Home | History | Annotate | Download | only in Sema
      1 //===--- SemaType.cpp - Semantic Analysis for Types -----------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 //  This file implements type-related semantic analysis.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "clang/Sema/ScopeInfo.h"
     15 #include "clang/Sema/SemaInternal.h"
     16 #include "clang/Sema/Template.h"
     17 #include "clang/Basic/OpenCL.h"
     18 #include "clang/AST/ASTContext.h"
     19 #include "clang/AST/ASTMutationListener.h"
     20 #include "clang/AST/CXXInheritance.h"
     21 #include "clang/AST/DeclObjC.h"
     22 #include "clang/AST/DeclTemplate.h"
     23 #include "clang/AST/TypeLoc.h"
     24 #include "clang/AST/TypeLocVisitor.h"
     25 #include "clang/AST/Expr.h"
     26 #include "clang/Basic/PartialDiagnostic.h"
     27 #include "clang/Basic/TargetInfo.h"
     28 #include "clang/Lex/Preprocessor.h"
     29 #include "clang/Parse/ParseDiagnostic.h"
     30 #include "clang/Sema/DeclSpec.h"
     31 #include "clang/Sema/DelayedDiagnostic.h"
     32 #include "clang/Sema/Lookup.h"
     33 #include "llvm/ADT/SmallPtrSet.h"
     34 #include "llvm/Support/ErrorHandling.h"
     35 using namespace clang;
     36 
     37 /// isOmittedBlockReturnType - Return true if this declarator is missing a
     38 /// return type because this is a omitted return type on a block literal.
     39 static bool isOmittedBlockReturnType(const Declarator &D) {
     40   if (D.getContext() != Declarator::BlockLiteralContext ||
     41       D.getDeclSpec().hasTypeSpecifier())
     42     return false;
     43 
     44   if (D.getNumTypeObjects() == 0)
     45     return true;   // ^{ ... }
     46 
     47   if (D.getNumTypeObjects() == 1 &&
     48       D.getTypeObject(0).Kind == DeclaratorChunk::Function)
     49     return true;   // ^(int X, float Y) { ... }
     50 
     51   return false;
     52 }
     53 
     54 /// diagnoseBadTypeAttribute - Diagnoses a type attribute which
     55 /// doesn't apply to the given type.
     56 static void diagnoseBadTypeAttribute(Sema &S, const AttributeList &attr,
     57                                      QualType type) {
     58   bool useExpansionLoc = false;
     59 
     60   unsigned diagID = 0;
     61   switch (attr.getKind()) {
     62   case AttributeList::AT_objc_gc:
     63     diagID = diag::warn_pointer_attribute_wrong_type;
     64     useExpansionLoc = true;
     65     break;
     66 
     67   case AttributeList::AT_objc_ownership:
     68     diagID = diag::warn_objc_object_attribute_wrong_type;
     69     useExpansionLoc = true;
     70     break;
     71 
     72   default:
     73     // Assume everything else was a function attribute.
     74     diagID = diag::warn_function_attribute_wrong_type;
     75     break;
     76   }
     77 
     78   SourceLocation loc = attr.getLoc();
     79   StringRef name = attr.getName()->getName();
     80 
     81   // The GC attributes are usually written with macros;  special-case them.
     82   if (useExpansionLoc && loc.isMacroID() && attr.getParameterName()) {
     83     if (attr.getParameterName()->isStr("strong")) {
     84       if (S.findMacroSpelling(loc, "__strong")) name = "__strong";
     85     } else if (attr.getParameterName()->isStr("weak")) {
     86       if (S.findMacroSpelling(loc, "__weak")) name = "__weak";
     87     }
     88   }
     89 
     90   S.Diag(loc, diagID) << name << type;
     91 }
     92 
     93 // objc_gc applies to Objective-C pointers or, otherwise, to the
     94 // smallest available pointer type (i.e. 'void*' in 'void**').
     95 #define OBJC_POINTER_TYPE_ATTRS_CASELIST \
     96     case AttributeList::AT_objc_gc: \
     97     case AttributeList::AT_objc_ownership
     98 
     99 // Function type attributes.
    100 #define FUNCTION_TYPE_ATTRS_CASELIST \
    101     case AttributeList::AT_noreturn: \
    102     case AttributeList::AT_cdecl: \
    103     case AttributeList::AT_fastcall: \
    104     case AttributeList::AT_stdcall: \
    105     case AttributeList::AT_thiscall: \
    106     case AttributeList::AT_pascal: \
    107     case AttributeList::AT_regparm: \
    108     case AttributeList::AT_pcs \
    109 
    110 namespace {
    111   /// An object which stores processing state for the entire
    112   /// GetTypeForDeclarator process.
    113   class TypeProcessingState {
    114     Sema &sema;
    115 
    116     /// The declarator being processed.
    117     Declarator &declarator;
    118 
    119     /// The index of the declarator chunk we're currently processing.
    120     /// May be the total number of valid chunks, indicating the
    121     /// DeclSpec.
    122     unsigned chunkIndex;
    123 
    124     /// Whether there are non-trivial modifications to the decl spec.
    125     bool trivial;
    126 
    127     /// Whether we saved the attributes in the decl spec.
    128     bool hasSavedAttrs;
    129 
    130     /// The original set of attributes on the DeclSpec.
    131     SmallVector<AttributeList*, 2> savedAttrs;
    132 
    133     /// A list of attributes to diagnose the uselessness of when the
    134     /// processing is complete.
    135     SmallVector<AttributeList*, 2> ignoredTypeAttrs;
    136 
    137   public:
    138     TypeProcessingState(Sema &sema, Declarator &declarator)
    139       : sema(sema), declarator(declarator),
    140         chunkIndex(declarator.getNumTypeObjects()),
    141         trivial(true), hasSavedAttrs(false) {}
    142 
    143     Sema &getSema() const {
    144       return sema;
    145     }
    146 
    147     Declarator &getDeclarator() const {
    148       return declarator;
    149     }
    150 
    151     unsigned getCurrentChunkIndex() const {
    152       return chunkIndex;
    153     }
    154 
    155     void setCurrentChunkIndex(unsigned idx) {
    156       assert(idx <= declarator.getNumTypeObjects());
    157       chunkIndex = idx;
    158     }
    159 
    160     AttributeList *&getCurrentAttrListRef() const {
    161       assert(chunkIndex <= declarator.getNumTypeObjects());
    162       if (chunkIndex == declarator.getNumTypeObjects())
    163         return getMutableDeclSpec().getAttributes().getListRef();
    164       return declarator.getTypeObject(chunkIndex).getAttrListRef();
    165     }
    166 
    167     /// Save the current set of attributes on the DeclSpec.
    168     void saveDeclSpecAttrs() {
    169       // Don't try to save them multiple times.
    170       if (hasSavedAttrs) return;
    171 
    172       DeclSpec &spec = getMutableDeclSpec();
    173       for (AttributeList *attr = spec.getAttributes().getList(); attr;
    174              attr = attr->getNext())
    175         savedAttrs.push_back(attr);
    176       trivial &= savedAttrs.empty();
    177       hasSavedAttrs = true;
    178     }
    179 
    180     /// Record that we had nowhere to put the given type attribute.
    181     /// We will diagnose such attributes later.
    182     void addIgnoredTypeAttr(AttributeList &attr) {
    183       ignoredTypeAttrs.push_back(&attr);
    184     }
    185 
    186     /// Diagnose all the ignored type attributes, given that the
    187     /// declarator worked out to the given type.
    188     void diagnoseIgnoredTypeAttrs(QualType type) const {
    189       for (SmallVectorImpl<AttributeList*>::const_iterator
    190              i = ignoredTypeAttrs.begin(), e = ignoredTypeAttrs.end();
    191            i != e; ++i)
    192         diagnoseBadTypeAttribute(getSema(), **i, type);
    193     }
    194 
    195     ~TypeProcessingState() {
    196       if (trivial) return;
    197 
    198       restoreDeclSpecAttrs();
    199     }
    200 
    201   private:
    202     DeclSpec &getMutableDeclSpec() const {
    203       return const_cast<DeclSpec&>(declarator.getDeclSpec());
    204     }
    205 
    206     void restoreDeclSpecAttrs() {
    207       assert(hasSavedAttrs);
    208 
    209       if (savedAttrs.empty()) {
    210         getMutableDeclSpec().getAttributes().set(0);
    211         return;
    212       }
    213 
    214       getMutableDeclSpec().getAttributes().set(savedAttrs[0]);
    215       for (unsigned i = 0, e = savedAttrs.size() - 1; i != e; ++i)
    216         savedAttrs[i]->setNext(savedAttrs[i+1]);
    217       savedAttrs.back()->setNext(0);
    218     }
    219   };
    220 
    221   /// Basically std::pair except that we really want to avoid an
    222   /// implicit operator= for safety concerns.  It's also a minor
    223   /// link-time optimization for this to be a private type.
    224   struct AttrAndList {
    225     /// The attribute.
    226     AttributeList &first;
    227 
    228     /// The head of the list the attribute is currently in.
    229     AttributeList *&second;
    230 
    231     AttrAndList(AttributeList &attr, AttributeList *&head)
    232       : first(attr), second(head) {}
    233   };
    234 }
    235 
    236 namespace llvm {
    237   template <> struct isPodLike<AttrAndList> {
    238     static const bool value = true;
    239   };
    240 }
    241 
    242 static void spliceAttrIntoList(AttributeList &attr, AttributeList *&head) {
    243   attr.setNext(head);
    244   head = &attr;
    245 }
    246 
    247 static void spliceAttrOutOfList(AttributeList &attr, AttributeList *&head) {
    248   if (head == &attr) {
    249     head = attr.getNext();
    250     return;
    251   }
    252 
    253   AttributeList *cur = head;
    254   while (true) {
    255     assert(cur && cur->getNext() && "ran out of attrs?");
    256     if (cur->getNext() == &attr) {
    257       cur->setNext(attr.getNext());
    258       return;
    259     }
    260     cur = cur->getNext();
    261   }
    262 }
    263 
    264 static void moveAttrFromListToList(AttributeList &attr,
    265                                    AttributeList *&fromList,
    266                                    AttributeList *&toList) {
    267   spliceAttrOutOfList(attr, fromList);
    268   spliceAttrIntoList(attr, toList);
    269 }
    270 
    271 static void processTypeAttrs(TypeProcessingState &state,
    272                              QualType &type, bool isDeclSpec,
    273                              AttributeList *attrs);
    274 
    275 static bool handleFunctionTypeAttr(TypeProcessingState &state,
    276                                    AttributeList &attr,
    277                                    QualType &type);
    278 
    279 static bool handleObjCGCTypeAttr(TypeProcessingState &state,
    280                                  AttributeList &attr, QualType &type);
    281 
    282 static bool handleObjCOwnershipTypeAttr(TypeProcessingState &state,
    283                                        AttributeList &attr, QualType &type);
    284 
    285 static bool handleObjCPointerTypeAttr(TypeProcessingState &state,
    286                                       AttributeList &attr, QualType &type) {
    287   if (attr.getKind() == AttributeList::AT_objc_gc)
    288     return handleObjCGCTypeAttr(state, attr, type);
    289   assert(attr.getKind() == AttributeList::AT_objc_ownership);
    290   return handleObjCOwnershipTypeAttr(state, attr, type);
    291 }
    292 
    293 /// Given that an objc_gc attribute was written somewhere on a
    294 /// declaration *other* than on the declarator itself (for which, use
    295 /// distributeObjCPointerTypeAttrFromDeclarator), and given that it
    296 /// didn't apply in whatever position it was written in, try to move
    297 /// it to a more appropriate position.
    298 static void distributeObjCPointerTypeAttr(TypeProcessingState &state,
    299                                           AttributeList &attr,
    300                                           QualType type) {
    301   Declarator &declarator = state.getDeclarator();
    302   for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
    303     DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
    304     switch (chunk.Kind) {
    305     case DeclaratorChunk::Pointer:
    306     case DeclaratorChunk::BlockPointer:
    307       moveAttrFromListToList(attr, state.getCurrentAttrListRef(),
    308                              chunk.getAttrListRef());
    309       return;
    310 
    311     case DeclaratorChunk::Paren:
    312     case DeclaratorChunk::Array:
    313       continue;
    314 
    315     // Don't walk through these.
    316     case DeclaratorChunk::Reference:
    317     case DeclaratorChunk::Function:
    318     case DeclaratorChunk::MemberPointer:
    319       goto error;
    320     }
    321   }
    322  error:
    323 
    324   diagnoseBadTypeAttribute(state.getSema(), attr, type);
    325 }
    326 
    327 /// Distribute an objc_gc type attribute that was written on the
    328 /// declarator.
    329 static void
    330 distributeObjCPointerTypeAttrFromDeclarator(TypeProcessingState &state,
    331                                             AttributeList &attr,
    332                                             QualType &declSpecType) {
    333   Declarator &declarator = state.getDeclarator();
    334 
    335   // objc_gc goes on the innermost pointer to something that's not a
    336   // pointer.
    337   unsigned innermost = -1U;
    338   bool considerDeclSpec = true;
    339   for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
    340     DeclaratorChunk &chunk = declarator.getTypeObject(i);
    341     switch (chunk.Kind) {
    342     case DeclaratorChunk::Pointer:
    343     case DeclaratorChunk::BlockPointer:
    344       innermost = i;
    345       continue;
    346 
    347     case DeclaratorChunk::Reference:
    348     case DeclaratorChunk::MemberPointer:
    349     case DeclaratorChunk::Paren:
    350     case DeclaratorChunk::Array:
    351       continue;
    352 
    353     case DeclaratorChunk::Function:
    354       considerDeclSpec = false;
    355       goto done;
    356     }
    357   }
    358  done:
    359 
    360   // That might actually be the decl spec if we weren't blocked by
    361   // anything in the declarator.
    362   if (considerDeclSpec) {
    363     if (handleObjCPointerTypeAttr(state, attr, declSpecType)) {
    364       // Splice the attribute into the decl spec.  Prevents the
    365       // attribute from being applied multiple times and gives
    366       // the source-location-filler something to work with.
    367       state.saveDeclSpecAttrs();
    368       moveAttrFromListToList(attr, declarator.getAttrListRef(),
    369                declarator.getMutableDeclSpec().getAttributes().getListRef());
    370       return;
    371     }
    372   }
    373 
    374   // Otherwise, if we found an appropriate chunk, splice the attribute
    375   // into it.
    376   if (innermost != -1U) {
    377     moveAttrFromListToList(attr, declarator.getAttrListRef(),
    378                        declarator.getTypeObject(innermost).getAttrListRef());
    379     return;
    380   }
    381 
    382   // Otherwise, diagnose when we're done building the type.
    383   spliceAttrOutOfList(attr, declarator.getAttrListRef());
    384   state.addIgnoredTypeAttr(attr);
    385 }
    386 
    387 /// A function type attribute was written somewhere in a declaration
    388 /// *other* than on the declarator itself or in the decl spec.  Given
    389 /// that it didn't apply in whatever position it was written in, try
    390 /// to move it to a more appropriate position.
    391 static void distributeFunctionTypeAttr(TypeProcessingState &state,
    392                                        AttributeList &attr,
    393                                        QualType type) {
    394   Declarator &declarator = state.getDeclarator();
    395 
    396   // Try to push the attribute from the return type of a function to
    397   // the function itself.
    398   for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
    399     DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
    400     switch (chunk.Kind) {
    401     case DeclaratorChunk::Function:
    402       moveAttrFromListToList(attr, state.getCurrentAttrListRef(),
    403                              chunk.getAttrListRef());
    404       return;
    405 
    406     case DeclaratorChunk::Paren:
    407     case DeclaratorChunk::Pointer:
    408     case DeclaratorChunk::BlockPointer:
    409     case DeclaratorChunk::Array:
    410     case DeclaratorChunk::Reference:
    411     case DeclaratorChunk::MemberPointer:
    412       continue;
    413     }
    414   }
    415 
    416   diagnoseBadTypeAttribute(state.getSema(), attr, type);
    417 }
    418 
    419 /// Try to distribute a function type attribute to the innermost
    420 /// function chunk or type.  Returns true if the attribute was
    421 /// distributed, false if no location was found.
    422 static bool
    423 distributeFunctionTypeAttrToInnermost(TypeProcessingState &state,
    424                                       AttributeList &attr,
    425                                       AttributeList *&attrList,
    426                                       QualType &declSpecType) {
    427   Declarator &declarator = state.getDeclarator();
    428 
    429   // Put it on the innermost function chunk, if there is one.
    430   for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
    431     DeclaratorChunk &chunk = declarator.getTypeObject(i);
    432     if (chunk.Kind != DeclaratorChunk::Function) continue;
    433 
    434     moveAttrFromListToList(attr, attrList, chunk.getAttrListRef());
    435     return true;
    436   }
    437 
    438   if (handleFunctionTypeAttr(state, attr, declSpecType)) {
    439     spliceAttrOutOfList(attr, attrList);
    440     return true;
    441   }
    442 
    443   return false;
    444 }
    445 
    446 /// A function type attribute was written in the decl spec.  Try to
    447 /// apply it somewhere.
    448 static void
    449 distributeFunctionTypeAttrFromDeclSpec(TypeProcessingState &state,
    450                                        AttributeList &attr,
    451                                        QualType &declSpecType) {
    452   state.saveDeclSpecAttrs();
    453 
    454   // Try to distribute to the innermost.
    455   if (distributeFunctionTypeAttrToInnermost(state, attr,
    456                                             state.getCurrentAttrListRef(),
    457                                             declSpecType))
    458     return;
    459 
    460   // If that failed, diagnose the bad attribute when the declarator is
    461   // fully built.
    462   state.addIgnoredTypeAttr(attr);
    463 }
    464 
    465 /// A function type attribute was written on the declarator.  Try to
    466 /// apply it somewhere.
    467 static void
    468 distributeFunctionTypeAttrFromDeclarator(TypeProcessingState &state,
    469                                          AttributeList &attr,
    470                                          QualType &declSpecType) {
    471   Declarator &declarator = state.getDeclarator();
    472 
    473   // Try to distribute to the innermost.
    474   if (distributeFunctionTypeAttrToInnermost(state, attr,
    475                                             declarator.getAttrListRef(),
    476                                             declSpecType))
    477     return;
    478 
    479   // If that failed, diagnose the bad attribute when the declarator is
    480   // fully built.
    481   spliceAttrOutOfList(attr, declarator.getAttrListRef());
    482   state.addIgnoredTypeAttr(attr);
    483 }
    484 
    485 /// \brief Given that there are attributes written on the declarator
    486 /// itself, try to distribute any type attributes to the appropriate
    487 /// declarator chunk.
    488 ///
    489 /// These are attributes like the following:
    490 ///   int f ATTR;
    491 ///   int (f ATTR)();
    492 /// but not necessarily this:
    493 ///   int f() ATTR;
    494 static void distributeTypeAttrsFromDeclarator(TypeProcessingState &state,
    495                                               QualType &declSpecType) {
    496   // Collect all the type attributes from the declarator itself.
    497   assert(state.getDeclarator().getAttributes() && "declarator has no attrs!");
    498   AttributeList *attr = state.getDeclarator().getAttributes();
    499   AttributeList *next;
    500   do {
    501     next = attr->getNext();
    502 
    503     switch (attr->getKind()) {
    504     OBJC_POINTER_TYPE_ATTRS_CASELIST:
    505       distributeObjCPointerTypeAttrFromDeclarator(state, *attr, declSpecType);
    506       break;
    507 
    508     case AttributeList::AT_ns_returns_retained:
    509       if (!state.getSema().getLangOpts().ObjCAutoRefCount)
    510         break;
    511       // fallthrough
    512 
    513     FUNCTION_TYPE_ATTRS_CASELIST:
    514       distributeFunctionTypeAttrFromDeclarator(state, *attr, declSpecType);
    515       break;
    516 
    517     default:
    518       break;
    519     }
    520   } while ((attr = next));
    521 }
    522 
    523 /// Add a synthetic '()' to a block-literal declarator if it is
    524 /// required, given the return type.
    525 static void maybeSynthesizeBlockSignature(TypeProcessingState &state,
    526                                           QualType declSpecType) {
    527   Declarator &declarator = state.getDeclarator();
    528 
    529   // First, check whether the declarator would produce a function,
    530   // i.e. whether the innermost semantic chunk is a function.
    531   if (declarator.isFunctionDeclarator()) {
    532     // If so, make that declarator a prototyped declarator.
    533     declarator.getFunctionTypeInfo().hasPrototype = true;
    534     return;
    535   }
    536 
    537   // If there are any type objects, the type as written won't name a
    538   // function, regardless of the decl spec type.  This is because a
    539   // block signature declarator is always an abstract-declarator, and
    540   // abstract-declarators can't just be parentheses chunks.  Therefore
    541   // we need to build a function chunk unless there are no type
    542   // objects and the decl spec type is a function.
    543   if (!declarator.getNumTypeObjects() && declSpecType->isFunctionType())
    544     return;
    545 
    546   // Note that there *are* cases with invalid declarators where
    547   // declarators consist solely of parentheses.  In general, these
    548   // occur only in failed efforts to make function declarators, so
    549   // faking up the function chunk is still the right thing to do.
    550 
    551   // Otherwise, we need to fake up a function declarator.
    552   SourceLocation loc = declarator.getLocStart();
    553 
    554   // ...and *prepend* it to the declarator.
    555   declarator.AddInnermostTypeInfo(DeclaratorChunk::getFunction(
    556                              /*proto*/ true,
    557                              /*variadic*/ false, SourceLocation(),
    558                              /*args*/ 0, 0,
    559                              /*type quals*/ 0,
    560                              /*ref-qualifier*/true, SourceLocation(),
    561                              /*const qualifier*/SourceLocation(),
    562                              /*volatile qualifier*/SourceLocation(),
    563                              /*mutable qualifier*/SourceLocation(),
    564                              /*EH*/ EST_None, SourceLocation(), 0, 0, 0, 0, 0,
    565                              /*parens*/ loc, loc,
    566                              declarator));
    567 
    568   // For consistency, make sure the state still has us as processing
    569   // the decl spec.
    570   assert(state.getCurrentChunkIndex() == declarator.getNumTypeObjects() - 1);
    571   state.setCurrentChunkIndex(declarator.getNumTypeObjects());
    572 }
    573 
    574 /// \brief Convert the specified declspec to the appropriate type
    575 /// object.
    576 /// \param D  the declarator containing the declaration specifier.
    577 /// \returns The type described by the declaration specifiers.  This function
    578 /// never returns null.
    579 static QualType ConvertDeclSpecToType(TypeProcessingState &state) {
    580   // FIXME: Should move the logic from DeclSpec::Finish to here for validity
    581   // checking.
    582 
    583   Sema &S = state.getSema();
    584   Declarator &declarator = state.getDeclarator();
    585   const DeclSpec &DS = declarator.getDeclSpec();
    586   SourceLocation DeclLoc = declarator.getIdentifierLoc();
    587   if (DeclLoc.isInvalid())
    588     DeclLoc = DS.getLocStart();
    589 
    590   ASTContext &Context = S.Context;
    591 
    592   QualType Result;
    593   switch (DS.getTypeSpecType()) {
    594   case DeclSpec::TST_void:
    595     Result = Context.VoidTy;
    596     break;
    597   case DeclSpec::TST_char:
    598     if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
    599       Result = Context.CharTy;
    600     else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed)
    601       Result = Context.SignedCharTy;
    602     else {
    603       assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
    604              "Unknown TSS value");
    605       Result = Context.UnsignedCharTy;
    606     }
    607     break;
    608   case DeclSpec::TST_wchar:
    609     if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
    610       Result = Context.WCharTy;
    611     else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed) {
    612       S.Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec)
    613         << DS.getSpecifierName(DS.getTypeSpecType());
    614       Result = Context.getSignedWCharType();
    615     } else {
    616       assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
    617         "Unknown TSS value");
    618       S.Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec)
    619         << DS.getSpecifierName(DS.getTypeSpecType());
    620       Result = Context.getUnsignedWCharType();
    621     }
    622     break;
    623   case DeclSpec::TST_char16:
    624       assert(DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
    625         "Unknown TSS value");
    626       Result = Context.Char16Ty;
    627     break;
    628   case DeclSpec::TST_char32:
    629       assert(DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
    630         "Unknown TSS value");
    631       Result = Context.Char32Ty;
    632     break;
    633   case DeclSpec::TST_unspecified:
    634     // "<proto1,proto2>" is an objc qualified ID with a missing id.
    635     if (DeclSpec::ProtocolQualifierListTy PQ = DS.getProtocolQualifiers()) {
    636       Result = Context.getObjCObjectType(Context.ObjCBuiltinIdTy,
    637                                          (ObjCProtocolDecl**)PQ,
    638                                          DS.getNumProtocolQualifiers());
    639       Result = Context.getObjCObjectPointerType(Result);
    640       break;
    641     }
    642 
    643     // If this is a missing declspec in a block literal return context, then it
    644     // is inferred from the return statements inside the block.
    645     // The declspec is always missing in a lambda expr context; it is either
    646     // specified with a trailing return type or inferred.
    647     if (declarator.getContext() == Declarator::LambdaExprContext ||
    648         isOmittedBlockReturnType(declarator)) {
    649       Result = Context.DependentTy;
    650       break;
    651     }
    652 
    653     // Unspecified typespec defaults to int in C90.  However, the C90 grammar
    654     // [C90 6.5] only allows a decl-spec if there was *some* type-specifier,
    655     // type-qualifier, or storage-class-specifier.  If not, emit an extwarn.
    656     // Note that the one exception to this is function definitions, which are
    657     // allowed to be completely missing a declspec.  This is handled in the
    658     // parser already though by it pretending to have seen an 'int' in this
    659     // case.
    660     if (S.getLangOpts().ImplicitInt) {
    661       // In C89 mode, we only warn if there is a completely missing declspec
    662       // when one is not allowed.
    663       if (DS.isEmpty()) {
    664         S.Diag(DeclLoc, diag::ext_missing_declspec)
    665           << DS.getSourceRange()
    666         << FixItHint::CreateInsertion(DS.getLocStart(), "int");
    667       }
    668     } else if (!DS.hasTypeSpecifier()) {
    669       // C99 and C++ require a type specifier.  For example, C99 6.7.2p2 says:
    670       // "At least one type specifier shall be given in the declaration
    671       // specifiers in each declaration, and in the specifier-qualifier list in
    672       // each struct declaration and type name."
    673       // FIXME: Does Microsoft really have the implicit int extension in C++?
    674       if (S.getLangOpts().CPlusPlus &&
    675           !S.getLangOpts().MicrosoftExt) {
    676         S.Diag(DeclLoc, diag::err_missing_type_specifier)
    677           << DS.getSourceRange();
    678 
    679         // When this occurs in C++ code, often something is very broken with the
    680         // value being declared, poison it as invalid so we don't get chains of
    681         // errors.
    682         declarator.setInvalidType(true);
    683       } else {
    684         S.Diag(DeclLoc, diag::ext_missing_type_specifier)
    685           << DS.getSourceRange();
    686       }
    687     }
    688 
    689     // FALL THROUGH.
    690   case DeclSpec::TST_int: {
    691     if (DS.getTypeSpecSign() != DeclSpec::TSS_unsigned) {
    692       switch (DS.getTypeSpecWidth()) {
    693       case DeclSpec::TSW_unspecified: Result = Context.IntTy; break;
    694       case DeclSpec::TSW_short:       Result = Context.ShortTy; break;
    695       case DeclSpec::TSW_long:        Result = Context.LongTy; break;
    696       case DeclSpec::TSW_longlong:
    697         Result = Context.LongLongTy;
    698 
    699         // long long is a C99 feature.
    700         if (!S.getLangOpts().C99)
    701           S.Diag(DS.getTypeSpecWidthLoc(),
    702                  S.getLangOpts().CPlusPlus0x ?
    703                    diag::warn_cxx98_compat_longlong : diag::ext_longlong);
    704         break;
    705       }
    706     } else {
    707       switch (DS.getTypeSpecWidth()) {
    708       case DeclSpec::TSW_unspecified: Result = Context.UnsignedIntTy; break;
    709       case DeclSpec::TSW_short:       Result = Context.UnsignedShortTy; break;
    710       case DeclSpec::TSW_long:        Result = Context.UnsignedLongTy; break;
    711       case DeclSpec::TSW_longlong:
    712         Result = Context.UnsignedLongLongTy;
    713 
    714         // long long is a C99 feature.
    715         if (!S.getLangOpts().C99)
    716           S.Diag(DS.getTypeSpecWidthLoc(),
    717                  S.getLangOpts().CPlusPlus0x ?
    718                    diag::warn_cxx98_compat_longlong : diag::ext_longlong);
    719         break;
    720       }
    721     }
    722     break;
    723   }
    724   case DeclSpec::TST_int128:
    725     if (DS.getTypeSpecSign() == DeclSpec::TSS_unsigned)
    726       Result = Context.UnsignedInt128Ty;
    727     else
    728       Result = Context.Int128Ty;
    729     break;
    730   case DeclSpec::TST_half: Result = Context.HalfTy; break;
    731   case DeclSpec::TST_float: Result = Context.FloatTy; break;
    732   case DeclSpec::TST_double:
    733     if (DS.getTypeSpecWidth() == DeclSpec::TSW_long)
    734       Result = Context.LongDoubleTy;
    735     else
    736       Result = Context.DoubleTy;
    737 
    738     if (S.getLangOpts().OpenCL && !S.getOpenCLOptions().cl_khr_fp64) {
    739       S.Diag(DS.getTypeSpecTypeLoc(), diag::err_double_requires_fp64);
    740       declarator.setInvalidType(true);
    741     }
    742     break;
    743   case DeclSpec::TST_bool: Result = Context.BoolTy; break; // _Bool or bool
    744   case DeclSpec::TST_decimal32:    // _Decimal32
    745   case DeclSpec::TST_decimal64:    // _Decimal64
    746   case DeclSpec::TST_decimal128:   // _Decimal128
    747     S.Diag(DS.getTypeSpecTypeLoc(), diag::err_decimal_unsupported);
    748     Result = Context.IntTy;
    749     declarator.setInvalidType(true);
    750     break;
    751   case DeclSpec::TST_class:
    752   case DeclSpec::TST_enum:
    753   case DeclSpec::TST_union:
    754   case DeclSpec::TST_struct: {
    755     TypeDecl *D = dyn_cast_or_null<TypeDecl>(DS.getRepAsDecl());
    756     if (!D) {
    757       // This can happen in C++ with ambiguous lookups.
    758       Result = Context.IntTy;
    759       declarator.setInvalidType(true);
    760       break;
    761     }
    762 
    763     // If the type is deprecated or unavailable, diagnose it.
    764     S.DiagnoseUseOfDecl(D, DS.getTypeSpecTypeNameLoc());
    765 
    766     assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
    767            DS.getTypeSpecSign() == 0 && "No qualifiers on tag names!");
    768 
    769     // TypeQuals handled by caller.
    770     Result = Context.getTypeDeclType(D);
    771 
    772     // In both C and C++, make an ElaboratedType.
    773     ElaboratedTypeKeyword Keyword
    774       = ElaboratedType::getKeywordForTypeSpec(DS.getTypeSpecType());
    775     Result = S.getElaboratedType(Keyword, DS.getTypeSpecScope(), Result);
    776     break;
    777   }
    778   case DeclSpec::TST_typename: {
    779     assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
    780            DS.getTypeSpecSign() == 0 &&
    781            "Can't handle qualifiers on typedef names yet!");
    782     Result = S.GetTypeFromParser(DS.getRepAsType());
    783     if (Result.isNull())
    784       declarator.setInvalidType(true);
    785     else if (DeclSpec::ProtocolQualifierListTy PQ
    786                = DS.getProtocolQualifiers()) {
    787       if (const ObjCObjectType *ObjT = Result->getAs<ObjCObjectType>()) {
    788         // Silently drop any existing protocol qualifiers.
    789         // TODO: determine whether that's the right thing to do.
    790         if (ObjT->getNumProtocols())
    791           Result = ObjT->getBaseType();
    792 
    793         if (DS.getNumProtocolQualifiers())
    794           Result = Context.getObjCObjectType(Result,
    795                                              (ObjCProtocolDecl**) PQ,
    796                                              DS.getNumProtocolQualifiers());
    797       } else if (Result->isObjCIdType()) {
    798         // id<protocol-list>
    799         Result = Context.getObjCObjectType(Context.ObjCBuiltinIdTy,
    800                                            (ObjCProtocolDecl**) PQ,
    801                                            DS.getNumProtocolQualifiers());
    802         Result = Context.getObjCObjectPointerType(Result);
    803       } else if (Result->isObjCClassType()) {
    804         // Class<protocol-list>
    805         Result = Context.getObjCObjectType(Context.ObjCBuiltinClassTy,
    806                                            (ObjCProtocolDecl**) PQ,
    807                                            DS.getNumProtocolQualifiers());
    808         Result = Context.getObjCObjectPointerType(Result);
    809       } else {
    810         S.Diag(DeclLoc, diag::err_invalid_protocol_qualifiers)
    811           << DS.getSourceRange();
    812         declarator.setInvalidType(true);
    813       }
    814     }
    815 
    816     // TypeQuals handled by caller.
    817     break;
    818   }
    819   case DeclSpec::TST_typeofType:
    820     // FIXME: Preserve type source info.
    821     Result = S.GetTypeFromParser(DS.getRepAsType());
    822     assert(!Result.isNull() && "Didn't get a type for typeof?");
    823     if (!Result->isDependentType())
    824       if (const TagType *TT = Result->getAs<TagType>())
    825         S.DiagnoseUseOfDecl(TT->getDecl(), DS.getTypeSpecTypeLoc());
    826     // TypeQuals handled by caller.
    827     Result = Context.getTypeOfType(Result);
    828     break;
    829   case DeclSpec::TST_typeofExpr: {
    830     Expr *E = DS.getRepAsExpr();
    831     assert(E && "Didn't get an expression for typeof?");
    832     // TypeQuals handled by caller.
    833     Result = S.BuildTypeofExprType(E, DS.getTypeSpecTypeLoc());
    834     if (Result.isNull()) {
    835       Result = Context.IntTy;
    836       declarator.setInvalidType(true);
    837     }
    838     break;
    839   }
    840   case DeclSpec::TST_decltype: {
    841     Expr *E = DS.getRepAsExpr();
    842     assert(E && "Didn't get an expression for decltype?");
    843     // TypeQuals handled by caller.
    844     Result = S.BuildDecltypeType(E, DS.getTypeSpecTypeLoc());
    845     if (Result.isNull()) {
    846       Result = Context.IntTy;
    847       declarator.setInvalidType(true);
    848     }
    849     break;
    850   }
    851   case DeclSpec::TST_underlyingType:
    852     Result = S.GetTypeFromParser(DS.getRepAsType());
    853     assert(!Result.isNull() && "Didn't get a type for __underlying_type?");
    854     Result = S.BuildUnaryTransformType(Result,
    855                                        UnaryTransformType::EnumUnderlyingType,
    856                                        DS.getTypeSpecTypeLoc());
    857     if (Result.isNull()) {
    858       Result = Context.IntTy;
    859       declarator.setInvalidType(true);
    860     }
    861     break;
    862 
    863   case DeclSpec::TST_auto: {
    864     // TypeQuals handled by caller.
    865     Result = Context.getAutoType(QualType());
    866     break;
    867   }
    868 
    869   case DeclSpec::TST_unknown_anytype:
    870     Result = Context.UnknownAnyTy;
    871     break;
    872 
    873   case DeclSpec::TST_atomic:
    874     Result = S.GetTypeFromParser(DS.getRepAsType());
    875     assert(!Result.isNull() && "Didn't get a type for _Atomic?");
    876     Result = S.BuildAtomicType(Result, DS.getTypeSpecTypeLoc());
    877     if (Result.isNull()) {
    878       Result = Context.IntTy;
    879       declarator.setInvalidType(true);
    880     }
    881     break;
    882 
    883   case DeclSpec::TST_error:
    884     Result = Context.IntTy;
    885     declarator.setInvalidType(true);
    886     break;
    887   }
    888 
    889   // Handle complex types.
    890   if (DS.getTypeSpecComplex() == DeclSpec::TSC_complex) {
    891     if (S.getLangOpts().Freestanding)
    892       S.Diag(DS.getTypeSpecComplexLoc(), diag::ext_freestanding_complex);
    893     Result = Context.getComplexType(Result);
    894   } else if (DS.isTypeAltiVecVector()) {
    895     unsigned typeSize = static_cast<unsigned>(Context.getTypeSize(Result));
    896     assert(typeSize > 0 && "type size for vector must be greater than 0 bits");
    897     VectorType::VectorKind VecKind = VectorType::AltiVecVector;
    898     if (DS.isTypeAltiVecPixel())
    899       VecKind = VectorType::AltiVecPixel;
    900     else if (DS.isTypeAltiVecBool())
    901       VecKind = VectorType::AltiVecBool;
    902     Result = Context.getVectorType(Result, 128/typeSize, VecKind);
    903   }
    904 
    905   // FIXME: Imaginary.
    906   if (DS.getTypeSpecComplex() == DeclSpec::TSC_imaginary)
    907     S.Diag(DS.getTypeSpecComplexLoc(), diag::err_imaginary_not_supported);
    908 
    909   // Before we process any type attributes, synthesize a block literal
    910   // function declarator if necessary.
    911   if (declarator.getContext() == Declarator::BlockLiteralContext)
    912     maybeSynthesizeBlockSignature(state, Result);
    913 
    914   // Apply any type attributes from the decl spec.  This may cause the
    915   // list of type attributes to be temporarily saved while the type
    916   // attributes are pushed around.
    917   if (AttributeList *attrs = DS.getAttributes().getList())
    918     processTypeAttrs(state, Result, true, attrs);
    919 
    920   // Apply const/volatile/restrict qualifiers to T.
    921   if (unsigned TypeQuals = DS.getTypeQualifiers()) {
    922 
    923     // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
    924     // or incomplete types shall not be restrict-qualified."  C++ also allows
    925     // restrict-qualified references.
    926     if (TypeQuals & DeclSpec::TQ_restrict) {
    927       if (Result->isAnyPointerType() || Result->isReferenceType()) {
    928         QualType EltTy;
    929         if (Result->isObjCObjectPointerType())
    930           EltTy = Result;
    931         else
    932           EltTy = Result->isPointerType() ?
    933                     Result->getAs<PointerType>()->getPointeeType() :
    934                     Result->getAs<ReferenceType>()->getPointeeType();
    935 
    936         // If we have a pointer or reference, the pointee must have an object
    937         // incomplete type.
    938         if (!EltTy->isIncompleteOrObjectType()) {
    939           S.Diag(DS.getRestrictSpecLoc(),
    940                diag::err_typecheck_invalid_restrict_invalid_pointee)
    941             << EltTy << DS.getSourceRange();
    942           TypeQuals &= ~DeclSpec::TQ_restrict; // Remove the restrict qualifier.
    943         }
    944       } else {
    945         S.Diag(DS.getRestrictSpecLoc(),
    946                diag::err_typecheck_invalid_restrict_not_pointer)
    947           << Result << DS.getSourceRange();
    948         TypeQuals &= ~DeclSpec::TQ_restrict; // Remove the restrict qualifier.
    949       }
    950     }
    951 
    952     // Warn about CV qualifiers on functions: C99 6.7.3p8: "If the specification
    953     // of a function type includes any type qualifiers, the behavior is
    954     // undefined."
    955     if (Result->isFunctionType() && TypeQuals) {
    956       // Get some location to point at, either the C or V location.
    957       SourceLocation Loc;
    958       if (TypeQuals & DeclSpec::TQ_const)
    959         Loc = DS.getConstSpecLoc();
    960       else if (TypeQuals & DeclSpec::TQ_volatile)
    961         Loc = DS.getVolatileSpecLoc();
    962       else {
    963         assert((TypeQuals & DeclSpec::TQ_restrict) &&
    964                "Has CVR quals but not C, V, or R?");
    965         Loc = DS.getRestrictSpecLoc();
    966       }
    967       S.Diag(Loc, diag::warn_typecheck_function_qualifiers)
    968         << Result << DS.getSourceRange();
    969     }
    970 
    971     // C++ [dcl.ref]p1:
    972     //   Cv-qualified references are ill-formed except when the
    973     //   cv-qualifiers are introduced through the use of a typedef
    974     //   (7.1.3) or of a template type argument (14.3), in which
    975     //   case the cv-qualifiers are ignored.
    976     // FIXME: Shouldn't we be checking SCS_typedef here?
    977     if (DS.getTypeSpecType() == DeclSpec::TST_typename &&
    978         TypeQuals && Result->isReferenceType()) {
    979       TypeQuals &= ~DeclSpec::TQ_const;
    980       TypeQuals &= ~DeclSpec::TQ_volatile;
    981     }
    982 
    983     // C90 6.5.3 constraints: "The same type qualifier shall not appear more
    984     // than once in the same specifier-list or qualifier-list, either directly
    985     // or via one or more typedefs."
    986     if (!S.getLangOpts().C99 && !S.getLangOpts().CPlusPlus
    987         && TypeQuals & Result.getCVRQualifiers()) {
    988       if (TypeQuals & DeclSpec::TQ_const && Result.isConstQualified()) {
    989         S.Diag(DS.getConstSpecLoc(), diag::ext_duplicate_declspec)
    990           << "const";
    991       }
    992 
    993       if (TypeQuals & DeclSpec::TQ_volatile && Result.isVolatileQualified()) {
    994         S.Diag(DS.getVolatileSpecLoc(), diag::ext_duplicate_declspec)
    995           << "volatile";
    996       }
    997 
    998       // C90 doesn't have restrict, so it doesn't force us to produce a warning
    999       // in this case.
   1000     }
   1001 
   1002     Qualifiers Quals = Qualifiers::fromCVRMask(TypeQuals);
   1003     Result = Context.getQualifiedType(Result, Quals);
   1004   }
   1005 
   1006   return Result;
   1007 }
   1008 
   1009 static std::string getPrintableNameForEntity(DeclarationName Entity) {
   1010   if (Entity)
   1011     return Entity.getAsString();
   1012 
   1013   return "type name";
   1014 }
   1015 
   1016 QualType Sema::BuildQualifiedType(QualType T, SourceLocation Loc,
   1017                                   Qualifiers Qs) {
   1018   // Enforce C99 6.7.3p2: "Types other than pointer types derived from
   1019   // object or incomplete types shall not be restrict-qualified."
   1020   if (Qs.hasRestrict()) {
   1021     unsigned DiagID = 0;
   1022     QualType ProblemTy;
   1023 
   1024     const Type *Ty = T->getCanonicalTypeInternal().getTypePtr();
   1025     if (const ReferenceType *RTy = dyn_cast<ReferenceType>(Ty)) {
   1026       if (!RTy->getPointeeType()->isIncompleteOrObjectType()) {
   1027         DiagID = diag::err_typecheck_invalid_restrict_invalid_pointee;
   1028         ProblemTy = T->getAs<ReferenceType>()->getPointeeType();
   1029       }
   1030     } else if (const PointerType *PTy = dyn_cast<PointerType>(Ty)) {
   1031       if (!PTy->getPointeeType()->isIncompleteOrObjectType()) {
   1032         DiagID = diag::err_typecheck_invalid_restrict_invalid_pointee;
   1033         ProblemTy = T->getAs<PointerType>()->getPointeeType();
   1034       }
   1035     } else if (const MemberPointerType *PTy = dyn_cast<MemberPointerType>(Ty)) {
   1036       if (!PTy->getPointeeType()->isIncompleteOrObjectType()) {
   1037         DiagID = diag::err_typecheck_invalid_restrict_invalid_pointee;
   1038         ProblemTy = T->getAs<PointerType>()->getPointeeType();
   1039       }
   1040     } else if (!Ty->isDependentType()) {
   1041       // FIXME: this deserves a proper diagnostic
   1042       DiagID = diag::err_typecheck_invalid_restrict_invalid_pointee;
   1043       ProblemTy = T;
   1044     }
   1045 
   1046     if (DiagID) {
   1047       Diag(Loc, DiagID) << ProblemTy;
   1048       Qs.removeRestrict();
   1049     }
   1050   }
   1051 
   1052   return Context.getQualifiedType(T, Qs);
   1053 }
   1054 
   1055 /// \brief Build a paren type including \p T.
   1056 QualType Sema::BuildParenType(QualType T) {
   1057   return Context.getParenType(T);
   1058 }
   1059 
   1060 /// Given that we're building a pointer or reference to the given
   1061 static QualType inferARCLifetimeForPointee(Sema &S, QualType type,
   1062                                            SourceLocation loc,
   1063                                            bool isReference) {
   1064   // Bail out if retention is unrequired or already specified.
   1065   if (!type->isObjCLifetimeType() ||
   1066       type.getObjCLifetime() != Qualifiers::OCL_None)
   1067     return type;
   1068 
   1069   Qualifiers::ObjCLifetime implicitLifetime = Qualifiers::OCL_None;
   1070 
   1071   // If the object type is const-qualified, we can safely use
   1072   // __unsafe_unretained.  This is safe (because there are no read
   1073   // barriers), and it'll be safe to coerce anything but __weak* to
   1074   // the resulting type.
   1075   if (type.isConstQualified()) {
   1076     implicitLifetime = Qualifiers::OCL_ExplicitNone;
   1077 
   1078   // Otherwise, check whether the static type does not require
   1079   // retaining.  This currently only triggers for Class (possibly
   1080   // protocol-qualifed, and arrays thereof).
   1081   } else if (type->isObjCARCImplicitlyUnretainedType()) {
   1082     implicitLifetime = Qualifiers::OCL_ExplicitNone;
   1083 
   1084   // If we are in an unevaluated context, like sizeof, skip adding a
   1085   // qualification.
   1086   } else if (S.ExprEvalContexts.back().Context == Sema::Unevaluated) {
   1087     return type;
   1088 
   1089   // If that failed, give an error and recover using __strong.  __strong
   1090   // is the option most likely to prevent spurious second-order diagnostics,
   1091   // like when binding a reference to a field.
   1092   } else {
   1093     // These types can show up in private ivars in system headers, so
   1094     // we need this to not be an error in those cases.  Instead we
   1095     // want to delay.
   1096     if (S.DelayedDiagnostics.shouldDelayDiagnostics()) {
   1097       S.DelayedDiagnostics.add(
   1098           sema::DelayedDiagnostic::makeForbiddenType(loc,
   1099               diag::err_arc_indirect_no_ownership, type, isReference));
   1100     } else {
   1101       S.Diag(loc, diag::err_arc_indirect_no_ownership) << type << isReference;
   1102     }
   1103     implicitLifetime = Qualifiers::OCL_Strong;
   1104   }
   1105   assert(implicitLifetime && "didn't infer any lifetime!");
   1106 
   1107   Qualifiers qs;
   1108   qs.addObjCLifetime(implicitLifetime);
   1109   return S.Context.getQualifiedType(type, qs);
   1110 }
   1111 
   1112 /// \brief Build a pointer type.
   1113 ///
   1114 /// \param T The type to which we'll be building a pointer.
   1115 ///
   1116 /// \param Loc The location of the entity whose type involves this
   1117 /// pointer type or, if there is no such entity, the location of the
   1118 /// type that will have pointer type.
   1119 ///
   1120 /// \param Entity The name of the entity that involves the pointer
   1121 /// type, if known.
   1122 ///
   1123 /// \returns A suitable pointer type, if there are no
   1124 /// errors. Otherwise, returns a NULL type.
   1125 QualType Sema::BuildPointerType(QualType T,
   1126                                 SourceLocation Loc, DeclarationName Entity) {
   1127   if (T->isReferenceType()) {
   1128     // C++ 8.3.2p4: There shall be no ... pointers to references ...
   1129     Diag(Loc, diag::err_illegal_decl_pointer_to_reference)
   1130       << getPrintableNameForEntity(Entity) << T;
   1131     return QualType();
   1132   }
   1133 
   1134   assert(!T->isObjCObjectType() && "Should build ObjCObjectPointerType");
   1135 
   1136   // In ARC, it is forbidden to build pointers to unqualified pointers.
   1137   if (getLangOpts().ObjCAutoRefCount)
   1138     T = inferARCLifetimeForPointee(*this, T, Loc, /*reference*/ false);
   1139 
   1140   // Build the pointer type.
   1141   return Context.getPointerType(T);
   1142 }
   1143 
   1144 /// \brief Build a reference type.
   1145 ///
   1146 /// \param T The type to which we'll be building a reference.
   1147 ///
   1148 /// \param Loc The location of the entity whose type involves this
   1149 /// reference type or, if there is no such entity, the location of the
   1150 /// type that will have reference type.
   1151 ///
   1152 /// \param Entity The name of the entity that involves the reference
   1153 /// type, if known.
   1154 ///
   1155 /// \returns A suitable reference type, if there are no
   1156 /// errors. Otherwise, returns a NULL type.
   1157 QualType Sema::BuildReferenceType(QualType T, bool SpelledAsLValue,
   1158                                   SourceLocation Loc,
   1159                                   DeclarationName Entity) {
   1160   assert(Context.getCanonicalType(T) != Context.OverloadTy &&
   1161          "Unresolved overloaded function type");
   1162 
   1163   // C++0x [dcl.ref]p6:
   1164   //   If a typedef (7.1.3), a type template-parameter (14.3.1), or a
   1165   //   decltype-specifier (7.1.6.2) denotes a type TR that is a reference to a
   1166   //   type T, an attempt to create the type "lvalue reference to cv TR" creates
   1167   //   the type "lvalue reference to T", while an attempt to create the type
   1168   //   "rvalue reference to cv TR" creates the type TR.
   1169   bool LValueRef = SpelledAsLValue || T->getAs<LValueReferenceType>();
   1170 
   1171   // C++ [dcl.ref]p4: There shall be no references to references.
   1172   //
   1173   // According to C++ DR 106, references to references are only
   1174   // diagnosed when they are written directly (e.g., "int & &"),
   1175   // but not when they happen via a typedef:
   1176   //
   1177   //   typedef int& intref;
   1178   //   typedef intref& intref2;
   1179   //
   1180   // Parser::ParseDeclaratorInternal diagnoses the case where
   1181   // references are written directly; here, we handle the
   1182   // collapsing of references-to-references as described in C++0x.
   1183   // DR 106 and 540 introduce reference-collapsing into C++98/03.
   1184 
   1185   // C++ [dcl.ref]p1:
   1186   //   A declarator that specifies the type "reference to cv void"
   1187   //   is ill-formed.
   1188   if (T->isVoidType()) {
   1189     Diag(Loc, diag::err_reference_to_void);
   1190     return QualType();
   1191   }
   1192 
   1193   // In ARC, it is forbidden to build references to unqualified pointers.
   1194   if (getLangOpts().ObjCAutoRefCount)
   1195     T = inferARCLifetimeForPointee(*this, T, Loc, /*reference*/ true);
   1196 
   1197   // Handle restrict on references.
   1198   if (LValueRef)
   1199     return Context.getLValueReferenceType(T, SpelledAsLValue);
   1200   return Context.getRValueReferenceType(T);
   1201 }
   1202 
   1203 /// Check whether the specified array size makes the array type a VLA.  If so,
   1204 /// return true, if not, return the size of the array in SizeVal.
   1205 static bool isArraySizeVLA(Sema &S, Expr *ArraySize, llvm::APSInt &SizeVal) {
   1206   // If the size is an ICE, it certainly isn't a VLA. If we're in a GNU mode
   1207   // (like gnu99, but not c99) accept any evaluatable value as an extension.
   1208   return S.VerifyIntegerConstantExpression(
   1209       ArraySize, &SizeVal, S.PDiag(), S.LangOpts.GNUMode,
   1210       S.PDiag(diag::ext_vla_folded_to_constant)).isInvalid();
   1211 }
   1212 
   1213 
   1214 /// \brief Build an array type.
   1215 ///
   1216 /// \param T The type of each element in the array.
   1217 ///
   1218 /// \param ASM C99 array size modifier (e.g., '*', 'static').
   1219 ///
   1220 /// \param ArraySize Expression describing the size of the array.
   1221 ///
   1222 /// \param Loc The location of the entity whose type involves this
   1223 /// array type or, if there is no such entity, the location of the
   1224 /// type that will have array type.
   1225 ///
   1226 /// \param Entity The name of the entity that involves the array
   1227 /// type, if known.
   1228 ///
   1229 /// \returns A suitable array type, if there are no errors. Otherwise,
   1230 /// returns a NULL type.
   1231 QualType Sema::BuildArrayType(QualType T, ArrayType::ArraySizeModifier ASM,
   1232                               Expr *ArraySize, unsigned Quals,
   1233                               SourceRange Brackets, DeclarationName Entity) {
   1234 
   1235   SourceLocation Loc = Brackets.getBegin();
   1236   if (getLangOpts().CPlusPlus) {
   1237     // C++ [dcl.array]p1:
   1238     //   T is called the array element type; this type shall not be a reference
   1239     //   type, the (possibly cv-qualified) type void, a function type or an
   1240     //   abstract class type.
   1241     //
   1242     // Note: function types are handled in the common path with C.
   1243     if (T->isReferenceType()) {
   1244       Diag(Loc, diag::err_illegal_decl_array_of_references)
   1245       << getPrintableNameForEntity(Entity) << T;
   1246       return QualType();
   1247     }
   1248 
   1249     if (T->isVoidType()) {
   1250       Diag(Loc, diag::err_illegal_decl_array_incomplete_type) << T;
   1251       return QualType();
   1252     }
   1253 
   1254     if (RequireNonAbstractType(Brackets.getBegin(), T,
   1255                                diag::err_array_of_abstract_type))
   1256       return QualType();
   1257 
   1258   } else {
   1259     // C99 6.7.5.2p1: If the element type is an incomplete or function type,
   1260     // reject it (e.g. void ary[7], struct foo ary[7], void ary[7]())
   1261     if (RequireCompleteType(Loc, T,
   1262                             diag::err_illegal_decl_array_incomplete_type))
   1263       return QualType();
   1264   }
   1265 
   1266   if (T->isFunctionType()) {
   1267     Diag(Loc, diag::err_illegal_decl_array_of_functions)
   1268       << getPrintableNameForEntity(Entity) << T;
   1269     return QualType();
   1270   }
   1271 
   1272   if (T->getContainedAutoType()) {
   1273     Diag(Loc, diag::err_illegal_decl_array_of_auto)
   1274       << getPrintableNameForEntity(Entity) << T;
   1275     return QualType();
   1276   }
   1277 
   1278   if (const RecordType *EltTy = T->getAs<RecordType>()) {
   1279     // If the element type is a struct or union that contains a variadic
   1280     // array, accept it as a GNU extension: C99 6.7.2.1p2.
   1281     if (EltTy->getDecl()->hasFlexibleArrayMember())
   1282       Diag(Loc, diag::ext_flexible_array_in_array) << T;
   1283   } else if (T->isObjCObjectType()) {
   1284     Diag(Loc, diag::err_objc_array_of_interfaces) << T;
   1285     return QualType();
   1286   }
   1287 
   1288   // Do placeholder conversions on the array size expression.
   1289   if (ArraySize && ArraySize->hasPlaceholderType()) {
   1290     ExprResult Result = CheckPlaceholderExpr(ArraySize);
   1291     if (Result.isInvalid()) return QualType();
   1292     ArraySize = Result.take();
   1293   }
   1294 
   1295   // Do lvalue-to-rvalue conversions on the array size expression.
   1296   if (ArraySize && !ArraySize->isRValue()) {
   1297     ExprResult Result = DefaultLvalueConversion(ArraySize);
   1298     if (Result.isInvalid())
   1299       return QualType();
   1300 
   1301     ArraySize = Result.take();
   1302   }
   1303 
   1304   // C99 6.7.5.2p1: The size expression shall have integer type.
   1305   // C++11 allows contextual conversions to such types.
   1306   if (!getLangOpts().CPlusPlus0x &&
   1307       ArraySize && !ArraySize->isTypeDependent() &&
   1308       !ArraySize->getType()->isIntegralOrUnscopedEnumerationType()) {
   1309     Diag(ArraySize->getLocStart(), diag::err_array_size_non_int)
   1310       << ArraySize->getType() << ArraySize->getSourceRange();
   1311     return QualType();
   1312   }
   1313 
   1314   llvm::APSInt ConstVal(Context.getTypeSize(Context.getSizeType()));
   1315   if (!ArraySize) {
   1316     if (ASM == ArrayType::Star)
   1317       T = Context.getVariableArrayType(T, 0, ASM, Quals, Brackets);
   1318     else
   1319       T = Context.getIncompleteArrayType(T, ASM, Quals);
   1320   } else if (ArraySize->isTypeDependent() || ArraySize->isValueDependent()) {
   1321     T = Context.getDependentSizedArrayType(T, ArraySize, ASM, Quals, Brackets);
   1322   } else if ((!T->isDependentType() && !T->isIncompleteType() &&
   1323               !T->isConstantSizeType()) ||
   1324              isArraySizeVLA(*this, ArraySize, ConstVal)) {
   1325     // Even in C++11, don't allow contextual conversions in the array bound
   1326     // of a VLA.
   1327     if (getLangOpts().CPlusPlus0x &&
   1328         !ArraySize->getType()->isIntegralOrUnscopedEnumerationType()) {
   1329       Diag(ArraySize->getLocStart(), diag::err_array_size_non_int)
   1330         << ArraySize->getType() << ArraySize->getSourceRange();
   1331       return QualType();
   1332     }
   1333 
   1334     // C99: an array with an element type that has a non-constant-size is a VLA.
   1335     // C99: an array with a non-ICE size is a VLA.  We accept any expression
   1336     // that we can fold to a non-zero positive value as an extension.
   1337     T = Context.getVariableArrayType(T, ArraySize, ASM, Quals, Brackets);
   1338   } else {
   1339     // C99 6.7.5.2p1: If the expression is a constant expression, it shall
   1340     // have a value greater than zero.
   1341     if (ConstVal.isSigned() && ConstVal.isNegative()) {
   1342       if (Entity)
   1343         Diag(ArraySize->getLocStart(), diag::err_decl_negative_array_size)
   1344           << getPrintableNameForEntity(Entity) << ArraySize->getSourceRange();
   1345       else
   1346         Diag(ArraySize->getLocStart(), diag::err_typecheck_negative_array_size)
   1347           << ArraySize->getSourceRange();
   1348       return QualType();
   1349     }
   1350     if (ConstVal == 0) {
   1351       // GCC accepts zero sized static arrays. We allow them when
   1352       // we're not in a SFINAE context.
   1353       Diag(ArraySize->getLocStart(),
   1354            isSFINAEContext()? diag::err_typecheck_zero_array_size
   1355                             : diag::ext_typecheck_zero_array_size)
   1356         << ArraySize->getSourceRange();
   1357 
   1358       if (ASM == ArrayType::Static) {
   1359         Diag(ArraySize->getLocStart(),
   1360              diag::warn_typecheck_zero_static_array_size)
   1361           << ArraySize->getSourceRange();
   1362         ASM = ArrayType::Normal;
   1363       }
   1364     } else if (!T->isDependentType() && !T->isVariablyModifiedType() &&
   1365                !T->isIncompleteType()) {
   1366       // Is the array too large?
   1367       unsigned ActiveSizeBits
   1368         = ConstantArrayType::getNumAddressingBits(Context, T, ConstVal);
   1369       if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context))
   1370         Diag(ArraySize->getLocStart(), diag::err_array_too_large)
   1371           << ConstVal.toString(10)
   1372           << ArraySize->getSourceRange();
   1373     }
   1374 
   1375     T = Context.getConstantArrayType(T, ConstVal, ASM, Quals);
   1376   }
   1377   // If this is not C99, extwarn about VLA's and C99 array size modifiers.
   1378   if (!getLangOpts().C99) {
   1379     if (T->isVariableArrayType()) {
   1380       // Prohibit the use of non-POD types in VLAs.
   1381       QualType BaseT = Context.getBaseElementType(T);
   1382       if (!T->isDependentType() &&
   1383           !BaseT.isPODType(Context) &&
   1384           !BaseT->isObjCLifetimeType()) {
   1385         Diag(Loc, diag::err_vla_non_pod)
   1386           << BaseT;
   1387         return QualType();
   1388       }
   1389       // Prohibit the use of VLAs during template argument deduction.
   1390       else if (isSFINAEContext()) {
   1391         Diag(Loc, diag::err_vla_in_sfinae);
   1392         return QualType();
   1393       }
   1394       // Just extwarn about VLAs.
   1395       else
   1396         Diag(Loc, diag::ext_vla);
   1397     } else if (ASM != ArrayType::Normal || Quals != 0)
   1398       Diag(Loc,
   1399            getLangOpts().CPlusPlus? diag::err_c99_array_usage_cxx
   1400                                      : diag::ext_c99_array_usage) << ASM;
   1401   }
   1402 
   1403   return T;
   1404 }
   1405 
   1406 /// \brief Build an ext-vector type.
   1407 ///
   1408 /// Run the required checks for the extended vector type.
   1409 QualType Sema::BuildExtVectorType(QualType T, Expr *ArraySize,
   1410                                   SourceLocation AttrLoc) {
   1411   // unlike gcc's vector_size attribute, we do not allow vectors to be defined
   1412   // in conjunction with complex types (pointers, arrays, functions, etc.).
   1413   if (!T->isDependentType() &&
   1414       !T->isIntegerType() && !T->isRealFloatingType()) {
   1415     Diag(AttrLoc, diag::err_attribute_invalid_vector_type) << T;
   1416     return QualType();
   1417   }
   1418 
   1419   if (!ArraySize->isTypeDependent() && !ArraySize->isValueDependent()) {
   1420     llvm::APSInt vecSize(32);
   1421     if (!ArraySize->isIntegerConstantExpr(vecSize, Context)) {
   1422       Diag(AttrLoc, diag::err_attribute_argument_not_int)
   1423         << "ext_vector_type" << ArraySize->getSourceRange();
   1424       return QualType();
   1425     }
   1426 
   1427     // unlike gcc's vector_size attribute, the size is specified as the
   1428     // number of elements, not the number of bytes.
   1429     unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue());
   1430 
   1431     if (vectorSize == 0) {
   1432       Diag(AttrLoc, diag::err_attribute_zero_size)
   1433       << ArraySize->getSourceRange();
   1434       return QualType();
   1435     }
   1436 
   1437     return Context.getExtVectorType(T, vectorSize);
   1438   }
   1439 
   1440   return Context.getDependentSizedExtVectorType(T, ArraySize, AttrLoc);
   1441 }
   1442 
   1443 /// \brief Build a function type.
   1444 ///
   1445 /// This routine checks the function type according to C++ rules and
   1446 /// under the assumption that the result type and parameter types have
   1447 /// just been instantiated from a template. It therefore duplicates
   1448 /// some of the behavior of GetTypeForDeclarator, but in a much
   1449 /// simpler form that is only suitable for this narrow use case.
   1450 ///
   1451 /// \param T The return type of the function.
   1452 ///
   1453 /// \param ParamTypes The parameter types of the function. This array
   1454 /// will be modified to account for adjustments to the types of the
   1455 /// function parameters.
   1456 ///
   1457 /// \param NumParamTypes The number of parameter types in ParamTypes.
   1458 ///
   1459 /// \param Variadic Whether this is a variadic function type.
   1460 ///
   1461 /// \param HasTrailingReturn Whether this function has a trailing return type.
   1462 ///
   1463 /// \param Quals The cvr-qualifiers to be applied to the function type.
   1464 ///
   1465 /// \param Loc The location of the entity whose type involves this
   1466 /// function type or, if there is no such entity, the location of the
   1467 /// type that will have function type.
   1468 ///
   1469 /// \param Entity The name of the entity that involves the function
   1470 /// type, if known.
   1471 ///
   1472 /// \returns A suitable function type, if there are no
   1473 /// errors. Otherwise, returns a NULL type.
   1474 QualType Sema::BuildFunctionType(QualType T,
   1475                                  QualType *ParamTypes,
   1476                                  unsigned NumParamTypes,
   1477                                  bool Variadic, bool HasTrailingReturn,
   1478                                  unsigned Quals,
   1479                                  RefQualifierKind RefQualifier,
   1480                                  SourceLocation Loc, DeclarationName Entity,
   1481                                  FunctionType::ExtInfo Info) {
   1482   if (T->isArrayType() || T->isFunctionType()) {
   1483     Diag(Loc, diag::err_func_returning_array_function)
   1484       << T->isFunctionType() << T;
   1485     return QualType();
   1486   }
   1487 
   1488   // Functions cannot return half FP.
   1489   if (T->isHalfType()) {
   1490     Diag(Loc, diag::err_parameters_retval_cannot_have_fp16_type) << 1 <<
   1491       FixItHint::CreateInsertion(Loc, "*");
   1492     return QualType();
   1493   }
   1494 
   1495   bool Invalid = false;
   1496   for (unsigned Idx = 0; Idx < NumParamTypes; ++Idx) {
   1497     // FIXME: Loc is too inprecise here, should use proper locations for args.
   1498     QualType ParamType = Context.getAdjustedParameterType(ParamTypes[Idx]);
   1499     if (ParamType->isVoidType()) {
   1500       Diag(Loc, diag::err_param_with_void_type);
   1501       Invalid = true;
   1502     } else if (ParamType->isHalfType()) {
   1503       // Disallow half FP arguments.
   1504       Diag(Loc, diag::err_parameters_retval_cannot_have_fp16_type) << 0 <<
   1505         FixItHint::CreateInsertion(Loc, "*");
   1506       Invalid = true;
   1507     }
   1508 
   1509     ParamTypes[Idx] = ParamType;
   1510   }
   1511 
   1512   if (Invalid)
   1513     return QualType();
   1514 
   1515   FunctionProtoType::ExtProtoInfo EPI;
   1516   EPI.Variadic = Variadic;
   1517   EPI.HasTrailingReturn = HasTrailingReturn;
   1518   EPI.TypeQuals = Quals;
   1519   EPI.RefQualifier = RefQualifier;
   1520   EPI.ExtInfo = Info;
   1521 
   1522   return Context.getFunctionType(T, ParamTypes, NumParamTypes, EPI);
   1523 }
   1524 
   1525 /// \brief Build a member pointer type \c T Class::*.
   1526 ///
   1527 /// \param T the type to which the member pointer refers.
   1528 /// \param Class the class type into which the member pointer points.
   1529 /// \param Loc the location where this type begins
   1530 /// \param Entity the name of the entity that will have this member pointer type
   1531 ///
   1532 /// \returns a member pointer type, if successful, or a NULL type if there was
   1533 /// an error.
   1534 QualType Sema::BuildMemberPointerType(QualType T, QualType Class,
   1535                                       SourceLocation Loc,
   1536                                       DeclarationName Entity) {
   1537   // Verify that we're not building a pointer to pointer to function with
   1538   // exception specification.
   1539   if (CheckDistantExceptionSpec(T)) {
   1540     Diag(Loc, diag::err_distant_exception_spec);
   1541 
   1542     // FIXME: If we're doing this as part of template instantiation,
   1543     // we should return immediately.
   1544 
   1545     // Build the type anyway, but use the canonical type so that the
   1546     // exception specifiers are stripped off.
   1547     T = Context.getCanonicalType(T);
   1548   }
   1549 
   1550   // C++ 8.3.3p3: A pointer to member shall not point to ... a member
   1551   //   with reference type, or "cv void."
   1552   if (T->isReferenceType()) {
   1553     Diag(Loc, diag::err_illegal_decl_mempointer_to_reference)
   1554       << (Entity? Entity.getAsString() : "type name") << T;
   1555     return QualType();
   1556   }
   1557 
   1558   if (T->isVoidType()) {
   1559     Diag(Loc, diag::err_illegal_decl_mempointer_to_void)
   1560       << (Entity? Entity.getAsString() : "type name");
   1561     return QualType();
   1562   }
   1563 
   1564   if (!Class->isDependentType() && !Class->isRecordType()) {
   1565     Diag(Loc, diag::err_mempointer_in_nonclass_type) << Class;
   1566     return QualType();
   1567   }
   1568 
   1569   // In the Microsoft ABI, the class is allowed to be an incomplete
   1570   // type. In such cases, the compiler makes a worst-case assumption.
   1571   // We make no such assumption right now, so emit an error if the
   1572   // class isn't a complete type.
   1573   if (Context.getTargetInfo().getCXXABI() == CXXABI_Microsoft &&
   1574       RequireCompleteType(Loc, Class, diag::err_incomplete_type))
   1575     return QualType();
   1576 
   1577   return Context.getMemberPointerType(T, Class.getTypePtr());
   1578 }
   1579 
   1580 /// \brief Build a block pointer type.
   1581 ///
   1582 /// \param T The type to which we'll be building a block pointer.
   1583 ///
   1584 /// \param CVR The cvr-qualifiers to be applied to the block pointer type.
   1585 ///
   1586 /// \param Loc The location of the entity whose type involves this
   1587 /// block pointer type or, if there is no such entity, the location of the
   1588 /// type that will have block pointer type.
   1589 ///
   1590 /// \param Entity The name of the entity that involves the block pointer
   1591 /// type, if known.
   1592 ///
   1593 /// \returns A suitable block pointer type, if there are no
   1594 /// errors. Otherwise, returns a NULL type.
   1595 QualType Sema::BuildBlockPointerType(QualType T,
   1596                                      SourceLocation Loc,
   1597                                      DeclarationName Entity) {
   1598   if (!T->isFunctionType()) {
   1599     Diag(Loc, diag::err_nonfunction_block_type);
   1600     return QualType();
   1601   }
   1602 
   1603   return Context.getBlockPointerType(T);
   1604 }
   1605 
   1606 QualType Sema::GetTypeFromParser(ParsedType Ty, TypeSourceInfo **TInfo) {
   1607   QualType QT = Ty.get();
   1608   if (QT.isNull()) {
   1609     if (TInfo) *TInfo = 0;
   1610     return QualType();
   1611   }
   1612 
   1613   TypeSourceInfo *DI = 0;
   1614   if (const LocInfoType *LIT = dyn_cast<LocInfoType>(QT)) {
   1615     QT = LIT->getType();
   1616     DI = LIT->getTypeSourceInfo();
   1617   }
   1618 
   1619   if (TInfo) *TInfo = DI;
   1620   return QT;
   1621 }
   1622 
   1623 static void transferARCOwnershipToDeclaratorChunk(TypeProcessingState &state,
   1624                                             Qualifiers::ObjCLifetime ownership,
   1625                                             unsigned chunkIndex);
   1626 
   1627 /// Given that this is the declaration of a parameter under ARC,
   1628 /// attempt to infer attributes and such for pointer-to-whatever
   1629 /// types.
   1630 static void inferARCWriteback(TypeProcessingState &state,
   1631                               QualType &declSpecType) {
   1632   Sema &S = state.getSema();
   1633   Declarator &declarator = state.getDeclarator();
   1634 
   1635   // TODO: should we care about decl qualifiers?
   1636 
   1637   // Check whether the declarator has the expected form.  We walk
   1638   // from the inside out in order to make the block logic work.
   1639   unsigned outermostPointerIndex = 0;
   1640   bool isBlockPointer = false;
   1641   unsigned numPointers = 0;
   1642   for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
   1643     unsigned chunkIndex = i;
   1644     DeclaratorChunk &chunk = declarator.getTypeObject(chunkIndex);
   1645     switch (chunk.Kind) {
   1646     case DeclaratorChunk::Paren:
   1647       // Ignore parens.
   1648       break;
   1649 
   1650     case DeclaratorChunk::Reference:
   1651     case DeclaratorChunk::Pointer:
   1652       // Count the number of pointers.  Treat references
   1653       // interchangeably as pointers; if they're mis-ordered, normal
   1654       // type building will discover that.
   1655       outermostPointerIndex = chunkIndex;
   1656       numPointers++;
   1657       break;
   1658 
   1659     case DeclaratorChunk::BlockPointer:
   1660       // If we have a pointer to block pointer, that's an acceptable
   1661       // indirect reference; anything else is not an application of
   1662       // the rules.
   1663       if (numPointers != 1) return;
   1664       numPointers++;
   1665       outermostPointerIndex = chunkIndex;
   1666       isBlockPointer = true;
   1667 
   1668       // We don't care about pointer structure in return values here.
   1669       goto done;
   1670 
   1671     case DeclaratorChunk::Array: // suppress if written (id[])?
   1672     case DeclaratorChunk::Function:
   1673     case DeclaratorChunk::MemberPointer:
   1674       return;
   1675     }
   1676   }
   1677  done:
   1678 
   1679   // If we have *one* pointer, then we want to throw the qualifier on
   1680   // the declaration-specifiers, which means that it needs to be a
   1681   // retainable object type.
   1682   if (numPointers == 1) {
   1683     // If it's not a retainable object type, the rule doesn't apply.
   1684     if (!declSpecType->isObjCRetainableType()) return;
   1685 
   1686     // If it already has lifetime, don't do anything.
   1687     if (declSpecType.getObjCLifetime()) return;
   1688 
   1689     // Otherwise, modify the type in-place.
   1690     Qualifiers qs;
   1691 
   1692     if (declSpecType->isObjCARCImplicitlyUnretainedType())
   1693       qs.addObjCLifetime(Qualifiers::OCL_ExplicitNone);
   1694     else
   1695       qs.addObjCLifetime(Qualifiers::OCL_Autoreleasing);
   1696     declSpecType = S.Context.getQualifiedType(declSpecType, qs);
   1697 
   1698   // If we have *two* pointers, then we want to throw the qualifier on
   1699   // the outermost pointer.
   1700   } else if (numPointers == 2) {
   1701     // If we don't have a block pointer, we need to check whether the
   1702     // declaration-specifiers gave us something that will turn into a
   1703     // retainable object pointer after we slap the first pointer on it.
   1704     if (!isBlockPointer && !declSpecType->isObjCObjectType())
   1705       return;
   1706 
   1707     // Look for an explicit lifetime attribute there.
   1708     DeclaratorChunk &chunk = declarator.getTypeObject(outermostPointerIndex);
   1709     if (chunk.Kind != DeclaratorChunk::Pointer &&
   1710         chunk.Kind != DeclaratorChunk::BlockPointer)
   1711       return;
   1712     for (const AttributeList *attr = chunk.getAttrs(); attr;
   1713            attr = attr->getNext())
   1714       if (attr->getKind() == AttributeList::AT_objc_ownership)
   1715         return;
   1716 
   1717     transferARCOwnershipToDeclaratorChunk(state, Qualifiers::OCL_Autoreleasing,
   1718                                           outermostPointerIndex);
   1719 
   1720   // Any other number of pointers/references does not trigger the rule.
   1721   } else return;
   1722 
   1723   // TODO: mark whether we did this inference?
   1724 }
   1725 
   1726 static void DiagnoseIgnoredQualifiers(unsigned Quals,
   1727                                       SourceLocation ConstQualLoc,
   1728                                       SourceLocation VolatileQualLoc,
   1729                                       SourceLocation RestrictQualLoc,
   1730                                       Sema& S) {
   1731   std::string QualStr;
   1732   unsigned NumQuals = 0;
   1733   SourceLocation Loc;
   1734 
   1735   FixItHint ConstFixIt;
   1736   FixItHint VolatileFixIt;
   1737   FixItHint RestrictFixIt;
   1738 
   1739   const SourceManager &SM = S.getSourceManager();
   1740 
   1741   // FIXME: The locations here are set kind of arbitrarily. It'd be nicer to
   1742   // find a range and grow it to encompass all the qualifiers, regardless of
   1743   // the order in which they textually appear.
   1744   if (Quals & Qualifiers::Const) {
   1745     ConstFixIt = FixItHint::CreateRemoval(ConstQualLoc);
   1746     QualStr = "const";
   1747     ++NumQuals;
   1748     if (!Loc.isValid() || SM.isBeforeInTranslationUnit(ConstQualLoc, Loc))
   1749       Loc = ConstQualLoc;
   1750   }
   1751   if (Quals & Qualifiers::Volatile) {
   1752     VolatileFixIt = FixItHint::CreateRemoval(VolatileQualLoc);
   1753     QualStr += (NumQuals == 0 ? "volatile" : " volatile");
   1754     ++NumQuals;
   1755     if (!Loc.isValid() || SM.isBeforeInTranslationUnit(VolatileQualLoc, Loc))
   1756       Loc = VolatileQualLoc;
   1757   }
   1758   if (Quals & Qualifiers::Restrict) {
   1759     RestrictFixIt = FixItHint::CreateRemoval(RestrictQualLoc);
   1760     QualStr += (NumQuals == 0 ? "restrict" : " restrict");
   1761     ++NumQuals;
   1762     if (!Loc.isValid() || SM.isBeforeInTranslationUnit(RestrictQualLoc, Loc))
   1763       Loc = RestrictQualLoc;
   1764   }
   1765 
   1766   assert(NumQuals > 0 && "No known qualifiers?");
   1767 
   1768   S.Diag(Loc, diag::warn_qual_return_type)
   1769     << QualStr << NumQuals << ConstFixIt << VolatileFixIt << RestrictFixIt;
   1770 }
   1771 
   1772 static QualType GetDeclSpecTypeForDeclarator(TypeProcessingState &state,
   1773                                              TypeSourceInfo *&ReturnTypeInfo) {
   1774   Sema &SemaRef = state.getSema();
   1775   Declarator &D = state.getDeclarator();
   1776   QualType T;
   1777   ReturnTypeInfo = 0;
   1778 
   1779   // The TagDecl owned by the DeclSpec.
   1780   TagDecl *OwnedTagDecl = 0;
   1781 
   1782   switch (D.getName().getKind()) {
   1783   case UnqualifiedId::IK_ImplicitSelfParam:
   1784   case UnqualifiedId::IK_OperatorFunctionId:
   1785   case UnqualifiedId::IK_Identifier:
   1786   case UnqualifiedId::IK_LiteralOperatorId:
   1787   case UnqualifiedId::IK_TemplateId:
   1788     T = ConvertDeclSpecToType(state);
   1789 
   1790     if (!D.isInvalidType() && D.getDeclSpec().isTypeSpecOwned()) {
   1791       OwnedTagDecl = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
   1792       // Owned declaration is embedded in declarator.
   1793       OwnedTagDecl->setEmbeddedInDeclarator(true);
   1794     }
   1795     break;
   1796 
   1797   case UnqualifiedId::IK_ConstructorName:
   1798   case UnqualifiedId::IK_ConstructorTemplateId:
   1799   case UnqualifiedId::IK_DestructorName:
   1800     // Constructors and destructors don't have return types. Use
   1801     // "void" instead.
   1802     T = SemaRef.Context.VoidTy;
   1803     break;
   1804 
   1805   case UnqualifiedId::IK_ConversionFunctionId:
   1806     // The result type of a conversion function is the type that it
   1807     // converts to.
   1808     T = SemaRef.GetTypeFromParser(D.getName().ConversionFunctionId,
   1809                                   &ReturnTypeInfo);
   1810     break;
   1811   }
   1812 
   1813   if (D.getAttributes())
   1814     distributeTypeAttrsFromDeclarator(state, T);
   1815 
   1816   // C++11 [dcl.spec.auto]p5: reject 'auto' if it is not in an allowed context.
   1817   // In C++11, a function declarator using 'auto' must have a trailing return
   1818   // type (this is checked later) and we can skip this. In other languages
   1819   // using auto, we need to check regardless.
   1820   if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
   1821       (!SemaRef.getLangOpts().CPlusPlus0x || !D.isFunctionDeclarator())) {
   1822     int Error = -1;
   1823 
   1824     switch (D.getContext()) {
   1825     case Declarator::KNRTypeListContext:
   1826       llvm_unreachable("K&R type lists aren't allowed in C++");
   1827     case Declarator::LambdaExprContext:
   1828       llvm_unreachable("Can't specify a type specifier in lambda grammar");
   1829     case Declarator::ObjCParameterContext:
   1830     case Declarator::ObjCResultContext:
   1831     case Declarator::PrototypeContext:
   1832       Error = 0; // Function prototype
   1833       break;
   1834     case Declarator::MemberContext:
   1835       if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static)
   1836         break;
   1837       switch (cast<TagDecl>(SemaRef.CurContext)->getTagKind()) {
   1838       case TTK_Enum: llvm_unreachable("unhandled tag kind");
   1839       case TTK_Struct: Error = 1; /* Struct member */ break;
   1840       case TTK_Union:  Error = 2; /* Union member */ break;
   1841       case TTK_Class:  Error = 3; /* Class member */ break;
   1842       }
   1843       break;
   1844     case Declarator::CXXCatchContext:
   1845     case Declarator::ObjCCatchContext:
   1846       Error = 4; // Exception declaration
   1847       break;
   1848     case Declarator::TemplateParamContext:
   1849       Error = 5; // Template parameter
   1850       break;
   1851     case Declarator::BlockLiteralContext:
   1852       Error = 6; // Block literal
   1853       break;
   1854     case Declarator::TemplateTypeArgContext:
   1855       Error = 7; // Template type argument
   1856       break;
   1857     case Declarator::AliasDeclContext:
   1858     case Declarator::AliasTemplateContext:
   1859       Error = 9; // Type alias
   1860       break;
   1861     case Declarator::TrailingReturnContext:
   1862       Error = 10; // Function return type
   1863       break;
   1864     case Declarator::TypeNameContext:
   1865       Error = 11; // Generic
   1866       break;
   1867     case Declarator::FileContext:
   1868     case Declarator::BlockContext:
   1869     case Declarator::ForContext:
   1870     case Declarator::ConditionContext:
   1871     case Declarator::CXXNewContext:
   1872       break;
   1873     }
   1874 
   1875     if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
   1876       Error = 8;
   1877 
   1878     // In Objective-C it is an error to use 'auto' on a function declarator.
   1879     if (D.isFunctionDeclarator())
   1880       Error = 10;
   1881 
   1882     // C++11 [dcl.spec.auto]p2: 'auto' is always fine if the declarator
   1883     // contains a trailing return type. That is only legal at the outermost
   1884     // level. Check all declarator chunks (outermost first) anyway, to give
   1885     // better diagnostics.
   1886     if (SemaRef.getLangOpts().CPlusPlus0x && Error != -1) {
   1887       for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
   1888         unsigned chunkIndex = e - i - 1;
   1889         state.setCurrentChunkIndex(chunkIndex);
   1890         DeclaratorChunk &DeclType = D.getTypeObject(chunkIndex);
   1891         if (DeclType.Kind == DeclaratorChunk::Function) {
   1892           const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
   1893           if (FTI.TrailingReturnType) {
   1894             Error = -1;
   1895             break;
   1896           }
   1897         }
   1898       }
   1899     }
   1900 
   1901     if (Error != -1) {
   1902       SemaRef.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
   1903                    diag::err_auto_not_allowed)
   1904         << Error;
   1905       T = SemaRef.Context.IntTy;
   1906       D.setInvalidType(true);
   1907     } else
   1908       SemaRef.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
   1909                    diag::warn_cxx98_compat_auto_type_specifier);
   1910   }
   1911 
   1912   if (SemaRef.getLangOpts().CPlusPlus &&
   1913       OwnedTagDecl && OwnedTagDecl->isCompleteDefinition()) {
   1914     // Check the contexts where C++ forbids the declaration of a new class
   1915     // or enumeration in a type-specifier-seq.
   1916     switch (D.getContext()) {
   1917     case Declarator::TrailingReturnContext:
   1918       // Class and enumeration definitions are syntactically not allowed in
   1919       // trailing return types.
   1920       llvm_unreachable("parser should not have allowed this");
   1921       break;
   1922     case Declarator::FileContext:
   1923     case Declarator::MemberContext:
   1924     case Declarator::BlockContext:
   1925     case Declarator::ForContext:
   1926     case Declarator::BlockLiteralContext:
   1927     case Declarator::LambdaExprContext:
   1928       // C++11 [dcl.type]p3:
   1929       //   A type-specifier-seq shall not define a class or enumeration unless
   1930       //   it appears in the type-id of an alias-declaration (7.1.3) that is not
   1931       //   the declaration of a template-declaration.
   1932     case Declarator::AliasDeclContext:
   1933       break;
   1934     case Declarator::AliasTemplateContext:
   1935       SemaRef.Diag(OwnedTagDecl->getLocation(),
   1936              diag::err_type_defined_in_alias_template)
   1937         << SemaRef.Context.getTypeDeclType(OwnedTagDecl);
   1938       break;
   1939     case Declarator::TypeNameContext:
   1940     case Declarator::TemplateParamContext:
   1941     case Declarator::CXXNewContext:
   1942     case Declarator::CXXCatchContext:
   1943     case Declarator::ObjCCatchContext:
   1944     case Declarator::TemplateTypeArgContext:
   1945       SemaRef.Diag(OwnedTagDecl->getLocation(),
   1946              diag::err_type_defined_in_type_specifier)
   1947         << SemaRef.Context.getTypeDeclType(OwnedTagDecl);
   1948       break;
   1949     case Declarator::PrototypeContext:
   1950     case Declarator::ObjCParameterContext:
   1951     case Declarator::ObjCResultContext:
   1952     case Declarator::KNRTypeListContext:
   1953       // C++ [dcl.fct]p6:
   1954       //   Types shall not be defined in return or parameter types.
   1955       SemaRef.Diag(OwnedTagDecl->getLocation(),
   1956                    diag::err_type_defined_in_param_type)
   1957         << SemaRef.Context.getTypeDeclType(OwnedTagDecl);
   1958       break;
   1959     case Declarator::ConditionContext:
   1960       // C++ 6.4p2:
   1961       // The type-specifier-seq shall not contain typedef and shall not declare
   1962       // a new class or enumeration.
   1963       SemaRef.Diag(OwnedTagDecl->getLocation(),
   1964                    diag::err_type_defined_in_condition);
   1965       break;
   1966     }
   1967   }
   1968 
   1969   return T;
   1970 }
   1971 
   1972 static std::string getFunctionQualifiersAsString(const FunctionProtoType *FnTy){
   1973   std::string Quals =
   1974     Qualifiers::fromCVRMask(FnTy->getTypeQuals()).getAsString();
   1975 
   1976   switch (FnTy->getRefQualifier()) {
   1977   case RQ_None:
   1978     break;
   1979 
   1980   case RQ_LValue:
   1981     if (!Quals.empty())
   1982       Quals += ' ';
   1983     Quals += '&';
   1984     break;
   1985 
   1986   case RQ_RValue:
   1987     if (!Quals.empty())
   1988       Quals += ' ';
   1989     Quals += "&&";
   1990     break;
   1991   }
   1992 
   1993   return Quals;
   1994 }
   1995 
   1996 /// Check that the function type T, which has a cv-qualifier or a ref-qualifier,
   1997 /// can be contained within the declarator chunk DeclType, and produce an
   1998 /// appropriate diagnostic if not.
   1999 static void checkQualifiedFunction(Sema &S, QualType T,
   2000                                    DeclaratorChunk &DeclType) {
   2001   // C++98 [dcl.fct]p4 / C++11 [dcl.fct]p6: a function type with a
   2002   // cv-qualifier or a ref-qualifier can only appear at the topmost level
   2003   // of a type.
   2004   int DiagKind = -1;
   2005   switch (DeclType.Kind) {
   2006   case DeclaratorChunk::Paren:
   2007   case DeclaratorChunk::MemberPointer:
   2008     // These cases are permitted.
   2009     return;
   2010   case DeclaratorChunk::Array:
   2011   case DeclaratorChunk::Function:
   2012     // These cases don't allow function types at all; no need to diagnose the
   2013     // qualifiers separately.
   2014     return;
   2015   case DeclaratorChunk::BlockPointer:
   2016     DiagKind = 0;
   2017     break;
   2018   case DeclaratorChunk::Pointer:
   2019     DiagKind = 1;
   2020     break;
   2021   case DeclaratorChunk::Reference:
   2022     DiagKind = 2;
   2023     break;
   2024   }
   2025 
   2026   assert(DiagKind != -1);
   2027   S.Diag(DeclType.Loc, diag::err_compound_qualified_function_type)
   2028     << DiagKind << isa<FunctionType>(T.IgnoreParens()) << T
   2029     << getFunctionQualifiersAsString(T->castAs<FunctionProtoType>());
   2030 }
   2031 
   2032 static TypeSourceInfo *GetFullTypeForDeclarator(TypeProcessingState &state,
   2033                                                 QualType declSpecType,
   2034                                                 TypeSourceInfo *TInfo) {
   2035 
   2036   QualType T = declSpecType;
   2037   Declarator &D = state.getDeclarator();
   2038   Sema &S = state.getSema();
   2039   ASTContext &Context = S.Context;
   2040   const LangOptions &LangOpts = S.getLangOpts();
   2041 
   2042   bool ImplicitlyNoexcept = false;
   2043   if (D.getName().getKind() == UnqualifiedId::IK_OperatorFunctionId &&
   2044       LangOpts.CPlusPlus0x) {
   2045     OverloadedOperatorKind OO = D.getName().OperatorFunctionId.Operator;
   2046     /// In C++0x, deallocation functions (normal and array operator delete)
   2047     /// are implicitly noexcept.
   2048     if (OO == OO_Delete || OO == OO_Array_Delete)
   2049       ImplicitlyNoexcept = true;
   2050   }
   2051 
   2052   // The name we're declaring, if any.
   2053   DeclarationName Name;
   2054   if (D.getIdentifier())
   2055     Name = D.getIdentifier();
   2056 
   2057   // Does this declaration declare a typedef-name?
   2058   bool IsTypedefName =
   2059     D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef ||
   2060     D.getContext() == Declarator::AliasDeclContext ||
   2061     D.getContext() == Declarator::AliasTemplateContext;
   2062 
   2063   // Does T refer to a function type with a cv-qualifier or a ref-qualifier?
   2064   bool IsQualifiedFunction = T->isFunctionProtoType() &&
   2065       (T->castAs<FunctionProtoType>()->getTypeQuals() != 0 ||
   2066        T->castAs<FunctionProtoType>()->getRefQualifier() != RQ_None);
   2067 
   2068   // Walk the DeclTypeInfo, building the recursive type as we go.
   2069   // DeclTypeInfos are ordered from the identifier out, which is
   2070   // opposite of what we want :).
   2071   for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
   2072     unsigned chunkIndex = e - i - 1;
   2073     state.setCurrentChunkIndex(chunkIndex);
   2074     DeclaratorChunk &DeclType = D.getTypeObject(chunkIndex);
   2075     if (IsQualifiedFunction) {
   2076       checkQualifiedFunction(S, T, DeclType);
   2077       IsQualifiedFunction = DeclType.Kind == DeclaratorChunk::Paren;
   2078     }
   2079     switch (DeclType.Kind) {
   2080     case DeclaratorChunk::Paren:
   2081       T = S.BuildParenType(T);
   2082       break;
   2083     case DeclaratorChunk::BlockPointer:
   2084       // If blocks are disabled, emit an error.
   2085       if (!LangOpts.Blocks)
   2086         S.Diag(DeclType.Loc, diag::err_blocks_disable);
   2087 
   2088       T = S.BuildBlockPointerType(T, D.getIdentifierLoc(), Name);
   2089       if (DeclType.Cls.TypeQuals)
   2090         T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Cls.TypeQuals);
   2091       break;
   2092     case DeclaratorChunk::Pointer:
   2093       // Verify that we're not building a pointer to pointer to function with
   2094       // exception specification.
   2095       if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
   2096         S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
   2097         D.setInvalidType(true);
   2098         // Build the type anyway.
   2099       }
   2100       if (LangOpts.ObjC1 && T->getAs<ObjCObjectType>()) {
   2101         T = Context.getObjCObjectPointerType(T);
   2102         if (DeclType.Ptr.TypeQuals)
   2103           T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Ptr.TypeQuals);
   2104         break;
   2105       }
   2106       T = S.BuildPointerType(T, DeclType.Loc, Name);
   2107       if (DeclType.Ptr.TypeQuals)
   2108         T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Ptr.TypeQuals);
   2109 
   2110       break;
   2111     case DeclaratorChunk::Reference: {
   2112       // Verify that we're not building a reference to pointer to function with
   2113       // exception specification.
   2114       if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
   2115         S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
   2116         D.setInvalidType(true);
   2117         // Build the type anyway.
   2118       }
   2119       T = S.BuildReferenceType(T, DeclType.Ref.LValueRef, DeclType.Loc, Name);
   2120 
   2121       Qualifiers Quals;
   2122       if (DeclType.Ref.HasRestrict)
   2123         T = S.BuildQualifiedType(T, DeclType.Loc, Qualifiers::Restrict);
   2124       break;
   2125     }
   2126     case DeclaratorChunk::Array: {
   2127       // Verify that we're not building an array of pointers to function with
   2128       // exception specification.
   2129       if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
   2130         S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
   2131         D.setInvalidType(true);
   2132         // Build the type anyway.
   2133       }
   2134       DeclaratorChunk::ArrayTypeInfo &ATI = DeclType.Arr;
   2135       Expr *ArraySize = static_cast<Expr*>(ATI.NumElts);
   2136       ArrayType::ArraySizeModifier ASM;
   2137       if (ATI.isStar)
   2138         ASM = ArrayType::Star;
   2139       else if (ATI.hasStatic)
   2140         ASM = ArrayType::Static;
   2141       else
   2142         ASM = ArrayType::Normal;
   2143       if (ASM == ArrayType::Star && !D.isPrototypeContext()) {
   2144         // FIXME: This check isn't quite right: it allows star in prototypes
   2145         // for function definitions, and disallows some edge cases detailed
   2146         // in http://gcc.gnu.org/ml/gcc-patches/2009-02/msg00133.html
   2147         S.Diag(DeclType.Loc, diag::err_array_star_outside_prototype);
   2148         ASM = ArrayType::Normal;
   2149         D.setInvalidType(true);
   2150       }
   2151       T = S.BuildArrayType(T, ASM, ArraySize, ATI.TypeQuals,
   2152                            SourceRange(DeclType.Loc, DeclType.EndLoc), Name);
   2153       break;
   2154     }
   2155     case DeclaratorChunk::Function: {
   2156       // If the function declarator has a prototype (i.e. it is not () and
   2157       // does not have a K&R-style identifier list), then the arguments are part
   2158       // of the type, otherwise the argument list is ().
   2159       const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
   2160       IsQualifiedFunction = FTI.TypeQuals || FTI.hasRefQualifier();
   2161 
   2162       // Check for auto functions and trailing return type and adjust the
   2163       // return type accordingly.
   2164       if (!D.isInvalidType()) {
   2165         // trailing-return-type is only required if we're declaring a function,
   2166         // and not, for instance, a pointer to a function.
   2167         if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
   2168             !FTI.TrailingReturnType && chunkIndex == 0) {
   2169           S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
   2170                diag::err_auto_missing_trailing_return);
   2171           T = Context.IntTy;
   2172           D.setInvalidType(true);
   2173         } else if (FTI.TrailingReturnType) {
   2174           // T must be exactly 'auto' at this point. See CWG issue 681.
   2175           if (isa<ParenType>(T)) {
   2176             S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
   2177                  diag::err_trailing_return_in_parens)
   2178               << T << D.getDeclSpec().getSourceRange();
   2179             D.setInvalidType(true);
   2180           } else if (D.getContext() != Declarator::LambdaExprContext &&
   2181                      (T.hasQualifiers() || !isa<AutoType>(T))) {
   2182             S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
   2183                  diag::err_trailing_return_without_auto)
   2184               << T << D.getDeclSpec().getSourceRange();
   2185             D.setInvalidType(true);
   2186           }
   2187 
   2188           T = S.GetTypeFromParser(
   2189             ParsedType::getFromOpaquePtr(FTI.TrailingReturnType),
   2190             &TInfo);
   2191         }
   2192       }
   2193 
   2194       // C99 6.7.5.3p1: The return type may not be a function or array type.
   2195       // For conversion functions, we'll diagnose this particular error later.
   2196       if ((T->isArrayType() || T->isFunctionType()) &&
   2197           (D.getName().getKind() != UnqualifiedId::IK_ConversionFunctionId)) {
   2198         unsigned diagID = diag::err_func_returning_array_function;
   2199         // Last processing chunk in block context means this function chunk
   2200         // represents the block.
   2201         if (chunkIndex == 0 &&
   2202             D.getContext() == Declarator::BlockLiteralContext)
   2203           diagID = diag::err_block_returning_array_function;
   2204         S.Diag(DeclType.Loc, diagID) << T->isFunctionType() << T;
   2205         T = Context.IntTy;
   2206         D.setInvalidType(true);
   2207       }
   2208 
   2209       // Do not allow returning half FP value.
   2210       // FIXME: This really should be in BuildFunctionType.
   2211       if (T->isHalfType()) {
   2212         S.Diag(D.getIdentifierLoc(),
   2213              diag::err_parameters_retval_cannot_have_fp16_type) << 1
   2214           << FixItHint::CreateInsertion(D.getIdentifierLoc(), "*");
   2215         D.setInvalidType(true);
   2216       }
   2217 
   2218       // cv-qualifiers on return types are pointless except when the type is a
   2219       // class type in C++.
   2220       if (isa<PointerType>(T) && T.getLocalCVRQualifiers() &&
   2221           (D.getName().getKind() != UnqualifiedId::IK_ConversionFunctionId) &&
   2222           (!LangOpts.CPlusPlus || !T->isDependentType())) {
   2223         assert(chunkIndex + 1 < e && "No DeclaratorChunk for the return type?");
   2224         DeclaratorChunk ReturnTypeChunk = D.getTypeObject(chunkIndex + 1);
   2225         assert(ReturnTypeChunk.Kind == DeclaratorChunk::Pointer);
   2226 
   2227         DeclaratorChunk::PointerTypeInfo &PTI = ReturnTypeChunk.Ptr;
   2228 
   2229         DiagnoseIgnoredQualifiers(PTI.TypeQuals,
   2230             SourceLocation::getFromRawEncoding(PTI.ConstQualLoc),
   2231             SourceLocation::getFromRawEncoding(PTI.VolatileQualLoc),
   2232             SourceLocation::getFromRawEncoding(PTI.RestrictQualLoc),
   2233             S);
   2234 
   2235       } else if (T.getCVRQualifiers() && D.getDeclSpec().getTypeQualifiers() &&
   2236           (!LangOpts.CPlusPlus ||
   2237            (!T->isDependentType() && !T->isRecordType()))) {
   2238 
   2239         DiagnoseIgnoredQualifiers(D.getDeclSpec().getTypeQualifiers(),
   2240                                   D.getDeclSpec().getConstSpecLoc(),
   2241                                   D.getDeclSpec().getVolatileSpecLoc(),
   2242                                   D.getDeclSpec().getRestrictSpecLoc(),
   2243                                   S);
   2244       }
   2245 
   2246       if (LangOpts.CPlusPlus && D.getDeclSpec().isTypeSpecOwned()) {
   2247         // C++ [dcl.fct]p6:
   2248         //   Types shall not be defined in return or parameter types.
   2249         TagDecl *Tag = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
   2250         if (Tag->isCompleteDefinition())
   2251           S.Diag(Tag->getLocation(), diag::err_type_defined_in_result_type)
   2252             << Context.getTypeDeclType(Tag);
   2253       }
   2254 
   2255       // Exception specs are not allowed in typedefs. Complain, but add it
   2256       // anyway.
   2257       if (IsTypedefName && FTI.getExceptionSpecType())
   2258         S.Diag(FTI.getExceptionSpecLoc(), diag::err_exception_spec_in_typedef)
   2259           << (D.getContext() == Declarator::AliasDeclContext ||
   2260               D.getContext() == Declarator::AliasTemplateContext);
   2261 
   2262       if (!FTI.NumArgs && !FTI.isVariadic && !LangOpts.CPlusPlus) {
   2263         // Simple void foo(), where the incoming T is the result type.
   2264         T = Context.getFunctionNoProtoType(T);
   2265       } else {
   2266         // We allow a zero-parameter variadic function in C if the
   2267         // function is marked with the "overloadable" attribute. Scan
   2268         // for this attribute now.
   2269         if (!FTI.NumArgs && FTI.isVariadic && !LangOpts.CPlusPlus) {
   2270           bool Overloadable = false;
   2271           for (const AttributeList *Attrs = D.getAttributes();
   2272                Attrs; Attrs = Attrs->getNext()) {
   2273             if (Attrs->getKind() == AttributeList::AT_overloadable) {
   2274               Overloadable = true;
   2275               break;
   2276             }
   2277           }
   2278 
   2279           if (!Overloadable)
   2280             S.Diag(FTI.getEllipsisLoc(), diag::err_ellipsis_first_arg);
   2281         }
   2282 
   2283         if (FTI.NumArgs && FTI.ArgInfo[0].Param == 0) {
   2284           // C99 6.7.5.3p3: Reject int(x,y,z) when it's not a function
   2285           // definition.
   2286           S.Diag(FTI.ArgInfo[0].IdentLoc, diag::err_ident_list_in_fn_declaration);
   2287           D.setInvalidType(true);
   2288           break;
   2289         }
   2290 
   2291         FunctionProtoType::ExtProtoInfo EPI;
   2292         EPI.Variadic = FTI.isVariadic;
   2293         EPI.HasTrailingReturn = FTI.TrailingReturnType;
   2294         EPI.TypeQuals = FTI.TypeQuals;
   2295         EPI.RefQualifier = !FTI.hasRefQualifier()? RQ_None
   2296                     : FTI.RefQualifierIsLValueRef? RQ_LValue
   2297                     : RQ_RValue;
   2298 
   2299         // Otherwise, we have a function with an argument list that is
   2300         // potentially variadic.
   2301         SmallVector<QualType, 16> ArgTys;
   2302         ArgTys.reserve(FTI.NumArgs);
   2303 
   2304         SmallVector<bool, 16> ConsumedArguments;
   2305         ConsumedArguments.reserve(FTI.NumArgs);
   2306         bool HasAnyConsumedArguments = false;
   2307 
   2308         for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
   2309           ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
   2310           QualType ArgTy = Param->getType();
   2311           assert(!ArgTy.isNull() && "Couldn't parse type?");
   2312 
   2313           // Adjust the parameter type.
   2314           assert((ArgTy == Context.getAdjustedParameterType(ArgTy)) &&
   2315                  "Unadjusted type?");
   2316 
   2317           // Look for 'void'.  void is allowed only as a single argument to a
   2318           // function with no other parameters (C99 6.7.5.3p10).  We record
   2319           // int(void) as a FunctionProtoType with an empty argument list.
   2320           if (ArgTy->isVoidType()) {
   2321             // If this is something like 'float(int, void)', reject it.  'void'
   2322             // is an incomplete type (C99 6.2.5p19) and function decls cannot
   2323             // have arguments of incomplete type.
   2324             if (FTI.NumArgs != 1 || FTI.isVariadic) {
   2325               S.Diag(DeclType.Loc, diag::err_void_only_param);
   2326               ArgTy = Context.IntTy;
   2327               Param->setType(ArgTy);
   2328             } else if (FTI.ArgInfo[i].Ident) {
   2329               // Reject, but continue to parse 'int(void abc)'.
   2330               S.Diag(FTI.ArgInfo[i].IdentLoc,
   2331                    diag::err_param_with_void_type);
   2332               ArgTy = Context.IntTy;
   2333               Param->setType(ArgTy);
   2334             } else {
   2335               // Reject, but continue to parse 'float(const void)'.
   2336               if (ArgTy.hasQualifiers())
   2337                 S.Diag(DeclType.Loc, diag::err_void_param_qualified);
   2338 
   2339               // Do not add 'void' to the ArgTys list.
   2340               break;
   2341             }
   2342           } else if (ArgTy->isHalfType()) {
   2343             // Disallow half FP arguments.
   2344             // FIXME: This really should be in BuildFunctionType.
   2345             S.Diag(Param->getLocation(),
   2346                diag::err_parameters_retval_cannot_have_fp16_type) << 0
   2347             << FixItHint::CreateInsertion(Param->getLocation(), "*");
   2348             D.setInvalidType();
   2349           } else if (!FTI.hasPrototype) {
   2350             if (ArgTy->isPromotableIntegerType()) {
   2351               ArgTy = Context.getPromotedIntegerType(ArgTy);
   2352               Param->setKNRPromoted(true);
   2353             } else if (const BuiltinType* BTy = ArgTy->getAs<BuiltinType>()) {
   2354               if (BTy->getKind() == BuiltinType::Float) {
   2355                 ArgTy = Context.DoubleTy;
   2356                 Param->setKNRPromoted(true);
   2357               }
   2358             }
   2359           }
   2360 
   2361           if (LangOpts.ObjCAutoRefCount) {
   2362             bool Consumed = Param->hasAttr<NSConsumedAttr>();
   2363             ConsumedArguments.push_back(Consumed);
   2364             HasAnyConsumedArguments |= Consumed;
   2365           }
   2366 
   2367           ArgTys.push_back(ArgTy);
   2368         }
   2369 
   2370         if (HasAnyConsumedArguments)
   2371           EPI.ConsumedArguments = ConsumedArguments.data();
   2372 
   2373         SmallVector<QualType, 4> Exceptions;
   2374         SmallVector<ParsedType, 2> DynamicExceptions;
   2375         SmallVector<SourceRange, 2> DynamicExceptionRanges;
   2376         Expr *NoexceptExpr = 0;
   2377 
   2378         if (FTI.getExceptionSpecType() == EST_Dynamic) {
   2379           // FIXME: It's rather inefficient to have to split into two vectors
   2380           // here.
   2381           unsigned N = FTI.NumExceptions;
   2382           DynamicExceptions.reserve(N);
   2383           DynamicExceptionRanges.reserve(N);
   2384           for (unsigned I = 0; I != N; ++I) {
   2385             DynamicExceptions.push_back(FTI.Exceptions[I].Ty);
   2386             DynamicExceptionRanges.push_back(FTI.Exceptions[I].Range);
   2387           }
   2388         } else if (FTI.getExceptionSpecType() == EST_ComputedNoexcept) {
   2389           NoexceptExpr = FTI.NoexceptExpr;
   2390         }
   2391 
   2392         S.checkExceptionSpecification(FTI.getExceptionSpecType(),
   2393                                       DynamicExceptions,
   2394                                       DynamicExceptionRanges,
   2395                                       NoexceptExpr,
   2396                                       Exceptions,
   2397                                       EPI);
   2398 
   2399         if (FTI.getExceptionSpecType() == EST_None &&
   2400             ImplicitlyNoexcept && chunkIndex == 0) {
   2401           // Only the outermost chunk is marked noexcept, of course.
   2402           EPI.ExceptionSpecType = EST_BasicNoexcept;
   2403         }
   2404 
   2405         T = Context.getFunctionType(T, ArgTys.data(), ArgTys.size(), EPI);
   2406       }
   2407 
   2408       break;
   2409     }
   2410     case DeclaratorChunk::MemberPointer:
   2411       // The scope spec must refer to a class, or be dependent.
   2412       CXXScopeSpec &SS = DeclType.Mem.Scope();
   2413       QualType ClsType;
   2414       if (SS.isInvalid()) {
   2415         // Avoid emitting extra errors if we already errored on the scope.
   2416         D.setInvalidType(true);
   2417       } else if (S.isDependentScopeSpecifier(SS) ||
   2418                  dyn_cast_or_null<CXXRecordDecl>(S.computeDeclContext(SS))) {
   2419         NestedNameSpecifier *NNS
   2420           = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
   2421         NestedNameSpecifier *NNSPrefix = NNS->getPrefix();
   2422         switch (NNS->getKind()) {
   2423         case NestedNameSpecifier::Identifier:
   2424           ClsType = Context.getDependentNameType(ETK_None, NNSPrefix,
   2425                                                  NNS->getAsIdentifier());
   2426           break;
   2427 
   2428         case NestedNameSpecifier::Namespace:
   2429         case NestedNameSpecifier::NamespaceAlias:
   2430         case NestedNameSpecifier::Global:
   2431           llvm_unreachable("Nested-name-specifier must name a type");
   2432 
   2433         case NestedNameSpecifier::TypeSpec:
   2434         case NestedNameSpecifier::TypeSpecWithTemplate:
   2435           ClsType = QualType(NNS->getAsType(), 0);
   2436           // Note: if the NNS has a prefix and ClsType is a nondependent
   2437           // TemplateSpecializationType, then the NNS prefix is NOT included
   2438           // in ClsType; hence we wrap ClsType into an ElaboratedType.
   2439           // NOTE: in particular, no wrap occurs if ClsType already is an
   2440           // Elaborated, DependentName, or DependentTemplateSpecialization.
   2441           if (NNSPrefix && isa<TemplateSpecializationType>(NNS->getAsType()))
   2442             ClsType = Context.getElaboratedType(ETK_None, NNSPrefix, ClsType);
   2443           break;
   2444         }
   2445       } else {
   2446         S.Diag(DeclType.Mem.Scope().getBeginLoc(),
   2447              diag::err_illegal_decl_mempointer_in_nonclass)
   2448           << (D.getIdentifier() ? D.getIdentifier()->getName() : "type name")
   2449           << DeclType.Mem.Scope().getRange();
   2450         D.setInvalidType(true);
   2451       }
   2452 
   2453       if (!ClsType.isNull())
   2454         T = S.BuildMemberPointerType(T, ClsType, DeclType.Loc, D.getIdentifier());
   2455       if (T.isNull()) {
   2456         T = Context.IntTy;
   2457         D.setInvalidType(true);
   2458       } else if (DeclType.Mem.TypeQuals) {
   2459         T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Mem.TypeQuals);
   2460       }
   2461       break;
   2462     }
   2463 
   2464     if (T.isNull()) {
   2465       D.setInvalidType(true);
   2466       T = Context.IntTy;
   2467     }
   2468 
   2469     // See if there are any attributes on this declarator chunk.
   2470     if (AttributeList *attrs = const_cast<AttributeList*>(DeclType.getAttrs()))
   2471       processTypeAttrs(state, T, false, attrs);
   2472   }
   2473 
   2474   if (LangOpts.CPlusPlus && T->isFunctionType()) {
   2475     const FunctionProtoType *FnTy = T->getAs<FunctionProtoType>();
   2476     assert(FnTy && "Why oh why is there not a FunctionProtoType here?");
   2477 
   2478     // C++ 8.3.5p4:
   2479     //   A cv-qualifier-seq shall only be part of the function type
   2480     //   for a nonstatic member function, the function type to which a pointer
   2481     //   to member refers, or the top-level function type of a function typedef
   2482     //   declaration.
   2483     //
   2484     // Core issue 547 also allows cv-qualifiers on function types that are
   2485     // top-level template type arguments.
   2486     bool FreeFunction;
   2487     if (!D.getCXXScopeSpec().isSet()) {
   2488       FreeFunction = ((D.getContext() != Declarator::MemberContext &&
   2489                        D.getContext() != Declarator::LambdaExprContext) ||
   2490                       D.getDeclSpec().isFriendSpecified());
   2491     } else {
   2492       DeclContext *DC = S.computeDeclContext(D.getCXXScopeSpec());
   2493       FreeFunction = (DC && !DC->isRecord());
   2494     }
   2495 
   2496     // C++0x [dcl.constexpr]p8: A constexpr specifier for a non-static member
   2497     // function that is not a constructor declares that function to be const.
   2498     if (D.getDeclSpec().isConstexprSpecified() && !FreeFunction &&
   2499         D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static &&
   2500         D.getName().getKind() != UnqualifiedId::IK_ConstructorName &&
   2501         D.getName().getKind() != UnqualifiedId::IK_ConstructorTemplateId &&
   2502         !(FnTy->getTypeQuals() & DeclSpec::TQ_const)) {
   2503       // Rebuild function type adding a 'const' qualifier.
   2504       FunctionProtoType::ExtProtoInfo EPI = FnTy->getExtProtoInfo();
   2505       EPI.TypeQuals |= DeclSpec::TQ_const;
   2506       T = Context.getFunctionType(FnTy->getResultType(),
   2507                                   FnTy->arg_type_begin(),
   2508                                   FnTy->getNumArgs(), EPI);
   2509     }
   2510 
   2511     // C++11 [dcl.fct]p6 (w/DR1417):
   2512     // An attempt to specify a function type with a cv-qualifier-seq or a
   2513     // ref-qualifier (including by typedef-name) is ill-formed unless it is:
   2514     //  - the function type for a non-static member function,
   2515     //  - the function type to which a pointer to member refers,
   2516     //  - the top-level function type of a function typedef declaration or
   2517     //    alias-declaration,
   2518     //  - the type-id in the default argument of a type-parameter, or
   2519     //  - the type-id of a template-argument for a type-parameter
   2520     if (IsQualifiedFunction &&
   2521         !(!FreeFunction &&
   2522           D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static) &&
   2523         !IsTypedefName &&
   2524         D.getContext() != Declarator::TemplateTypeArgContext) {
   2525       SourceLocation Loc = D.getLocStart();
   2526       SourceRange RemovalRange;
   2527       unsigned I;
   2528       if (D.isFunctionDeclarator(I)) {
   2529         SmallVector<SourceLocation, 4> RemovalLocs;
   2530         const DeclaratorChunk &Chunk = D.getTypeObject(I);
   2531         assert(Chunk.Kind == DeclaratorChunk::Function);
   2532         if (Chunk.Fun.hasRefQualifier())
   2533           RemovalLocs.push_back(Chunk.Fun.getRefQualifierLoc());
   2534         if (Chunk.Fun.TypeQuals & Qualifiers::Const)
   2535           RemovalLocs.push_back(Chunk.Fun.getConstQualifierLoc());
   2536         if (Chunk.Fun.TypeQuals & Qualifiers::Volatile)
   2537           RemovalLocs.push_back(Chunk.Fun.getVolatileQualifierLoc());
   2538         // FIXME: We do not track the location of the __restrict qualifier.
   2539         //if (Chunk.Fun.TypeQuals & Qualifiers::Restrict)
   2540         //  RemovalLocs.push_back(Chunk.Fun.getRestrictQualifierLoc());
   2541         if (!RemovalLocs.empty()) {
   2542           std::sort(RemovalLocs.begin(), RemovalLocs.end(),
   2543                     SourceManager::LocBeforeThanCompare(S.getSourceManager()));
   2544           RemovalRange = SourceRange(RemovalLocs.front(), RemovalLocs.back());
   2545           Loc = RemovalLocs.front();
   2546         }
   2547       }
   2548 
   2549       S.Diag(Loc, diag::err_invalid_qualified_function_type)
   2550         << FreeFunction << D.isFunctionDeclarator() << T
   2551         << getFunctionQualifiersAsString(FnTy)
   2552         << FixItHint::CreateRemoval(RemovalRange);
   2553 
   2554       // Strip the cv-qualifiers and ref-qualifiers from the type.
   2555       FunctionProtoType::ExtProtoInfo EPI = FnTy->getExtProtoInfo();
   2556       EPI.TypeQuals = 0;
   2557       EPI.RefQualifier = RQ_None;
   2558 
   2559       T = Context.getFunctionType(FnTy->getResultType(),
   2560                                   FnTy->arg_type_begin(),
   2561                                   FnTy->getNumArgs(), EPI);
   2562     }
   2563   }
   2564 
   2565   // Apply any undistributed attributes from the declarator.
   2566   if (!T.isNull())
   2567     if (AttributeList *attrs = D.getAttributes())
   2568       processTypeAttrs(state, T, false, attrs);
   2569 
   2570   // Diagnose any ignored type attributes.
   2571   if (!T.isNull()) state.diagnoseIgnoredTypeAttrs(T);
   2572 
   2573   // C++0x [dcl.constexpr]p9:
   2574   //  A constexpr specifier used in an object declaration declares the object
   2575   //  as const.
   2576   if (D.getDeclSpec().isConstexprSpecified() && T->isObjectType()) {
   2577     T.addConst();
   2578   }
   2579 
   2580   // If there was an ellipsis in the declarator, the declaration declares a
   2581   // parameter pack whose type may be a pack expansion type.
   2582   if (D.hasEllipsis() && !T.isNull()) {
   2583     // C++0x [dcl.fct]p13:
   2584     //   A declarator-id or abstract-declarator containing an ellipsis shall
   2585     //   only be used in a parameter-declaration. Such a parameter-declaration
   2586     //   is a parameter pack (14.5.3). [...]
   2587     switch (D.getContext()) {
   2588     case Declarator::PrototypeContext:
   2589       // C++0x [dcl.fct]p13:
   2590       //   [...] When it is part of a parameter-declaration-clause, the
   2591       //   parameter pack is a function parameter pack (14.5.3). The type T
   2592       //   of the declarator-id of the function parameter pack shall contain
   2593       //   a template parameter pack; each template parameter pack in T is
   2594       //   expanded by the function parameter pack.
   2595       //
   2596       // We represent function parameter packs as function parameters whose
   2597       // type is a pack expansion.
   2598       if (!T->containsUnexpandedParameterPack()) {
   2599         S.Diag(D.getEllipsisLoc(),
   2600              diag::err_function_parameter_pack_without_parameter_packs)
   2601           << T <<  D.getSourceRange();
   2602         D.setEllipsisLoc(SourceLocation());
   2603       } else {
   2604         T = Context.getPackExpansionType(T, llvm::Optional<unsigned>());
   2605       }
   2606       break;
   2607 
   2608     case Declarator::TemplateParamContext:
   2609       // C++0x [temp.param]p15:
   2610       //   If a template-parameter is a [...] is a parameter-declaration that
   2611       //   declares a parameter pack (8.3.5), then the template-parameter is a
   2612       //   template parameter pack (14.5.3).
   2613       //
   2614       // Note: core issue 778 clarifies that, if there are any unexpanded
   2615       // parameter packs in the type of the non-type template parameter, then
   2616       // it expands those parameter packs.
   2617       if (T->containsUnexpandedParameterPack())
   2618         T = Context.getPackExpansionType(T, llvm::Optional<unsigned>());
   2619       else
   2620         S.Diag(D.getEllipsisLoc(),
   2621                LangOpts.CPlusPlus0x
   2622                  ? diag::warn_cxx98_compat_variadic_templates
   2623                  : diag::ext_variadic_templates);
   2624       break;
   2625 
   2626     case Declarator::FileContext:
   2627     case Declarator::KNRTypeListContext:
   2628     case Declarator::ObjCParameterContext:  // FIXME: special diagnostic here?
   2629     case Declarator::ObjCResultContext:     // FIXME: special diagnostic here?
   2630     case Declarator::TypeNameContext:
   2631     case Declarator::CXXNewContext:
   2632     case Declarator::AliasDeclContext:
   2633     case Declarator::AliasTemplateContext:
   2634     case Declarator::MemberContext:
   2635     case Declarator::BlockContext:
   2636     case Declarator::ForContext:
   2637     case Declarator::ConditionContext:
   2638     case Declarator::CXXCatchContext:
   2639     case Declarator::ObjCCatchContext:
   2640     case Declarator::BlockLiteralContext:
   2641     case Declarator::LambdaExprContext:
   2642     case Declarator::TrailingReturnContext:
   2643     case Declarator::TemplateTypeArgContext:
   2644       // FIXME: We may want to allow parameter packs in block-literal contexts
   2645       // in the future.
   2646       S.Diag(D.getEllipsisLoc(), diag::err_ellipsis_in_declarator_not_parameter);
   2647       D.setEllipsisLoc(SourceLocation());
   2648       break;
   2649     }
   2650   }
   2651 
   2652   if (T.isNull())
   2653     return Context.getNullTypeSourceInfo();
   2654   else if (D.isInvalidType())
   2655     return Context.getTrivialTypeSourceInfo(T);
   2656 
   2657   return S.GetTypeSourceInfoForDeclarator(D, T, TInfo);
   2658 }
   2659 
   2660 /// GetTypeForDeclarator - Convert the type for the specified
   2661 /// declarator to Type instances.
   2662 ///
   2663 /// The result of this call will never be null, but the associated
   2664 /// type may be a null type if there's an unrecoverable error.
   2665 TypeSourceInfo *Sema::GetTypeForDeclarator(Declarator &D, Scope *S) {
   2666   // Determine the type of the declarator. Not all forms of declarator
   2667   // have a type.
   2668 
   2669   TypeProcessingState state(*this, D);
   2670 
   2671   TypeSourceInfo *ReturnTypeInfo = 0;
   2672   QualType T = GetDeclSpecTypeForDeclarator(state, ReturnTypeInfo);
   2673   if (T.isNull())
   2674     return Context.getNullTypeSourceInfo();
   2675 
   2676   if (D.isPrototypeContext() && getLangOpts().ObjCAutoRefCount)
   2677     inferARCWriteback(state, T);
   2678 
   2679   return GetFullTypeForDeclarator(state, T, ReturnTypeInfo);
   2680 }
   2681 
   2682 static void transferARCOwnershipToDeclSpec(Sema &S,
   2683                                            QualType &declSpecTy,
   2684                                            Qualifiers::ObjCLifetime ownership) {
   2685   if (declSpecTy->isObjCRetainableType() &&
   2686       declSpecTy.getObjCLifetime() == Qualifiers::OCL_None) {
   2687     Qualifiers qs;
   2688     qs.addObjCLifetime(ownership);
   2689     declSpecTy = S.Context.getQualifiedType(declSpecTy, qs);
   2690   }
   2691 }
   2692 
   2693 static void transferARCOwnershipToDeclaratorChunk(TypeProcessingState &state,
   2694                                             Qualifiers::ObjCLifetime ownership,
   2695                                             unsigned chunkIndex) {
   2696   Sema &S = state.getSema();
   2697   Declarator &D = state.getDeclarator();
   2698 
   2699   // Look for an explicit lifetime attribute.
   2700   DeclaratorChunk &chunk = D.getTypeObject(chunkIndex);
   2701   for (const AttributeList *attr = chunk.getAttrs(); attr;
   2702          attr = attr->getNext())
   2703     if (attr->getKind() == AttributeList::AT_objc_ownership)
   2704       return;
   2705 
   2706   const char *attrStr = 0;
   2707   switch (ownership) {
   2708   case Qualifiers::OCL_None: llvm_unreachable("no ownership!");
   2709   case Qualifiers::OCL_ExplicitNone: attrStr = "none"; break;
   2710   case Qualifiers::OCL_Strong: attrStr = "strong"; break;
   2711   case Qualifiers::OCL_Weak: attrStr = "weak"; break;
   2712   case Qualifiers::OCL_Autoreleasing: attrStr = "autoreleasing"; break;
   2713   }
   2714 
   2715   // If there wasn't one, add one (with an invalid source location
   2716   // so that we don't make an AttributedType for it).
   2717   AttributeList *attr = D.getAttributePool()
   2718     .create(&S.Context.Idents.get("objc_ownership"), SourceLocation(),
   2719             /*scope*/ 0, SourceLocation(),
   2720             &S.Context.Idents.get(attrStr), SourceLocation(),
   2721             /*args*/ 0, 0,
   2722             /*declspec*/ false, /*C++0x*/ false);
   2723   spliceAttrIntoList(*attr, chunk.getAttrListRef());
   2724 
   2725   // TODO: mark whether we did this inference?
   2726 }
   2727 
   2728 /// \brief Used for transfering ownership in casts resulting in l-values.
   2729 static void transferARCOwnership(TypeProcessingState &state,
   2730                                  QualType &declSpecTy,
   2731                                  Qualifiers::ObjCLifetime ownership) {
   2732   Sema &S = state.getSema();
   2733   Declarator &D = state.getDeclarator();
   2734 
   2735   int inner = -1;
   2736   bool hasIndirection = false;
   2737   for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
   2738     DeclaratorChunk &chunk = D.getTypeObject(i);
   2739     switch (chunk.Kind) {
   2740     case DeclaratorChunk::Paren:
   2741       // Ignore parens.
   2742       break;
   2743 
   2744     case DeclaratorChunk::Array:
   2745     case DeclaratorChunk::Reference:
   2746     case DeclaratorChunk::Pointer:
   2747       if (inner != -1)
   2748         hasIndirection = true;
   2749       inner = i;
   2750       break;
   2751 
   2752     case DeclaratorChunk::BlockPointer:
   2753       if (inner != -1)
   2754         transferARCOwnershipToDeclaratorChunk(state, ownership, i);
   2755       return;
   2756 
   2757     case DeclaratorChunk::Function:
   2758     case DeclaratorChunk::MemberPointer:
   2759       return;
   2760     }
   2761   }
   2762 
   2763   if (inner == -1)
   2764     return;
   2765 
   2766   DeclaratorChunk &chunk = D.getTypeObject(inner);
   2767   if (chunk.Kind == DeclaratorChunk::Pointer) {
   2768     if (declSpecTy->isObjCRetainableType())
   2769       return transferARCOwnershipToDeclSpec(S, declSpecTy, ownership);
   2770     if (declSpecTy->isObjCObjectType() && hasIndirection)
   2771       return transferARCOwnershipToDeclaratorChunk(state, ownership, inner);
   2772   } else {
   2773     assert(chunk.Kind == DeclaratorChunk::Array ||
   2774            chunk.Kind == DeclaratorChunk::Reference);
   2775     return transferARCOwnershipToDeclSpec(S, declSpecTy, ownership);
   2776   }
   2777 }
   2778 
   2779 TypeSourceInfo *Sema::GetTypeForDeclaratorCast(Declarator &D, QualType FromTy) {
   2780   TypeProcessingState state(*this, D);
   2781 
   2782   TypeSourceInfo *ReturnTypeInfo = 0;
   2783   QualType declSpecTy = GetDeclSpecTypeForDeclarator(state, ReturnTypeInfo);
   2784   if (declSpecTy.isNull())
   2785     return Context.getNullTypeSourceInfo();
   2786 
   2787   if (getLangOpts().ObjCAutoRefCount) {
   2788     Qualifiers::ObjCLifetime ownership = Context.getInnerObjCOwnership(FromTy);
   2789     if (ownership != Qualifiers::OCL_None)
   2790       transferARCOwnership(state, declSpecTy, ownership);
   2791   }
   2792 
   2793   return GetFullTypeForDeclarator(state, declSpecTy, ReturnTypeInfo);
   2794 }
   2795 
   2796 /// Map an AttributedType::Kind to an AttributeList::Kind.
   2797 static AttributeList::Kind getAttrListKind(AttributedType::Kind kind) {
   2798   switch (kind) {
   2799   case AttributedType::attr_address_space:
   2800     return AttributeList::AT_address_space;
   2801   case AttributedType::attr_regparm:
   2802     return AttributeList::AT_regparm;
   2803   case AttributedType::attr_vector_size:
   2804     return AttributeList::AT_vector_size;
   2805   case AttributedType::attr_neon_vector_type:
   2806     return AttributeList::AT_neon_vector_type;
   2807   case AttributedType::attr_neon_polyvector_type:
   2808     return AttributeList::AT_neon_polyvector_type;
   2809   case AttributedType::attr_objc_gc:
   2810     return AttributeList::AT_objc_gc;
   2811   case AttributedType::attr_objc_ownership:
   2812     return AttributeList::AT_objc_ownership;
   2813   case AttributedType::attr_noreturn:
   2814     return AttributeList::AT_noreturn;
   2815   case AttributedType::attr_cdecl:
   2816     return AttributeList::AT_cdecl;
   2817   case AttributedType::attr_fastcall:
   2818     return AttributeList::AT_fastcall;
   2819   case AttributedType::attr_stdcall:
   2820     return AttributeList::AT_stdcall;
   2821   case AttributedType::attr_thiscall:
   2822     return AttributeList::AT_thiscall;
   2823   case AttributedType::attr_pascal:
   2824     return AttributeList::AT_pascal;
   2825   case AttributedType::attr_pcs:
   2826     return AttributeList::AT_pcs;
   2827   }
   2828   llvm_unreachable("unexpected attribute kind!");
   2829 }
   2830 
   2831 static void fillAttributedTypeLoc(AttributedTypeLoc TL,
   2832                                   const AttributeList *attrs) {
   2833   AttributedType::Kind kind = TL.getAttrKind();
   2834 
   2835   assert(attrs && "no type attributes in the expected location!");
   2836   AttributeList::Kind parsedKind = getAttrListKind(kind);
   2837   while (attrs->getKind() != parsedKind) {
   2838     attrs = attrs->getNext();
   2839     assert(attrs && "no matching attribute in expected location!");
   2840   }
   2841 
   2842   TL.setAttrNameLoc(attrs->getLoc());
   2843   if (TL.hasAttrExprOperand())
   2844     TL.setAttrExprOperand(attrs->getArg(0));
   2845   else if (TL.hasAttrEnumOperand())
   2846     TL.setAttrEnumOperandLoc(attrs->getParameterLoc());
   2847 
   2848   // FIXME: preserve this information to here.
   2849   if (TL.hasAttrOperand())
   2850     TL.setAttrOperandParensRange(SourceRange());
   2851 }
   2852 
   2853 namespace {
   2854   class TypeSpecLocFiller : public TypeLocVisitor<TypeSpecLocFiller> {
   2855     ASTContext &Context;
   2856     const DeclSpec &DS;
   2857 
   2858   public:
   2859     TypeSpecLocFiller(ASTContext &Context, const DeclSpec &DS)
   2860       : Context(Context), DS(DS) {}
   2861 
   2862     void VisitAttributedTypeLoc(AttributedTypeLoc TL) {
   2863       fillAttributedTypeLoc(TL, DS.getAttributes().getList());
   2864       Visit(TL.getModifiedLoc());
   2865     }
   2866     void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
   2867       Visit(TL.getUnqualifiedLoc());
   2868     }
   2869     void VisitTypedefTypeLoc(TypedefTypeLoc TL) {
   2870       TL.setNameLoc(DS.getTypeSpecTypeLoc());
   2871     }
   2872     void VisitObjCInterfaceTypeLoc(ObjCInterfaceTypeLoc TL) {
   2873       TL.setNameLoc(DS.getTypeSpecTypeLoc());
   2874     }
   2875     void VisitObjCObjectTypeLoc(ObjCObjectTypeLoc TL) {
   2876       // Handle the base type, which might not have been written explicitly.
   2877       if (DS.getTypeSpecType() == DeclSpec::TST_unspecified) {
   2878         TL.setHasBaseTypeAsWritten(false);
   2879         TL.getBaseLoc().initialize(Context, SourceLocation());
   2880       } else {
   2881         TL.setHasBaseTypeAsWritten(true);
   2882         Visit(TL.getBaseLoc());
   2883       }
   2884 
   2885       // Protocol qualifiers.
   2886       if (DS.getProtocolQualifiers()) {
   2887         assert(TL.getNumProtocols() > 0);
   2888         assert(TL.getNumProtocols() == DS.getNumProtocolQualifiers());
   2889         TL.setLAngleLoc(DS.getProtocolLAngleLoc());
   2890         TL.setRAngleLoc(DS.getSourceRange().getEnd());
   2891         for (unsigned i = 0, e = DS.getNumProtocolQualifiers(); i != e; ++i)
   2892           TL.setProtocolLoc(i, DS.getProtocolLocs()[i]);
   2893       } else {
   2894         assert(TL.getNumProtocols() == 0);
   2895         TL.setLAngleLoc(SourceLocation());
   2896         TL.setRAngleLoc(SourceLocation());
   2897       }
   2898     }
   2899     void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
   2900       TL.setStarLoc(SourceLocation());
   2901       Visit(TL.getPointeeLoc());
   2902     }
   2903     void VisitTemplateSpecializationTypeLoc(TemplateSpecializationTypeLoc TL) {
   2904       TypeSourceInfo *TInfo = 0;
   2905       Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
   2906 
   2907       // If we got no declarator info from previous Sema routines,
   2908       // just fill with the typespec loc.
   2909       if (!TInfo) {
   2910         TL.initialize(Context, DS.getTypeSpecTypeNameLoc());
   2911         return;
   2912       }
   2913 
   2914       TypeLoc OldTL = TInfo->getTypeLoc();
   2915       if (TInfo->getType()->getAs<ElaboratedType>()) {
   2916         ElaboratedTypeLoc ElabTL = cast<ElaboratedTypeLoc>(OldTL);
   2917         TemplateSpecializationTypeLoc NamedTL =
   2918           cast<TemplateSpecializationTypeLoc>(ElabTL.getNamedTypeLoc());
   2919         TL.copy(NamedTL);
   2920       }
   2921       else
   2922         TL.copy(cast<TemplateSpecializationTypeLoc>(OldTL));
   2923     }
   2924     void VisitTypeOfExprTypeLoc(TypeOfExprTypeLoc TL) {
   2925       assert(DS.getTypeSpecType() == DeclSpec::TST_typeofExpr);
   2926       TL.setTypeofLoc(DS.getTypeSpecTypeLoc());
   2927       TL.setParensRange(DS.getTypeofParensRange());
   2928     }
   2929     void VisitTypeOfTypeLoc(TypeOfTypeLoc TL) {
   2930       assert(DS.getTypeSpecType() == DeclSpec::TST_typeofType);
   2931       TL.setTypeofLoc(DS.getTypeSpecTypeLoc());
   2932       TL.setParensRange(DS.getTypeofParensRange());
   2933       assert(DS.getRepAsType());
   2934       TypeSourceInfo *TInfo = 0;
   2935       Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
   2936       TL.setUnderlyingTInfo(TInfo);
   2937     }
   2938     void VisitUnaryTransformTypeLoc(UnaryTransformTypeLoc TL) {
   2939       // FIXME: This holds only because we only have one unary transform.
   2940       assert(DS.getTypeSpecType() == DeclSpec::TST_underlyingType);
   2941       TL.setKWLoc(DS.getTypeSpecTypeLoc());
   2942       TL.setParensRange(DS.getTypeofParensRange());
   2943       assert(DS.getRepAsType());
   2944       TypeSourceInfo *TInfo = 0;
   2945       Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
   2946       TL.setUnderlyingTInfo(TInfo);
   2947     }
   2948     void VisitBuiltinTypeLoc(BuiltinTypeLoc TL) {
   2949       // By default, use the source location of the type specifier.
   2950       TL.setBuiltinLoc(DS.getTypeSpecTypeLoc());
   2951       if (TL.needsExtraLocalData()) {
   2952         // Set info for the written builtin specifiers.
   2953         TL.getWrittenBuiltinSpecs() = DS.getWrittenBuiltinSpecs();
   2954         // Try to have a meaningful source location.
   2955         if (TL.getWrittenSignSpec() != TSS_unspecified)
   2956           // Sign spec loc overrides the others (e.g., 'unsigned long').
   2957           TL.setBuiltinLoc(DS.getTypeSpecSignLoc());
   2958         else if (TL.getWrittenWidthSpec() != TSW_unspecified)
   2959           // Width spec loc overrides type spec loc (e.g., 'short int').
   2960           TL.setBuiltinLoc(DS.getTypeSpecWidthLoc());
   2961       }
   2962     }
   2963     void VisitElaboratedTypeLoc(ElaboratedTypeLoc TL) {
   2964       ElaboratedTypeKeyword Keyword
   2965         = TypeWithKeyword::getKeywordForTypeSpec(DS.getTypeSpecType());
   2966       if (DS.getTypeSpecType() == TST_typename) {
   2967         TypeSourceInfo *TInfo = 0;
   2968         Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
   2969         if (TInfo) {
   2970           TL.copy(cast<ElaboratedTypeLoc>(TInfo->getTypeLoc()));
   2971           return;
   2972         }
   2973       }
   2974       TL.setElaboratedKeywordLoc(Keyword != ETK_None
   2975                                  ? DS.getTypeSpecTypeLoc()
   2976                                  : SourceLocation());
   2977       const CXXScopeSpec& SS = DS.getTypeSpecScope();
   2978       TL.setQualifierLoc(SS.getWithLocInContext(Context));
   2979       Visit(TL.getNextTypeLoc().getUnqualifiedLoc());
   2980     }
   2981     void VisitDependentNameTypeLoc(DependentNameTypeLoc TL) {
   2982       assert(DS.getTypeSpecType() == TST_typename);
   2983       TypeSourceInfo *TInfo = 0;
   2984       Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
   2985       assert(TInfo);
   2986       TL.copy(cast<DependentNameTypeLoc>(TInfo->getTypeLoc()));
   2987     }
   2988     void VisitDependentTemplateSpecializationTypeLoc(
   2989                                  DependentTemplateSpecializationTypeLoc TL) {
   2990       assert(DS.getTypeSpecType() == TST_typename);
   2991       TypeSourceInfo *TInfo = 0;
   2992       Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
   2993       assert(TInfo);
   2994       TL.copy(cast<DependentTemplateSpecializationTypeLoc>(
   2995                 TInfo->getTypeLoc()));
   2996     }
   2997     void VisitTagTypeLoc(TagTypeLoc TL) {
   2998       TL.setNameLoc(DS.getTypeSpecTypeNameLoc());
   2999     }
   3000     void VisitAtomicTypeLoc(AtomicTypeLoc TL) {
   3001       TL.setKWLoc(DS.getTypeSpecTypeLoc());
   3002       TL.setParensRange(DS.getTypeofParensRange());
   3003 
   3004       TypeSourceInfo *TInfo = 0;
   3005       Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
   3006       TL.getValueLoc().initializeFullCopy(TInfo->getTypeLoc());
   3007     }
   3008 
   3009     void VisitTypeLoc(TypeLoc TL) {
   3010       // FIXME: add other typespec types and change this to an assert.
   3011       TL.initialize(Context, DS.getTypeSpecTypeLoc());
   3012     }
   3013   };
   3014 
   3015   class DeclaratorLocFiller : public TypeLocVisitor<DeclaratorLocFiller> {
   3016     ASTContext &Context;
   3017     const DeclaratorChunk &Chunk;
   3018 
   3019   public:
   3020     DeclaratorLocFiller(ASTContext &Context, const DeclaratorChunk &Chunk)
   3021       : Context(Context), Chunk(Chunk) {}
   3022 
   3023     void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
   3024       llvm_unreachable("qualified type locs not expected here!");
   3025     }
   3026 
   3027     void VisitAttributedTypeLoc(AttributedTypeLoc TL) {
   3028       fillAttributedTypeLoc(TL, Chunk.getAttrs());
   3029     }
   3030     void VisitBlockPointerTypeLoc(BlockPointerTypeLoc TL) {
   3031       assert(Chunk.Kind == DeclaratorChunk::BlockPointer);
   3032       TL.setCaretLoc(Chunk.Loc);
   3033     }
   3034     void VisitPointerTypeLoc(PointerTypeLoc TL) {
   3035       assert(Chunk.Kind == DeclaratorChunk::Pointer);
   3036       TL.setStarLoc(Chunk.Loc);
   3037     }
   3038     void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
   3039       assert(Chunk.Kind == DeclaratorChunk::Pointer);
   3040       TL.setStarLoc(Chunk.Loc);
   3041     }
   3042     void VisitMemberPointerTypeLoc(MemberPointerTypeLoc TL) {
   3043       assert(Chunk.Kind == DeclaratorChunk::MemberPointer);
   3044       const CXXScopeSpec& SS = Chunk.Mem.Scope();
   3045       NestedNameSpecifierLoc NNSLoc = SS.getWithLocInContext(Context);
   3046 
   3047       const Type* ClsTy = TL.getClass();
   3048       QualType ClsQT = QualType(ClsTy, 0);
   3049       TypeSourceInfo *ClsTInfo = Context.CreateTypeSourceInfo(ClsQT, 0);
   3050       // Now copy source location info into the type loc component.
   3051       TypeLoc ClsTL = ClsTInfo->getTypeLoc();
   3052       switch (NNSLoc.getNestedNameSpecifier()->getKind()) {
   3053       case NestedNameSpecifier::Identifier:
   3054         assert(isa<DependentNameType>(ClsTy) && "Unexpected TypeLoc");
   3055         {
   3056           DependentNameTypeLoc DNTLoc = cast<DependentNameTypeLoc>(ClsTL);
   3057           DNTLoc.setElaboratedKeywordLoc(SourceLocation());
   3058           DNTLoc.setQualifierLoc(NNSLoc.getPrefix());
   3059           DNTLoc.setNameLoc(NNSLoc.getLocalBeginLoc());
   3060         }
   3061         break;
   3062 
   3063       case NestedNameSpecifier::TypeSpec:
   3064       case NestedNameSpecifier::TypeSpecWithTemplate:
   3065         if (isa<ElaboratedType>(ClsTy)) {
   3066           ElaboratedTypeLoc ETLoc = *cast<ElaboratedTypeLoc>(&ClsTL);
   3067           ETLoc.setElaboratedKeywordLoc(SourceLocation());
   3068           ETLoc.setQualifierLoc(NNSLoc.getPrefix());
   3069           TypeLoc NamedTL = ETLoc.getNamedTypeLoc();
   3070           NamedTL.initializeFullCopy(NNSLoc.getTypeLoc());
   3071         } else {
   3072           ClsTL.initializeFullCopy(NNSLoc.getTypeLoc());
   3073         }
   3074         break;
   3075 
   3076       case NestedNameSpecifier::Namespace:
   3077       case NestedNameSpecifier::NamespaceAlias:
   3078       case NestedNameSpecifier::Global:
   3079         llvm_unreachable("Nested-name-specifier must name a type");
   3080       }
   3081 
   3082       // Finally fill in MemberPointerLocInfo fields.
   3083       TL.setStarLoc(Chunk.Loc);
   3084       TL.setClassTInfo(ClsTInfo);
   3085     }
   3086     void VisitLValueReferenceTypeLoc(LValueReferenceTypeLoc TL) {
   3087       assert(Chunk.Kind == DeclaratorChunk::Reference);
   3088       // 'Amp' is misleading: this might have been originally
   3089       /// spelled with AmpAmp.
   3090       TL.setAmpLoc(Chunk.Loc);
   3091     }
   3092     void VisitRValueReferenceTypeLoc(RValueReferenceTypeLoc TL) {
   3093       assert(Chunk.Kind == DeclaratorChunk::Reference);
   3094       assert(!Chunk.Ref.LValueRef);
   3095       TL.setAmpAmpLoc(Chunk.Loc);
   3096     }
   3097     void VisitArrayTypeLoc(ArrayTypeLoc TL) {
   3098       assert(Chunk.Kind == DeclaratorChunk::Array);
   3099       TL.setLBracketLoc(Chunk.Loc);
   3100       TL.setRBracketLoc(Chunk.EndLoc);
   3101       TL.setSizeExpr(static_cast<Expr*>(Chunk.Arr.NumElts));
   3102     }
   3103     void VisitFunctionTypeLoc(FunctionTypeLoc TL) {
   3104       assert(Chunk.Kind == DeclaratorChunk::Function);
   3105       TL.setLocalRangeBegin(Chunk.Loc);
   3106       TL.setLocalRangeEnd(Chunk.EndLoc);
   3107       TL.setTrailingReturn(!!Chunk.Fun.TrailingReturnType);
   3108 
   3109       const DeclaratorChunk::FunctionTypeInfo &FTI = Chunk.Fun;
   3110       for (unsigned i = 0, e = TL.getNumArgs(), tpi = 0; i != e; ++i) {
   3111         ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
   3112         TL.setArg(tpi++, Param);
   3113       }
   3114       // FIXME: exception specs
   3115     }
   3116     void VisitParenTypeLoc(ParenTypeLoc TL) {
   3117       assert(Chunk.Kind == DeclaratorChunk::Paren);
   3118       TL.setLParenLoc(Chunk.Loc);
   3119       TL.setRParenLoc(Chunk.EndLoc);
   3120     }
   3121 
   3122     void VisitTypeLoc(TypeLoc TL) {
   3123       llvm_unreachable("unsupported TypeLoc kind in declarator!");
   3124     }
   3125   };
   3126 }
   3127 
   3128 /// \brief Create and instantiate a TypeSourceInfo with type source information.
   3129 ///
   3130 /// \param T QualType referring to the type as written in source code.
   3131 ///
   3132 /// \param ReturnTypeInfo For declarators whose return type does not show
   3133 /// up in the normal place in the declaration specifiers (such as a C++
   3134 /// conversion function), this pointer will refer to a type source information
   3135 /// for that return type.
   3136 TypeSourceInfo *
   3137 Sema::GetTypeSourceInfoForDeclarator(Declarator &D, QualType T,
   3138                                      TypeSourceInfo *ReturnTypeInfo) {
   3139   TypeSourceInfo *TInfo = Context.CreateTypeSourceInfo(T);
   3140   UnqualTypeLoc CurrTL = TInfo->getTypeLoc().getUnqualifiedLoc();
   3141 
   3142   // Handle parameter packs whose type is a pack expansion.
   3143   if (isa<PackExpansionType>(T)) {
   3144     cast<PackExpansionTypeLoc>(CurrTL).setEllipsisLoc(D.getEllipsisLoc());
   3145     CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
   3146   }
   3147 
   3148   for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
   3149     while (isa<AttributedTypeLoc>(CurrTL)) {
   3150       AttributedTypeLoc TL = cast<AttributedTypeLoc>(CurrTL);
   3151       fillAttributedTypeLoc(TL, D.getTypeObject(i).getAttrs());
   3152       CurrTL = TL.getNextTypeLoc().getUnqualifiedLoc();
   3153     }
   3154 
   3155     DeclaratorLocFiller(Context, D.getTypeObject(i)).Visit(CurrTL);
   3156     CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
   3157   }
   3158 
   3159   // If we have different source information for the return type, use
   3160   // that.  This really only applies to C++ conversion functions.
   3161   if (ReturnTypeInfo) {
   3162     TypeLoc TL = ReturnTypeInfo->getTypeLoc();
   3163     assert(TL.getFullDataSize() == CurrTL.getFullDataSize());
   3164     memcpy(CurrTL.getOpaqueData(), TL.getOpaqueData(), TL.getFullDataSize());
   3165   } else {
   3166     TypeSpecLocFiller(Context, D.getDeclSpec()).Visit(CurrTL);
   3167   }
   3168 
   3169   return TInfo;
   3170 }
   3171 
   3172 /// \brief Create a LocInfoType to hold the given QualType and TypeSourceInfo.
   3173 ParsedType Sema::CreateParsedType(QualType T, TypeSourceInfo *TInfo) {
   3174   // FIXME: LocInfoTypes are "transient", only needed for passing to/from Parser
   3175   // and Sema during declaration parsing. Try deallocating/caching them when
   3176   // it's appropriate, instead of allocating them and keeping them around.
   3177   LocInfoType *LocT = (LocInfoType*)BumpAlloc.Allocate(sizeof(LocInfoType),
   3178                                                        TypeAlignment);
   3179   new (LocT) LocInfoType(T, TInfo);
   3180   assert(LocT->getTypeClass() != T->getTypeClass() &&
   3181          "LocInfoType's TypeClass conflicts with an existing Type class");
   3182   return ParsedType::make(QualType(LocT, 0));
   3183 }
   3184 
   3185 void LocInfoType::getAsStringInternal(std::string &Str,
   3186                                       const PrintingPolicy &Policy) const {
   3187   llvm_unreachable("LocInfoType leaked into the type system; an opaque TypeTy*"
   3188          " was used directly instead of getting the QualType through"
   3189          " GetTypeFromParser");
   3190 }
   3191 
   3192 TypeResult Sema::ActOnTypeName(Scope *S, Declarator &D) {
   3193   // C99 6.7.6: Type names have no identifier.  This is already validated by
   3194   // the parser.
   3195   assert(D.getIdentifier() == 0 && "Type name should have no identifier!");
   3196 
   3197   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
   3198   QualType T = TInfo->getType();
   3199   if (D.isInvalidType())
   3200     return true;
   3201 
   3202   // Make sure there are no unused decl attributes on the declarator.
   3203   // We don't want to do this for ObjC parameters because we're going
   3204   // to apply them to the actual parameter declaration.
   3205   if (D.getContext() != Declarator::ObjCParameterContext)
   3206     checkUnusedDeclAttributes(D);
   3207 
   3208   if (getLangOpts().CPlusPlus) {
   3209     // Check that there are no default arguments (C++ only).
   3210     CheckExtraCXXDefaultArguments(D);
   3211   }
   3212 
   3213   return CreateParsedType(T, TInfo);
   3214 }
   3215 
   3216 ParsedType Sema::ActOnObjCInstanceType(SourceLocation Loc) {
   3217   QualType T = Context.getObjCInstanceType();
   3218   TypeSourceInfo *TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
   3219   return CreateParsedType(T, TInfo);
   3220 }
   3221 
   3222 
   3223 //===----------------------------------------------------------------------===//
   3224 // Type Attribute Processing
   3225 //===----------------------------------------------------------------------===//
   3226 
   3227 /// HandleAddressSpaceTypeAttribute - Process an address_space attribute on the
   3228 /// specified type.  The attribute contains 1 argument, the id of the address
   3229 /// space for the type.
   3230 static void HandleAddressSpaceTypeAttribute(QualType &Type,
   3231                                             const AttributeList &Attr, Sema &S){
   3232 
   3233   // If this type is already address space qualified, reject it.
   3234   // ISO/IEC TR 18037 S5.3 (amending C99 6.7.3): "No type shall be qualified by
   3235   // qualifiers for two or more different address spaces."
   3236   if (Type.getAddressSpace()) {
   3237     S.Diag(Attr.getLoc(), diag::err_attribute_address_multiple_qualifiers);
   3238     Attr.setInvalid();
   3239     return;
   3240   }
   3241 
   3242   // ISO/IEC TR 18037 S5.3 (amending C99 6.7.3): "A function type shall not be
   3243   // qualified by an address-space qualifier."
   3244   if (Type->isFunctionType()) {
   3245     S.Diag(Attr.getLoc(), diag::err_attribute_address_function_type);
   3246     Attr.setInvalid();
   3247     return;
   3248   }
   3249 
   3250   // Check the attribute arguments.
   3251   if (Attr.getNumArgs() != 1) {
   3252     S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
   3253     Attr.setInvalid();
   3254     return;
   3255   }
   3256   Expr *ASArgExpr = static_cast<Expr *>(Attr.getArg(0));
   3257   llvm::APSInt addrSpace(32);
   3258   if (ASArgExpr->isTypeDependent() || ASArgExpr->isValueDependent() ||
   3259       !ASArgExpr->isIntegerConstantExpr(addrSpace, S.Context)) {
   3260     S.Diag(Attr.getLoc(), diag::err_attribute_address_space_not_int)
   3261       << ASArgExpr->getSourceRange();
   3262     Attr.setInvalid();
   3263     return;
   3264   }
   3265 
   3266   // Bounds checking.
   3267   if (addrSpace.isSigned()) {
   3268     if (addrSpace.isNegative()) {
   3269       S.Diag(Attr.getLoc(), diag::err_attribute_address_space_negative)
   3270         << ASArgExpr->getSourceRange();
   3271       Attr.setInvalid();
   3272       return;
   3273     }
   3274     addrSpace.setIsSigned(false);
   3275   }
   3276   llvm::APSInt max(addrSpace.getBitWidth());
   3277   max = Qualifiers::MaxAddressSpace;
   3278   if (addrSpace > max) {
   3279     S.Diag(Attr.getLoc(), diag::err_attribute_address_space_too_high)
   3280       << Qualifiers::MaxAddressSpace << ASArgExpr->getSourceRange();
   3281     Attr.setInvalid();
   3282     return;
   3283   }
   3284 
   3285   unsigned ASIdx = static_cast<unsigned>(addrSpace.getZExtValue());
   3286   Type = S.Context.getAddrSpaceQualType(Type, ASIdx);
   3287 }
   3288 
   3289 /// Does this type have a "direct" ownership qualifier?  That is,
   3290 /// is it written like "__strong id", as opposed to something like
   3291 /// "typeof(foo)", where that happens to be strong?
   3292 static bool hasDirectOwnershipQualifier(QualType type) {
   3293   // Fast path: no qualifier at all.
   3294   assert(type.getQualifiers().hasObjCLifetime());
   3295 
   3296   while (true) {
   3297     // __strong id
   3298     if (const AttributedType *attr = dyn_cast<AttributedType>(type)) {
   3299       if (attr->getAttrKind() == AttributedType::attr_objc_ownership)
   3300         return true;
   3301 
   3302       type = attr->getModifiedType();
   3303 
   3304     // X *__strong (...)
   3305     } else if (const ParenType *paren = dyn_cast<ParenType>(type)) {
   3306       type = paren->getInnerType();
   3307 
   3308     // That's it for things we want to complain about.  In particular,
   3309     // we do not want to look through typedefs, typeof(expr),
   3310     // typeof(type), or any other way that the type is somehow
   3311     // abstracted.
   3312     } else {
   3313 
   3314       return false;
   3315     }
   3316   }
   3317 }
   3318 
   3319 /// handleObjCOwnershipTypeAttr - Process an objc_ownership
   3320 /// attribute on the specified type.
   3321 ///
   3322 /// Returns 'true' if the attribute was handled.
   3323 static bool handleObjCOwnershipTypeAttr(TypeProcessingState &state,
   3324                                        AttributeList &attr,
   3325                                        QualType &type) {
   3326   bool NonObjCPointer = false;
   3327 
   3328   if (!type->isDependentType()) {
   3329     if (const PointerType *ptr = type->getAs<PointerType>()) {
   3330       QualType pointee = ptr->getPointeeType();
   3331       if (pointee->isObjCRetainableType() || pointee->isPointerType())
   3332         return false;
   3333       // It is important not to lose the source info that there was an attribute
   3334       // applied to non-objc pointer. We will create an attributed type but
   3335       // its type will be the same as the original type.
   3336       NonObjCPointer = true;
   3337     } else if (!type->isObjCRetainableType()) {
   3338       return false;
   3339     }
   3340   }
   3341 
   3342   Sema &S = state.getSema();
   3343   SourceLocation AttrLoc = attr.getLoc();
   3344   if (AttrLoc.isMacroID())
   3345     AttrLoc = S.getSourceManager().getImmediateExpansionRange(AttrLoc).first;
   3346 
   3347   if (!attr.getParameterName()) {
   3348     S.Diag(AttrLoc, diag::err_attribute_argument_n_not_string)
   3349       << "objc_ownership" << 1;
   3350     attr.setInvalid();
   3351     return true;
   3352   }
   3353 
   3354   // Consume lifetime attributes without further comment outside of
   3355   // ARC mode.
   3356   if (!S.getLangOpts().ObjCAutoRefCount)
   3357     return true;
   3358 
   3359   Qualifiers::ObjCLifetime lifetime;
   3360   if (attr.getParameterName()->isStr("none"))
   3361     lifetime = Qualifiers::OCL_ExplicitNone;
   3362   else if (attr.getParameterName()->isStr("strong"))
   3363     lifetime = Qualifiers::OCL_Strong;
   3364   else if (attr.getParameterName()->isStr("weak"))
   3365     lifetime = Qualifiers::OCL_Weak;
   3366   else if (attr.getParameterName()->isStr("autoreleasing"))
   3367     lifetime = Qualifiers::OCL_Autoreleasing;
   3368   else {
   3369     S.Diag(AttrLoc, diag::warn_attribute_type_not_supported)
   3370       << "objc_ownership" << attr.getParameterName();
   3371     attr.setInvalid();
   3372     return true;
   3373   }
   3374 
   3375   SplitQualType underlyingType = type.split();
   3376 
   3377   // Check for redundant/conflicting ownership qualifiers.
   3378   if (Qualifiers::ObjCLifetime previousLifetime
   3379         = type.getQualifiers().getObjCLifetime()) {
   3380     // If it's written directly, that's an error.
   3381     if (hasDirectOwnershipQualifier(type)) {
   3382       S.Diag(AttrLoc, diag::err_attr_objc_ownership_redundant)
   3383         << type;
   3384       return true;
   3385     }
   3386 
   3387     // Otherwise, if the qualifiers actually conflict, pull sugar off
   3388     // until we reach a type that is directly qualified.
   3389     if (previousLifetime != lifetime) {
   3390       // This should always terminate: the canonical type is
   3391       // qualified, so some bit of sugar must be hiding it.
   3392       while (!underlyingType.Quals.hasObjCLifetime()) {
   3393         underlyingType = underlyingType.getSingleStepDesugaredType();
   3394       }
   3395       underlyingType.Quals.removeObjCLifetime();
   3396     }
   3397   }
   3398 
   3399   underlyingType.Quals.addObjCLifetime(lifetime);
   3400 
   3401   if (NonObjCPointer) {
   3402     StringRef name = attr.getName()->getName();
   3403     switch (lifetime) {
   3404     case Qualifiers::OCL_None:
   3405     case Qualifiers::OCL_ExplicitNone:
   3406       break;
   3407     case Qualifiers::OCL_Strong: name = "__strong"; break;
   3408     case Qualifiers::OCL_Weak: name = "__weak"; break;
   3409     case Qualifiers::OCL_Autoreleasing: name = "__autoreleasing"; break;
   3410     }
   3411     S.Diag(AttrLoc, diag::warn_objc_object_attribute_wrong_type)
   3412       << name << type;
   3413   }
   3414 
   3415   QualType origType = type;
   3416   if (!NonObjCPointer)
   3417     type = S.Context.getQualifiedType(underlyingType);
   3418 
   3419   // If we have a valid source location for the attribute, use an
   3420   // AttributedType instead.
   3421   if (AttrLoc.isValid())
   3422     type = S.Context.getAttributedType(AttributedType::attr_objc_ownership,
   3423                                        origType, type);
   3424 
   3425   // Forbid __weak if the runtime doesn't support it.
   3426   if (lifetime == Qualifiers::OCL_Weak &&
   3427       !S.getLangOpts().ObjCRuntimeHasWeak && !NonObjCPointer) {
   3428 
   3429     // Actually, delay this until we know what we're parsing.
   3430     if (S.DelayedDiagnostics.shouldDelayDiagnostics()) {
   3431       S.DelayedDiagnostics.add(
   3432           sema::DelayedDiagnostic::makeForbiddenType(
   3433               S.getSourceManager().getExpansionLoc(AttrLoc),
   3434               diag::err_arc_weak_no_runtime, type, /*ignored*/ 0));
   3435     } else {
   3436       S.Diag(AttrLoc, diag::err_arc_weak_no_runtime);
   3437     }
   3438 
   3439     attr.setInvalid();
   3440     return true;
   3441   }
   3442 
   3443   // Forbid __weak for class objects marked as
   3444   // objc_arc_weak_reference_unavailable
   3445   if (lifetime == Qualifiers::OCL_Weak) {
   3446     QualType T = type;
   3447     while (const PointerType *ptr = T->getAs<PointerType>())
   3448       T = ptr->getPointeeType();
   3449     if (const ObjCObjectPointerType *ObjT = T->getAs<ObjCObjectPointerType>()) {
   3450       ObjCInterfaceDecl *Class = ObjT->getInterfaceDecl();
   3451       if (Class->isArcWeakrefUnavailable()) {
   3452           S.Diag(AttrLoc, diag::err_arc_unsupported_weak_class);
   3453           S.Diag(ObjT->getInterfaceDecl()->getLocation(),
   3454                  diag::note_class_declared);
   3455       }
   3456     }
   3457   }
   3458 
   3459   return true;
   3460 }
   3461 
   3462 /// handleObjCGCTypeAttr - Process the __attribute__((objc_gc)) type
   3463 /// attribute on the specified type.  Returns true to indicate that
   3464 /// the attribute was handled, false to indicate that the type does
   3465 /// not permit the attribute.
   3466 static bool handleObjCGCTypeAttr(TypeProcessingState &state,
   3467                                  AttributeList &attr,
   3468                                  QualType &type) {
   3469   Sema &S = state.getSema();
   3470 
   3471   // Delay if this isn't some kind of pointer.
   3472   if (!type->isPointerType() &&
   3473       !type->isObjCObjectPointerType() &&
   3474       !type->isBlockPointerType())
   3475     return false;
   3476 
   3477   if (type.getObjCGCAttr() != Qualifiers::GCNone) {
   3478     S.Diag(attr.getLoc(), diag::err_attribute_multiple_objc_gc);
   3479     attr.setInvalid();
   3480     return true;
   3481   }
   3482 
   3483   // Check the attribute arguments.
   3484   if (!attr.getParameterName()) {
   3485     S.Diag(attr.getLoc(), diag::err_attribute_argument_n_not_string)
   3486       << "objc_gc" << 1;
   3487     attr.setInvalid();
   3488     return true;
   3489   }
   3490   Qualifiers::GC GCAttr;
   3491   if (attr.getNumArgs() != 0) {
   3492     S.Diag(attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
   3493     attr.setInvalid();
   3494     return true;
   3495   }
   3496   if (attr.getParameterName()->isStr("weak"))
   3497     GCAttr = Qualifiers::Weak;
   3498   else if (attr.getParameterName()->isStr("strong"))
   3499     GCAttr = Qualifiers::Strong;
   3500   else {
   3501     S.Diag(attr.getLoc(), diag::warn_attribute_type_not_supported)
   3502       << "objc_gc" << attr.getParameterName();
   3503     attr.setInvalid();
   3504     return true;
   3505   }
   3506 
   3507   QualType origType = type;
   3508   type = S.Context.getObjCGCQualType(origType, GCAttr);
   3509 
   3510   // Make an attributed type to preserve the source information.
   3511   if (attr.getLoc().isValid())
   3512     type = S.Context.getAttributedType(AttributedType::attr_objc_gc,
   3513                                        origType, type);
   3514 
   3515   return true;
   3516 }
   3517 
   3518 namespace {
   3519   /// A helper class to unwrap a type down to a function for the
   3520   /// purposes of applying attributes there.
   3521   ///
   3522   /// Use:
   3523   ///   FunctionTypeUnwrapper unwrapped(SemaRef, T);
   3524   ///   if (unwrapped.isFunctionType()) {
   3525   ///     const FunctionType *fn = unwrapped.get();
   3526   ///     // change fn somehow
   3527   ///     T = unwrapped.wrap(fn);
   3528   ///   }
   3529   struct FunctionTypeUnwrapper {
   3530     enum WrapKind {
   3531       Desugar,
   3532       Parens,
   3533       Pointer,
   3534       BlockPointer,
   3535       Reference,
   3536       MemberPointer
   3537     };
   3538 
   3539     QualType Original;
   3540     const FunctionType *Fn;
   3541     SmallVector<unsigned char /*WrapKind*/, 8> Stack;
   3542 
   3543     FunctionTypeUnwrapper(Sema &S, QualType T) : Original(T) {
   3544       while (true) {
   3545         const Type *Ty = T.getTypePtr();
   3546         if (isa<FunctionType>(Ty)) {
   3547           Fn = cast<FunctionType>(Ty);
   3548           return;
   3549         } else if (isa<ParenType>(Ty)) {
   3550           T = cast<ParenType>(Ty)->getInnerType();
   3551           Stack.push_back(Parens);
   3552         } else if (isa<PointerType>(Ty)) {
   3553           T = cast<PointerType>(Ty)->getPointeeType();
   3554           Stack.push_back(Pointer);
   3555         } else if (isa<BlockPointerType>(Ty)) {
   3556           T = cast<BlockPointerType>(Ty)->getPointeeType();
   3557           Stack.push_back(BlockPointer);
   3558         } else if (isa<MemberPointerType>(Ty)) {
   3559           T = cast<MemberPointerType>(Ty)->getPointeeType();
   3560           Stack.push_back(MemberPointer);
   3561         } else if (isa<ReferenceType>(Ty)) {
   3562           T = cast<ReferenceType>(Ty)->getPointeeType();
   3563           Stack.push_back(Reference);
   3564         } else {
   3565           const Type *DTy = Ty->getUnqualifiedDesugaredType();
   3566           if (Ty == DTy) {
   3567             Fn = 0;
   3568             return;
   3569           }
   3570 
   3571           T = QualType(DTy, 0);
   3572           Stack.push_back(Desugar);
   3573         }
   3574       }
   3575     }
   3576 
   3577     bool isFunctionType() const { return (Fn != 0); }
   3578     const FunctionType *get() const { return Fn; }
   3579 
   3580     QualType wrap(Sema &S, const FunctionType *New) {
   3581       // If T wasn't modified from the unwrapped type, do nothing.
   3582       if (New == get()) return Original;
   3583 
   3584       Fn = New;
   3585       return wrap(S.Context, Original, 0);
   3586     }
   3587 
   3588   private:
   3589     QualType wrap(ASTContext &C, QualType Old, unsigned I) {
   3590       if (I == Stack.size())
   3591         return C.getQualifiedType(Fn, Old.getQualifiers());
   3592 
   3593       // Build up the inner type, applying the qualifiers from the old
   3594       // type to the new type.
   3595       SplitQualType SplitOld = Old.split();
   3596 
   3597       // As a special case, tail-recurse if there are no qualifiers.
   3598       if (SplitOld.Quals.empty())
   3599         return wrap(C, SplitOld.Ty, I);
   3600       return C.getQualifiedType(wrap(C, SplitOld.Ty, I), SplitOld.Quals);
   3601     }
   3602 
   3603     QualType wrap(ASTContext &C, const Type *Old, unsigned I) {
   3604       if (I == Stack.size()) return QualType(Fn, 0);
   3605 
   3606       switch (static_cast<WrapKind>(Stack[I++])) {
   3607       case Desugar:
   3608         // This is the point at which we potentially lose source
   3609         // information.
   3610         return wrap(C, Old->getUnqualifiedDesugaredType(), I);
   3611 
   3612       case Parens: {
   3613         QualType New = wrap(C, cast<ParenType>(Old)->getInnerType(), I);
   3614         return C.getParenType(New);
   3615       }
   3616 
   3617       case Pointer: {
   3618         QualType New = wrap(C, cast<PointerType>(Old)->getPointeeType(), I);
   3619         return C.getPointerType(New);
   3620       }
   3621 
   3622       case BlockPointer: {
   3623         QualType New = wrap(C, cast<BlockPointerType>(Old)->getPointeeType(),I);
   3624         return C.getBlockPointerType(New);
   3625       }
   3626 
   3627       case MemberPointer: {
   3628         const MemberPointerType *OldMPT = cast<MemberPointerType>(Old);
   3629         QualType New = wrap(C, OldMPT->getPointeeType(), I);
   3630         return C.getMemberPointerType(New, OldMPT->getClass());
   3631       }
   3632 
   3633       case Reference: {
   3634         const ReferenceType *OldRef = cast<ReferenceType>(Old);
   3635         QualType New = wrap(C, OldRef->getPointeeType(), I);
   3636         if (isa<LValueReferenceType>(OldRef))
   3637           return C.getLValueReferenceType(New, OldRef->isSpelledAsLValue());
   3638         else
   3639           return C.getRValueReferenceType(New);
   3640       }
   3641       }
   3642 
   3643       llvm_unreachable("unknown wrapping kind");
   3644     }
   3645   };
   3646 }
   3647 
   3648 /// Process an individual function attribute.  Returns true to
   3649 /// indicate that the attribute was handled, false if it wasn't.
   3650 static bool handleFunctionTypeAttr(TypeProcessingState &state,
   3651                                    AttributeList &attr,
   3652                                    QualType &type) {
   3653   Sema &S = state.getSema();
   3654 
   3655   FunctionTypeUnwrapper unwrapped(S, type);
   3656 
   3657   if (attr.getKind() == AttributeList::AT_noreturn) {
   3658     if (S.CheckNoReturnAttr(attr))
   3659       return true;
   3660 
   3661     // Delay if this is not a function type.
   3662     if (!unwrapped.isFunctionType())
   3663       return false;
   3664 
   3665     // Otherwise we can process right away.
   3666     FunctionType::ExtInfo EI = unwrapped.get()->getExtInfo().withNoReturn(true);
   3667     type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
   3668     return true;
   3669   }
   3670 
   3671   // ns_returns_retained is not always a type attribute, but if we got
   3672   // here, we're treating it as one right now.
   3673   if (attr.getKind() == AttributeList::AT_ns_returns_retained) {
   3674     assert(S.getLangOpts().ObjCAutoRefCount &&
   3675            "ns_returns_retained treated as type attribute in non-ARC");
   3676     if (attr.getNumArgs()) return true;
   3677 
   3678     // Delay if this is not a function type.
   3679     if (!unwrapped.isFunctionType())
   3680       return false;
   3681 
   3682     FunctionType::ExtInfo EI
   3683       = unwrapped.get()->getExtInfo().withProducesResult(true);
   3684     type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
   3685     return true;
   3686   }
   3687 
   3688   if (attr.getKind() == AttributeList::AT_regparm) {
   3689     unsigned value;
   3690     if (S.CheckRegparmAttr(attr, value))
   3691       return true;
   3692 
   3693     // Delay if this is not a function type.
   3694     if (!unwrapped.isFunctionType())
   3695       return false;
   3696 
   3697     // Diagnose regparm with fastcall.
   3698     const FunctionType *fn = unwrapped.get();
   3699     CallingConv CC = fn->getCallConv();
   3700     if (CC == CC_X86FastCall) {
   3701       S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
   3702         << FunctionType::getNameForCallConv(CC)
   3703         << "regparm";
   3704       attr.setInvalid();
   3705       return true;
   3706     }
   3707 
   3708     FunctionType::ExtInfo EI =
   3709       unwrapped.get()->getExtInfo().withRegParm(value);
   3710     type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
   3711     return true;
   3712   }
   3713 
   3714   // Otherwise, a calling convention.
   3715   CallingConv CC;
   3716   if (S.CheckCallingConvAttr(attr, CC))
   3717     return true;
   3718 
   3719   // Delay if the type didn't work out to a function.
   3720   if (!unwrapped.isFunctionType()) return false;
   3721 
   3722   const FunctionType *fn = unwrapped.get();
   3723   CallingConv CCOld = fn->getCallConv();
   3724   if (S.Context.getCanonicalCallConv(CC) ==
   3725       S.Context.getCanonicalCallConv(CCOld)) {
   3726     FunctionType::ExtInfo EI= unwrapped.get()->getExtInfo().withCallingConv(CC);
   3727     type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
   3728     return true;
   3729   }
   3730 
   3731   if (CCOld != (S.LangOpts.MRTD ? CC_X86StdCall : CC_Default)) {
   3732     // Should we diagnose reapplications of the same convention?
   3733     S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
   3734       << FunctionType::getNameForCallConv(CC)
   3735       << FunctionType::getNameForCallConv(CCOld);
   3736     attr.setInvalid();
   3737     return true;
   3738   }
   3739 
   3740   // Diagnose the use of X86 fastcall on varargs or unprototyped functions.
   3741   if (CC == CC_X86FastCall) {
   3742     if (isa<FunctionNoProtoType>(fn)) {
   3743       S.Diag(attr.getLoc(), diag::err_cconv_knr)
   3744         << FunctionType::getNameForCallConv(CC);
   3745       attr.setInvalid();
   3746       return true;
   3747     }
   3748 
   3749     const FunctionProtoType *FnP = cast<FunctionProtoType>(fn);
   3750     if (FnP->isVariadic()) {
   3751       S.Diag(attr.getLoc(), diag::err_cconv_varargs)
   3752         << FunctionType::getNameForCallConv(CC);
   3753       attr.setInvalid();
   3754       return true;
   3755     }
   3756 
   3757     // Also diagnose fastcall with regparm.
   3758     if (fn->getHasRegParm()) {
   3759       S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
   3760         << "regparm"
   3761         << FunctionType::getNameForCallConv(CC);
   3762       attr.setInvalid();
   3763       return true;
   3764     }
   3765   }
   3766 
   3767   FunctionType::ExtInfo EI = unwrapped.get()->getExtInfo().withCallingConv(CC);
   3768   type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
   3769   return true;
   3770 }
   3771 
   3772 /// Handle OpenCL image access qualifiers: read_only, write_only, read_write
   3773 static void HandleOpenCLImageAccessAttribute(QualType& CurType,
   3774                                              const AttributeList &Attr,
   3775                                              Sema &S) {
   3776   // Check the attribute arguments.
   3777   if (Attr.getNumArgs() != 1) {
   3778     S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
   3779     Attr.setInvalid();
   3780     return;
   3781   }
   3782   Expr *sizeExpr = static_cast<Expr *>(Attr.getArg(0));
   3783   llvm::APSInt arg(32);
   3784   if (sizeExpr->isTypeDependent() || sizeExpr->isValueDependent() ||
   3785       !sizeExpr->isIntegerConstantExpr(arg, S.Context)) {
   3786     S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int)
   3787       << "opencl_image_access" << sizeExpr->getSourceRange();
   3788     Attr.setInvalid();
   3789     return;
   3790   }
   3791   unsigned iarg = static_cast<unsigned>(arg.getZExtValue());
   3792   switch (iarg) {
   3793   case CLIA_read_only:
   3794   case CLIA_write_only:
   3795   case CLIA_read_write:
   3796     // Implemented in a separate patch
   3797     break;
   3798   default:
   3799     // Implemented in a separate patch
   3800     S.Diag(Attr.getLoc(), diag::err_attribute_invalid_size)
   3801       << sizeExpr->getSourceRange();
   3802     Attr.setInvalid();
   3803     break;
   3804   }
   3805 }
   3806 
   3807 /// HandleVectorSizeAttribute - this attribute is only applicable to integral
   3808 /// and float scalars, although arrays, pointers, and function return values are
   3809 /// allowed in conjunction with this construct. Aggregates with this attribute
   3810 /// are invalid, even if they are of the same size as a corresponding scalar.
   3811 /// The raw attribute should contain precisely 1 argument, the vector size for
   3812 /// the variable, measured in bytes. If curType and rawAttr are well formed,
   3813 /// this routine will return a new vector type.
   3814 static void HandleVectorSizeAttr(QualType& CurType, const AttributeList &Attr,
   3815                                  Sema &S) {
   3816   // Check the attribute arguments.
   3817   if (Attr.getNumArgs() != 1) {
   3818     S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
   3819     Attr.setInvalid();
   3820     return;
   3821   }
   3822   Expr *sizeExpr = static_cast<Expr *>(Attr.getArg(0));
   3823   llvm::APSInt vecSize(32);
   3824   if (sizeExpr->isTypeDependent() || sizeExpr->isValueDependent() ||
   3825       !sizeExpr->isIntegerConstantExpr(vecSize, S.Context)) {
   3826     S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int)
   3827       << "vector_size" << sizeExpr->getSourceRange();
   3828     Attr.setInvalid();
   3829     return;
   3830   }
   3831   // the base type must be integer or float, and can't already be a vector.
   3832   if (!CurType->isIntegerType() && !CurType->isRealFloatingType()) {
   3833     S.Diag(Attr.getLoc(), diag::err_attribute_invalid_vector_type) << CurType;
   3834     Attr.setInvalid();
   3835     return;
   3836   }
   3837   unsigned typeSize = static_cast<unsigned>(S.Context.getTypeSize(CurType));
   3838   // vecSize is specified in bytes - convert to bits.
   3839   unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue() * 8);
   3840 
   3841   // the vector size needs to be an integral multiple of the type size.
   3842   if (vectorSize % typeSize) {
   3843     S.Diag(Attr.getLoc(), diag::err_attribute_invalid_size)
   3844       << sizeExpr->getSourceRange();
   3845     Attr.setInvalid();
   3846     return;
   3847   }
   3848   if (vectorSize == 0) {
   3849     S.Diag(Attr.getLoc(), diag::err_attribute_zero_size)
   3850       << sizeExpr->getSourceRange();
   3851     Attr.setInvalid();
   3852     return;
   3853   }
   3854 
   3855   // Success! Instantiate the vector type, the number of elements is > 0, and
   3856   // not required to be a power of 2, unlike GCC.
   3857   CurType = S.Context.getVectorType(CurType, vectorSize/typeSize,
   3858                                     VectorType::GenericVector);
   3859 }
   3860 
   3861 /// \brief Process the OpenCL-like ext_vector_type attribute when it occurs on
   3862 /// a type.
   3863 static void HandleExtVectorTypeAttr(QualType &CurType,
   3864                                     const AttributeList &Attr,
   3865                                     Sema &S) {
   3866   Expr *sizeExpr;
   3867 
   3868   // Special case where the argument is a template id.
   3869   if (Attr.getParameterName()) {
   3870     CXXScopeSpec SS;
   3871     SourceLocation TemplateKWLoc;
   3872     UnqualifiedId id;
   3873     id.setIdentifier(Attr.getParameterName(), Attr.getLoc());
   3874 
   3875     ExprResult Size = S.ActOnIdExpression(S.getCurScope(), SS, TemplateKWLoc,
   3876                                           id, false, false);
   3877     if (Size.isInvalid())
   3878       return;
   3879 
   3880     sizeExpr = Size.get();
   3881   } else {
   3882     // check the attribute arguments.
   3883     if (Attr.getNumArgs() != 1) {
   3884       S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
   3885       return;
   3886     }
   3887     sizeExpr = Attr.getArg(0);
   3888   }
   3889 
   3890   // Create the vector type.
   3891   QualType T = S.BuildExtVectorType(CurType, sizeExpr, Attr.getLoc());
   3892   if (!T.isNull())
   3893     CurType = T;
   3894 }
   3895 
   3896 /// HandleNeonVectorTypeAttr - The "neon_vector_type" and
   3897 /// "neon_polyvector_type" attributes are used to create vector types that
   3898 /// are mangled according to ARM's ABI.  Otherwise, these types are identical
   3899 /// to those created with the "vector_size" attribute.  Unlike "vector_size"
   3900 /// the argument to these Neon attributes is the number of vector elements,
   3901 /// not the vector size in bytes.  The vector width and element type must
   3902 /// match one of the standard Neon vector types.
   3903 static void HandleNeonVectorTypeAttr(QualType& CurType,
   3904                                      const AttributeList &Attr, Sema &S,
   3905                                      VectorType::VectorKind VecKind,
   3906                                      const char *AttrName) {
   3907   // Check the attribute arguments.
   3908   if (Attr.getNumArgs() != 1) {
   3909     S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
   3910     Attr.setInvalid();
   3911     return;
   3912   }
   3913   // The number of elements must be an ICE.
   3914   Expr *numEltsExpr = static_cast<Expr *>(Attr.getArg(0));
   3915   llvm::APSInt numEltsInt(32);
   3916   if (numEltsExpr->isTypeDependent() || numEltsExpr->isValueDependent() ||
   3917       !numEltsExpr->isIntegerConstantExpr(numEltsInt, S.Context)) {
   3918     S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int)
   3919       << AttrName << numEltsExpr->getSourceRange();
   3920     Attr.setInvalid();
   3921     return;
   3922   }
   3923   // Only certain element types are supported for Neon vectors.
   3924   const BuiltinType* BTy = CurType->getAs<BuiltinType>();
   3925   if (!BTy ||
   3926       (VecKind == VectorType::NeonPolyVector &&
   3927        BTy->getKind() != BuiltinType::SChar &&
   3928        BTy->getKind() != BuiltinType::Short) ||
   3929       (BTy->getKind() != BuiltinType::SChar &&
   3930        BTy->getKind() != BuiltinType::UChar &&
   3931        BTy->getKind() != BuiltinType::Short &&
   3932        BTy->getKind() != BuiltinType::UShort &&
   3933        BTy->getKind() != BuiltinType::Int &&
   3934        BTy->getKind() != BuiltinType::UInt &&
   3935        BTy->getKind() != BuiltinType::LongLong &&
   3936        BTy->getKind() != BuiltinType::ULongLong &&
   3937        BTy->getKind() != BuiltinType::Float)) {
   3938     S.Diag(Attr.getLoc(), diag::err_attribute_invalid_vector_type) <<CurType;
   3939     Attr.setInvalid();
   3940     return;
   3941   }
   3942   // The total size of the vector must be 64 or 128 bits.
   3943   unsigned typeSize = static_cast<unsigned>(S.Context.getTypeSize(CurType));
   3944   unsigned numElts = static_cast<unsigned>(numEltsInt.getZExtValue());
   3945   unsigned vecSize = typeSize * numElts;
   3946   if (vecSize != 64 && vecSize != 128) {
   3947     S.Diag(Attr.getLoc(), diag::err_attribute_bad_neon_vector_size) << CurType;
   3948     Attr.setInvalid();
   3949     return;
   3950   }
   3951 
   3952   CurType = S.Context.getVectorType(CurType, numElts, VecKind);
   3953 }
   3954 
   3955 static void processTypeAttrs(TypeProcessingState &state, QualType &type,
   3956                              bool isDeclSpec, AttributeList *attrs) {
   3957   // Scan through and apply attributes to this type where it makes sense.  Some
   3958   // attributes (such as __address_space__, __vector_size__, etc) apply to the
   3959   // type, but others can be present in the type specifiers even though they
   3960   // apply to the decl.  Here we apply type attributes and ignore the rest.
   3961 
   3962   AttributeList *next;
   3963   do {
   3964     AttributeList &attr = *attrs;
   3965     next = attr.getNext();
   3966 
   3967     // Skip attributes that were marked to be invalid.
   3968     if (attr.isInvalid())
   3969       continue;
   3970 
   3971     // If this is an attribute we can handle, do so now,
   3972     // otherwise, add it to the FnAttrs list for rechaining.
   3973     switch (attr.getKind()) {
   3974     default: break;
   3975 
   3976     case AttributeList::AT_may_alias:
   3977       // FIXME: This attribute needs to actually be handled, but if we ignore
   3978       // it it breaks large amounts of Linux software.
   3979       attr.setUsedAsTypeAttr();
   3980       break;
   3981     case AttributeList::AT_address_space:
   3982       HandleAddressSpaceTypeAttribute(type, attr, state.getSema());
   3983       attr.setUsedAsTypeAttr();
   3984       break;
   3985     OBJC_POINTER_TYPE_ATTRS_CASELIST:
   3986       if (!handleObjCPointerTypeAttr(state, attr, type))
   3987         distributeObjCPointerTypeAttr(state, attr, type);
   3988       attr.setUsedAsTypeAttr();
   3989       break;
   3990     case AttributeList::AT_vector_size:
   3991       HandleVectorSizeAttr(type, attr, state.getSema());
   3992       attr.setUsedAsTypeAttr();
   3993       break;
   3994     case AttributeList::AT_ext_vector_type:
   3995       if (state.getDeclarator().getDeclSpec().getStorageClassSpec()
   3996             != DeclSpec::SCS_typedef)
   3997         HandleExtVectorTypeAttr(type, attr, state.getSema());
   3998       attr.setUsedAsTypeAttr();
   3999       break;
   4000     case AttributeList::AT_neon_vector_type:
   4001       HandleNeonVectorTypeAttr(type, attr, state.getSema(),
   4002                                VectorType::NeonVector, "neon_vector_type");
   4003       attr.setUsedAsTypeAttr();
   4004       break;
   4005     case AttributeList::AT_neon_polyvector_type:
   4006       HandleNeonVectorTypeAttr(type, attr, state.getSema(),
   4007                                VectorType::NeonPolyVector,
   4008                                "neon_polyvector_type");
   4009       attr.setUsedAsTypeAttr();
   4010       break;
   4011     case AttributeList::AT_opencl_image_access:
   4012       HandleOpenCLImageAccessAttribute(type, attr, state.getSema());
   4013       attr.setUsedAsTypeAttr();
   4014       break;
   4015 
   4016     case AttributeList::AT_ns_returns_retained:
   4017       if (!state.getSema().getLangOpts().ObjCAutoRefCount)
   4018 	break;
   4019       // fallthrough into the function attrs
   4020 
   4021     FUNCTION_TYPE_ATTRS_CASELIST:
   4022       attr.setUsedAsTypeAttr();
   4023 
   4024       // Never process function type attributes as part of the
   4025       // declaration-specifiers.
   4026       if (isDeclSpec)
   4027         distributeFunctionTypeAttrFromDeclSpec(state, attr, type);
   4028 
   4029       // Otherwise, handle the possible delays.
   4030       else if (!handleFunctionTypeAttr(state, attr, type))
   4031         distributeFunctionTypeAttr(state, attr, type);
   4032       break;
   4033     }
   4034   } while ((attrs = next));
   4035 }
   4036 
   4037 /// \brief Ensure that the type of the given expression is complete.
   4038 ///
   4039 /// This routine checks whether the expression \p E has a complete type. If the
   4040 /// expression refers to an instantiable construct, that instantiation is
   4041 /// performed as needed to complete its type. Furthermore
   4042 /// Sema::RequireCompleteType is called for the expression's type (or in the
   4043 /// case of a reference type, the referred-to type).
   4044 ///
   4045 /// \param E The expression whose type is required to be complete.
   4046 /// \param PD The partial diagnostic that will be printed out if the type cannot
   4047 /// be completed.
   4048 ///
   4049 /// \returns \c true if the type of \p E is incomplete and diagnosed, \c false
   4050 /// otherwise.
   4051 bool Sema::RequireCompleteExprType(Expr *E, const PartialDiagnostic &PD,
   4052                                    std::pair<SourceLocation,
   4053                                              PartialDiagnostic> Note) {
   4054   QualType T = E->getType();
   4055 
   4056   // Fast path the case where the type is already complete.
   4057   if (!T->isIncompleteType())
   4058     return false;
   4059 
   4060   // Incomplete array types may be completed by the initializer attached to
   4061   // their definitions. For static data members of class templates we need to
   4062   // instantiate the definition to get this initializer and complete the type.
   4063   if (T->isIncompleteArrayType()) {
   4064     if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
   4065       if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
   4066         if (Var->isStaticDataMember() &&
   4067             Var->getInstantiatedFromStaticDataMember()) {
   4068 
   4069           MemberSpecializationInfo *MSInfo = Var->getMemberSpecializationInfo();
   4070           assert(MSInfo && "Missing member specialization information?");
   4071           if (MSInfo->getTemplateSpecializationKind()
   4072                 != TSK_ExplicitSpecialization) {
   4073             // If we don't already have a point of instantiation, this is it.
   4074             if (MSInfo->getPointOfInstantiation().isInvalid()) {
   4075               MSInfo->setPointOfInstantiation(E->getLocStart());
   4076 
   4077               // This is a modification of an existing AST node. Notify
   4078               // listeners.
   4079               if (ASTMutationListener *L = getASTMutationListener())
   4080                 L->StaticDataMemberInstantiated(Var);
   4081             }
   4082 
   4083             InstantiateStaticDataMemberDefinition(E->getExprLoc(), Var);
   4084 
   4085             // Update the type to the newly instantiated definition's type both
   4086             // here and within the expression.
   4087             if (VarDecl *Def = Var->getDefinition()) {
   4088               DRE->setDecl(Def);
   4089               T = Def->getType();
   4090               DRE->setType(T);
   4091               E->setType(T);
   4092             }
   4093           }
   4094 
   4095           // We still go on to try to complete the type independently, as it
   4096           // may also require instantiations or diagnostics if it remains
   4097           // incomplete.
   4098         }
   4099       }
   4100     }
   4101   }
   4102 
   4103   // FIXME: Are there other cases which require instantiating something other
   4104   // than the type to complete the type of an expression?
   4105 
   4106   // Look through reference types and complete the referred type.
   4107   if (const ReferenceType *Ref = T->getAs<ReferenceType>())
   4108     T = Ref->getPointeeType();
   4109 
   4110   return RequireCompleteType(E->getExprLoc(), T, PD, Note);
   4111 }
   4112 
   4113 /// @brief Ensure that the type T is a complete type.
   4114 ///
   4115 /// This routine checks whether the type @p T is complete in any
   4116 /// context where a complete type is required. If @p T is a complete
   4117 /// type, returns false. If @p T is a class template specialization,
   4118 /// this routine then attempts to perform class template
   4119 /// instantiation. If instantiation fails, or if @p T is incomplete
   4120 /// and cannot be completed, issues the diagnostic @p diag (giving it
   4121 /// the type @p T) and returns true.
   4122 ///
   4123 /// @param Loc  The location in the source that the incomplete type
   4124 /// diagnostic should refer to.
   4125 ///
   4126 /// @param T  The type that this routine is examining for completeness.
   4127 ///
   4128 /// @param PD The partial diagnostic that will be printed out if T is not a
   4129 /// complete type.
   4130 ///
   4131 /// @returns @c true if @p T is incomplete and a diagnostic was emitted,
   4132 /// @c false otherwise.
   4133 bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
   4134                                const PartialDiagnostic &PD,
   4135                                std::pair<SourceLocation,
   4136                                          PartialDiagnostic> Note) {
   4137   unsigned diag = PD.getDiagID();
   4138 
   4139   // FIXME: Add this assertion to make sure we always get instantiation points.
   4140   //  assert(!Loc.isInvalid() && "Invalid location in RequireCompleteType");
   4141   // FIXME: Add this assertion to help us flush out problems with
   4142   // checking for dependent types and type-dependent expressions.
   4143   //
   4144   //  assert(!T->isDependentType() &&
   4145   //         "Can't ask whether a dependent type is complete");
   4146 
   4147   // If we have a complete type, we're done.
   4148   NamedDecl *Def = 0;
   4149   if (!T->isIncompleteType(&Def)) {
   4150     // If we know about the definition but it is not visible, complain.
   4151     if (diag != 0 && Def && !LookupResult::isVisible(Def)) {
   4152       // Suppress this error outside of a SFINAE context if we've already
   4153       // emitted the error once for this type. There's no usefulness in
   4154       // repeating the diagnostic.
   4155       // FIXME: Add a Fix-It that imports the corresponding module or includes
   4156       // the header.
   4157       if (isSFINAEContext() || HiddenDefinitions.insert(Def)) {
   4158         Diag(Loc, diag::err_module_private_definition) << T;
   4159         Diag(Def->getLocation(), diag::note_previous_definition);
   4160       }
   4161     }
   4162 
   4163     return false;
   4164   }
   4165 
   4166   const TagType *Tag = T->getAs<TagType>();
   4167   const ObjCInterfaceType *IFace = 0;
   4168 
   4169   if (Tag) {
   4170     // Avoid diagnosing invalid decls as incomplete.
   4171     if (Tag->getDecl()->isInvalidDecl())
   4172       return true;
   4173 
   4174     // Give the external AST source a chance to complete the type.
   4175     if (Tag->getDecl()->hasExternalLexicalStorage()) {
   4176       Context.getExternalSource()->CompleteType(Tag->getDecl());
   4177       if (!Tag->isIncompleteType())
   4178         return false;
   4179     }
   4180   }
   4181   else if ((IFace = T->getAs<ObjCInterfaceType>())) {
   4182     // Avoid diagnosing invalid decls as incomplete.
   4183     if (IFace->getDecl()->isInvalidDecl())
   4184       return true;
   4185 
   4186     // Give the external AST source a chance to complete the type.
   4187     if (IFace->getDecl()->hasExternalLexicalStorage()) {
   4188       Context.getExternalSource()->CompleteType(IFace->getDecl());
   4189       if (!IFace->isIncompleteType())
   4190         return false;
   4191     }
   4192   }
   4193 
   4194   // If we have a class template specialization or a class member of a
   4195   // class template specialization, or an array with known size of such,
   4196   // try to instantiate it.
   4197   QualType MaybeTemplate = T;
   4198   if (const ConstantArrayType *Array = Context.getAsConstantArrayType(T))
   4199     MaybeTemplate = Array->getElementType();
   4200   if (const RecordType *Record = MaybeTemplate->getAs<RecordType>()) {
   4201     if (ClassTemplateSpecializationDecl *ClassTemplateSpec
   4202           = dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) {
   4203       if (ClassTemplateSpec->getSpecializationKind() == TSK_Undeclared)
   4204         return InstantiateClassTemplateSpecialization(Loc, ClassTemplateSpec,
   4205                                                       TSK_ImplicitInstantiation,
   4206                                                       /*Complain=*/diag != 0);
   4207     } else if (CXXRecordDecl *Rec
   4208                  = dyn_cast<CXXRecordDecl>(Record->getDecl())) {
   4209       CXXRecordDecl *Pattern = Rec->getInstantiatedFromMemberClass();
   4210       if (!Rec->isBeingDefined() && Pattern) {
   4211         MemberSpecializationInfo *MSI = Rec->getMemberSpecializationInfo();
   4212         assert(MSI && "Missing member specialization information?");
   4213         // This record was instantiated from a class within a template.
   4214         if (MSI->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
   4215           return InstantiateClass(Loc, Rec, Pattern,
   4216                                   getTemplateInstantiationArgs(Rec),
   4217                                   TSK_ImplicitInstantiation,
   4218                                   /*Complain=*/diag != 0);
   4219       }
   4220     }
   4221   }
   4222 
   4223   if (diag == 0)
   4224     return true;
   4225 
   4226   // We have an incomplete type. Produce a diagnostic.
   4227   Diag(Loc, PD) << T;
   4228 
   4229   // If we have a note, produce it.
   4230   if (!Note.first.isInvalid())
   4231     Diag(Note.first, Note.second);
   4232 
   4233   // If the type was a forward declaration of a class/struct/union
   4234   // type, produce a note.
   4235   if (Tag && !Tag->getDecl()->isInvalidDecl())
   4236     Diag(Tag->getDecl()->getLocation(),
   4237          Tag->isBeingDefined() ? diag::note_type_being_defined
   4238                                : diag::note_forward_declaration)
   4239       << QualType(Tag, 0);
   4240 
   4241   // If the Objective-C class was a forward declaration, produce a note.
   4242   if (IFace && !IFace->getDecl()->isInvalidDecl())
   4243     Diag(IFace->getDecl()->getLocation(), diag::note_forward_class);
   4244 
   4245   return true;
   4246 }
   4247 
   4248 bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
   4249                                const PartialDiagnostic &PD) {
   4250   return RequireCompleteType(Loc, T, PD,
   4251                              std::make_pair(SourceLocation(), PDiag(0)));
   4252 }
   4253 
   4254 bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
   4255                                unsigned DiagID) {
   4256   return RequireCompleteType(Loc, T, PDiag(DiagID),
   4257                              std::make_pair(SourceLocation(), PDiag(0)));
   4258 }
   4259 
   4260 /// @brief Ensure that the type T is a literal type.
   4261 ///
   4262 /// This routine checks whether the type @p T is a literal type. If @p T is an
   4263 /// incomplete type, an attempt is made to complete it. If @p T is a literal
   4264 /// type, or @p AllowIncompleteType is true and @p T is an incomplete type,
   4265 /// returns false. Otherwise, this routine issues the diagnostic @p PD (giving
   4266 /// it the type @p T), along with notes explaining why the type is not a
   4267 /// literal type, and returns true.
   4268 ///
   4269 /// @param Loc  The location in the source that the non-literal type
   4270 /// diagnostic should refer to.
   4271 ///
   4272 /// @param T  The type that this routine is examining for literalness.
   4273 ///
   4274 /// @param PD The partial diagnostic that will be printed out if T is not a
   4275 /// literal type.
   4276 ///
   4277 /// @returns @c true if @p T is not a literal type and a diagnostic was emitted,
   4278 /// @c false otherwise.
   4279 bool Sema::RequireLiteralType(SourceLocation Loc, QualType T,
   4280                               const PartialDiagnostic &PD) {
   4281   assert(!T->isDependentType() && "type should not be dependent");
   4282 
   4283   QualType ElemType = Context.getBaseElementType(T);
   4284   RequireCompleteType(Loc, ElemType, 0);
   4285 
   4286   if (T->isLiteralType())
   4287     return false;
   4288 
   4289   if (PD.getDiagID() == 0)
   4290     return true;
   4291 
   4292   Diag(Loc, PD) << T;
   4293 
   4294   if (T->isVariableArrayType())
   4295     return true;
   4296 
   4297   const RecordType *RT = ElemType->getAs<RecordType>();
   4298   if (!RT)
   4299     return true;
   4300 
   4301   const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
   4302 
   4303   // FIXME: Better diagnostic for incomplete class?
   4304   if (!RD->isCompleteDefinition())
   4305     return true;
   4306 
   4307   // If the class has virtual base classes, then it's not an aggregate, and
   4308   // cannot have any constexpr constructors or a trivial default constructor,
   4309   // so is non-literal. This is better to diagnose than the resulting absence
   4310   // of constexpr constructors.
   4311   if (RD->getNumVBases()) {
   4312     Diag(RD->getLocation(), diag::note_non_literal_virtual_base)
   4313       << RD->isStruct() << RD->getNumVBases();
   4314     for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
   4315            E = RD->vbases_end(); I != E; ++I)
   4316       Diag(I->getLocStart(),
   4317            diag::note_constexpr_virtual_base_here) << I->getSourceRange();
   4318   } else if (!RD->isAggregate() && !RD->hasConstexprNonCopyMoveConstructor() &&
   4319              !RD->hasTrivialDefaultConstructor()) {
   4320     Diag(RD->getLocation(), diag::note_non_literal_no_constexpr_ctors) << RD;
   4321   } else if (RD->hasNonLiteralTypeFieldsOrBases()) {
   4322     for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
   4323          E = RD->bases_end(); I != E; ++I) {
   4324       if (!I->getType()->isLiteralType()) {
   4325         Diag(I->getLocStart(),
   4326              diag::note_non_literal_base_class)
   4327           << RD << I->getType() << I->getSourceRange();
   4328         return true;
   4329       }
   4330     }
   4331     for (CXXRecordDecl::field_iterator I = RD->field_begin(),
   4332          E = RD->field_end(); I != E; ++I) {
   4333       if (!(*I)->getType()->isLiteralType() ||
   4334           (*I)->getType().isVolatileQualified()) {
   4335         Diag((*I)->getLocation(), diag::note_non_literal_field)
   4336           << RD << (*I) << (*I)->getType()
   4337           << (*I)->getType().isVolatileQualified();
   4338         return true;
   4339       }
   4340     }
   4341   } else if (!RD->hasTrivialDestructor()) {
   4342     // All fields and bases are of literal types, so have trivial destructors.
   4343     // If this class's destructor is non-trivial it must be user-declared.
   4344     CXXDestructorDecl *Dtor = RD->getDestructor();
   4345     assert(Dtor && "class has literal fields and bases but no dtor?");
   4346     if (!Dtor)
   4347       return true;
   4348 
   4349     Diag(Dtor->getLocation(), Dtor->isUserProvided() ?
   4350          diag::note_non_literal_user_provided_dtor :
   4351          diag::note_non_literal_nontrivial_dtor) << RD;
   4352   }
   4353 
   4354   return true;
   4355 }
   4356 
   4357 /// \brief Retrieve a version of the type 'T' that is elaborated by Keyword
   4358 /// and qualified by the nested-name-specifier contained in SS.
   4359 QualType Sema::getElaboratedType(ElaboratedTypeKeyword Keyword,
   4360                                  const CXXScopeSpec &SS, QualType T) {
   4361   if (T.isNull())
   4362     return T;
   4363   NestedNameSpecifier *NNS;
   4364   if (SS.isValid())
   4365     NNS = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
   4366   else {
   4367     if (Keyword == ETK_None)
   4368       return T;
   4369     NNS = 0;
   4370   }
   4371   return Context.getElaboratedType(Keyword, NNS, T);
   4372 }
   4373 
   4374 QualType Sema::BuildTypeofExprType(Expr *E, SourceLocation Loc) {
   4375   ExprResult ER = CheckPlaceholderExpr(E);
   4376   if (ER.isInvalid()) return QualType();
   4377   E = ER.take();
   4378 
   4379   if (!E->isTypeDependent()) {
   4380     QualType T = E->getType();
   4381     if (const TagType *TT = T->getAs<TagType>())
   4382       DiagnoseUseOfDecl(TT->getDecl(), E->getExprLoc());
   4383   }
   4384   return Context.getTypeOfExprType(E);
   4385 }
   4386 
   4387 /// getDecltypeForExpr - Given an expr, will return the decltype for
   4388 /// that expression, according to the rules in C++11
   4389 /// [dcl.type.simple]p4 and C++11 [expr.lambda.prim]p18.
   4390 static QualType getDecltypeForExpr(Sema &S, Expr *E) {
   4391   if (E->isTypeDependent())
   4392     return S.Context.DependentTy;
   4393 
   4394   // C++11 [dcl.type.simple]p4:
   4395   //   The type denoted by decltype(e) is defined as follows:
   4396   //
   4397   //     - if e is an unparenthesized id-expression or an unparenthesized class
   4398   //       member access (5.2.5), decltype(e) is the type of the entity named
   4399   //       by e. If there is no such entity, or if e names a set of overloaded
   4400   //       functions, the program is ill-formed;
   4401   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
   4402     if (const ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl()))
   4403       return VD->getType();
   4404   }
   4405   if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
   4406     if (const FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
   4407       return FD->getType();
   4408   }
   4409 
   4410   // C++11 [expr.lambda.prim]p18:
   4411   //   Every occurrence of decltype((x)) where x is a possibly
   4412   //   parenthesized id-expression that names an entity of automatic
   4413   //   storage duration is treated as if x were transformed into an
   4414   //   access to a corresponding data member of the closure type that
   4415   //   would have been declared if x were an odr-use of the denoted
   4416   //   entity.
   4417   using namespace sema;
   4418   if (S.getCurLambda()) {
   4419     if (isa<ParenExpr>(E)) {
   4420       if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
   4421         if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
   4422           QualType T = S.getCapturedDeclRefType(Var, DRE->getLocation());
   4423           if (!T.isNull())
   4424             return S.Context.getLValueReferenceType(T);
   4425         }
   4426       }
   4427     }
   4428   }
   4429 
   4430 
   4431   // C++11 [dcl.type.simple]p4:
   4432   //   [...]
   4433   QualType T = E->getType();
   4434   switch (E->getValueKind()) {
   4435   //     - otherwise, if e is an xvalue, decltype(e) is T&&, where T is the
   4436   //       type of e;
   4437   case VK_XValue: T = S.Context.getRValueReferenceType(T); break;
   4438   //     - otherwise, if e is an lvalue, decltype(e) is T&, where T is the
   4439   //       type of e;
   4440   case VK_LValue: T = S.Context.getLValueReferenceType(T); break;
   4441   //  - otherwise, decltype(e) is the type of e.
   4442   case VK_RValue: break;
   4443   }
   4444 
   4445   return T;
   4446 }
   4447 
   4448 QualType Sema::BuildDecltypeType(Expr *E, SourceLocation Loc) {
   4449   ExprResult ER = CheckPlaceholderExpr(E);
   4450   if (ER.isInvalid()) return QualType();
   4451   E = ER.take();
   4452 
   4453   return Context.getDecltypeType(E, getDecltypeForExpr(*this, E));
   4454 }
   4455 
   4456 QualType Sema::BuildUnaryTransformType(QualType BaseType,
   4457                                        UnaryTransformType::UTTKind UKind,
   4458                                        SourceLocation Loc) {
   4459   switch (UKind) {
   4460   case UnaryTransformType::EnumUnderlyingType:
   4461     if (!BaseType->isDependentType() && !BaseType->isEnumeralType()) {
   4462       Diag(Loc, diag::err_only_enums_have_underlying_types);
   4463       return QualType();
   4464     } else {
   4465       QualType Underlying = BaseType;
   4466       if (!BaseType->isDependentType()) {
   4467         EnumDecl *ED = BaseType->getAs<EnumType>()->getDecl();
   4468         assert(ED && "EnumType has no EnumDecl");
   4469         DiagnoseUseOfDecl(ED, Loc);
   4470         Underlying = ED->getIntegerType();
   4471       }
   4472       assert(!Underlying.isNull());
   4473       return Context.getUnaryTransformType(BaseType, Underlying,
   4474                                         UnaryTransformType::EnumUnderlyingType);
   4475     }
   4476   }
   4477   llvm_unreachable("unknown unary transform type");
   4478 }
   4479 
   4480 QualType Sema::BuildAtomicType(QualType T, SourceLocation Loc) {
   4481   if (!T->isDependentType()) {
   4482     // FIXME: It isn't entirely clear whether incomplete atomic types
   4483     // are allowed or not; for simplicity, ban them for the moment.
   4484     if (RequireCompleteType(Loc, T,
   4485                             PDiag(diag::err_atomic_specifier_bad_type) << 0))
   4486       return QualType();
   4487 
   4488     int DisallowedKind = -1;
   4489     if (T->isArrayType())
   4490       DisallowedKind = 1;
   4491     else if (T->isFunctionType())
   4492       DisallowedKind = 2;
   4493     else if (T->isReferenceType())
   4494       DisallowedKind = 3;
   4495     else if (T->isAtomicType())
   4496       DisallowedKind = 4;
   4497     else if (T.hasQualifiers())
   4498       DisallowedKind = 5;
   4499     else if (!T.isTriviallyCopyableType(Context))
   4500       // Some other non-trivially-copyable type (probably a C++ class)
   4501       DisallowedKind = 6;
   4502 
   4503     if (DisallowedKind != -1) {
   4504       Diag(Loc, diag::err_atomic_specifier_bad_type) << DisallowedKind << T;
   4505       return QualType();
   4506     }
   4507 
   4508     // FIXME: Do we need any handling for ARC here?
   4509   }
   4510 
   4511   // Build the pointer type.
   4512   return Context.getAtomicType(T);
   4513 }
   4514