(*UI++);
    847     if (!isa<LoadInst>(UserInst)) {
    848       assert(UserInst == OnlyStore && "Should only have load/stores");
    849       continue;
    850     }
    851     LoadInst *LI = cast<LoadInst>(UserInst);
    852 
    853     // Okay, if we have a load from the alloca, we want to replace it with the
    854     // only value stored to the alloca.  We can do this if the value is
    855     // dominated by the store.  If not, we use the rest of the mem2reg machinery
    856     // to insert the phi nodes as needed.
    857     if (!StoringGlobalVal) {  // Non-instructions are always dominated.
    858       if (LI->getParent() == StoreBB) {
    859         // If we have a use that is in the same block as the store, compare the
    860         // indices of the two instructions to see which one came first.  If the
    861         // load came before the store, we can't handle it.
    862         if (StoreIndex == -1)
    863           StoreIndex = LBI.getInstructionIndex(OnlyStore);
    864 
    865         if (unsigned(StoreIndex) > LBI.getInstructionIndex(LI)) {
    866           // Can't handle this load, bail out.
    867           Info.UsingBlocks.push_back(StoreBB);
    868           continue;
    869         }
    870 
    871       } else if (LI->getParent() != StoreBB &&
    872                  !dominates(StoreBB, LI->getParent())) {
    873         // If the load and store are in different blocks, use BB dominance to
    874         // check their relationships.  If the store doesn't dom the use, bail
    875         // out.
    876         Info.UsingBlocks.push_back(LI->getParent());
    877         continue;
    878       }
    879     }
    880 
    881     // Otherwise, we *can* safely rewrite this load.
    882     Value *ReplVal = OnlyStore->getOperand(0);
    883     // If the replacement value is the load, this must occur in unreachable
    884     // code.
    885     if (ReplVal == LI)
    886       ReplVal = UndefValue::get(LI->getType());
    887     LI->replaceAllUsesWith(ReplVal);
    888     if (AST && LI->getType()->isPointerTy())
    889       AST->deleteValue(LI);
    890     LI->eraseFromParent();
    891     LBI.deleteValue(LI);
    892   }
    893 }
    894 
    895 namespace {
    896 
    897 /// StoreIndexSearchPredicate - This is a helper predicate used to search by the
    898 /// first element of a pair.
    899 struct StoreIndexSearchPredicate {
    900   bool operator()(const std::pair<unsigned, StoreInst*> &LHS,
    901                   const std::pair<unsigned, StoreInst*> &RHS) {
    902     return LHS.first < RHS.first;
    903   }
    904 };
    905 
    906 }
    907 
    908 /// PromoteSingleBlockAlloca - Many allocas are only used within a single basic
    909 /// block.  If this is the case, avoid traversing the CFG and inserting a lot of
    910 /// potentially useless PHI nodes by just performing a single linear pass over
    911 /// the basic block using the Alloca.
    912 ///
    913 /// If we cannot promote this alloca (because it is read before it is written),
    914 /// return true.  This is necessary in cases where, due to control flow, the
    915 /// alloca is potentially undefined on some control flow paths.  e.g. code like
    916 /// this is potentially correct:
    917 ///
    918 ///   for (...) { if (c) { A = undef; undef = B; } }
    919 ///
    920 /// ... so long as A is not used before undef is set.
    921 ///
    922 void PromoteMem2Reg::PromoteSingleBlockAlloca(AllocaInst *AI, AllocaInfo &Info,
    923                                               LargeBlockInfo &LBI) {
    924   // The trickiest case to handle is when we have large blocks. Because of this,
    925   // this code is optimized assuming that large blocks happen.  This does not
    926   // significantly pessimize the small block case.  This uses LargeBlockInfo to
    927   // make it efficient to get the index of various operations in the block.
    928 
    929   // Clear out UsingBlocks.  We will reconstruct it here if needed.
    930   Info.UsingBlocks.clear();
    931 
    932   // Walk the use-def list of the alloca, getting the locations of all stores.
    933   typedef SmallVector<std::pair<unsigned, StoreInst*>, 64> StoresByIndexTy;
    934   StoresByIndexTy StoresByIndex;
    935 
    936   for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
    937        UI != E; ++UI)
    938     if (StoreInst *SI = dyn_cast<StoreInst>(*UI))
    939       StoresByIndex.push_back(std::make_pair(LBI.getInstructionIndex(SI), SI));
    940 
    941   // If there are no stores to the alloca, just replace any loads with undef.
    942   if (StoresByIndex.empty()) {
    943     for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end(); UI != E;)
    944       if (LoadInst *LI = dyn_cast<LoadInst>(*UI++)) {
    945         LI->replaceAllUsesWith(UndefValue::get(LI->getType()));
    946         if (AST && LI->getType()->isPointerTy())
    947           AST->deleteValue(LI);
    948         LBI.deleteValue(LI);
    949         LI->eraseFromParent();
    950       }
    951     return;
    952   }
    953 
    954   // Sort the stores by their index, making it efficient to do a lookup with a
    955   // binary search.
    956   std::sort(StoresByIndex.begin(), StoresByIndex.end());
    957 
    958   // Walk all of the loads from this alloca, replacing them with the nearest
    959   // store above them, if any.
    960   for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end(); UI != E;) {
    961     LoadInst *LI = dyn_cast<LoadInst>(*UI++);
    962     if (!LI) continue;
    963 
    964     unsigned LoadIdx = LBI.getInstructionIndex(LI);
    965 
    966     // Find the nearest store that has a lower than this load.
    967     StoresByIndexTy::iterator I =
    968       std::lower_bound(StoresByIndex.begin(), StoresByIndex.end(),
    969                        std::pair<unsigned, StoreInst*>(LoadIdx, static_cast<StoreInst*>(0)),
    970                        StoreIndexSearchPredicate());
    971 
    972     // If there is no store before this load, then we can't promote this load.
    973     if (I == StoresByIndex.begin()) {
    974       // Can't handle this load, bail out.
    975       Info.UsingBlocks.push_back(LI->getParent());
    976       continue;
    977     }
    978 
    979     // Otherwise, there was a store before this load, the load takes its value.
    980     --I;
    981     LI->replaceAllUsesWith(I->second->getOperand(0));
    982     if (AST && LI->getType()->isPointerTy())
    983       AST->deleteValue(LI);
    984     LI->eraseFromParent();
    985     LBI.deleteValue(LI);
    986   }
    987 }
    988 
    989 // QueuePhiNode - queues a phi-node to be added to a basic-block for a specific
    990 // Alloca returns true if there wasn't already a phi-node for that variable
    991 //
    992 bool PromoteMem2Reg::QueuePhiNode(BasicBlock *BB, unsigned AllocaNo,
    993                                   unsigned &Version) {
    994   // Look up the basic-block in question.
    995   PHINode *&PN = NewPhiNodes[std::make_pair(BB, AllocaNo)];
    996 
    997   // If the BB already has a phi node added for the i'th alloca then we're done!
    998   if (PN) return false;
    999 
   1000   // Create a PhiNode using the dereferenced type... and add the phi-node to the
   1001   // BasicBlock.
   1002   PN = PHINode::Create(Allocas[AllocaNo]->getAllocatedType(), getNumPreds(BB),
   1003                        Allocas[AllocaNo]->getName() + "." + Twine(Version++),
   1004                        BB->begin());
   1005   ++NumPHIInsert;
   1006   PhiToAllocaMap[PN] = AllocaNo;
   1007 
   1008   if (AST && PN->getType()->isPointerTy())
   1009     AST->copyValue(PointerAllocaValues[AllocaNo], PN);
   1010 
   1011   return true;
   1012 }
   1013 
   1014 // RenamePass - Recursively traverse the CFG of the function, renaming loads and
   1015 // stores to the allocas which we are promoting.  IncomingVals indicates what
   1016 // value each Alloca contains on exit from the predecessor block Pred.
   1017 //
   1018 void PromoteMem2Reg::RenamePass(BasicBlock *BB, BasicBlock *Pred,
   1019                                 RenamePassData::ValVector &IncomingVals,
   1020                                 std::vector<RenamePassData> &Worklist) {
   1021 NextIteration:
   1022   // If we are inserting any phi nodes into this BB, they will already be in the
   1023   // block.
   1024   if (PHINode *APN = dyn_cast<PHINode>(BB->begin())) {
   1025     // If we have PHI nodes to update, compute the number of edges from Pred to
   1026     // BB.
   1027     if (PhiToAllocaMap.count(APN)) {
   1028       // We want to be able to distinguish between PHI nodes being inserted by
   1029       // this invocation of mem2reg from those phi nodes that already existed in
   1030       // the IR before mem2reg was run.  We determine that APN is being inserted
   1031       // because it is missing incoming edges.  All other PHI nodes being
   1032       // inserted by this pass of mem2reg will have the same number of incoming
   1033       // operands so far.  Remember this count.
   1034       unsigned NewPHINumOperands = APN->getNumOperands();
   1035 
   1036       unsigned NumEdges = 0;
   1037       for (succ_iterator I = succ_begin(Pred), E = succ_end(Pred); I != E; ++I)
   1038         if (*I == BB)
   1039           ++NumEdges;
   1040       assert(NumEdges && "Must be at least one edge from Pred to BB!");
   1041 
   1042       // Add entries for all the phis.
   1043       BasicBlock::iterator PNI = BB->begin();
   1044       do {
   1045         unsigned AllocaNo = PhiToAllocaMap[APN];
   1046 
   1047         // Add N incoming values to the PHI node.
   1048         for (unsigned i = 0; i != NumEdges; ++i)
   1049           APN->addIncoming(IncomingVals[AllocaNo], Pred);
   1050 
   1051         // The currently active variable for this block is now the PHI.
   1052         IncomingVals[AllocaNo] = APN;
   1053 
   1054         // Get the next phi node.
   1055         ++PNI;
   1056         APN = dyn_cast<PHINode>(PNI);
   1057         if (APN == 0) break;
   1058 
   1059         // Verify that it is missing entries.  If not, it is not being inserted
   1060         // by this mem2reg invocation so we want to ignore it.
   1061       } while (APN->getNumOperands() == NewPHINumOperands);
   1062     }
   1063   }
   1064 
   1065   // Don't revisit blocks.
   1066   if (!Visited.insert(BB)) return;
   1067 
   1068   for (BasicBlock::iterator II = BB->begin(); !isa<TerminatorInst>(II); ) {
   1069     Instruction *I = II++; // get the instruction, increment iterator
   1070 
   1071     if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
   1072       AllocaInst *Src = dyn_cast<AllocaInst>(LI->getPointerOperand());
   1073       if (!Src) continue;
   1074 
   1075       DenseMap<AllocaInst*, unsigned>::iterator AI = AllocaLookup.find(Src);
   1076       if (AI == AllocaLookup.end()) continue;
   1077 
   1078       Value *V = IncomingVals[AI->second];
   1079 
   1080       // Anything using the load now uses the current value.
   1081       LI->replaceAllUsesWith(V);
   1082       if (AST && LI->getType()->isPointerTy())
   1083         AST->deleteValue(LI);
   1084       BB->getInstList().erase(LI);
   1085     } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
   1086       // Delete this instruction and mark the name as the current holder of the
   1087       // value
   1088       AllocaInst *Dest = dyn_cast<AllocaInst>(SI->getPointerOperand());
   1089       if (!Dest) continue;
   1090 
   1091       DenseMap<AllocaInst *, unsigned>::iterator ai = AllocaLookup.find(Dest);
   1092       if (ai == AllocaLookup.end())
   1093         continue;
   1094 
   1095       // what value were we writing?
   1096       IncomingVals[ai->second] = SI->getOperand(0);
   1097       // Record debuginfo for the store before removing it.
   1098       if (DbgDeclareInst *DDI = AllocaDbgDeclares[ai->second]) {
   1099         if (!DIB)
   1100           DIB = new DIBuilder(*SI->getParent()->getParent()->getParent());
   1101         ConvertDebugDeclareToDebugValue(DDI, SI, *DIB);
   1102       }
   1103       BB->getInstList().erase(SI);
   1104     }
   1105   }
   1106 
   1107   // 'Recurse' to our successors.
   1108   succ_iterator I = succ_begin(BB), E = succ_end(BB);
   1109   if (I == E) return;
   1110 
   1111   // Keep track of the successors so we don't visit the same successor twice
   1112   SmallPtrSet<BasicBlock*, 8> VisitedSuccs;
   1113 
   1114   // Handle the first successor without using the worklist.
   1115   VisitedSuccs.insert(*I);
   1116   Pred = BB;
   1117   BB = *I;
   1118   ++I;
   1119 
   1120   for (; I != E; ++I)
   1121     if (VisitedSuccs.insert(*I))
   1122       Worklist.push_back(RenamePassData(*I, Pred, IncomingVals));
   1123 
   1124   goto NextIteration;
   1125 }
   1126 
   1127 /// PromoteMemToReg - Promote the specified list of alloca instructions into
   1128 /// scalar registers, inserting PHI nodes as appropriate.  This function does
   1129 /// not modify the CFG of the function at all.  All allocas must be from the
   1130 /// same function.
   1131 ///
   1132 /// If AST is specified, the specified tracker is updated to reflect changes
   1133 /// made to the IR.
   1134 ///
   1135 void llvm::PromoteMemToReg(const std::vector<AllocaInst*> &Allocas,
   1136                            DominatorTree &DT, AliasSetTracker *AST) {
   1137   // If there is nothing to do, bail out...
   1138   if (Allocas.empty()) return;
   1139 
   1140   PromoteMem2Reg(Allocas, DT, AST).run();
   1141 }
   1142