Home | History | Annotate | Download | only in src
      1 // Copyright (c) 1994-2006 Sun Microsystems Inc.
      2 // All Rights Reserved.
      3 //
      4 // Redistribution and use in source and binary forms, with or without
      5 // modification, are permitted provided that the following conditions are
      6 // met:
      7 //
      8 // - Redistributions of source code must retain the above copyright notice,
      9 // this list of conditions and the following disclaimer.
     10 //
     11 // - Redistribution in binary form must reproduce the above copyright
     12 // notice, this list of conditions and the following disclaimer in the
     13 // documentation and/or other materials provided with the distribution.
     14 //
     15 // - Neither the name of Sun Microsystems or the names of contributors may
     16 // be used to endorse or promote products derived from this software without
     17 // specific prior written permission.
     18 //
     19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
     20 // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
     21 // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
     23 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
     24 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     25 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
     26 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
     27 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
     28 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
     29 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     30 
     31 // The original source code covered by the above license above has been
     32 // modified significantly by Google Inc.
     33 // Copyright 2012 the V8 project authors. All rights reserved.
     34 
     35 #ifndef V8_ASSEMBLER_H_
     36 #define V8_ASSEMBLER_H_
     37 
     38 #include "v8.h"
     39 
     40 #include "allocation.h"
     41 #include "builtins.h"
     42 #include "gdb-jit.h"
     43 #include "isolate.h"
     44 #include "runtime.h"
     45 #include "token.h"
     46 
     47 namespace v8 {
     48 
     49 class ApiFunction;
     50 
     51 namespace internal {
     52 
     53 struct StatsCounter;
     54 const unsigned kNoASTId = -1;
     55 // -----------------------------------------------------------------------------
     56 // Platform independent assembler base class.
     57 
     58 class AssemblerBase: public Malloced {
     59  public:
     60   explicit AssemblerBase(Isolate* isolate);
     61 
     62   Isolate* isolate() const { return isolate_; }
     63   int jit_cookie() { return jit_cookie_; }
     64 
     65   // Overwrite a host NaN with a quiet target NaN.  Used by mksnapshot for
     66   // cross-snapshotting.
     67   static void QuietNaN(HeapObject* nan) { }
     68 
     69  private:
     70   Isolate* isolate_;
     71   int jit_cookie_;
     72 };
     73 
     74 
     75 // -----------------------------------------------------------------------------
     76 // Labels represent pc locations; they are typically jump or call targets.
     77 // After declaration, a label can be freely used to denote known or (yet)
     78 // unknown pc location. Assembler::bind() is used to bind a label to the
     79 // current pc. A label can be bound only once.
     80 
     81 class Label BASE_EMBEDDED {
     82  public:
     83   enum Distance {
     84     kNear, kFar
     85   };
     86 
     87   INLINE(Label()) {
     88     Unuse();
     89     UnuseNear();
     90   }
     91 
     92   INLINE(~Label()) {
     93     ASSERT(!is_linked());
     94     ASSERT(!is_near_linked());
     95   }
     96 
     97   INLINE(void Unuse()) { pos_ = 0; }
     98   INLINE(void UnuseNear()) { near_link_pos_ = 0; }
     99 
    100   INLINE(bool is_bound() const) { return pos_ <  0; }
    101   INLINE(bool is_unused() const) { return pos_ == 0 && near_link_pos_ == 0; }
    102   INLINE(bool is_linked() const) { return pos_ >  0; }
    103   INLINE(bool is_near_linked() const) { return near_link_pos_ > 0; }
    104 
    105   // Returns the position of bound or linked labels. Cannot be used
    106   // for unused labels.
    107   int pos() const;
    108   int near_link_pos() const { return near_link_pos_ - 1; }
    109 
    110  private:
    111   // pos_ encodes both the binding state (via its sign)
    112   // and the binding position (via its value) of a label.
    113   //
    114   // pos_ <  0  bound label, pos() returns the jump target position
    115   // pos_ == 0  unused label
    116   // pos_ >  0  linked label, pos() returns the last reference position
    117   int pos_;
    118 
    119   // Behaves like |pos_| in the "> 0" case, but for near jumps to this label.
    120   int near_link_pos_;
    121 
    122   void bind_to(int pos)  {
    123     pos_ = -pos - 1;
    124     ASSERT(is_bound());
    125   }
    126   void link_to(int pos, Distance distance = kFar) {
    127     if (distance == kNear) {
    128       near_link_pos_ = pos + 1;
    129       ASSERT(is_near_linked());
    130     } else {
    131       pos_ = pos + 1;
    132       ASSERT(is_linked());
    133     }
    134   }
    135 
    136   friend class Assembler;
    137   friend class RegexpAssembler;
    138   friend class Displacement;
    139   friend class RegExpMacroAssemblerIrregexp;
    140 };
    141 
    142 
    143 enum SaveFPRegsMode { kDontSaveFPRegs, kSaveFPRegs };
    144 
    145 
    146 // -----------------------------------------------------------------------------
    147 // Relocation information
    148 
    149 
    150 // Relocation information consists of the address (pc) of the datum
    151 // to which the relocation information applies, the relocation mode
    152 // (rmode), and an optional data field. The relocation mode may be
    153 // "descriptive" and not indicate a need for relocation, but simply
    154 // describe a property of the datum. Such rmodes are useful for GC
    155 // and nice disassembly output.
    156 
    157 class RelocInfo BASE_EMBEDDED {
    158  public:
    159   // The constant kNoPosition is used with the collecting of source positions
    160   // in the relocation information. Two types of source positions are collected
    161   // "position" (RelocMode position) and "statement position" (RelocMode
    162   // statement_position). The "position" is collected at places in the source
    163   // code which are of interest when making stack traces to pin-point the source
    164   // location of a stack frame as close as possible. The "statement position" is
    165   // collected at the beginning at each statement, and is used to indicate
    166   // possible break locations. kNoPosition is used to indicate an
    167   // invalid/uninitialized position value.
    168   static const int kNoPosition = -1;
    169 
    170   // This string is used to add padding comments to the reloc info in cases
    171   // where we are not sure to have enough space for patching in during
    172   // lazy deoptimization. This is the case if we have indirect calls for which
    173   // we do not normally record relocation info.
    174   static const char* const kFillerCommentString;
    175 
    176   // The minimum size of a comment is equal to three bytes for the extra tagged
    177   // pc + the tag for the data, and kPointerSize for the actual pointer to the
    178   // comment.
    179   static const int kMinRelocCommentSize = 3 + kPointerSize;
    180 
    181   // The maximum size for a call instruction including pc-jump.
    182   static const int kMaxCallSize = 6;
    183 
    184   // The maximum pc delta that will use the short encoding.
    185   static const int kMaxSmallPCDelta;
    186 
    187   enum Mode {
    188     // Please note the order is important (see IsCodeTarget, IsGCRelocMode).
    189     CODE_TARGET,  // Code target which is not any of the above.
    190     CODE_TARGET_WITH_ID,
    191     CONSTRUCT_CALL,  // code target that is a call to a JavaScript constructor.
    192     CODE_TARGET_CONTEXT,  // Code target used for contextual loads and stores.
    193     DEBUG_BREAK,  // Code target for the debugger statement.
    194     EMBEDDED_OBJECT,
    195     GLOBAL_PROPERTY_CELL,
    196 
    197     // Everything after runtime_entry (inclusive) is not GC'ed.
    198     RUNTIME_ENTRY,
    199     JS_RETURN,  // Marks start of the ExitJSFrame code.
    200     COMMENT,
    201     POSITION,  // See comment for kNoPosition above.
    202     STATEMENT_POSITION,  // See comment for kNoPosition above.
    203     DEBUG_BREAK_SLOT,  // Additional code inserted for debug break slot.
    204     EXTERNAL_REFERENCE,  // The address of an external C++ function.
    205     INTERNAL_REFERENCE,  // An address inside the same function.
    206 
    207     // add more as needed
    208     // Pseudo-types
    209     NUMBER_OF_MODES,  // There are at most 14 modes with noncompact encoding.
    210     NONE,  // never recorded
    211     LAST_CODE_ENUM = DEBUG_BREAK,
    212     LAST_GCED_ENUM = GLOBAL_PROPERTY_CELL,
    213     // Modes <= LAST_COMPACT_ENUM are guaranteed to have compact encoding.
    214     LAST_COMPACT_ENUM = CODE_TARGET_WITH_ID
    215   };
    216 
    217 
    218   RelocInfo() {}
    219 
    220   RelocInfo(byte* pc, Mode rmode, intptr_t data, Code* host)
    221       : pc_(pc), rmode_(rmode), data_(data), host_(host) {
    222   }
    223 
    224   static inline bool IsConstructCall(Mode mode) {
    225     return mode == CONSTRUCT_CALL;
    226   }
    227   static inline bool IsCodeTarget(Mode mode) {
    228     return mode <= LAST_CODE_ENUM;
    229   }
    230   static inline bool IsEmbeddedObject(Mode mode) {
    231     return mode == EMBEDDED_OBJECT;
    232   }
    233   // Is the relocation mode affected by GC?
    234   static inline bool IsGCRelocMode(Mode mode) {
    235     return mode <= LAST_GCED_ENUM;
    236   }
    237   static inline bool IsJSReturn(Mode mode) {
    238     return mode == JS_RETURN;
    239   }
    240   static inline bool IsComment(Mode mode) {
    241     return mode == COMMENT;
    242   }
    243   static inline bool IsPosition(Mode mode) {
    244     return mode == POSITION || mode == STATEMENT_POSITION;
    245   }
    246   static inline bool IsStatementPosition(Mode mode) {
    247     return mode == STATEMENT_POSITION;
    248   }
    249   static inline bool IsExternalReference(Mode mode) {
    250     return mode == EXTERNAL_REFERENCE;
    251   }
    252   static inline bool IsInternalReference(Mode mode) {
    253     return mode == INTERNAL_REFERENCE;
    254   }
    255   static inline bool IsDebugBreakSlot(Mode mode) {
    256     return mode == DEBUG_BREAK_SLOT;
    257   }
    258   static inline int ModeMask(Mode mode) { return 1 << mode; }
    259 
    260   // Accessors
    261   byte* pc() const { return pc_; }
    262   void set_pc(byte* pc) { pc_ = pc; }
    263   Mode rmode() const {  return rmode_; }
    264   intptr_t data() const { return data_; }
    265   Code* host() const { return host_; }
    266 
    267   // Apply a relocation by delta bytes
    268   INLINE(void apply(intptr_t delta));
    269 
    270   // Is the pointer this relocation info refers to coded like a plain pointer
    271   // or is it strange in some way (e.g. relative or patched into a series of
    272   // instructions).
    273   bool IsCodedSpecially();
    274 
    275   // Read/modify the code target in the branch/call instruction
    276   // this relocation applies to;
    277   // can only be called if IsCodeTarget(rmode_) || rmode_ == RUNTIME_ENTRY
    278   INLINE(Address target_address());
    279   INLINE(void set_target_address(Address target,
    280                                  WriteBarrierMode mode = UPDATE_WRITE_BARRIER));
    281   INLINE(Object* target_object());
    282   INLINE(Handle<Object> target_object_handle(Assembler* origin));
    283   INLINE(Object** target_object_address());
    284   INLINE(void set_target_object(Object* target,
    285                                 WriteBarrierMode mode = UPDATE_WRITE_BARRIER));
    286   INLINE(JSGlobalPropertyCell* target_cell());
    287   INLINE(Handle<JSGlobalPropertyCell> target_cell_handle());
    288   INLINE(void set_target_cell(JSGlobalPropertyCell* cell,
    289                               WriteBarrierMode mode = UPDATE_WRITE_BARRIER));
    290 
    291 
    292   // Read the address of the word containing the target_address in an
    293   // instruction stream.  What this means exactly is architecture-independent.
    294   // The only architecture-independent user of this function is the serializer.
    295   // The serializer uses it to find out how many raw bytes of instruction to
    296   // output before the next target.  Architecture-independent code shouldn't
    297   // dereference the pointer it gets back from this.
    298   INLINE(Address target_address_address());
    299   // This indicates how much space a target takes up when deserializing a code
    300   // stream.  For most architectures this is just the size of a pointer.  For
    301   // an instruction like movw/movt where the target bits are mixed into the
    302   // instruction bits the size of the target will be zero, indicating that the
    303   // serializer should not step forwards in memory after a target is resolved
    304   // and written.  In this case the target_address_address function above
    305   // should return the end of the instructions to be patched, allowing the
    306   // deserializer to deserialize the instructions as raw bytes and put them in
    307   // place, ready to be patched with the target.
    308   INLINE(int target_address_size());
    309 
    310   // Read/modify the reference in the instruction this relocation
    311   // applies to; can only be called if rmode_ is external_reference
    312   INLINE(Address* target_reference_address());
    313 
    314   // Read/modify the address of a call instruction. This is used to relocate
    315   // the break points where straight-line code is patched with a call
    316   // instruction.
    317   INLINE(Address call_address());
    318   INLINE(void set_call_address(Address target));
    319   INLINE(Object* call_object());
    320   INLINE(void set_call_object(Object* target));
    321   INLINE(Object** call_object_address());
    322 
    323   template<typename StaticVisitor> inline void Visit(Heap* heap);
    324   inline void Visit(ObjectVisitor* v);
    325 
    326   // Patch the code with some other code.
    327   void PatchCode(byte* instructions, int instruction_count);
    328 
    329   // Patch the code with a call.
    330   void PatchCodeWithCall(Address target, int guard_bytes);
    331 
    332   // Check whether this return sequence has been patched
    333   // with a call to the debugger.
    334   INLINE(bool IsPatchedReturnSequence());
    335 
    336   // Check whether this debug break slot has been patched with a call to the
    337   // debugger.
    338   INLINE(bool IsPatchedDebugBreakSlotSequence());
    339 
    340 #ifdef ENABLE_DISASSEMBLER
    341   // Printing
    342   static const char* RelocModeName(Mode rmode);
    343   void Print(FILE* out);
    344 #endif  // ENABLE_DISASSEMBLER
    345 #ifdef DEBUG
    346   // Debugging
    347   void Verify();
    348 #endif
    349 
    350   static const int kCodeTargetMask = (1 << (LAST_CODE_ENUM + 1)) - 1;
    351   static const int kPositionMask = 1 << POSITION | 1 << STATEMENT_POSITION;
    352   static const int kDataMask =
    353       (1 << CODE_TARGET_WITH_ID) | kPositionMask | (1 << COMMENT);
    354   static const int kApplyMask;  // Modes affected by apply. Depends on arch.
    355 
    356  private:
    357   // On ARM, note that pc_ is the address of the constant pool entry
    358   // to be relocated and not the address of the instruction
    359   // referencing the constant pool entry (except when rmode_ ==
    360   // comment).
    361   byte* pc_;
    362   Mode rmode_;
    363   intptr_t data_;
    364   Code* host_;
    365 #ifdef V8_TARGET_ARCH_MIPS
    366   // Code and Embedded Object pointers in mips are stored split
    367   // across two consecutive 32-bit instructions. Heap management
    368   // routines expect to access these pointers indirectly. The following
    369   // location provides a place for these pointers to exist natually
    370   // when accessed via the Iterator.
    371   Object* reconstructed_obj_ptr_;
    372   // External-reference pointers are also split across instruction-pairs
    373   // in mips, but are accessed via indirect pointers. This location
    374   // provides a place for that pointer to exist naturally. Its address
    375   // is returned by RelocInfo::target_reference_address().
    376   Address reconstructed_adr_ptr_;
    377 #endif  // V8_TARGET_ARCH_MIPS
    378   friend class RelocIterator;
    379 };
    380 
    381 
    382 // RelocInfoWriter serializes a stream of relocation info. It writes towards
    383 // lower addresses.
    384 class RelocInfoWriter BASE_EMBEDDED {
    385  public:
    386   RelocInfoWriter() : pos_(NULL),
    387                       last_pc_(NULL),
    388                       last_id_(0),
    389                       last_position_(0) {}
    390   RelocInfoWriter(byte* pos, byte* pc) : pos_(pos),
    391                                          last_pc_(pc),
    392                                          last_id_(0),
    393                                          last_position_(0) {}
    394 
    395   byte* pos() const { return pos_; }
    396   byte* last_pc() const { return last_pc_; }
    397 
    398   void Write(const RelocInfo* rinfo);
    399 
    400   // Update the state of the stream after reloc info buffer
    401   // and/or code is moved while the stream is active.
    402   void Reposition(byte* pos, byte* pc) {
    403     pos_ = pos;
    404     last_pc_ = pc;
    405   }
    406 
    407   // Max size (bytes) of a written RelocInfo. Longest encoding is
    408   // ExtraTag, VariableLengthPCJump, ExtraTag, pc_delta, ExtraTag, data_delta.
    409   // On ia32 and arm this is 1 + 4 + 1 + 1 + 1 + 4 = 12.
    410   // On x64 this is 1 + 4 + 1 + 1 + 1 + 8 == 16;
    411   // Here we use the maximum of the two.
    412   static const int kMaxSize = 16;
    413 
    414  private:
    415   inline uint32_t WriteVariableLengthPCJump(uint32_t pc_delta);
    416   inline void WriteTaggedPC(uint32_t pc_delta, int tag);
    417   inline void WriteExtraTaggedPC(uint32_t pc_delta, int extra_tag);
    418   inline void WriteExtraTaggedIntData(int data_delta, int top_tag);
    419   inline void WriteExtraTaggedData(intptr_t data_delta, int top_tag);
    420   inline void WriteTaggedData(intptr_t data_delta, int tag);
    421   inline void WriteExtraTag(int extra_tag, int top_tag);
    422 
    423   byte* pos_;
    424   byte* last_pc_;
    425   int last_id_;
    426   int last_position_;
    427   DISALLOW_COPY_AND_ASSIGN(RelocInfoWriter);
    428 };
    429 
    430 
    431 // A RelocIterator iterates over relocation information.
    432 // Typical use:
    433 //
    434 //   for (RelocIterator it(code); !it.done(); it.next()) {
    435 //     // do something with it.rinfo() here
    436 //   }
    437 //
    438 // A mask can be specified to skip unwanted modes.
    439 class RelocIterator: public Malloced {
    440  public:
    441   // Create a new iterator positioned at
    442   // the beginning of the reloc info.
    443   // Relocation information with mode k is included in the
    444   // iteration iff bit k of mode_mask is set.
    445   explicit RelocIterator(Code* code, int mode_mask = -1);
    446   explicit RelocIterator(const CodeDesc& desc, int mode_mask = -1);
    447 
    448   // Iteration
    449   bool done() const { return done_; }
    450   void next();
    451 
    452   // Return pointer valid until next next().
    453   RelocInfo* rinfo() {
    454     ASSERT(!done());
    455     return &rinfo_;
    456   }
    457 
    458  private:
    459   // Advance* moves the position before/after reading.
    460   // *Read* reads from current byte(s) into rinfo_.
    461   // *Get* just reads and returns info on current byte.
    462   void Advance(int bytes = 1) { pos_ -= bytes; }
    463   int AdvanceGetTag();
    464   int GetExtraTag();
    465   int GetTopTag();
    466   void ReadTaggedPC();
    467   void AdvanceReadPC();
    468   void AdvanceReadId();
    469   void AdvanceReadPosition();
    470   void AdvanceReadData();
    471   void AdvanceReadVariableLengthPCJump();
    472   int GetLocatableTypeTag();
    473   void ReadTaggedId();
    474   void ReadTaggedPosition();
    475 
    476   // If the given mode is wanted, set it in rinfo_ and return true.
    477   // Else return false. Used for efficiently skipping unwanted modes.
    478   bool SetMode(RelocInfo::Mode mode) {
    479     return (mode_mask_ & (1 << mode)) ? (rinfo_.rmode_ = mode, true) : false;
    480   }
    481 
    482   byte* pos_;
    483   byte* end_;
    484   RelocInfo rinfo_;
    485   bool done_;
    486   int mode_mask_;
    487   int last_id_;
    488   int last_position_;
    489   DISALLOW_COPY_AND_ASSIGN(RelocIterator);
    490 };
    491 
    492 
    493 //------------------------------------------------------------------------------
    494 // External function
    495 
    496 //----------------------------------------------------------------------------
    497 class IC_Utility;
    498 class SCTableReference;
    499 #ifdef ENABLE_DEBUGGER_SUPPORT
    500 class Debug_Address;
    501 #endif
    502 
    503 
    504 // An ExternalReference represents a C++ address used in the generated
    505 // code. All references to C++ functions and variables must be encapsulated in
    506 // an ExternalReference instance. This is done in order to track the origin of
    507 // all external references in the code so that they can be bound to the correct
    508 // addresses when deserializing a heap.
    509 class ExternalReference BASE_EMBEDDED {
    510  public:
    511   // Used in the simulator to support different native api calls.
    512   enum Type {
    513     // Builtin call.
    514     // MaybeObject* f(v8::internal::Arguments).
    515     BUILTIN_CALL,  // default
    516 
    517     // Builtin that takes float arguments and returns an int.
    518     // int f(double, double).
    519     BUILTIN_COMPARE_CALL,
    520 
    521     // Builtin call that returns floating point.
    522     // double f(double, double).
    523     BUILTIN_FP_FP_CALL,
    524 
    525     // Builtin call that returns floating point.
    526     // double f(double).
    527     BUILTIN_FP_CALL,
    528 
    529     // Builtin call that returns floating point.
    530     // double f(double, int).
    531     BUILTIN_FP_INT_CALL,
    532 
    533     // Direct call to API function callback.
    534     // Handle<Value> f(v8::Arguments&)
    535     DIRECT_API_CALL,
    536 
    537     // Direct call to accessor getter callback.
    538     // Handle<value> f(Local<String> property, AccessorInfo& info)
    539     DIRECT_GETTER_CALL
    540   };
    541 
    542   typedef void* ExternalReferenceRedirector(void* original, Type type);
    543 
    544   ExternalReference(Builtins::CFunctionId id, Isolate* isolate);
    545 
    546   ExternalReference(ApiFunction* ptr, Type type, Isolate* isolate);
    547 
    548   ExternalReference(Builtins::Name name, Isolate* isolate);
    549 
    550   ExternalReference(Runtime::FunctionId id, Isolate* isolate);
    551 
    552   ExternalReference(const Runtime::Function* f, Isolate* isolate);
    553 
    554   ExternalReference(const IC_Utility& ic_utility, Isolate* isolate);
    555 
    556 #ifdef ENABLE_DEBUGGER_SUPPORT
    557   ExternalReference(const Debug_Address& debug_address, Isolate* isolate);
    558 #endif
    559 
    560   explicit ExternalReference(StatsCounter* counter);
    561 
    562   ExternalReference(Isolate::AddressId id, Isolate* isolate);
    563 
    564   explicit ExternalReference(const SCTableReference& table_ref);
    565 
    566   // Isolate::Current() as an external reference.
    567   static ExternalReference isolate_address();
    568 
    569   // One-of-a-kind references. These references are not part of a general
    570   // pattern. This means that they have to be added to the
    571   // ExternalReferenceTable in serialize.cc manually.
    572 
    573   static ExternalReference incremental_marking_record_write_function(
    574       Isolate* isolate);
    575   static ExternalReference incremental_evacuation_record_write_function(
    576       Isolate* isolate);
    577   static ExternalReference store_buffer_overflow_function(
    578       Isolate* isolate);
    579   static ExternalReference flush_icache_function(Isolate* isolate);
    580   static ExternalReference perform_gc_function(Isolate* isolate);
    581   static ExternalReference fill_heap_number_with_random_function(
    582       Isolate* isolate);
    583   static ExternalReference random_uint32_function(Isolate* isolate);
    584   static ExternalReference transcendental_cache_array_address(Isolate* isolate);
    585   static ExternalReference delete_handle_scope_extensions(Isolate* isolate);
    586 
    587   static ExternalReference get_date_field_function(Isolate* isolate);
    588   static ExternalReference date_cache_stamp(Isolate* isolate);
    589 
    590   // Deoptimization support.
    591   static ExternalReference new_deoptimizer_function(Isolate* isolate);
    592   static ExternalReference compute_output_frames_function(Isolate* isolate);
    593 
    594   // Static data in the keyed lookup cache.
    595   static ExternalReference keyed_lookup_cache_keys(Isolate* isolate);
    596   static ExternalReference keyed_lookup_cache_field_offsets(Isolate* isolate);
    597 
    598   // Static variable Heap::roots_array_start()
    599   static ExternalReference roots_array_start(Isolate* isolate);
    600 
    601   // Static variable StackGuard::address_of_jslimit()
    602   static ExternalReference address_of_stack_limit(Isolate* isolate);
    603 
    604   // Static variable StackGuard::address_of_real_jslimit()
    605   static ExternalReference address_of_real_stack_limit(Isolate* isolate);
    606 
    607   // Static variable RegExpStack::limit_address()
    608   static ExternalReference address_of_regexp_stack_limit(Isolate* isolate);
    609 
    610   // Static variables for RegExp.
    611   static ExternalReference address_of_static_offsets_vector(Isolate* isolate);
    612   static ExternalReference address_of_regexp_stack_memory_address(
    613       Isolate* isolate);
    614   static ExternalReference address_of_regexp_stack_memory_size(
    615       Isolate* isolate);
    616 
    617   // Static variable Heap::NewSpaceStart()
    618   static ExternalReference new_space_start(Isolate* isolate);
    619   static ExternalReference new_space_mask(Isolate* isolate);
    620   static ExternalReference heap_always_allocate_scope_depth(Isolate* isolate);
    621   static ExternalReference new_space_mark_bits(Isolate* isolate);
    622 
    623   // Write barrier.
    624   static ExternalReference store_buffer_top(Isolate* isolate);
    625 
    626   // Used for fast allocation in generated code.
    627   static ExternalReference new_space_allocation_top_address(Isolate* isolate);
    628   static ExternalReference new_space_allocation_limit_address(Isolate* isolate);
    629 
    630   static ExternalReference double_fp_operation(Token::Value operation,
    631                                                Isolate* isolate);
    632   static ExternalReference compare_doubles(Isolate* isolate);
    633   static ExternalReference power_double_double_function(Isolate* isolate);
    634   static ExternalReference power_double_int_function(Isolate* isolate);
    635 
    636   static ExternalReference handle_scope_next_address();
    637   static ExternalReference handle_scope_limit_address();
    638   static ExternalReference handle_scope_level_address();
    639 
    640   static ExternalReference scheduled_exception_address(Isolate* isolate);
    641 
    642   // Static variables containing common double constants.
    643   static ExternalReference address_of_min_int();
    644   static ExternalReference address_of_one_half();
    645   static ExternalReference address_of_minus_zero();
    646   static ExternalReference address_of_zero();
    647   static ExternalReference address_of_uint8_max_value();
    648   static ExternalReference address_of_negative_infinity();
    649   static ExternalReference address_of_canonical_non_hole_nan();
    650   static ExternalReference address_of_the_hole_nan();
    651 
    652   static ExternalReference math_sin_double_function(Isolate* isolate);
    653   static ExternalReference math_cos_double_function(Isolate* isolate);
    654   static ExternalReference math_tan_double_function(Isolate* isolate);
    655   static ExternalReference math_log_double_function(Isolate* isolate);
    656 
    657   Address address() const {return reinterpret_cast<Address>(address_);}
    658 
    659 #ifdef ENABLE_DEBUGGER_SUPPORT
    660   // Function Debug::Break()
    661   static ExternalReference debug_break(Isolate* isolate);
    662 
    663   // Used to check if single stepping is enabled in generated code.
    664   static ExternalReference debug_step_in_fp_address(Isolate* isolate);
    665 #endif
    666 
    667 #ifndef V8_INTERPRETED_REGEXP
    668   // C functions called from RegExp generated code.
    669 
    670   // Function NativeRegExpMacroAssembler::CaseInsensitiveCompareUC16()
    671   static ExternalReference re_case_insensitive_compare_uc16(Isolate* isolate);
    672 
    673   // Function RegExpMacroAssembler*::CheckStackGuardState()
    674   static ExternalReference re_check_stack_guard_state(Isolate* isolate);
    675 
    676   // Function NativeRegExpMacroAssembler::GrowStack()
    677   static ExternalReference re_grow_stack(Isolate* isolate);
    678 
    679   // byte NativeRegExpMacroAssembler::word_character_bitmap
    680   static ExternalReference re_word_character_map();
    681 
    682 #endif
    683 
    684   // This lets you register a function that rewrites all external references.
    685   // Used by the ARM simulator to catch calls to external references.
    686   static void set_redirector(Isolate* isolate,
    687                              ExternalReferenceRedirector* redirector) {
    688     // We can't stack them.
    689     ASSERT(isolate->external_reference_redirector() == NULL);
    690     isolate->set_external_reference_redirector(
    691         reinterpret_cast<ExternalReferenceRedirectorPointer*>(redirector));
    692   }
    693 
    694  private:
    695   explicit ExternalReference(void* address)
    696       : address_(address) {}
    697 
    698   static void* Redirect(Isolate* isolate,
    699                         void* address,
    700                         Type type = ExternalReference::BUILTIN_CALL) {
    701     ExternalReferenceRedirector* redirector =
    702         reinterpret_cast<ExternalReferenceRedirector*>(
    703             isolate->external_reference_redirector());
    704     if (redirector == NULL) return address;
    705     void* answer = (*redirector)(address, type);
    706     return answer;
    707   }
    708 
    709   static void* Redirect(Isolate* isolate,
    710                         Address address_arg,
    711                         Type type = ExternalReference::BUILTIN_CALL) {
    712     ExternalReferenceRedirector* redirector =
    713         reinterpret_cast<ExternalReferenceRedirector*>(
    714             isolate->external_reference_redirector());
    715     void* address = reinterpret_cast<void*>(address_arg);
    716     void* answer = (redirector == NULL) ?
    717                    address :
    718                    (*redirector)(address, type);
    719     return answer;
    720   }
    721 
    722   void* address_;
    723 };
    724 
    725 
    726 // -----------------------------------------------------------------------------
    727 // Position recording support
    728 
    729 struct PositionState {
    730   PositionState() : current_position(RelocInfo::kNoPosition),
    731                     written_position(RelocInfo::kNoPosition),
    732                     current_statement_position(RelocInfo::kNoPosition),
    733                     written_statement_position(RelocInfo::kNoPosition) {}
    734 
    735   int current_position;
    736   int written_position;
    737 
    738   int current_statement_position;
    739   int written_statement_position;
    740 };
    741 
    742 
    743 class PositionsRecorder BASE_EMBEDDED {
    744  public:
    745   explicit PositionsRecorder(Assembler* assembler)
    746       : assembler_(assembler) {
    747 #ifdef ENABLE_GDB_JIT_INTERFACE
    748     gdbjit_lineinfo_ = NULL;
    749 #endif
    750   }
    751 
    752 #ifdef ENABLE_GDB_JIT_INTERFACE
    753   ~PositionsRecorder() {
    754     delete gdbjit_lineinfo_;
    755   }
    756 
    757   void StartGDBJITLineInfoRecording() {
    758     if (FLAG_gdbjit) {
    759       gdbjit_lineinfo_ = new GDBJITLineInfo();
    760     }
    761   }
    762 
    763   GDBJITLineInfo* DetachGDBJITLineInfo() {
    764     GDBJITLineInfo* lineinfo = gdbjit_lineinfo_;
    765     gdbjit_lineinfo_ = NULL;  // To prevent deallocation in destructor.
    766     return lineinfo;
    767   }
    768 #endif
    769 
    770   // Set current position to pos.
    771   void RecordPosition(int pos);
    772 
    773   // Set current statement position to pos.
    774   void RecordStatementPosition(int pos);
    775 
    776   // Write recorded positions to relocation information.
    777   bool WriteRecordedPositions();
    778 
    779   int current_position() const { return state_.current_position; }
    780 
    781   int current_statement_position() const {
    782     return state_.current_statement_position;
    783   }
    784 
    785  private:
    786   Assembler* assembler_;
    787   PositionState state_;
    788 #ifdef ENABLE_GDB_JIT_INTERFACE
    789   GDBJITLineInfo* gdbjit_lineinfo_;
    790 #endif
    791 
    792   friend class PreservePositionScope;
    793 
    794   DISALLOW_COPY_AND_ASSIGN(PositionsRecorder);
    795 };
    796 
    797 
    798 class PreservePositionScope BASE_EMBEDDED {
    799  public:
    800   explicit PreservePositionScope(PositionsRecorder* positions_recorder)
    801       : positions_recorder_(positions_recorder),
    802         saved_state_(positions_recorder->state_) {}
    803 
    804   ~PreservePositionScope() {
    805     positions_recorder_->state_ = saved_state_;
    806   }
    807 
    808  private:
    809   PositionsRecorder* positions_recorder_;
    810   const PositionState saved_state_;
    811 
    812   DISALLOW_COPY_AND_ASSIGN(PreservePositionScope);
    813 };
    814 
    815 
    816 // -----------------------------------------------------------------------------
    817 // Utility functions
    818 
    819 inline bool is_intn(int x, int n)  {
    820   return -(1 << (n-1)) <= x && x < (1 << (n-1));
    821 }
    822 
    823 inline bool is_int8(int x)  { return is_intn(x, 8); }
    824 inline bool is_int16(int x)  { return is_intn(x, 16); }
    825 inline bool is_int18(int x)  { return is_intn(x, 18); }
    826 inline bool is_int24(int x)  { return is_intn(x, 24); }
    827 
    828 inline bool is_uintn(int x, int n) {
    829   return (x & -(1 << n)) == 0;
    830 }
    831 
    832 inline bool is_uint2(int x)  { return is_uintn(x, 2); }
    833 inline bool is_uint3(int x)  { return is_uintn(x, 3); }
    834 inline bool is_uint4(int x)  { return is_uintn(x, 4); }
    835 inline bool is_uint5(int x)  { return is_uintn(x, 5); }
    836 inline bool is_uint6(int x)  { return is_uintn(x, 6); }
    837 inline bool is_uint8(int x)  { return is_uintn(x, 8); }
    838 inline bool is_uint10(int x)  { return is_uintn(x, 10); }
    839 inline bool is_uint12(int x)  { return is_uintn(x, 12); }
    840 inline bool is_uint16(int x)  { return is_uintn(x, 16); }
    841 inline bool is_uint24(int x)  { return is_uintn(x, 24); }
    842 inline bool is_uint26(int x)  { return is_uintn(x, 26); }
    843 inline bool is_uint28(int x)  { return is_uintn(x, 28); }
    844 
    845 inline int NumberOfBitsSet(uint32_t x) {
    846   unsigned int num_bits_set;
    847   for (num_bits_set = 0; x; x >>= 1) {
    848     num_bits_set += x & 1;
    849   }
    850   return num_bits_set;
    851 }
    852 
    853 bool EvalComparison(Token::Value op, double op1, double op2);
    854 
    855 // Computes pow(x, y) with the special cases in the spec for Math.pow.
    856 double power_double_int(double x, int y);
    857 double power_double_double(double x, double y);
    858 
    859 // Helper class for generating code or data associated with the code
    860 // right after a call instruction. As an example this can be used to
    861 // generate safepoint data after calls for crankshaft.
    862 class CallWrapper {
    863  public:
    864   CallWrapper() { }
    865   virtual ~CallWrapper() { }
    866   // Called just before emitting a call. Argument is the size of the generated
    867   // call code.
    868   virtual void BeforeCall(int call_size) const = 0;
    869   // Called just after emitting a call, i.e., at the return site for the call.
    870   virtual void AfterCall() const = 0;
    871 };
    872 
    873 class NullCallWrapper : public CallWrapper {
    874  public:
    875   NullCallWrapper() { }
    876   virtual ~NullCallWrapper() { }
    877   virtual void BeforeCall(int call_size) const { }
    878   virtual void AfterCall() const { }
    879 };
    880 
    881 } }  // namespace v8::internal
    882 
    883 #endif  // V8_ASSEMBLER_H_
    884